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The quantification of the spectrum of wall-pressure fluctuations under a turbulent boundary layer has a fundamental role in problems of aerodynamic noise generation and structural vibration. Advanced analytic formulations of the wall-pressure spectrum involve multi-dimensional integrals. The computation of these integral formulations with quadrature methods proves computationally expensive, especially if many flow configurations are taken into account. For this reason, Monte-Carlo methods are used to distribute a predefined number of samples of the integrand function in the integration space and obtain a rapid and accurate estimate of the integral value. This work reviews the expression of the wall-pressure spectrum based on the Poisson equation for pressure fluctuations in a turbulent field and then applies three different Monte-Carlo methods to its computation: the quasi-uniform sampling, the recursive stratified sampling and the importance sampling. The criteria for the choice of the most appropriate Monte-Carlo method are finally discussed.

Monte-carlo computation of wall-pressure spectra under turbulent boundary layers for trailing-edge noise prediction. 1 Introduction

The problem of estimating of the spectrum of wall-pressure fluctuations under a turbulent boundary layer arises in the description of aeroacoustic and structural phenomena. From the aeroacoustic point of view, Amiet's model and its extension [START_REF] Amiet | Noise due to turbulent flow past a trailing edge[END_REF][START_REF] Roger | Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part 1: Theory[END_REF] state that the spectrum of trailing-edge noise emitted by a stationary airfoil is directly proportional to the spectrum of wall-pressure fluctuations generated by the turbulent boundary layer that develops over the airfoil surface. This model is extended to the prediction of noise from low-speed fans [START_REF] Roger | Broadband fan noise prediction using single-airfoil theory[END_REF][START_REF] Sanjosé | Fast and accurate analytical modeling of broadband noise for a low-speed fan[END_REF]. The scattering of the wall-pressure fluctuations at the trailing edge of a blade is one of the main contributions to the broadband noise emitted by subsonic fans [START_REF] Moreau | Competing broadband noise mechanisms in low-speed axial fans[END_REF] and it represents the minimum level of noise emitted by a fan when all leading-edge and tip interactions are removed. Also, the turbulent boundary layer that develops on the external surfaces of air, ground and marine transportation vehicles generates unsteady loads that can excite the underlying structure and propagate towards the interior of the vehicle as sound and vibration [START_REF] Caiazzo | A generalized corcos model for modelling turbulent boundary layer wall pressure fluctuations[END_REF]. These facts justify the introduction of a fast and accurate prediction of the wallpressure spectrum in the design process of many different industrial applications. Empirical models of the wall-pressure spectrum scaled with boundary layer variables have been developed most notably by Corcos [START_REF] Corcos | The structure of the turbulent pressure field in boundary-layer flows[END_REF], Chase [START_REF] Chase | Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure[END_REF], Schlinker and Amiet [START_REF] Schlinker | Helicopter trailing edge noise[END_REF], Efimtsov [START_REF] Efimtsov | Characteristics of the field of turbulent wall pressure fluctuations at large reynolds numbers[END_REF], Goody [START_REF] Goody | Empirical spectral model of surface pressure fluctuations[END_REF], Rozenberg et al. [START_REF] Rozenberg | Wall-pressure spectral model including the adverse pressure gradient effects[END_REF] and Caiazzo et al. [START_REF] Caiazzo | A generalized corcos model for modelling turbulent boundary layer wall pressure fluctuations[END_REF], among others. The advantage of these models consists in their easy mathematical formulation, which poses no problems of numerical implementation. However, they do not provide an explicit correlation between the statistics of the wall pressure and those of the overlying turbulent field. This correlation is formulated in the models based on the Poisson equation of the pressure fluctuations in a turbulent field. The disadvantage, in this case, is that the formulations of the wall-pressure spectrum resulting from the Poisson equation involve multi-dimensional integrals that require a high computational time when solved with traditional quadrature techniques. This problem was circumvented in the TNO-Blake family of models by making simplifying assumptions on the turbulence statistics that allowed to reduce the dimensionality of the integral formulation (see e.g. Kamruzzaman et al. [START_REF] Kamruzzaman | Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data[END_REF] and Bertagnolio et al. [START_REF] Bertagnolio | Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling[END_REF]). However, these assumptions have recently been dismissed as non-physical by Fischer et al. [START_REF] Fischer | Improvement of tno type trailing edge noise models[END_REF]. In other works, such as those of Panton and Linebarger [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF], Remmler et al. [START_REF] Remmler | Computation of wall-pressure spectra from steady flow data for noise prediction[END_REF], Peltier and Hambric [START_REF] Peltier | Estimating turbulent-boundary-layer wall-pressure spectra from cfd rans solutions[END_REF] and Slama et al. [START_REF] Slama | A kriging-based elliptic extended anisotropic model for the turbulent boundary layer wall pressure spectrum[END_REF], the multi-dimensional integral formulations are computed in a reasonable time with different numerical techniques, particularly Monte-Carlo methods and Kriging. This work explores the application of different Monte-Carlo methods to a possible solution of the wall-pressure spectrum based on the Poisson equation considering especially the efficiency and the ease of implementation of these methods.

2 Analytic formulation of the wall-pressure spectrum

Solution of the Poisson equation

The Poisson equation governing the pressure fluctuations in a turbulent boundary layer derives from the divergence of the incompressible momentum equation, introducing Reynolds decomposition into mean and fluctuating quantities, then subtracting the time-averaged equation. As a result,

1 ρ ∂ 2 p ∂x 2 i = -2 ∂u j ∂x i ∂U i ∂x j turbulence-mean shear - ∂ 2 ∂x i ∂x j (u i u j -u i u j ) turbulence-turbulence (1) 
where lowercase letters indicate fluctuating quantities and uppercase letters indicate mean quantities. The Laplacian of the unsteady pressure field is equal to the sum of two source terms: the turbulence-mean shear and the turbulence-turbulence interaction. In this work, it is assumed for mathematical simplicity that the main contribution to the wall-pressure spectrum is that of the turbulence-mean shear interaction, according to the estimation made by Kraichnan [START_REF] Kraichnan | Pressure fluctuations in turbulent flow over a flat plate[END_REF]. However, recent research has highlighted the importance of turbulence-turbulence interaction term on the lower frequency range of the spectrum (see e.g. [START_REF] Slama | A kriging-based elliptic extended anisotropic model for the turbulent boundary layer wall pressure spectrum[END_REF]). Equation (1) is solved for the fluctuating pressure in the domain represented in Fig. 1 using the Neumann boundary condition at the wall and assuming that p vanishes at infinity. The mean flow speed is aligned with the x 1 coordinate and is uniform with respect to x 1 and x 3 As a result, the only significant mean-velocity gradient is in the normal-to-wall direction and the source term of the Poisson equation is reduced to -2 ∂u 2 ∂x 1 ∂U 1 ∂x 2 . The turbulent field is considered homogeneous in planes parallel to the wall (having constant x 2 coordinate). Therefore, Eq. ( 1) can be Fourier-transformed in the x 1 and x 3 directions, yielding the following modified Helmholtz equation:

∂ 2 p(κ, x 2 ) ∂x 2 2 -κ 2 p(κ, x 2 ) = -2 ρ i k 1 ∂U 1 ∂x 2 û2 (κ, x 2 ) (2) 
where (•) represents the double spatial Fourier transform and κ = k 2 1 + k 2 3 . The solution of Eq. ( 2) is obtained with the following Green's function (see Gerolymos et al. [START_REF] Gerolymos | Wall effects on pressure fluctuations in turbulent channel flow[END_REF] for a complete derivation):

G (x 2 , X 2 ; κ = 0) = - e -κ|x 2 -X 2 | 2κ - e -κ(x 2 +X 2 ) 2κ (3) 
hence the wall pressure is

p(κ, x 2 = 0) = 2 i ρ k 1 κ ∞ 0 ∂U 1 (X 2 ) ∂x 2 û2 (κ, X 2 )e -κ X 2 dX 2 . ( 4 
)
The spectrum of wall-pressure fluctuations is obtained by multiplying Eq. ( 4) by its complex conjugate and taking the ensemble average. The result is integrated over the transverse wavenumber k 3 , yielding the streamwise-wavenumber wall-pressure spectrum:

ϕ pp (k 1 ) = 8ρ 2 0 ∞ 0 k 2 1 κ 2 e -(X 2 +X 2 )κ ∂U 1 (X 2 ) ∂x 2 ∂U 1 (X 2 ) ∂x 2 û2 (κ, X 2 ) • û2 (κ, X 2 ) dX 2 dX 2 dk 3 . (5) 
According to the hypothesis of 'frozen' convection of the turbulence (see e.g. [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF][START_REF] Fischer | Improvement of tno type trailing edge noise models[END_REF]), the frequency spectrum, ϕ pp (ω), is a function of the streamwise wavenumber spectrum, ϕ pp (k 1 ), as

ϕ pp (ω) = ϕ pp (k 1 → ω/U c )/U c .

Cross-spectrum of vertical velocity fluctuations

The vertical velocity fluctuation statistics that appear in Eq. ( 5) is modeled with the following relationship:

û2 (κ, X 2 ) • û2 (κ, X 2 ) = u 2 2 (X 2 ) u 2 2 (X 2 ) S 22 (κ, X 2 , X 2 ) (6) 
where S 22 is the normalized cross-spectrum of u 2 . The analytic expression of S 22 is derived as follows.

The normalized vertical velocity correlation coefficient is defined for a homogeneous turbulent field as

R 22 (r 1 , r 2 , r 3 ) = F (r) + r 2 1 + r 2 3 2r F (r) (7) 
where r = r1 2 + r 2 2 + r 2 3 and F (r) is the longitudinal correlation function. For the present calculations, the correlation function is assumed to be a Gaussian:

F (r) = exp - r 2 Λ 2 g . ( 8 
)
where Λ g is an integral length scale. Other functions can be chosen to represent F (r) (see [START_REF] Wilson | Three-dimensional correlation and spectral functions for turbulent velocities in homogeneous and surface-blocked boundary layers[END_REF] for an extensive discussion) but the Gaussian has the advantage of providing a simple closed-form solution of the cross-spectrum, S 22 , and is therefore well-suited for numerical validation. The cross-spectrum of vertical velocity fluctuations is defined as the real part of the double spatial Fourier transform of R 22 in the streamwise and transverse directions:

S 22 (κ, X 2 , X 2 ) = 1 4π 2 ∞ 0 2π 0 R 22 cos(k 1 r 1,3 cos(θ)) cos(k 3 r 1,3 sin(θ))dθdr 1,3 (9) 
where the polar coordinates r 1,3 = r 2 1 + r 2 3 and θ = arcsin(r 3 /r 1 ) have been used. It can be shown that the integral in dθ of Eq. ( 9) has an analytic solution, which yields where J 0 is the Bessel function of the first kind of order 0. The last equation states that the cross-spectrum of u 2 is the Hankel transform of R 22 in the r 1,3 direction. Finally, the solution of the integral of Eq. ( 10) yields

S 22 (κ, X 2 , X 2 ) = 1 2π ∞ 0 R 22 J 0 (r 1,3 κ) r 1,3 dr 1,3 (10) 
S 22 (κ, X 2 , X 2 ) = 1 2π e - (X 2 -X 2 ) 2 Λ 2 g κ 2 Λ 4 g 8 e - κ 2 Λ 2 g 4 (11)
where the X 2 and X 2 coordinates are written explicitly due to the inhomogeneity of the turbulence in the normal-to-wall direction. The introduction of Eqs. ( 9), [START_REF] Efimtsov | Characteristics of the field of turbulent wall pressure fluctuations at large reynolds numbers[END_REF] or [START_REF] Fischer | Improvement of tno type trailing edge noise models[END_REF] in Eq. ( 5), although formally indifferent, yields a five-dimensional, a four-dimensional or a three-dimensional integral formulation of the wall-pressure spectrum, respectively. The computation of the wall-pressure spectrum with classical quadrature techniques requires an amount of computational time that increases with the number of dimensions in the integral formulation. However, this mathematical model provides a useful test case to assess the efficiency of Monte-Carlo methods working with a pre-defined number of samples of integrand functions of increasing complexity.

Test Case

The application case for the computation of wall-pressure spectra is a controlled-diffusion (CD) airfoil for which it exists a large experimental and numerical database [START_REF] Moreau | Symposium on the cd airfoil -introduction[END_REF][START_REF] Sanjosé | Fast and accurate analytical modeling of broadband noise for a low-speed fan[END_REF]. The present profile corresponds to the mid-span section of the H380EC1 fan blade [START_REF] Magne | Subharmonic tonal noise from backflow vortices radiated by a low-speed ring fan in uniform inlet flow[END_REF]. It has a 4% relative thickness and a camber angle of 12 o . The airfoil chord length is c = 0.1356 m. It is set at a geometrical angle of attack of α w = 8 o . The reference velocity is U 0 = 30 m/s, defining a Reynolds number based on the airfoil chord length Re c = 2.8 • 10 5 . A LES and a RANS simulation of the flow over the CD airfoil have been performed with OpenFOAM [7]. The turbulence model selected for the RANS simulation was the k-ω SST. The boundary-layer quantities necessary for the wall-pressure spectrum prediction have been extracted from the RANS simulation using BATMAN, the VKI in-house code for noise prediction. The results of the extraction are depicted in Fig. 3, where the x 2 coordinate is normalized by the boundary layer thickness, δ. Details of the computation of u 2 2 and Λ g from a RANS simulation are given in the paper of Remmler et al. [START_REF] Remmler | Computation of wall-pressure spectra from steady flow data for noise prediction[END_REF]. The wall-pressure spectrum directly computed from the LES simulation is retained throughout this study for comparison with the predicted spectra.

The frequency wall-pressure spectra presented in the following figures are computed from the corresponding wavenumber spectra given by Eq. ( 5). The convective speed of pressure fluctuations over the blade surface, U c , is supposed to be independent of the wavenumber and equal to 70% of the reference velocity U 0 . This is a common value for turbulent boundary layer convection velocity (see [29, p. 50] and [20, Tab. 1]). The treatment of length scale anisotropy in the turbulent field and of its effect on S 22 is described in detail by Remmler [START_REF] Remmler | Computation of wall-pressure spectra from steady flow data for noise prediction[END_REF].

Monte-Carlo methods

Various numerical schemes have been devised in the past for the numerical calculation of multi-dimensional integral, and the reader is referred to [START_REF] Press | Numerical recipes in fortran 77[END_REF] for a brief overview. However most of the classical quadrature schemes can be computationally demanding if the dimension of the integral is high [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF]. As an estimate if 100 points are required for calculation of a single independent variable, then the required cost for N dimensional integral using a classical quadrature technique would be 100 N . Furthermore this would be the cost for a single streamwise-wavenumber calculation, in principle then if one wants to calculate the pressure spectra at M different streamwise wavenumber this cost will go upto M ×100 N . This can be computationally heavy if N is large, even by current state of the art computer. Whereas as noted if we want to estimate wall pressure spectra from a pre-design perspective where a hundred of test cases are to be tested and as such a large computational cost for a single case can prove to be detrimental. With this in mind the Monte-Carlo method for numerical integration has been used, which is computationally much cheaper and can converge with just a moderate 3000 -5000 iterations per streamwise wavenumber as noted previously by [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF], [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF] and [START_REF] Remmler | Computation of wall-pressure spectra from steady flow data for noise prediction[END_REF] using a similar formulation for the calculation of wall-pressure spectra.

Quasi uniform sampling

The simplest way to integrate a generic function f : R n → R with Monte-Carlo schemes is to generate N random vectors, x i , over the integration domain. Following the review made by Press and Farrar [START_REF] Press | Recursive stratified sampling for multidimensional monte carlo integration[END_REF], we can define the estimator of f , which is obtained by calculating the mean of the N randomly sampled function values:

f = 1 N N i=1 f (x i ). ( 12 
)
An indication of the error of the Monte-Carlo integration is given by the square root of the variance of the estimator, Var( f ). The variance of the estimator, in its turn, is related to the variance of the function as

Var( f ) = Var(f ) N (13) 
so that the following asymptotic relation holds for the error of the estimation:

= O σ √ N (14) 
where σ = Var(f ). However it is a known fact that generating random numbers using a deterministic computer is not possible, since a deterministic computer will always generate the same output if the starting conditions and inputs are the same. On the other hand one can generate so called pseudo random numbers using built-in libraries. However such random number generators are based on recurrence relations, and as such they would repeat afterwards. Although, there exists a random number generators which can take care of this problem of short-periods [START_REF] Press | Numerical recipes in fortran 77[END_REF], nevertheless variance reduction obtained by generating pseudo-random sequence is quite slow and it converges with a rate of N -1/2 [START_REF] Press | Numerical recipes in fortran 77[END_REF], where N is the number of samples. To avoid this [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF] and [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF] used quasi-random sequences to sample the integral, this can improve the rate of convergence of the integral to N -1 under certain boundary conditions [START_REF] Press | Numerical recipes in fortran 77[END_REF]. Thus for our test cases we use the Sobol sequence for generating Quasi-Random (QR) numbers using the function sobseq taken directly from [START_REF] William H Press | Numerical recipes in fortran 90[END_REF].

Recursive stratified sampling/Miser algorithm

A different technique, the recursive stratified sampling, has been developed by Press and Farrar and implemented in the MISER algorithm [START_REF] Press | Recursive stratified sampling for multidimensional monte carlo integration[END_REF]. The fundamental idea is to divide the integration region V into two equal and disjoint subvolumes, a and b, and sample them with N a and N b = N -N a uniformly distributed points, respectively. Then, a new estimator of f is defined as

f = 1 2 f a + f b ( 15 
)
where the f a,b terms are computed according to Eq. ( 12). The variance of the newly defined estimator is

Var f = 1 4 
Var a (f ) N a + Var b (f ) N -N a (16) 
which is minimized when

N a N = σ a σ a + σ b . (17) 
In case N a satisfies the previous equation, the variance of the function mean estimator is

Var f = (σ a + σ b ) 2 4N . ( 18 
)
The advantage of this method is that Var f is never larger than the variance of the estimator computed in the general Monte-Carlo method, defined in Eq. ( 13). The stratified sampling can be applied recursively to solve high-dimensional problems; the details of this procedure are given in [START_REF] Press | Recursive stratified sampling for multidimensional monte carlo integration[END_REF]. The MISER algorithm is available in the Scikit-Monaco package for Python [START_REF] Buignon | Scikit-monaco documentation[END_REF].

Importance sampling

Another way to accelerate the convergence by reducing variance the technique of Importance Sampling (IS) method can be used as done previously by [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF], [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF] and [START_REF] Remmler | Computation of wall-pressure spectra from steady flow data for noise prediction[END_REF]. The method of importance sampling is based on the simple idea that by introducing a change in variable the function could be made flatter in the new co-ordinate system and hence fewer samples would be required to reach convergence. In fact if the function is flat just a single sample would be required.

Mathematically importance sampling can be defined as

E f [h(X)] = X h(x)g(x)dx (19) 
In the above equation we seek to determine the expectation E of function h(x) under the Probability Density Function (PDF) g(x).

Generally we need to either find the PDF g(x) that mimics the function h(x) in case if such a function is not present intrinsically in the integral. Then from there on samples could be drawn from the function g(x) using the technique known as Inverse transform sampling.

The algorithm for inverse transform sampling can be summarized as-1) Determine the PDF function g(x) which "resembles" h(x).

2) Determine its Cumulative Distribution Function (CDF) u(x).

3) Find its inverse u -1 (x) either numerically or analytically.

4) Generate uniformly distributed random numbers using Sobol sequence and plug it to u -1 (x), this would generate random number based on the PDF g(x).

5) Solve Eq. (19).

Before importance sampling was realised, the Quintuple Integrals was further simplified in order to facilitate its numerical implementation. Firstly all the length scales in the equation were normalised using δ (the boundary layer thickness) as follows : k = kδ , x 2 = x 2 /δ , λ g = λ g /δ and r = r/δ. Secondly the integral is split in two different terms ϕ(K 1 ) = I 1 -I 2 as was done by [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF],with I 1 :

                 I 1 = 2αk 1 2 ρ 2 π 2 2π 0 ∞ 0 1 0 1 0 ∞ 0 1 κ 2 × e (-κ(X 2 +X 2 )) ... u 2 2 (X 2 ) u 2 2 (X 2 ) δ 3 × r × exp - r 2 + (X 2 -X 2 ) 2 Λ g 2 ∂U ∂x 2 ∂U ∂x 2 cos(k 1 αr cos θ) cos(k 3 r sin θ)dθdrdX 2 dX 2 dk 3                  (20) 
and I 2 :

                 I 2 = 2αk 1 2 ρ 2 π 2 2π 0 ∞ 0 1 0 1 0 ∞ 0 1 κ 2 × e (-κ(X 2 +X 2 )) ... u 2 2 (X 2 ) u 2 2 (X 2 ) δ 3 × r 3 Λ g 2 × exp - r 2 + (X 2 -X 2 ) 2 Λ g 2 ∂U ∂x 2 ∂U ∂x 2 cos(k 1 αr cos θ) cos(k 3 r sin θ)dθdrdX 2 dX 2 dk 3                  (21) 
For the variance reduction for the variables x 2 and x 2 a normal distribution is used,while tailored design of the PDF's used for these variables are driven from previous observations on wall-pressure spectra. In particular the design is motivated by the fact that high frequency and high wave-number contributions comes from the inner part of boundary layer, while at low wavenumber contributions are usually due to external parts of the boundary layer [START_REF] Peter | Relationships between turbulent wall pressure and velocity field sources[END_REF]. Secondly the higher frequency contributions are much more localised or stratified, while low frequency contributions are more spread out [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF]. Lastly the inner most part of viscous sub-layer part of the boundary layer will have very low contribution towards overall spectra due to the fact that vertical velocity fluctuations tend to zero. By taking these considerations into account, the Eq. ( 22) is devised :

g(x) = 2 * (b * k 1 ) × exp[-(b * k 1 * (x -ah k 1 ) 2 )] √ π[erf( a * √ b * h √ k 1 ) + erf( √ b(-a * h+k 1 ) √ k 1 )] ( 22 
)
where erf is the Error function. Here K 1 , corresponds to the streamwise wavenumber, while b, a and h are empirical constants, to accomplish the above mentioned objectives. The CDF of Eq. ( 22) turns out to be fairly complicated such that it cannot be analytically inverted. To do this Brent's method of finding the root was used [START_REF] William H Press | Numerical recipes in fortran 90[END_REF]. Brent's method of finding root is a hybrid method [START_REF] Press | Numerical recipes in fortran 77[END_REF], and it uses a combination of bisection method, the secant method and inverse quadratic interpolation root , to find roots. An advantage is that, such a method compared to other classical root finding method such as the method of false position used by [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF], it performs better even when the function is not smooth near the root [START_REF] Press | Numerical recipes in fortran 77[END_REF].

The variance reduction for the variable k3 was realised by using the following PDF:

g(x) = (a × exp(-(x 2 × a 2 /4)))/( (π) * erf * (ad/2)) ( 23 
)
where d is the upper limit of integration for the variable k3 . Finally a in Eq.( 23) is meant to emulate the behaviour of λ g . The PDF used for variance reduction for the variable r in the integral I 1 Eq. ( 20) and I 2 Eq. ( 21), have following form respectively.

g(x) = 2 * x exp(-[ x 2 +c 2 L 2 ]) L 2 exp[-( c 2 L 2 )] (24) 
g(x) = 2 * x 3 exp(-[ x 2 +c 2 L 2 ]) L 2 L 2 × exp[-c 2 L 2 ] (25) 
Here the variable c is meant to emulate

[x 2 -x 2 ]. L mimics Λ g .
Lastly for the variable θ, the variable selection turns out to be quite tricky; this was the reason why [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF], [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF] used a uniform distribution to sample it. However, we know that the variable θ behaves like a Bessel function of the first kind of order 1. But due to its oscillatory behaviour we cannot construct a PDF directly.

Although there is an option to take the absolute value of the function and then create the PDF in a piecewise fashion. However this would be a complicated step to implement numerically. A more realistic way is then to note that a Bessel function decreases with a rate of 1/ √ x. And since this function is simple enough, it is more amenable to mathematical and programming procedure involved. Hence the PDF chosen for variance reduction for the variable θ is :

g(x) = 1 2 × (x * 2 * π) (26) 
5 Adaptive Quadrature method

The techniques described in section 6 have already been used in the past by numerous other authors e.g. [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF], [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF] and more recently by [START_REF] Remmler | Computation of wall-pressure spectra from steady flow data for noise prediction[END_REF] to calculate the wall-pressure spectra. However due to mathematical complexities and high computational cost associated with performing a numerical quadrature scheme, a direct one to one comparison between MC integration scheme and a quadrature scheme has not been realized yet in the context of wall-pressure spectra calculations. This is important since while performing such a stochastic integration scheme a notion of absolute or relative accuracy cannot be devised. Rather only the variance of the integral can be controlled. Hence the notion of variance reduction exists which was discussed in the sections before. Be it as it may, this does not let one to determine the accuracy of results. Hence although [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF] have extensively tested reduction in variance while using such a stochastic scheme, it is unknown if there solution did or did not converge to the right answer. Also as discussed in section 6 that variance reduction while using importance sampling scheme (as was employed by all the previous authors [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF], [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF] and [START_REF] Remmler | Computation of wall-pressure spectra from steady flow data for noise prediction[END_REF]) is very sensitive to the choice of distribution function. A wrong choice of distribution function while may lead to an efficient reduction in variance it can nevertheless certainly make the solution digress from the correct solution. In order to quantify the relative accuracy of the calculated wall-pressure spectra using various Monte-Carlo schemes we employ an adaptive quadrature schemes wherein relative errors can be set a-priori, which then can be considered as the reference. This indirect method provides an alternative way of quantifying errors, in a relative sense. The method used for adaptive quadrature integration scheme was tplquad, which can be simply imported from the Python inbuilt scipy.integrate library [START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF]. For the case where limits of integration are finite, this package uses Clenshaw-Curtis method of cubature [START_REF] Piessens | Quadpack: a subroutine package for automatic integration[END_REF]. The way it is implemented in Python, user has a choice of either specifying absolute or relative accuracy or both. Since the value of the integral being calculated is below the default absolute accuracy limit, this value was modified and ascribed an arbitrary low value that cannot be achieved numerically, and the relative accuracy was set as 0.9 × 10 -3 . This forces the integral to converge within the prescribed limits of relative accuracy. Methods discussed above for the calculation of wall pressure spectra were tested and comparisons are presented in this section. All the cases were run on a Intel(R) Xeon(R) CPU E3 -1270 v5 Linux workstation with memory base frequency of 3.60GHz and 8 processors with a total of 32 Gb of ram and 8 Mb cache memory. It is worth noting that while both the Monte-Carlo schemes (the importance sampling and the Quasi-random sampling) were written in F ortran90, the MISER algorithm and adaptive quadrature scheme-tplquad are both standard Python libraries. Moreover the F ortran90 codes were not parallelized while MISER algorithm is. Therefore the differences in time taken for calculation of wall pressure spectra do not necessarily correlate with efficiency of the scheme. Nevertheless time taken for calculation remains an important metric especially, if this method for wall-pressure calculations has to be used in conjunction with pre-design. For the 3 dimensional Quasi-random sampling the rate of calculation per sample was found to be around 2.9 × 10 -5 seconds. 2 million samples were calculated under 1 minute. For 4 and 5 dimensional Quasi-random sampling the calculation rate was found to be around 4.4 × 10 -5 seconds and 1.4 × 10 -4 seconds respectively. Whereas due to inherent complexity involved in coding and number of supplementary operations required in the case of importance sampling meant that the solver takes longer to calculate integral for a single sample. For example in case of 5D integral using importance sampling scheme takes 0.9 × 10 -3 seconds to calculate a single sample. For a 4 dimensional integral the cost of calculating integral is about 0.84 × 10 -3 seconds, while for a 3 dimensional integral it costs about 1.02 × 10 -3 seconds for a single sample. The differences in the latter results are most probably caused by an optimization issue with the code.

In any case, it is an order of magnitude higher compared with the time taken by Quasi-random sampling technique for an integral of 5 dimensions. Lastly the [MISER or the Recursive stratified sampling] [START_REF] Press | Recursive stratified sampling for multidimensional monte carlo integration[END_REF], as implemented in Python [START_REF] Buignon | Scikit-monaco documentation[END_REF] is parallelized, hence the time taken per sample is no longer linear as function of sample. The rate is now a function of number of Monte-Carlo samples. For comparison purposes we only report that it takes about 7 minutes to perform Recursive stratified sampling technique on 2 million samples, irrespective of the dimension of the integral. Finally, one should now compare the time taken by these stochastic integration techniques against deterministic quadrature technique. The time taken for the tplquad solution is about 1 hour and 15 minutes with the errors specified. This then clearly shows that Monte-Carlo schemes are several orders of magnitude faster then adaptive quadrature method for integration and it also gives reasonable estimate on a dB scale. Also the Monte-Carlo Quasi-random sampling scheme for integration converges very quickly at higher frequencies while the variance at low frequency is relatively high, this has also been reported in a previous study by Christophe et al. [START_REF] Christophe | Uncertainty quantification for the trailing-edge noise of a controlled-diffusion airfoil[END_REF]. Figure 3 compares the convergence of The wall-pressure spectra computed with the three Monte-Carlo methods are presented in Figs. 4 to 6. First, it can be noticed that the Quasi-Random sampling (Fig. 4) and the MISER algorithm (Fig. 5) exhibit a similar behavior. In fact, for the 3D integration test both algorithms provide a solution consistent with that of the adaptive quadratures already at the lowest number of samples of the integrand function. When the dimensions of the integral formulation are increased to 4 and 5, both methods require a larger number of samples (the order of 10 5 ) to converge to the reference solution in the lower frequency range. The slow statistical convergence at low frequencies of a Monte-Carlo method for the computation of the wall-pressure spectrum based on the Poisson equation was already noticed by Christophe et al. [START_REF] Christophe | Uncertainty quantification for the trailing-edge noise of a controlled-diffusion airfoil[END_REF]. In their work, a slightly different formulation of the turbulence cross-spectrum was used, assuming an exponential longitudinal correlation function instead of a Gaussian, following [START_REF] Linebarger | Computation of the spectra of turbulent boundary layer surface-pressure fluctuations[END_REF] and [START_REF] Panton | Wall Pressure Spectra Calculations for Equilibrium Boundary Layers[END_REF]. Figure 6 presents the results of the application of the Importance sampling method to the three integral formulations. These plots demonstrate the advantage of using a variance-reduction method tailored to the integrand function: a converged solution can be obtained with a lower number of samples than the previous Monte-Carlo methods irrespective of the number of dimensions of the integral.

Conclusions and future work

This work has presented the application of three different Monte-Carlo techniques to integrand functions of increasing complexity that are of great interest in the study of sound and vibration generated by turbulent boundary layers. The methods taken into account range from the simplest application of Monte-Carlo integration, in which the samples of the function are selected quasi-randomly, to a technique tailored to the specific problem, such as Importance sampling. The results of the convergence tests presented in Sec. 6 show that the Importance sampling technique requires a significantly lower amount of computational resources to obtain the same result as the Quasi-random sampling or the MISER algorithm. However, the drawback of the Importance sampling technique is the necessity of developing an algorithm tailored to every given problem of integration. The MISER algorithm, on the contrary, can be applied to a very wide range of functions of any dimension and is efficiently parallelized in Python and therefore it constitutes a valid alternative.

The analytic modeling of wall-pressure spectra under turbulent boundary layers will be extended in future works to the use of different longitudinal correlation functions of the turbulent field, which are possibly not as mathematically convenient as the Gaussian (see [START_REF] Wilson | Three-dimensional correlation and spectral functions for turbulent velocities in homogeneous and surface-blocked boundary layers[END_REF]). Furthermore, the effect of the turbulence-turbulence interaction source term in the Poisson equation can be taken into account, leading to six-dimensional integral formulations, as shown in [START_REF] Peltier | Estimating turbulent-boundary-layer wall-pressure spectra from cfd rans solutions[END_REF] and [START_REF] Slama | A kriging-based elliptic extended anisotropic model for the turbulent boundary layer wall pressure spectrum[END_REF]. In light of these analytic developments, the use of efficient integration techniques illustrated in this paper will be all the more necessary.
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 1 Figure 1: Turbulent boundary layer over an infinite flat plate.
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 2 Figure 2: Boundary layer profiles of the CD airfoil used as input to the wall-pressure spectrum calculation.
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 3 Figure 3: Convergence of different integration schemes Legends: MC MISER sampling error calculated at lowest frequency ; MC QR sampling error calculated at lowest frequency; MC IS sampling error calculated at highest frequency

Figure 4 :

 4 Figure 4: Wall pressure spectra at x 1 /chord = 0.98 for MC QR sampling. Legends: Quadrature solution using tplquad ; Reference LES ; With 10k samples; With 50k samples ; With 100k samples ; With 200 k samples ; With 500k samples ; With 2M samples

Figure 5 :

 5 Figure 5: Wall pressure spectra at x 1 /chord = 0.98 for MC MISER. Legends: Quadrature solution using tplquad ; Reference LES ; With 10k samples; With 50k samples ; With 100k samples ; With 200k samples ; With 500k samples ; With 2 M samples

Figure 6 :

 6 Figure 6: Wall pressure spectra at x 1 /chord = 0.98 for MC IS. Legends: Quadrature solution using tplquad ; Reference LES ; With 100 samples; With 1k samples ; With 5k samples ; With 10k samples ; With 100k samples ; With 200 k samples

Acknowledgements

The present work is about outcomes of the project SCONE. This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 755543. Authors gratefully acknowledge the support of the Canadian NSERC Discovery Grant (no: RGPIN-2014-04111).