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Abstract

Background: Tractography uses diffusion magnetic resonance imaging to noninvasively

infer the macroscopic pathways of white matter fibers and it is the only available technique

to probe in vivo the structural connectivity of the brain. However, despite this unique and

compelling ability and its wide range of possible neurological applications, tractography is still

limited, lacks anatomical precision, and suffers from a serious sensitivity/specificity trade-off.

For this reason, in the past few years, tractography post-processing techniques have emerged

and proved effective for improving the quality of the reconstructions. Among them, the

Convex Optimization Modeling for Microstructure Informed Tractography formulation allows

incorporating the anatomical prior that fibers are naturally organized in fascicles, and has

obtained exceptional results in increasing the accuracy of the estimated tractograms.

Methods: We propose an extension to this idea and introduce a multi-level grouping of the

streamlines in order to capture the white matter arrangement in fascicle and sub-fascicles. We

tested our proposed formulation in synthetic and in vivo data.

Results: Our experiments show that using multiple levels allows considering information

about the white matter organization more adequately and helps to improve further the accuracy

of the resulting tractograms.

Conclusion: This new formulation represents a further important step towards a more

accurate structural connectivity estimation.

Impact Statement

Tractography is an invaluable tool for studying noninvasively the neuronal architecture of the

brain, but recent studies have shown that the presence of a large number of false positives

can significantly bias any connectivity analysis. Recently, a filtering technique called COMMIT2

has proven particularly effective in dramatically reducing their incidence by considering the prior

knowledge that white matter fibers are organized in fascicles. In this work, we propose an extension

to this method which allows us to increase further the anatomical accuracy of tractography

reconstructions. Our new formulation represents an additional step forward towards a more

veridical characterization of brain connectivity.
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1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a noninvasive imaging modality

that provides information on the movements of water molecules within brain tissues (Basser and

Pierpaoli, 1996; Le Bihan et al., 1986). This is particularly relevant in the white matter, as it is

mostly composed of densely packed axons organized in fiber tracts called fascicles (Mandonnet

et al., 2018) that hinder the motion of water molecules. Tractography algorithms are capable of

inferring their macroscopic trajectories by exploiting the fact that diffusion occurs predominantly

along the main direction of the fibers (Basser et al., 2000). In this context, a set of fibers is

represented with a streamline, a set of streamlines with similar trajectories is commonly called

bundle, and the set of all reconstructed streamlines is called tractogram. Tractography provides

an invaluable tool in neuroscience research as it allows one to study in vivo and noninvasively

the anatomy of the brain, its development as well as potential alterations due to neurodegenerative

diseases along specific fiber tracts (Jeurissen et al., 2017; Yeh et al., 2020). It is possible to use the

reconstructed streamlines as regions of interest (ROIs) and evaluate quantitatively all along their

course additional information from other modalities, e.g., myelin content, which may provide better

insight into the evolution of the pathology. Tractography makes it also possible to investigate in

vivo the structural connectivity of the brain, i.e., the macroscopic map of the neuronal connections

through the white matter, also known as connectome (Sporns et al., 2005; Hagmann, 2005). The

connectome is an abstraction of the neural complexity of brain connections and can be represented

as a network, where nodes correspond to gray matter regions and edges to the connections

between them. With this formalism and using graph theory (Bullmore and Sporns, 2009), it is

possible to investigate alterations of the connectivity due to neurological conditions (Griffa et al.,

2013).

Despite these unique opportunities, several studies have recently exposed the poor anatomical

accuracy of tractography showing, in particular, that the estimated tractograms are not truly

quantitative and present problems such as partial, duplicate, and false-positive streamlines, i.e.,

pathways that are recovered but are not anatomically valid (Thomas et al., 2014; Drakesmith et al.,

2015; Zalesky et al., 2016; Maier-Hein et al., 2017; Schilling et al., 2019; Girard et al., 2020;

Rheault et al., 2020b). In particular, Zalesky et al. (2016) investigated the topological properties
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of the networks estimated with tractography and concluded that specificity (true-negative rate) is

more important than sensitivity (true-positive rate) for the study of brain connectivity. Maier-Hein

et al. (2017) conducted a large comparison study and showed that false-positive streamlines are

a major problem that affects all tractography algorithms. Therefore, it is clear that the presence of

false positives in the estimated tractograms represents a crucial limitation of tractography that can

heavily bias any analysis based on this technique.

A number of post-processing solutions have been recently proposed to tackle this problem and

improve the quality of the tractograms. This class of methods is called Microstructure Informed

Tractography (Daducci et al., 2016) and their rationale is that tractography needs more information

to overcome the problem of anatomical inaccuracy. In general, these approaches combine the

input tractogram with signal forward models and evaluate the contribution of each streamline to the

acquired data, filtering out the most implausible or those that are not supported by the data. The

Spherical-deconvolution Informed Filtering of Tractograms (SIFT) (Smith et al., 2013) considers the

integral of the fiber orientation distribution to be proportional to the volume of the white matter tissue

inside the voxel and uses this value to optimize the streamline density and to remove streamlines

that do not fit the data. SIFT2 (Smith et al., 2015) does not remove streamlines, but it rather

attempts to determine the cross-sectional area of each streamline and uses this information as

a multiplier in the streamline connectivity quantification problem. The Linear Fascicle Evaluation

(LiFE) (Pestilli et al., 2014) and the Convex Optimization Modeling for Microstructure Informed

Tractography (COMMIT) (Daducci et al., 2013, 2015) use similar approaches, as both estimate the

contributions of the streamlines from the full DW-MR signal by solving a linear system. The filtering

with all these methods showed promising results for improving the quality of the tractograms (Smith

et al., 2013, 2015; Pestilli et al., 2014; Daducci et al., 2013, 2015), but none of them proved effective

in reducing the false positives (Schiavi et al., 2020).

To tackle this limitation, COMMIT was recently extended to take into account the fundamental

knowledge that fibers in the brain are naturally organized in fascicles. In fact, developmental

neurobiology studies have demonstrated that “axons, as they grow, remain neighbors with axons

that come from neighboring neurons in the presynaptic structure, and therefore arrive at the

postsynaptic structure already topographically arranged” (Udin and Fawcett, 1988). The novel

formulation, called COMMIT2 (Schiavi et al., 2020), proved effective in increasing the specificity
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of the tractograms without decreasing their sensitivity. However, if both true- and false-positive

streamlines are reconstructed between two cortical regions, as illustrated in Figure 1 (top), then

COMMIT2 would promote or penalize them as a whole and would not be able to disentangle them.

In this work, we propose a strategy to further improve the accuracy of the tractograms

by extending the assumption made in COMMIT2 and considering that fibers in the brain are

anatomically organized in fascicles and sub-fascicles, e.g., the pyramidal tract is formed by the

corticospinal tract and the corticobulbar tract (Nieuwenhuys et al., 2008; Chenot et al., 2019). This

biological organization of the fibers naturally induces a hierarchy in the reconstructed streamlines

which, in turn, could be exploited to provide more information to the filtering procedure. To

test the effectiveness of this additional anatomical prior, we created a nested arrangement of

the streamlines into bundles and sub-bundles by refining the parcellation-based approach of

COMMIT2 using clustering techniques. The proposed method was tested both on synthetic and in

vivo data.

2 Materials and methods

2.1 Microstructure informed tractography

Given a tractogram T and the corresponding DW-MR image I ∈ R
nv×nd

+ with nd q-space

samples acquired in nv = nxnynz voxels, the acquired data can be seen as I = A(T ) + η,

where A : T → I is an operator describing the signal contribution of each streamline to I

and η is the acquisition noise. The goal of tractography is to solve the inverse problem, i.e.,

finding the set of streamlines T̃ that best describe the acquired image I. Microstructure informed

tractography has been recently proposed as a new paradigm to combine the estimated streamlines

with tissue microstructure models with the aim of improving the quality of the tractograms (Daducci

et al., 2016). In particular, the Convex Optimization Modeling for Microstructure Informed

Tractography (COMMIT) allows combining an arbitrary biophysical model for the white matter tissue

(see (Alexander et al., 2019; Novikov et al., 2019) and references therein) to each streamline in

order to estimate their actual contribution. The DW-MR signal in all voxels is expressed as the linear

combination of the contributions from the streamlines that cross that voxel, possibly in addition to
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partial volume with other tissues, e.g., cerebrospinal fluid, as follows:

y = Ax+ η , (1)

where the vector y ∈ R
ndnv

+ is the concatenation of the nd DW-MRI measurements acquired in the

nv voxels of I, the matrix A ∈ R
ndnv×nc encodes nc compartments with the signal associated

to all the streamlines in T and possibly other tissues inside each voxel according to a given

multi-compartment model and η accounts for both acquisition noise and modeling errors. The

unknowns x ∈ R
nc

+ represent the actual contributions of all the compartments encoded in A, which

are needed to explain the acquired data I, and can be estimated using non-negative least squares:

argmin
x≥0

||Ax− y||22 .

To address the problem of false positives, COMMIT was recently extended by Schiavi et al.

(2020), who added a regularization term to take into account that fibers in the brain are naturally

organized in fascicles and the streamlines can be grouped in bundles:

argmin
x≥0

||Ax− y||22 + λ
∑

g∈G

ω(g)||x(g)||2 . (2)

In this formulation, called COMMIT2, G represents a partition of the streamlines into groups and

x(g) are the coefficients of those belonging to group g ∈ G. This additional penalty term promotes

solutions that explain the measured DW-MR signal using a minimal number of groups and the

parameter λ ≥ 0 controls the trade-off between the data and the regularization term. As suggested

in (Wang and Leng, 2008), each component of the regularization term was scaled by the following

factor to cope with the possible bias introduced by groups with different cardinality:

ω(g) =

√

|g|

||x
(g)
0 ||2

, (3)

where |g| is the cardinality of the group g and x
(g)
0 are the corresponding contributions estimated

without regularization, i.e., λ = 0.
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2.2 Adding priors on the hierarchical organization of the fibers

In the previous formulation, the partition G was created using a parcellation-based approach,

i.e., grouping together all the streamlines connecting the same pair of cortical regions. However,

as Eq. (2) promotes or penalizes each group of streamlines as a whole, if a group contains

both true- and false-positive streamlines, as shown in Figure 1 (top), they will be promoted or

penalized together. In Figure 1 (bottom) we present an example of an actual bundle of streamlines

as reconstructed with tractography from in vivo data where this situation happens. This bundle

consists of two distinct sub-bundles: the streamlines that directly connect the brainstem to the

postcentral gyrus, which are known to be correct from anatomy, and those that incorrectly pass

through the corpus callosum. Applying COMMIT2 using a gray matter parcellation as in (Schiavi

et al., 2020) results in a single group for this bundle which does not allow disentangling the

true-positive streamlines from the false positives. If, instead, smaller groups are used, e.g.,

obtained from a finer parcellation or a clustering procedure, some invalid structures are lost but

at the price of losing also some of the true-positive streamlines that were connected to the inferior

part of the postcentral gyrus (see below for a discussion on this topic). However, if we combine the

previous groups in a hierarchical way, the false-positive streamlines can be removed and more true

positives can be kept. Inspired by this example, we propose to modify COMMIT2 and make it more

flexible, allowing the possibility to group the streamlines into multiple levels in order to capture the

natural hierarchical organization of the fibers in fascicles and sub-fascicles (Chenot et al., 2019).

To take into account this organization of the streamlines, we implemented the hierarchical

sparse encoding approach proposed by Jenatton et al. (2011), which uses sparsity-inducing norms

as regularization terms to promote tree-structured sparse solutions. The set of groups G is defined

as a tree-structured set of groups with n levels, where each level d represents a partition of all

the streamlines. The root G0 contains all the streamlines of the tractogram in one group and the

partitions in the lower levels called G1, ...,Gn are created by splitting each group gd−1 ∈ Gd−1,

creating a nested structure. The reconstruction problem can be written as:

argmin
x≥0

||Ax− y||22 + λ

n
∑

d=1

∑

gd∈Gd

ω(gd)||x(gd)||2 , (4)
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where Gd represents a partition into groups of level d, x(gd) are the coefficients of the streamlines

in group gd ∈ Gd and λ ≥ 0 controls the regularization strength. Note that if n = 1 then Eq. (4)

reduces to Eq. (2). The scaling factor to balance groups with different cardinality is modified as

follows:

ω(gd) =

√

|gd|

||x
(gd)
0 ||2

, (5)

where |gd| is the cardinality of the group gd and x
(gd)
0 are the contributions of the streamlines that

belong to the group gd obtained as described above. The regularization in Eq. (4) is also called

Hierarchical Group Lasso and was introduced by Zhao et al. (2009). Different implementations

exist of this formulation, and for our application we implemented the one proposed by Jenatton

et al. (2011). The main advantage of this formulation is that its complexity is linear in the number

of streamlines and levels, so increasing the number of levels does not significantly affect the

computation time (for further details we refer the reader to the mathematical proofs contained

in (Jenatton et al., 2011)). In the remaining of the manuscript, we will refer to this approach

as COMMIT2tree. Figure 2 visually compares the differences between COMMIT, COMMIT2, and

COMMIT2tree formulations.

Illustrative toy example. Figure 3 shows a simple synthetic example to illustrate how the

introduction of the hierarchical regularization can improve the accuracy of the tractograms. The

ground truth consists of four regions of interest (A, B, C, and D) connected by three streamlines (S1,

S2, and S3). From this dataset, a generic tractography algorithm (top row, center) reconstructed

the three true-positive streamlines as well as two false positives (S4 and S5). This tractogram was

then filtered with COMMIT, COMMIT2 and COMMIT2tree. Without any prior information, COMMIT

keeps all five streamlines (top row, right), as they are all compatible with the underlying data.

COMMIT2 groups streamlines based on a partition with a single level and attempts to find solutions

that explain the data with the minimum number of groups. If large groups are used (bottom row,

left), e.g., streamlines that connect the same pair of ROIs, the group formed by S3 and S4 is

necessary to explain the data in the top-right voxel, which is covered only by S3. Therefore

both S3 and S4 are kept even though S4 is a false positive. This choice, in turn, requires to

keep also S5 to explain the data in the remaining voxels using the minimum number of groups.
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This causes the removal of the true positives S1 and S2 because they are no longer necessary

to fit the data. In general, if small groups are used (bottom row, center), e.g., dividing B in

two sub-regions B1 and B2, and C into C1 and C2, we obtain more groups consisting of fewer

streamlines each; in this example every group has a single streamline. This situation contains

many ambiguous configurations as saw before for COMMIT (top row, right) and, as groups are

treated as independent entities, these ambiguities cannot be solved. Please note that this situation

was already analyzed in (Schiavi et al., 2020) (see Figure 3). On the contrary, the grouping

implemented in COMMIT2tree is more flexible and helps to disentangle ambiguous configurations

such the one presented here. In fact, according to the hierarchical structure, the group S3-S4 can

be further subdivided into two groups (bottom row, right), i.e., one containing the true positive S3

and the other one the false positive S4. This allows COMMIT2tree to remove all the false positives

and keep the true positives.

2.3 Data and experiments

For the scope of this work and to keep the presentation simple, we demonstrate the

improvements of COMMIT2tree over the previous formulation using a hierarchical structure with

only two levels; however, our proposed formulation can easily accommodate any number of levels.

In the first level, we grouped the streamlines connecting the same pair of cortical regions as in

COMMIT2. Then, to capture the presence of possible sub-bundles, we constructed a second

level where we subdivided these parcellation-based groups by clustering the streamlines in each

with QuickBundles (Garyfallidis et al., 2012). In brief, QuickBundles is an unsupervised clustering

algorithm for tractography datasets which does not require to know the number of clusters in

advance, but it rather uses a threshold to group streamlines based on distance metrics. In this

work we used the Average of Pointwise Euclidean Metric. The algorithm is very fast and well

suited for large tractograms, as its complexity is O(kN), where k is the number of clusters and N

the number of streamlines (for technical details see (Garyfallidis et al., 2012)). For a more direct

comparison with COMMIT2, we adopted the same forward model as in (Schiavi et al., 2020), which

associates a contribution to each streamline proportional to its cross-sectional area using a map

of the intra-axonal signal fraction (IASF).
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2.3.1 Quantitative evaluation on synthetic data

To quantitatively evaluate the performance of our proposed formulation with respect to

COMMIT2, we adopted the same synthetic phantom used in (Schiavi et al., 2020). We compared

the sensitivity and specificity of the tractograms after filtering with both techniques by assessing

the number of valid bundles (VB), i.e., true-positive connections in the corresponding connectomes,

and invalid bundles (IB), i.e., false-positive ones. The phantom is shown in Figure 4A and consists

of 27 ground-truth bundles between 53 ROIs that mimic challenging configurations like branching,

kissing and crossing with different curvatures and sizes (Caruyer et al., 2014). The IASF map of this

phantom was computed from the ground-truth geometry. The corresponding DW-MR signal was

generated using the Composite Hindered And Restricted Model of Diffusion (Assaf and Basser,

2005) along 64 directions with b = 3000 s/mm
2 and Rician noise was added with a signal-to-noise

ratio of 30. All tractograms and the corresponding connectomes were estimated using the MRtrix3

software (Tournier et al., 2019). First, we computed the fiber orientation distributions in each

voxel using Constrained Spherical Deconvolution (Tournier et al., 2007). Then, we reconstructed

1 million streamlines with both deterministic (Tournier et al., 2012) and probabilistic (Tournier et al.,

2010) algorithms, using a white matter mask as seeding region and default parameters. Finally, we

assigned each endpoint of a streamline to a node if that point fell within 2 mm from one of the 53

gray matter ROIs. A streamline was considered as connecting two nodes if both endpoints were

assigned, otherwise it was discarded from the analysis.

2.3.2 Qualitative evaluation on in vivo data

To appreciate the improved quality of the tractograms, we visually inspected known true-

and false-positive bundles in 10 subjects (5 males and 5 females of ages 26–30) of the

Human Connectome Project (HCP) (Van Essen et al., 2013). These bundles were extracted

with RecobundlesX (Garyfallidis et al., 2018; Rheault, 2020), a multi-atlas, multi-parameter

segmentation tool that uses bundles manually segmented by an expert neuroanatomist as

reference (description in Appendix A). We performed RecobundlesX using nine different parameter

configurations and a threshold for the voting system of 75%. If a streamline had been selected

as true positive, it was not taken into account in the segmentation of the false-positive bundles.
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The intersections of streamlines in different bundles were eliminated, that is, each streamline

could only belong to one bundle. We also reported the voxel coverage of each of them, i.e., the

number of voxels traversed by the streamlines associated with each bundle. We segmented the

T1-weighted image using the FMRIB’s Automated Segmentation Tool (FAST) (Zhang et al., 2001)

to derive the multi-tissue image and perform the multi-shell, multi-tissue constrained spherical

deconvolution (Jeurissen et al., 2014) on the preprocessed DW-MRI data (Glasser et al., 2013).

We generated 5 million streamlines of length between 20 mm and 200 mm with the probabilistic

algorithm (Tournier et al., 2010), using Anatomically Constrained Tractography (Smith et al., 2012)

and default parameters. As in the synthetic experiments, the white matter mask was used as

seeding region. The IASF map needed by the forward model used in COMMIT2 and COMMIT2tree

was computed using the Spherical Mean Technique (Kaden et al., 2016). Besides inspecting

individual bundles, we also compared the resulting connectomes, which were created using the 85

gray matter ROIs defined in the Desikan-Killiany atlas (Desikan et al., 2006) derived from the

T1-weighted images using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/), and replacing

the brainstem with its last part, i.e., medulla oblongata (Iglesias et al., 2015). Finally, as edge

weights we used the streamline count for the raw tractograms and the sum of the estimated

streamline contributions for COMMIT2 and COMMIT2tree. For each connectome, we report its

density, i.e., the ratio between the actual and the possible connections.

3 Results

Figure 4 compares the sensitivity and specificity of the tractograms estimated from the synthetic

data with both deterministic and probabilistic tracking, before and after filtering with COMMIT2 and

COMMIT2tree. As a reference, results with COMMIT are also reported. All reconstructions included

the 27 true-positive bundles and, as expected, the raw tractograms were contaminated by a large

number of false-positive bundles, respectively IB=441 (probabilistic) and IB=235 (deterministic).

Only few IB were removed with COMMIT, whereas COMMIT2 was able to drastically reduce them

from 441 to 20 (probabilistic) and from 235 to 17 (deterministic). Using the proposed multi-level

regularization, COMMIT2tree was able to further improve these results, although not substantially.

Using different distance metrics in the clustering did not produce particular effects on the results
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(see Supplementary Figure S1), probably due to the simple geometry of this phantom.

Figure 5 evaluates the effectiveness of the multi-level formulation in real brain data, where the

fiber configurations are expected to be more complex. We qualitatively compared known true- and

false-positive bundles obtained in one HCP subject after filtering the tractograms with COMMIT2

and COMMIT2tree. The volume coverage of the bundles is reported in terms of number of voxels

and, in the last two cases, we also report the estimated contributions (weight). The filtering with

COMMIT2 does not negatively affect the true-positive bundles, i.e., their volume is comparable

with the raw tractogram, and, as expected, the false-positive bundles are sensibly thinned, i.e.,

reduced volume coverage. The introduction of the additional level in the regularization term of

COMMIT2tree further improved these performances. On the one hand, the voxel coverage of the

true-positive bundles is comparable but the estimated contributions are larger, which translates into

a higher likelihood to be true positives. On the other hand, the contributions of the false positives

are further reduced and all of them are almost completely removed. These results were consistent

across all the ten subjects (Table 1).

To better appreciate the improved anatomical accuracy of the tractograms, in Figure 6

we visually inspect two representative bundles as reconstructed in each of the ten subjects.

They correspond to the streamlines connecting the medulla oblongata to, respectively, the right

precentral gyrus (Bundle 1) and the left precentral gyrus (Bundle 2). As can be seen, these

bundles have streamlines that are coherent and well organized in two sub-bundles, and one of

these describes an implausible pathway passing through the corpus callosum. The streamlines

in the raw tractogram are colored based on their local orientation, whereas for COMMIT2 and

COMMIT2tree they are colored according to the estimated sum of the streamline contributions in

each sub-bundle. To make this visual comparison more effective, we use two different colormaps,

cool for the true-positive streamlines and hot for the false positives. As expected, since COMMIT2

treats all the streamlines in each bundle as a whole, it is not able to completely remove any

false-positive sub-bundles that are included in such bundles. However, if sub-groups of streamlines

are considered in the filtering as done in COMMIT2tree, it is possible to assign low contributions

to these false positives, or even remove them completely. For all the subjects, there is an evident

improvement using COMMIT2tree : lower values are assigned to all the false positives as compared

to COMMIT2, e.g., yellow and green arrows, and in some subjects it was able to completely
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remove them. Moreover, COMMIT2tree assigned higher contributions than COMMIT2 to all the

true positives. We can also appreciate that the patterns of the streamlines of these two bundles

are consistent across subjects. Table 2 reports the mean and standard deviation among the ten

subjects of the sum of the streamline contributions and the voxel coverage for each sub-bundle.

Figure 7 compares the estimated connectomes in one HCP subject before and after filtering

the tractogram reconstructed with probabilistic tractography with COMMIT2 and COMMIT2tree. To

assess how well each filtered tractogram explains the input data, we report the input IASF map

used for the filtering and the one predicted from the filtered tractograms, using Eq. (1), as well

as the root mean square error (RMSE) between the input and the fitted maps. We observe

that the connectome of the raw tractogram is very dense (density=0.896), which is an expected

result for probabilistic tracking, whereas after the filtering with COMMIT2 and COMMIT2tree,

the connectomes are sparser and have comparable density between them (0.245 and 0.307,

respectively). Despite sparser, the corresponding tractograms seem to explain well the input IASF

map; the RMSE map is comparable and shows very small errors in the white matter, with higher

values located in voxels at the interface with cortical and subcortical gray matter.

4 Discussion

Tractography is a unique technique that is able to describe the major neural pathways in the

white matter. In the last decades, it has been used to study the structural network organization

of the brain, but its anatomical inaccuracy and limitations have been exposed in different

studies (Thomas et al., 2014; Drakesmith et al., 2015; Zalesky et al., 2016; Maier-Hein et al.,

2017; Schilling et al., 2019; Girard et al., 2020; Rheault et al., 2020b). One of the major limitations

still unresolved is the intrinsic trade-off between specificity and sensitivity. In a recent international

challenge (Maier-Hein et al., 2017), it was suggested that a possible way to overcome this issue

would be to inject microstructural and anatomical prior during tractography reconstruction. A

step forward in this direction was achieved by the recent work of Schiavi et al. (2020), where

microstructure informed tractography was combined with the anatomical prior that white matter

fibers (axons) are organized in fascicles giving origin to COMMIT2. Using the prior knowledge that

bundles are organized in sub-bundles (Chenot et al., 2019; Mandonnet et al., 2018), in this work
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we extended COMMIT2 proposing the use of a multilevel organization of the streamlines in order

to identify streamlines following implausible trajectories inside valid bundles. This new formulation,

called COMMIT2tree, considers partitions of the streamlines with different granularity and organizes

them in a hierarchical structure which provides more degrees of freedom than COMMIT2 but in a

constrained clever way. The sub-groups used in COMMIT2tree share anatomical constraints like the

starting and ending region in the gray matter, but they have different geometrical properties, i.e., the

trajectory. Figure 6 clearly shows that by considering this way of grouping in the optimization, more

false-positive streamlines inside true-positive bundles are removed, boosting further the accuracy

of the final tractogram.

In synthetic data, the connectivity graphs obtained after filtering the tractograms with COMMIT2

and COMMIT2tree showed comparable results. However, the simple geometry of this phantom

does not allow us to fully exploit the advantages of our proposed multi-level regularization, as

the bundles consist of regular and smooth tubes. Nonetheless, our findings indicate that this

enhanced formulation results in a stable and robust regularization of the original problem. In

particular, Figure 4 shows that adding more levels to the structure does not affect the stability of

the method, but can slightly improve the quality of the estimated tractograms.

To evaluate the quality of the in vivo reconstructions, we analyzed ten HCP subjects and

we looked both at the anatomical accuracy of individual bundles and at the overall structural

connectivity estimated after filtering the tractograms with COMMIT2 and COMMIT2tree. The density

of the filtered connectomes was about one third of the unfiltered one, showing again similar

performances of both methods. These results confirm and extend the results presented in (Schiavi

et al., 2020), which were in agreement with the theory of the economy of brain networks (Bullmore

and Sporns, 2012). However, when looking more closely to the individual bundles, before and after

the filtering, it is evident that a significant improvement was achieved by COMMIT2tree. In fact, in

Figure 5 and Table 1 we can appreciate how COMMIT2tree was able to filter more the false-positive

bundles than COMMIT2 without negatively affecting the true positives, in particular because of

its capability to remove invalid streamlines inside valid bundles (Figure 6 and Table 2). From a

quantitative point of view, we observe that both methodologies assigned lower contributions to the

false positives than the true positives; notably, it is important to note that COMMIT2tree assigned

higher contributions to the true positives and smaller values to the false positives as compared to
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its predecessor. This is an important property when one is interested in network properties relying

on connections strengths.

Although COMMIT2tree was able to further improve the anatomical accuracy of the tractograms,

it did not eliminate completely all known false positives in every analyzed subject. This may be

partly due to the regularization parameter λ used and to the actual groups created with clustering

in each subject. First, in our experiments we used the same regularization strength for all subjects,

which was empirically determined as the value that overall produced visually satisfactory results.

However, optimizing the value of λ on a subject-specific basis might considerably improve the

performance of the filtering. Second, the results presented here show that the quality of the

anatomical prior, i.e, structure definition and how streamlines are grouped, plays a fundamental

role in the optimization procedure. The original COMMIT was only data driven and the filtering

did not improve significantly the anatomical accuracy of the tractograms; COMMIT2 added the

prior that white matter fibers are organized in fascicles which, instead, had a big impact on the

performance. In COMMIT2tree we added geometrical priors based on the trajectories described by

the streamlines and we built a hierarchical structure to combine both anatomical (based on which

gray matter regions the streamlines connect) and geometrical (clustering the streamlines based

on their trajectory) information. However, different definitions of structures can be implemented in

our formulation. For example we could use more than two levels to create the hierarchy as well

as explore different strategies to group the streamlines and inject additional prior information, e.g.,

see (Côté et al., 2015; Siless et al., 2018) and references therein. All these aspects will be the

subject of future research.

It is worth noting that using a finer partitioning of the streamlines may create groups that

might capture better the plausible and implausible sub-bundles; for instance, in the extreme case

where all groups have a cardinality equal to 1, i.e., they consist of a single streamline, true- and

false-positive streamlines are clearly separated in distinct groups. However, as the granularity of

this partitioning becomes smaller, the number of generated groups increases accordingly. But

since the groups are treated as independent entities in the penalty term in Eq. (4), this process

has the side effect of gradually reintroducing the ambiguous configurations that, instead, COMMIT2

was able to disentangle using a coarser partition. Supplementary Figure S2 shows that, indeed, the

performances gradually deteriorate as the groups become smaller. As it is not possible to predict a
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priori the behavior of the algorithm using partitions with different granularity, our proposed approach

represents an effective way to consider and take advantage of more than one granularity in the

filtering procedure. Clearly, future research will be required to identify the optimal configuration of

groups in this multi-level structure.

Finally, it is important to note that the proposed approach is still a filtering procedure, so even if

it can be applied on any type of input tractograms (coming from either deterministic or probabilistic

tractography approaches), it is still limited on the quality of the input reconstruction. Clearly, if

a bundle is not present in the original tractogram it will not be recovered by COMMIT2tree. So,

particular attention should be given to this aspect. Another important factor that affects the results

is the selection of the regularization parameter λ. As it was analyzed in (Schiavi et al., 2020), a

high value of this parameter would result in a very strong filtering and would end up in removing

too many connections. On the contrary, a too low value would end up in removing only a few.

Up until now, and for both COMMIT2 and COMMIT2tree formulations, we do not know a close

formula to define the best value of this parameter according to the input tractogram, signal and

structure for grouping the streamlines. Thresholds for upper and lower bounds when using the

adaptive Group Lasso approach like ours have been suggested for the case of independent and

identically distributed columns of the matrix A, but they still need to be generalized to our case.

In the experiments presented in this work the choice was made based on the knowledge we have

on known bundles: i.e., we choose the largest value that was able to filter out the known invalid

bundles from the input tractogram while keeping all the known valid ones.

5 Conclusion

The anatomical accuracy of tractography has been heavily challenged in the past few years and

seriously questioned the use of this technique for mapping reliably the structural connectivity of the

brain. Our group recently developed a post-processing filtering procedure called COMMIT2 that

allowed a dramatic increase in the accuracy of the reconstructions. However, this formulation

did not consider the fact that fibers in the brain are anatomically organized in fascicles and

sub-fascicles. In this work, we showed that taking into account this multilevel organization of

the fibers allows considering information about the white matter structure in a more specific
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way. This improved formulation, i.e., COMMIT2tree, not only reduces the number of false-positive

connections in the estimated tractograms as COMMIT2 but it is also able to filter out implausible

streamlines within true-positive bundles, boosting even further the quality of the reconstructions.

Our new formulation represents an additional step forward to improve the anatomical accuracy of

the tractograms and our understanding of how different brain regions are interconnected.

Code and data availability. The numerical phantom used as validation is publicly available and

can be downloaded from https://github.com/ecaruyer/phantomas. The in vivo MRI data used are

from 5 males and 5 females subjects of ages 26–30 years from the Open Access Data from the

HCP and are available at https://www.humanconnectome.org. The code is open source and freely

available at https://github.com/daducci/COMMIT.
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Appendix A RecobundlesX

To study and evaluate tractography reconstructions, a common practice is to divide them into

bundles that represent white matter fascicles. This is a complicated task, called virtual dissection,

that requires great knowledge of Neuroanatomy and is not an exact procedure, there is variability

among segmentations performed by experts (Rheault et al., 2020a), and up to now, there is not a

ground truth for in vivo tractography to validate the reconstructions.

RecobundlesX (Rheault, 2020) uses the method Recobundles (Garyfallidis et al., 2018) that

is an algorithm that uses bundle models as shape priors for detecting and segment similar

streamlines in a tractogram, that is computationally demanding for datasets of millions of

streamlines. To reduce the dimension of the problem of comparing all the streamlines in the

models (hundreds) with all the streamlines in a tractogram (millions) to select the streamlines,

Recobundles uses the algorithm QuickBundles (Garyfallidis et al., 2012) to cluster the streamlines

and uses the Streamline-based Linear Registration (SLR) (Garyfallidis et al., 2015) to performs

the comparison among centroids at global and local level. This procedure has a big variability in

the results, generated by the clustering configurations used, in addition to the registration of the

models and the tractogram.

To reduce this variability, RecobundlesX (Rheault, 2020) takes into account multi-atlas models,

multi-parameters clustering, and a voting scheme that generates more stable solutions. The

segmentation method supports to use multiple models of the same bundle as input. These models

can be generated from different subjects, with different tractography algorithms or segmented

by different experts, to cover more variability in the definition of the bundles. It also allows

us to use different configurations of the segmentation parameters, e.g., clustering threshold,

number of iterations for SLR, type of transformation, pruning, etc, to cover more variability

in the segmentation procedure. RecobundlesX combines the results of the multi-atlas and

multi-parameters segmentation using a voting system, that merges the multiple segmentation

performed for each bundle definition.

True-positive bundle models. Five subjects from the Open Access Data from the Human

Connectome Project (Van Essen et al., 2013) were used. Tractography reconstruction was
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performed and 37 major bundles were manually segmented. Then, these bundles were smoothed

and refined to obtain well defined bundle models (Rheault, 2020).

False-positive bundle models. The submitted tractograms to the ISMRM 2015 Tractography

Challenge were used. In the study performed by Maier-Hein et al. (2017) about the challenge,

several bundles from the submitted tractograms were labeled as false positives because they were

not in the ground-truth tractogram. A quality control was performed on these bundles to select

those with the most anatomical implausible trajectory. From these bundles, 44 were selected and

refined to obtain smooth and well defined bundle models (Rheault, 2020).
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Figure legends

Figure 1. Possible improvement over the COMMIT2 formulation. Top: This simplistic

example shows some representative streamlines between two cortical regions obtained with a

generic tractography algorithm. This bundle consists of three true-positive sub-bundles (blue, red

and green) but there are also some streamlines that seem to describe implausible trajectories

(purple), which are probably false positives. However, using the parcellation-based approach

introduced in COMMIT2, all these streamlines are grouped together as one unique bundle

and considered as a whole, so they cannot be differentiated in true and false trajectories.

Bottom: Example of an actual bundle of streamlines from in vivo data as reconstructed in the

input tractogram and after filtering with COMMIT2, using either large or small groups, and with

COMMIT2tree using both large and small groups in a hierarchical structure. This bundle consists of

plausible streamlines that directly connect the brainstem to the postcentral gyrus (cyan arc), as well

as of implausible streamlines that incorrectly pass through the corpus callosum (orange arrow).

Figure 2. Visual comparison between the COMMIT, COMMIT2 and COMMIT2tree

formulations. COMMIT considered the streamlines as independent entities and COMMIT2 added

a regularization term to take into account that streamlines are instead naturally organized in

bundles. With COMMIT2tree we propose to improve this regularization by allowing a multi-level

hierarchical organization of the streamlines, where every bundle may be composed of several

sub-bundles and each can be selectively promoted or penalized.

Figure 3. Illustrative toy example. First row : ground-truth streamlines configuration as

well as representative streamlines reconstructed with a generic tractography algorithm, i.e., raw

tractogram, and after filtering with COMMIT. Second row : results after filtering with COMMIT2

(single level, once using large groups and another with small groups) and COMMIT2tree (multiple

levels, combining parcellation and clustering). S1, S2, and S3, in green shades, represent

true-positive streamlines while S4 and S5, in red shades, are false positives.

Figure 4. Quantitative comparison on synthetic data between COMMIT2 and

COMMIT2tree. We compared the valid (VB, reported in green) and invalid (IB, reported in red)

bundles in the connectomes generated on a synthetic phantom (A, top) for which we know the

ground-truth connectivity (A, bottom). Panel B compares the quality of the connectomes estimated
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from the probabilistic (top row) and deterministic (bottom row) tractograms before (raw tractogram)

and after filtering with COMMIT2 and COMMIT2tree; performances of COMMIT are reported for

reference.

Figure 5. True- and false-positive bundles estimated in one HCP subject. We report

the raw tractogram and after filtering it with COMMIT2 and COMMIT2tree. The voxel coverage

is reported for all the bundles, and for the filtered ones, it is also reported the sum of the streamline

contributions estimated (weight). The performance of both methods is similar, the true positives

keep comparable coverage to the raw tractogram, and the false positives are drastically reduced.

Green arrows highlight the cases where COMMIT2tree assigned larger contributions to the true

positives and further reduced the false-positives bundles than COMMIT2.

Figure 6. Visual inspection of two representative bundles across the ten HCP subjects.

Reconstructed streamlines belonging to two representative bundles which connect, respectively:

medulla oblongata with the precentral gyrus left (Bundle 1), and medulla oblongata with the

precentral gyrus right (Bundle 2), as obtained across the ten subjects before (raw tractogram) and

after filtering the tractograms with COMMIT2 and COMMIT2tree. For display and visual inspection

purposes, the filtered bundles of streamlines are divided in two sub-bundles, true positives (TP)

and false positives (FP), these definitinos were not used in the filtering procedure. The colormaps

display the sum of the streamline contribution per sub-bundle, cool for TP and hot for FP. For all

the bundles, the contributions estimated with COMMIT2tree are better that the ones estimated with

COMMIT2, the FP have smaller contributions and the TP are more significant. The yellow and

green arrows point to the region in the raw tractogram with false-positive sub-bundles after filtering

with COMMIT2 and COMMIT2tree, respectively, highlighting their voxel coverage and the sum of

the streamline contributions.

Figure 7. Connectomes estimated in one HCP subject. In the first row we show the

estimated connectomes; in the case of the raw tractogram we used the number of streamlines,

whereas for COMMIT2 and COMMIT2tree the sum of the streamline contributions was used. In the

second row we present the intra-axonal signal fraction (IASF) maps used as input and estimated

to perform a visual inspection. The third row presents root mean square error (RMSE) maps of the

estimations, along with their mean and standard deviation for a quantitative comparison.
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Figure 1: Possible improvement over the COMMIT2 formulation. Top: This simplistic example

shows some representative streamlines between two cortical regions obtained with a generic

tractography algorithm. This bundle consists of three true-positive sub-bundles (blue, red and

green) but there are also some streamlines that seem to describe implausible trajectories (purple),

which are probably false positives. However, using the parcellation-based approach introduced in

COMMIT2, all these streamlines are grouped together as one unique bundle and considered as a

whole, so they cannot be differentiated in true and false trajectories. Bottom: Example of an actual

bundle of streamlines from in vivo data as reconstructed in the input tractogram and after filtering

with COMMIT2, using either large or small groups, and with COMMIT2tree using both large and

small groups in a hierarchical structure. This bundle consists of plausible streamlines that directly

connect the brainstem to the postcentral gyrus (cyan arc), as well as of implausible streamlines

that incorrectly pass through the corpus callosum (orange arrow).
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Figure 2: Visual comparison between the COMMIT, COMMIT2 and COMMIT2tree formulations.

COMMIT considered the streamlines as independent entities and COMMIT2 added a

regularization term to take into account that streamlines are instead naturally organized in bundles.

With COMMIT2tree we propose to improve this regularization by allowing a multi-level hierarchical

organization of the streamlines, where every bundle may be composed of several sub-bundles and

each can be selectively promoted or penalized.
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Figure 3: Illustrative toy example. First row : ground-truth streamlines configuration as well

as representative streamlines reconstructed with a generic tractography algorithm, i.e., raw

tractogram, and after filtering with COMMIT. Second row : results after filtering with COMMIT2

(single level, once using large groups and another with small groups) and COMMIT2tree (multiple

levels, combining parcellation and clustering). S1, S2, and S3, in green shades, represent

true-positive streamlines while S4 and S5, in red shades, are false positives.
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Figure 4: Quantitative comparison on synthetic data between COMMIT2 and COMMIT2tree.

We compared the valid (VB, reported in green) and invalid (IB, reported in red) bundles in the

connectomes generated on a synthetic phantom (A, top) for which we know the ground-truth

connectivity (A, bottom). Panel B compares the quality of the connectomes estimated from the

probabilistic (top row) and deterministic (bottom row) tractograms before (raw tractogram) and after

filtering with COMMIT2 and COMMIT2tree; performances of COMMIT are reported for reference.
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Figure 5: True- and false-positive bundles estimated in one HCP subject. We report the

raw tractogram and after filtering it with COMMIT2 and COMMIT2tree. The voxel coverage is

reported for all the bundles, and for the filtered ones, it is also reported the sum of the streamline

contributions estimated (weight). The performance of both methods is similar, the true positives

keep comparable coverage to the raw tractogram, and the false positives are drastically reduced.

Green arrows highlight the cases where COMMIT2tree assigned larger contributions to the true

positives and further reduced the false-positives bundles than COMMIT2.
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Figure 6: Visual inspection of two representative bundles across the ten HCP subjects.

Reconstructed streamlines belonging to two representative bundles which connect, respectively:

medulla oblongata with the precentral gyrus left (Bundle 1), and medulla oblongata with the

precentral gyrus right (Bundle 2), as obtained across the ten subjects before (raw tractogram) and

after filtering the tractograms with COMMIT2 and COMMIT2tree. For display and visual inspection

purposes, the filtered bundles of streamlines are divided in two sub-bundles, true positives (TP)

and false positives (FP), these definitinos were not used in the filtering procedure. The colormaps

display the sum of the streamline contribution per sub-bundle, cool for TP and hot for FP. For all

the bundles, the contributions estimated with COMMIT2tree are better that the ones estimated with

COMMIT2, the FP have smaller contributions and the TP are more significant. The yellow and

green arrows point to the region in the raw tractogram with false-positive sub-bundles after filtering

with COMMIT2 and COMMIT2tree, respectively, highlighting their voxel coverage and the sum of

the streamline contributions.
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Figure 7: Connectomes estimated in one HCP subject. In the first row we show the estimated

connectomes; in the case of the raw tractogram we used the number of streamlines, whereas for

COMMIT2 and COMMIT2tree the sum of the streamline contributions was used. In the second row

we present the intra-axonal signal fraction (IASF) maps used as input and estimated to perform a

visual inspection. The third row presents root mean square error (RMSE) maps of the estimations,

along with their mean and standard deviation for a quantitative comparison.
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Tables

INPUT COMMIT2 COMMIT2tree

voxels voxels weight voxels weight

T
ru

e
p

o
s

it
iv

e
s

#1 18,968 ± 5,229 12,983 ± 4,997 2.92 ± 1.80 10,678 ± 4,421 2.82 ± 2.12

#2 39,920 ± 3,637 30,892 ± 4,108 3.88 ± 1.82 21,160 ± 5,285 3.90 ± 2.15

#3 44,899 ± 2,995 37,840 ± 3,143 12.73 ± 3.24 31,203 ± 3,780 14.76 ± 4.15

#4 28,403 ± 3,681 26,101 ± 3,372 18.95 ± 4.16 24,243 ± 3,214 17.99 ± 4.13

#5 57,300 ± 6,645 43,324 ± 7,729 10.03 ± 4.39 34,406 ± 6,835 14.26 ± 5.52

F
a

ls
e

p
o

s
it

iv
e

s #1 19,362 ± 4,924 7,847 ± 3,134 0.09 ± 0.04 1,211 ± 1,256 <0.01 ± 0.01

#2 22,037 ± 5,221 4,110 ± 6,605 0.04 ± 0.08 229 ± 686 <0.01 ± 0.01

#3 10,066 ± 6,567 3,617 ± 3,077 0.05 ± 0.05 1,333 ± 1,511 0.02 ± 0.03

#4 20,908 ± 7,060 10,805 ± 3,720 0.13 ± 0.08 897 ± 2,036 0.01 ± 0.02

#5 11,243 ± 5,714 3,876 ± 3,013 0.03 ± 0.03 474 ± 634 0.01 ± 0.02

Table 1: Stability across the ten HCP subjects. Voxel coverage (voxels) and estimated sum of

streamline contributions (weight) of the 5 true-positive bundles and the 5 false-positives bundles

shown in Figure 5. True positives: #1 (yellow), #2 (dark blue), #3 (cyan), #4 (fuchsia), #5 (dark

red). False positives: #1 (green), #2 (light red), #3 (orange), #4 (light blue), #5 (magenta).

35



COMMIT2 COMMIT2tree

voxels weight voxels weight

Bundle 1
TP 20,280 ± 2,159 2.75 ± 0.81 17,733 ± 2,181 3.18 ± 0.76

FP 9,325 ± 3,471 0.14 ± 0.08 2,842 ± 2,689 0.01 ± 0.01

Bundle 2
TP 20,252 ± 2,577 2.97 ± 0.71 17,819 ± 2,166 3.41 ± 0.76

FP 10,195 ± 3,876 0.18 ± 0.12 4,122 ± 4,300 0.02 ± 0.02

Table 2: Quantitative comparison across the ten HCP subjects of the sub-bundles presented

in Figure 6. Mean and standard deviation of the sum of the streamline contributions (weight) and

voxel coverage (voxels) for the true-positive (TP) and false-positive (FP) sub-bundles. Bundle 1:

Medulla oblongata and Precentral gyrus left. Bundle 2: Medulla oblongata and Precentral gyrus

right.
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Supplementary material

Supplementary Figure S1: Impact of the distance metric on the quality of the tractograms

filtered with COMMIT2tree. Following the same notation as Figure 4, we evaluated in the synthetic

phantom the effect of changing the clustering metric to build the second level of the hierarchy.

We tested the following metrics (see https://www.dipy.org/ for more details): Metric 1 is the

Average of Pointwise Euclidean Metric between streamlines (same as Figure 4), Metric 2 is the

Euclidean Metric between the centers of mass of the streamlines, and Metric 3 is the Cosine

Similarity between the vectors of the streamline endpoints.
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Supplementary Figure S2: Impact of the group size on the quality of the tractograms filtered

with COMMIT2tree. In the synthetic phantom, we investigated the effect of changing the size of

the groups to build the second level of the hierarchy, by changing the threshold of the Average

of Pointwise Euclidean Metric between streamlines from 0 (one streamline per cluster) to “infinity”

(bundles are not clustered). We repeated the clustering 10 times and, here, we report the mean

and standard deviation of invalid bundles kept after filtering with COMMIT2tree (continuous blue

line) and, for comparison, COMMIT2 (orange dashed line).
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