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Abstract

This paper deals with the large time dynamics of bounded solutions of reaction-
diffusion equations with unbounded initial support in RN . We prove a variational
formula for the spreading speeds in any direction, and we also describe the asymp-
totic shape of the level sets of the solutions at large time. The Freidlin-Gärtner type
formula for the spreading speeds involves newly introduced notions of bounded and
unbounded directions of the initial support. The results hold for a large class of
reaction terms and for solutions emanating from initial conditions with general un-
bounded support, whereas most of earlier results were concerned with more specific
reactions and compactly supported or almost-planar initial conditions. We also prove
some results of independent interest on some conditions guaranteeing the spreading
of solutions with large initial support and the link between these conditions and the
existence of traveling fronts with positive speed. The proofs use a mix of ODE and
PDE methods, as well as some geometric arguments. The results are sharp and
counterexamples are shown when the assumptions are not all fulfilled.

Mathematics Subject Classification: 35B06; 35B30; 35B40; 35C07; 35K57.

1 Introduction and preliminaries

We are interested in the large time dynamics of solutions of the reaction-diffusion equation

∂tu = ∆u+ f(u), t > 0, x ∈ RN , (1.1)

with N ≥ 1 and initial conditions u0 having unbounded support. More precisely, the
reaction term f : [0, 1] → R is of class C1([0, 1]) with f(0) = f(1) = 0, and the initial
conditions u0 are assumed to be characteristic functions 1U of sets U , i.e.

u0(x) =

{
1 if x ∈ U,
0 if x ∈ RN \U,

(1.2)
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Université), and LabEx CARMIN (ANR-10-LABX-59-01). The first author is grateful to the hospitality
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where the initial support U is an unbounded measurable subset of RN (although some re-
sults also cover the case of bounded sets U).1 The Cauchy problem (1.1)-(1.2) is well posed
and, for each u0, there is a unique bounded classical solution u of (1.1) such that u(t, ·)→ u0

as t→ 0+ in L1
loc(RN). For mathematical convenience, we extend f by 0 in R \ [0, 1], and

the extended function, still denoted f , is then Lipschitz continuous in R.
Instead of initial conditions u0 = 1U , we can also consider multiples α1U of charac-

teristic functions, with α > 0, at the expense of some further assumptions on the reaction
term f , or even other more general initial conditions 0 ≤ u0 ≤ 1 for which the upper level
set {x ∈ RN : u0(x) ≥ θ} is at bounded Hausdorff distance from the support suppu0 of u0,
where θ ∈ (0, 1) is a suitable value depending on f , precisely given by Proposition 1.3
below. We also refer to Remark 5.2 below for more details. But we preferred to keep the
assumption u0 = 1U for the sake of simplicity of the presentation and of readability of the
statements, all the more as this case already gives rise to many interesting and non-trivial
features, depending on the type and shape of the set U .

The main question

Due to diffusion, the solution u of (1.1)-(1.2) is of class C1 in t and C2 in x in (0,+∞)×RN ,
and

0 < u < 1 in (0,+∞)× RN

from the strong parabolic maximum principle, provided the Lebesgue measures of U
and RN \ U are positive. However, from parabolic estimates, at each finite time t, u
stays close to 1 or 0 in subregions of U or RN \ U which are far away from ∂U .

One of the objectives of the present work is to describe more precisely the location at
large time of the regions where u stays close to 1 or 0. How do these regions move and
possibly spread in any direction? A fundamental issue is to understand whether and how
the solution keeps a memory at large time of its initial support U . A basic question is the
following:

Question 1.1. For a solution u of (1.1)-(1.2) and for a given vector e ∈ RN with unit
Euclidean norm, we investigate the existence of a spreading speed w(e) such that{

u(t, cte)→ 1 as t→ +∞ for every 0 ≤ c < w(e),

u(t, cte)→ 0 as t→ +∞ for every c > w(e).
(1.3)

Can one find a formula for w(e) and how does w(e) depend on e and the initial support U?
Moreover, is there a uniformity with respect to e in (1.3) and, more generally speaking,
are there spreading sets which describe the asymptotic global shape of the level sets of u
as t→ +∞?

We will answer this question in the main results, namely Theorems 2.1-2.4. The
speed w(e) in (1.3) can possibly be +∞ in some directions e, and this actually occurs
in the directions around which U is unbounded, in a sense that will be made precise in

1We use the term “initial support U”, with an abuse of notation, to refer to the set where u0 > 0. This
set differs in general from the support suppu0 of u0, which is defined as the complement of the largest open
set of RN where u0 is equal to 0 almost everywhere with respect to the Lebesgue measure. However, U
coincides with suppu0 if and only if U is closed and the intersection of U with any non-trivial ball centered
at any point of U has a positive Lebesgue measure.
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Section 2. The results will be established under some geometric assumptions on the set U
and under a standard assumption on the reaction f . We also provide several counterexam-
ples in Section 6. Local asymptotic symmetry properties of the level sets of u at large time
are obtained in [24] for some reactions f , and further results on the flattening and more
precise estimates on the location of the level sets at large time are proved in [25] when the
initial support U is a subgraph.

The situation considered in this paper can be viewed as a counterpart of many papers
devoted to the large time dynamics of solutions of (1.1) with initial conditions u0 that are
compactly supported or converge to 0 at infinity. We refer to e.g. [2, 10, 28, 32, 33, 47] for
extinction/invasion results in terms of the size and/or the amplitude of the initial condi-
tion u0 for various reaction terms f , and to [10, 12, 30, 31, 34] for general local convergence
and quasiconvergence results at large time. For the invading solutions u (that is, those
converging to 1 locally uniformly in RN as t → +∞) with localized initial conditions,
further estimates on the location and shape at large time of the level sets have been estab-
lished in [14, 20, 26, 36, 38, 40, 42]. Lastly, equations of the type (1.1) set in unbounded
domains Ω instead of RN and notions of spreading speeds and persistence/invasion in such
domains, still with compactly supported initial conditions, have been investigated in [8, 39].

The case of general unbounded initial supports U has been much less investigated in the
literature. One immediately sees that, for general unbounded sets U , Question 1.1 is much
more intricate than in the case of bounded sets U , since the solutions u can spread from all
regions of the initial support U , that is, not only from a single bounded region. The sets U
themselves can be bounded in some directions and unbounded in others. Among other
things, new notions of bounded and unbounded directions of the initial support will be
defined in this paper, in order to show the existence and a new variational characterization
of the spreading sets of the solutions. Subtle geometric arguments will be used and new
retracting super-solutions will also be introduced in the proofs. Counterexamples will also
be listed when at least one of the main assumptions is not satisfied, thus showing the
sharpness of the results.

The main hypothesis and a preliminary result

In this section, we list some notations and we state the main hypothesis used in the main
results, as well as an important preliminary result which is a consequence of the main
hypothesis. Throughout the paper, “| |” and “ · ” denote respectively the Euclidean norm
and inner product in RN ,

Br(x) := {y ∈ RN : |y − x| < r}

is the open Euclidean ball of center x ∈ RN and radius r > 0, Br := Br(0), and
SN−1 := {e ∈ RN : |e| = 1} is the unit Euclidean sphere of RN . The distance of a
point x ∈ RN to a set A ⊂ RN is given by dist(x,A) := inf

{
|y − x| : y ∈ A

}
, with the

convention dist(x, ∅) = +∞.
Since both 0 and 1 are steady states, one cannot determine a priori which one, if any,

will win, in the sense that it will attract the solutions u of (1.1)-(1.2). A standard way
to differentiate the roles of 0 and 1 is to assume that there is a planar traveling front
connecting the steady states 1 and 0:
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Hypothesis 1.2. Equation (1.1) admits a traveling front connecting 1 to 0 with positive
speed c0 > 0, that is, a solution u(t, x) = ϕ(x · e− c0t) with e ∈ SN−1, c0 > 0 and

1 = ϕ(−∞) > ϕ(z) > ϕ(+∞) = 0 for all z ∈ R. (1.4)

We point out that Hypothesis 1.2 only depends on the reaction term f , and not on
the spatial dimension N (hence it could actually be required in dimension N = 1). In
dimension N > 1, the level sets of a traveling front are hyperplanes. The profile ϕ is
necessarily decreasing (see Lemma 3.3 below for further details).

Hypothesis 1.2 is fulfilled for instance if

f > 0 in (0, 1), (1.5)

or if f is of the ignition type:

∃α ∈ (0, 1), f = 0 in [0, α] and f > 0 in (α, 1), (1.6)

or if f is of the bistable type:

∃α ∈ (0, 1), f < 0 in (0, α) and f > 0 in (α, 1) (1.7)

with
∫ 1

0
f(s) ds > 0 (in the last two cases, the speed c0 is unique), see [2, 17, 18, 27].

Hypothesis 1.2 is also satisfied for some functions f having multiple oscillations in the
interval [0, 1] (see [17] and the comments on the example (1.12) at the end of this section).

The following result, which is a preliminary result for the main results, and which has
its own independent interest, shows that Hypothesis 1.2 is equivalent to the existence of
a positive minimal speed c∗ of traveling fronts connecting 1 to 0, and that it implies the
spreading of the solutions of (1.1) with sufficiently large initial supports.

Proposition 1.3. Assume Hypothesis 1.2. Then equation (1.1) admits a traveling front
connecting 1 to 0 with minimal speed c∗, and c∗ > 0.2 Furthermore, there exist θ ∈ (0, 1)
and ρ > 0 such that if

θ 1Bρ(x0) ≤ u0 ≤ 1 in RN (1.8)

for some x0 ∈ RN , then the solution u of (1.1) with initial condition u0 satisfies u(t, x)→ 1
as t→ +∞ locally uniformly with respect to x ∈ RN , and even

∀ c ∈ (0, c∗), min
Bct

u(t, ·)→ 1 as t→ +∞. (1.9)

Lastly, for any compactly supported initial condition 0 ≤ u0 ≤ 1, the solution u of (1.1)
satisfies

∀ c > c∗, max
RN\Bct

u(t, ·)→ 0 as t→ +∞. (1.10)

Several comments are in order. Firstly, under Hypothesis 1.2, Proposition 1.3 an-
swers Question 1.1 for compactly supported initial data u0 satisfying (1.8): namely, the
solutions u then have a spreading speed w(e) in any direction e ∈ SN−1, and w(e) = c∗.

2The minimality of c∗ means that (1.1) in R admits a solution of the form ϕ(x− c∗t) satisfying (1.4),
and it does not admit a solution of the same type with c∗ replaced by a smaller quantity. Notice that,
necessarily, c∗ ≤ c0 under the notation of Hypothesis 1.2.
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Proposition 1.3 can then be viewed as a natural extension, for instance to multistable equa-
tions such as (1.12) below, of some results of the seminal paper [2], which were obtained
under more specific conditions on f .

Secondly, if f is such that

f > 0 in (0, 1) and lim inf
s→0+

f(s)

s1+2/N
> 0, (1.11)

then Proposition 1.3 can be improved using [2] by allowing θ ∈ (0, 1) and ρ > 0 in (1.8)
to be arbitrary. The conclusion in such a case yields the so-called hair trigger effect. If
f > 0 in (0, 1) (without any further assumption on the behavior of f(s) as s→ 0+), then,
for any θ ∈ (0, 1), there is ρ > 0 large enough such that the conclusions of Proposition 1.3
hold, see [2] (this fact can also be viewed as a particular case of Proposition 3.2 below).

If f is of the ignition type (1.6), or the bistable type (1.7) with
∫ 1

0
f(s)ds > 0, then θ

can be any real number in the interval (α, 1), provided ρ > 0 is large enough, see [2, 17].
On the other hand, without condition (1.8), the conclusion (1.9) of Proposition 1.3 does
not hold in general, even with Hypothesis 1.2 (for instance in the bistable case (1.7) with∫ 1

0
f(s)ds > 0).
Thirdly, if there is δ > 0 such that f is nonincreasing in [0, δ] and in [1 − δ, 1], and

if (1.1) in R has a traveling front with positive minimal speed c∗, then θ and ρ exist as in
Proposition 1.3 and (1.9)-(1.10) hold, see [13, Theorem 1.5]. Proposition 1.3 means that
this implication holds without any further assumption on f , and that the existence of a
traveling front with positive speed is actually sufficient to get the conclusion.

Lastly, we point out that, even if there exist θ ∈ (0, 1) and ρ > 0 such that the initial
conditions u0 satisfying (1.8) give rise to solutions u converging to 1 as t → +∞ locally
uniformly in RN , that nevertheless does not mean in general that Hypothesis 1.2 holds. For
instance, consider equation (1.1) in dimension N = 1 with a tristable function f satisfying

∃ 0 < α < β < γ < 1,
f < 0 in (0, α), f > 0 in (α, β), f < 0 in (β, γ), f > 0 in (γ, 1),∫ β

0

f(s)ds > 0,

∫ 1

β

f(s)ds > 0,

(1.12)

and let c1 and c2 be the unique (positive) speeds of the traveling fronts ϕ1(x − c1t) and
ϕ2(x− c2t) connecting β to 0, and 1 to β, respectively. On the one hand, if c1 ≥ c2, then
Hypothesis 1.2 is not satisfied (in such a case instead of a single front there exists a terrace,
see [17]) but if u0 fulfills (1.8) with given θ ∈ (γ, 1) and a sufficiently large ρ > 0, then u
satisfies u(t, ·) → 1 as t → +∞ locally uniformly in RN , and even (1.9) for some c∗ > 0,
see [17] (or Proposition 3.2 and Remark 3.7 below). On the other hand, Hypothesis 1.2 is
satisfied if (hence, only if) c1 < c2, see again [17].

2 Main results

The main results: Freidlin-Gärtner type formula, spreading speeds, spreading
sets

In this section, under Hypothesis 1.2, we investigate the asymptotic set of spreading for
the solutions u of (1.1)-(1.2) with general unbounded initial supports U containing large
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enough balls. Such solutions u then converge to 1 as t → +∞ locally uniformly in RN ,
and even satisfy (1.9), with c∗ > 0 given by Proposition 1.3. But we now want to provide
a more precise description of the invasion of the state 0 by the state 1. We point out that
the invasion cannot be uniform in all directions in general, since it shall strongly depend
on the initial support U . For e ∈ SN−1, we then look for a quantity w(e) ∈ (0,+∞]
satisfying (1.3). This quantity would then be referred to as the spreading speed and it
would represent the asymptotic speed at which the level sets, with levels between 0 and 1,
move in the direction e. If it exists, it necessarily satisfies w(e) ≥ c∗ by Proposition 1.3.
However, in contradistinction with the case of compactly supported initial conditions, the
spreading speeds of solutions of (1.1)-(1.2) may not exist when the initial supports U are
unbounded (see Proposition 6.1 below).

In order to give the existence of and a formula for the spreading speeds in all directions,
we introduce the notions of sets of directions “around which U is bounded” and “around
which U is unbounded”, for short the set of bounded directions and the set of unbounded
directions, defined by:

B(U) :=
{
ξ ∈ SN−1 : lim inf

τ→+∞

dist(τξ, U)

τ
> 0
}

and

U(U) :=
{
ξ ∈ SN−1 : lim

τ→+∞

dist(τξ, U)

τ
= 0
}
.

The sets B(U) and U(U) are respectively open and closed relatively to SN−1. The
condition ξ ∈ B(U) is equivalent to the existence of an open cone C containing the
ray R+{ξ} = {τ ξ : τ > 0} such that U∩C is bounded, that is, R+{ξ} ⊂ C ⊂ (RN\U)∪BR

for some R > 0. Conversely, for any ξ ∈ U(U) and any open cone C containing the
ray R+{ξ}, the set U ∩ C is then unbounded. We also define the notion of positive-
distance-interior Uρ (with ρ > 0) of the set U as

Uρ :=
{
x ∈ U : dist(x, ∂U) ≥ ρ

}
.

Our first main result shows the existence of spreading speeds, under a geometric con-
dition on U in (1.2), and it provides an explicit formula for these speeds.

Theorem 2.1. Assume that Hypothesis 1.2 holds, let c∗ > 0 and ρ > 0 be given by
Proposition 1.3, and let u be the solution of (1.1)-(1.2), with U ⊂ RN satisfying Uρ 6= ∅ and

B(U) ∪ U(Uρ) = SN−1. (2.1)

Then, for every e ∈ SN−1, there exists w(e) ∈ [c∗,+∞] such that (1.3) holds, as well as
the stronger property

lim
t→+∞

(
min

0≤s≤c
u(t, ste)

)
= 1 for every 0 ≤ c < w(e),

lim
t→+∞

(
sup
s≥c

u(t, ste)
)

= 0 for every c > w(e).
(2.2)

Furthermore, w(e) is given explicitly by the variational formula

w(e) = sup
ξ∈U(U), ξ·e≥0

c∗√
1− (ξ · e)2

(2.3)
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with the conventions{
w(e) = c∗ if there is no ξ ∈ U(U) such that ξ · e ≥ 0,

w(e) = +∞ if e ∈ U(U).
(2.4)

Several comments are in order, on formula (2.3) and on the hypotheses and conclusions
of Theorem 2.1. Firstly, it follows from (2.3)-(2.4) that w(e) ≥ c∗ for all e ∈ SN−1, and that
the inequality is strict if and only if there is ξ ∈ U(U) such that ξ · e > 0. We also observe
that, for an arbitrary set U satisfying U(U) 6= ∅, formula (2.3) with the convention (2.4)
can be rephrased in a more geometric way:

w(e) =
c∗

dist(e,R+ U(U))
=

c∗

sinϑ
, (2.5)

where ϑ ∈ [0, π/2] is the minimum between π/2 and the smallest angle between the direc-
tion e and the directions in U(U) (with the convention c∗/0 = +∞). This immediately
implies the continuity of the map e 7→ w(e) ∈ [c∗,+∞] in SN−1. If U(U) = ∅, then the
map e 7→ w(e) is constantly equal to c∗, whence continuous in SN−1.

Secondly, we call (2.3) a Freidlin-Gärtner type formula, since Freidlin and Gärtner [19]
were the first to characterize the spreading speeds of solutions of reaction-diffusion equa-
tions in RN by a variational formula. They were actually concerned with spreading speeds
for solutions of x-dependent reaction-diffusion equations of the Fisher-KPP type [18, 27]
(for which 0 < f(x, u)/u ≤ ∂f

∂u
(x, 0) for all (x, u) ∈ RN × (0, 1)) with f(x, u) periodic with

respect to x: more precisely, it follows from [19], together with [6, 7, 44], that (1.3) holds
for solutions emerging from compactly supported initial data, with

w(e) = inf
ξ∈SN−1, ξ·e>0

c∗(ξ)

ξ · e
(2.6)

for any e ∈ SN−1, where c∗(ξ) denotes the minimal speed of pulsating fronts connecting 1
to 0 in the direction ξ.3 Such formulas for the spreading speeds of solutions with compactly
supported initial conditions have been recently extended to more general reaction terms
in [37]. Formula (2.6) reveals that, for reaction-diffusion equations with spatially periodic
coefficients, the spreading speed w(e) may depend on the direction e, even for solutions with
compactly supported initial conditions u0. However, the continuity of the map e 7→ w(e)
still holds for monostable, ignition or bistable reactions f , as follows from [19, 37] and
from the (semi-)continuity of the minimal or unique speeds of pulsating traveling fronts
with respect to the direction, see [1, 23, 37] (but the continuity of the spreading speeds
and even their existence do not hold in general when pulsating fronts connecting 1 to 0 do
not exist anymore, see [22]).

Thirdly, regarding the assumptions of Theorem 2.1, we first remind that Hypothesis 1.2
holds in the positive case (1.5), in the ignition case (1.6), and in the bistable case (1.7)

with
∫ 1

0
f(s)ds > 0. Hence Theorem 2.1 yields the existence of the spreading speeds

satisfying (1.3) and (2.2), given by (2.3)-(2.4), as soon as the initial datum u0 = 1U is as-
sociated with a set U ⊂ RN satisfying Uρ 6= ∅ and (2.1). Moreover, in the case of a positive

3A pulsating front connecting 1 to 0 with speed c in the direction ξ is a solution u : R × RN → (0, 1)
which can be written as u(t, x) = φ(x · ξ− ct, x), where φ(−∞, x) = 1, φ(+∞, x) = 0 uniformly in x ∈ RN ,
and φ has the same periodicity with respect to its second argument as the function f or other coefficients
of the equation, see e.g. [5, 41, 44, 45, 46].
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nonlinearity satisfying (1.11), for which the hair trigger effect holds, it suffices that such
geometric conditions on U hold with ρ > 0 arbitrarily small. On the other hand, we point
out that the conclusions of Theorem 2.1 do not hold in general without Hypothesis 1.2:
for instance, for a tristable function f of the type (1.12) with c1 > c2 (where c1 and c2 are
the positive speeds of the traveling fronts ϕ1(x − c1t) and ϕ2(x − c2t) connecting β to 0,
and 1 to β, respectively), then the solutions u of (1.1)-(1.2) with U bounded (hence, (2.1)
is satisfied) and Uρ 6= ∅, develop into a terrace of expanding fronts with speeds c1 and c2:
infBct u(t, ·) → 1 as t → +∞ if 0 < c < c2 (resp. supBc′′t\Bc′t |u(t, ·) − β| → 0 as t → +∞
if c2 < c′ < c′′ < c1, resp. supRN\Bct u(t, ·) → 0 as t → +∞ if c > c1), see [11, 15, 17, 35].
Hence, the existence of w(e) satisfying (1.3) fails.

Finally, let us comment on the geometric assumption (2.1), which is readily seen to
be invariant under rigid transformations of U . Some sufficient conditions for the validity
of (2.1) are given in Proposition 5.1 below. We also point out that U(Uρ) cannot be
replaced by U(U) in (2.1), see Remark 6.4 below. Here are some sufficient conditions and
examples to have that a direction ξ belongs to U(Uρ):

• U ∪ BR ⊃ C, for some R > 0 and some open cone C containing the ray R+{ξ}, or,
more generally, for a half-cylinder C with axis ξ and whose section orthogonal to ξ
contains an (N − 1)-dimensional ball of radius ρ;

• U satisfies the uniform interior sphere condition of radius ρ (that is, for every p ∈ ∂U ,
there is a ∈ U such that |a− p| = ρ and Bρ(a) ⊂ U) and it is strongly unbounded in
the direction ξ, in the sense that U +BR ⊃ R+{ξ} for some R > 0;

• U ∪ BR ⊃
⋃
n∈NBρ(n

αξ) for some R > 0 and α > 0 (observe that, when α > 1, the
distance between two consecutive centers is |(n + 1)αξ − nαξ| ∼ αnα−1 → +∞
as n→+∞).

Our second main result asserts the uniformity of the limits (1.3) with respect to the
directions e ∈ SN−1.

Theorem 2.2. Under the same assumptions and notations as in Theorem 2.1, it holds
that, for any compact set C ⊂ RN ,

lim
t→+∞

(
min
x∈C

u(t, tx)
)

= 1 if C ⊂ W ,

lim
t→+∞

(
max
x∈C

u(t, tx)
)

= 0 if C ⊂ RN \W ,
(2.7)

where W is the envelop set of the function w : SN−1 → [c∗,+∞] defined by (2.3)-(2.4), i.e.

W :=
{
re : e ∈ SN−1, 0 ≤ r < w(e)

}
, (2.8)

which has the following expression:

W = R+ U(U) + Bc∗ (2.9)

(with the convention that R+∅ + Bc∗ = Bc∗).

Formula (2.9) means that the envelop set W of the speeds w(e)’s coincides with the
c∗-neighborhood of the positive cone generated by the directions U(U). One immediately
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deduces that W is an open set which is either unbounded (when U(U) 6= ∅), or it coin-
cides with Bc∗ . For periodic Fisher-KPP equations, formula (2.6) given in [6, 7, 19, 44]
for the spreading speeds of solutions with compactly supported initial conditions means
that W , if W were still defined by (2.8), would be the Wulff shape (whence the letter W)
of the envelop set of the minimal speeds c∗(ξ) of pulsating fronts and, since the map
ξ 7→ c∗(ξ) ∈ (0,+∞) is continuous in SN−1 by [1, 19, 37], the set W would therefore
be a convex compact set. Instead, for our problem (1.1)-(1.2) under the assumptions of
Theorem 2.1, formula (2.9) shows that the set W defined in (2.8) is not bounded as soon
as U(U) 6= ∅, and moreover that it is not convex in general. For instance, if U 6= ∅ is a
non-convex closed cone, say with vertex 0, then R+U(U)∪{0} = U and thus, from (2.9),W
is not convex either (see (2.16)-(2.17) below for further similar examples). Nevertheless, if
U is a general convex set, then R+U(U) ∪ {0} is convex, and W is convex too, from (2.9)
again. More generally speaking, if there is a convex set U ′ which lies at a finite Hausdorff
distance from U (see (2.12) below for a more precise definition), then U(U) = U(U ′) and
therefore W is convex, even if U itself is not.

On the basis of (2.7), we say that W is a spreading set for (1.1)-(1.2). We point out
that property (2.7) contains (1.3), owing to the continuity of the map e 7→ w(e) in SN−1.
It also yields the first line of (2.2) by taking C as the segment between 0 and ce with
0 ≤ c < w(e). Compared to the first lines of (1.3) and (2.2), the first line of (2.7) provides
an additional uniformity with respect to the directions e. It also follows from (2.7) and
the continuity of the map e 7→ w(e) ∈ [c∗,+∞] that, for any σ ∈ (0, 1) and A > 0,

min
x∈σW∩BA

u(t, tx)→ 1 as t→ +∞. (2.10)

Formulas similar to (2.7) have been established for the solutions of more general heteroge-
neous equations or systems with compactly supported initial conditions and Fisher-KPP
reactions [4, 9, 16, 29, 44] or bistable reactions [46]. The main difference is that, in
these references, the spreading speeds and sets are bounded, unlike the spreading set W
defined in (2.8)-(2.9), which is unbounded as soon as U(U) 6= ∅ (whence the use of A
in (2.10), for the set σW ∩ BA to be compact). A different method based on the scaling
(t, x) = (t′/ε, x′/ε) and the limit ε → 0 was used in [4, 16, 46] and also in [3, 21] (where
initial conditions which are not compactly supported can be considered). This method can
however not be used for (1.1)-(1.2) since the set U is not invariant by rescaling, even up
to translation, unless it is a positive cone.

Theorems 2.1-2.2 were concerned with the convergence to 1 and 0 as t → +∞ along
some rays or some dilated sets. Our next two results Theorems 2.3-2.4, the first one
following actually from Theorem 2.2 (as seen from its proof in Section 5 below), provide
a description of the asymptotic shape of the upper level sets of a solution u, defined for
λ ∈ (0, 1) and t > 0 by

Eλ(t) :=
{
x ∈ RN : u(t, x) > λ

}
. (2.11)

That description involves the Hausdorff distance between some sets depending on Eλ(t)
and tW . The Hausdorff distance is defined, for any pair of subsets A,B ⊂ RN , by

dH(A,B) := max
(

sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)
)
, (2.12)

with the conventions that dH(A, ∅) = dH(∅, A) = +∞ if A 6= ∅ and dH(∅, ∅) = 0. Notice
that a first relation between Eλ(t) and tW immediately follows from the continuity of the
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map e 7→ w(e) in SN−1 and from (1.3), provided this formula holds: for any λ ∈ (0, 1),{
x ∈ W =⇒ tx ∈ Eλ(t)
x /∈ W =⇒ tx /∈ Eλ(t)

for large t.

Theorem 2.3. Under the same assumptions and notations as in Theorems 2.1-2.2, it holds
that, for any R > 0 and any λ ∈ (0, 1),

dH

(
BR ∩

1

t
Eλ(t) , BR ∩W

)
→ 0 as t→ +∞. (2.13)

As a matter of fact, property (2.13) can be extended by replacing BR with any compact
set K ⊂ RN satisfying K ∩W = K ∩W , as will be seen in the proof of Theorem 2.3 in
Section 5.

Theorem 2.3 gives the approximation of t−1Eλ(t) by W locally with respect to the
Hausdorff distance as t → +∞. But we point out that this convergence is not global in
general, that is, the truncation by the compact set K is truly needed for (2.13) to hold and
dH(t−1Eλ(t),W) 6→ 0 as t→ +∞ in general, even under the assumptions of Theorem 2.3
(see Proposition 6.5 below and also the discussion at the end of this section about the
possible lack of convergence of t−1Eλ(t)).

However, the following and last main result provides an asymptotic approximation
of t−1Eλ(t) by a family of sets, namely t−1U + Bc∗ , globally with respect to the Hausdorff
distance. For this, we do not need the geometric assumption (2.1), but rather that the
Hausdorff distance between U and its positive-distance-interior Uρ is finite.

Theorem 2.4. Assume that Hypothesis 1.2 holds, let c∗ > 0 and ρ > 0 be given by
Proposition 1.3, and let u be the solution of (1.1)-(1.2), with U ⊂ RN satisfying Uρ 6= ∅ and

dH(U,Uρ) < +∞. (2.14)

Then, for any λ ∈ (0, 1), there holds that

dH
(
Eλ(t) , U +Bc∗t

)
= o(t) as t→ +∞. (2.15)

Property (2.15) means that Eλ(t) behaves at large time t as the set U thickened by c∗t.
A sufficient condition for (2.14) to hold is that the set U fulfills the uniform interior
sphere condition of radius ρ: in such a case dH(U,Uρ) ≤ 2ρ. In particular, if f satisfies
condition (1.11) ensuring the hair trigger effect, then Theorem 2.4 applies to any non-empty
set U which is uniformly C1,1.

We point out that a single formula like (2.15) valid for all λ ∈ (0, 1) does not hold in
general without Hypothesis 1.2. For instance, consider the same counter-example as the
one mentioned after Theorem 2.1, namely, take a tristable function f of the type (1.12)
with c1 > c2 (where c1 and c2 are the positive speeds of the traveling fronts ϕ1(x − c1t)
and ϕ2(x − c2t) connecting β to 0, and 1 to β, respectively). Then, as follows from [11,
15, 17, 35], the solutions u of (1.1)-(1.2) with U bounded and Uρ 6= ∅ (hence, (2.14) is
satisfied) are such that dH

(
Eλ(t), U + Bc2t

)
= o(t) as t → +∞ if β < λ < 1, respectively

dH
(
Eλ(t), U + Bc1t

)
= o(t) as t→ +∞ if 0 < λ < β (the behavior of Eλ(t) when λ = β is

actually unclear).
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Common comments and counter-examples to Theorems 2.1-2.4

When U is bounded in (1.2), then U(U) = ∅, B(U) = SN−1, hence (2.1) is automatically
fulfilled, as is (2.14) provided Uρ 6= ∅. Theorems 2.1-2.4, which imply that (1.3), (2.2),
(2.7), (2.13) and (2.15) hold with w(e) ≡ c∗ in SN−1 and W = Bc∗ , can then be viewed in
that case as a consequence of Proposition 1.3.

Now, in the class of unbounded sets U , a particular class is that of periodic sets, or
sets U containing periodic sets. Namely, consider r, R > 0 and assume that

U ⊃
⋃
k∈ZN

Br(Rk).

Under Hypothesis 1.2, and with ρ > 0 given by Proposition 1.3, if r ≥ ρ then Proposi-
tion 1.3 and the periodicity of u(t, ·) imply that u(t, ·) → 1 as t → +∞ uniformly in RN

(notice also that, here, U(Uρ) = SN−1, w(e) = +∞ for all e ∈ SN−1, and W = RN). On
the other hand, the uniform convergence to 1 of the solutions u of (1.1)-(1.2) does not hold
in general for periodic sets U . Consider for instance a bistable function f of the type (1.7)
and assume that

U ⊂
⋃
k∈ZN

Br(Rk).

Then 0 ≤ u(1, x) ≤ eL
∫
Br
G1(x, y)dy for all x ∈ RN , with L = max[0,1] |f ′| and

G1(x, y) = (4π)−N/2
∑

k∈ZN e
−|x−Rk−y|2/4. Since the function G1 is bounded in RN × RN

(being continuous and periodic), one gets that 0 ≤ u(1, ·) ≤ eL‖G1‖L∞(RN×RN )ωNr
N in RN

(where ωN is the Lebesgue measure of the unit ball B1). As a consequence, for r sufficiently
small one has 0 ≤ u(1, ·) ≤ α/2 in RN (with α > 0 as in (1.7)) which readily implies that
limt→+∞ ‖u(t, ·)‖L∞(RN ) = 0.

Subgraphs are another important class of unbounded sets U . While further flattening
properties of level sets of solutions of (1.1)-(1.2), when U is a subgraph, and more precise
estimates of their location are established in [25], we here list direct applications of Theo-
rems 2.1-2.4 for some specific subgraphs. Let us use x = (x′, xN) ∈ RN−1 × R for the
generic notation of a point x ∈ RN , and let

U =
{
x ∈ RN : xN ≤ γ(x′)

}
, (2.16)

with γ : RN−1 → R in L∞loc(RN−1). Assume first that γ is of the form

γ(x′) = α |x′|+ o(|x′|) as |x′| → +∞, (2.17)

for some α ∈ R, which is for instance the case if γ ∈ C1(RN−1) and ∇γ(x′) · x′/|x′| → α
as |x′| → +∞. We see that Uρ 6= ∅ for any ρ > 0 and that

B(U) =
{
e ∈ SN−1 : eN > α|e′|

}
, U(U) = U(Uρ) =

{
e ∈ SN−1 : eN ≤ α|e′|

}
.

Thus (2.1) is fulfilled and Theorems 2.1-2.3 entail the validity of (1.3), (2.2), (2.7)
and (2.13) under Hypothesis 1.2 on f . However, the shape of the spreading set W
given by (2.9) is completely different according to the sign of α. Namely, if α > 0 then
W = {x ∈ RN : xN < α |x′| + c∗

√
1 + α2} – which is simply a translation of the interior

of the cone R+U(U) – hence W is non-convex and not C1. If α < 0 then the spreading
set W is still given by the c∗-neighborhood of the same cone R+U(U), which now becomes
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“rounded” in its upper part, namely w(e) = c∗ if eN ≥ |e′|/|α|, and moreover W is convex
and of class C1 (but not C2). Finally, if α = 0 (which includes the case γ bounded) thenW
is given by the half-space {x ∈ RN : xN < c∗}, i.e. w(e) = +∞ if eN ≤ 0, and w(e) = c∗/eN
if eN > 0. In the case where γ satisfies

γ(x′)

|x′|
→ −∞ as |x′| → +∞, (2.18)

then Uρ 6= ∅ for any ρ > 0, B(U)=SN−1\{(0, · · · , 0,−1)}, U(U)=U(Uρ)={(0, · · · , 0,−1)}.
Here again (2.1) is fulfilled and therefore, under Hypothesis 1.2, the conclusions of Theo-
rem 2.1-2.3 hold with SN−1 3 e 7→ w(e) having the envelop

W = R+(0, · · · , 0,−1) +Bc∗ =
{
x ∈ RN : |x′| < c∗, xN ≤ 0

}
∪Bc∗ .

This is a cylinder with a “rounded” top, which is convex and C1, but not C2. Lastly, if γ
in (2.16) is assumed to have uniformly bounded local oscillations, that is, if

sup
x′,y′∈RN−1, |x′−y′|≤1

|γ(x′)− γ(y′)| < +∞, 4 (2.19)

then condition (2.14) is fulfilled, and Theorem 2.4 then yields (2.15).
To complete this section, we list some situations where one or both hypotheses (2.1)

and (2.14) of Theorems 2.1-2.4 do not hold and the conclusions (1.3), (2.2), (2.7), (2.13)
and (2.15) fail (the examples will then also show that the conditions (2.1) and (2.14) on U
cannot be compared in general). We also further discuss the validity of the following
convergences:

lim
t→+∞

1

t
Eλ(t) =W = lim

t→+∞

1

t
U +Bc∗ , (2.20)

that one may expect to hold but that actually fail in general. The above convergences (2.20)
would be understood with respect to the Hausdorff distance (which, we point out, does not
guarantee the uniqueness of the limit). The precise counter-examples, which are given in
Section 6, will enlighten the sharpness of our results. We first observe that, whenever (2.1)
is fulfilled, together with Uρ 6= ∅ and Hypothesis 1.2, then (2.13) holds and therefore the
limit of t−1Eλ(t), if any, must coincide with the set W (in the sense that the Hausdorff
distance between the limit set and W must be 0). All of the following instances refer to
the equation (1.1) with logistic term f(u) = u(1 − u), for which Hypothesis 1.2 holds, as
well as the hair trigger effect, i.e., θ ∈ (0, 1) and ρ > 0 can be arbitrary in Proposition 1.3.
Then (2.1) and (2.14) are understood here with ρ > 0 arbitrarily small.

• There exists U , with non-empty interior, violating (2.1), but fulfilling (2.14)
(hence (2.15) holds), for which (1.3), (2.2), (2.7) and (2.13) all fail, for any func-
tion w : SN−1 → [0,+∞] and any star-shaped, open set W ⊂ RN , and moreover
both limits in (2.20) do not exist (see Proposition 6.1).

• There exists U , with non-empty interior, violating (2.14), but fulfilling (2.1)
(hence (1.3), (2.2), (2.7) and (2.13) hold), for which (2.15) fails and the first limit
in (2.20) exists whereas the second one does not (see Proposition 6.2).

4Condition (2.19) is fulfilled for instance if γ is globally Lipschitz-continous; it may or may not be
fulfilled if γ satisfies (2.17); it is not fulfilled if γ satisfies (2.19).
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• There exists U , with non-empty interior, violating both (2.1) and (2.14), for
which (1.3), (2.2), (2.7), (2.13) and (2.15) all fail, with w(e) and W given by (2.3)-
(2.4) and (2.8), and the two limits in (2.20) exist but do not coincide (see Proposi-
tion 6.3).

• There exists U , with non-empty interior, fulfilling (2.1) and (2.14) (hence (1.3), (2.2),
(2.7), (2.13) and (2.15) all hold), for which both limits in (2.20) do not exist and
dH(t−1Eλ(t),W) = +∞ for all λ ∈ (0, 1) and t > 0 (see Proposition 6.5).

Outline of the paper

Proposition 1.3, together with some other auxiliary results on planar fronts and on the
notion of invasion property, are shown in Section 3. In Section 4 we show the convergences
towards 1 and towards 0 on some sets of points. The former is directly deduced from
Proposition 1.3, while, for the latter, we make use of a family of supersolutions, constructed
on the basis of the results of Section 3, whose level sets are retracting spheres. The results
of Section 4 are applied in Section 5 to prove Theorems 2.1-2.4 on the spreading speeds and
sets for general initial supports U . We finally exhibit in Section 6 some counter-examples
when the geometric assumptions (2.1) and (2.14) of Theorems 2.1-2.4 are not satisfied.

3 Preliminary considerations on planar fronts, and

proof of Proposition 1.3

This section is devoted to the proof of Proposition 1.3, together with other auxiliary re-
sults on planar traveling fronts. We start with the definition of the “invasion property”,
which means that the steady state 1 attracts the solutions of (1.1) – not necessarily satis-
fying (1.2) – that are initially “large enough” in large balls:

Definition 3.1. We say that the invasion property holds for (1.1) if there exist θ ∈ (0, 1)
and ρ > 0 such that, if u0 fulfills (1.8) for some x0 ∈ RN , then the solution u of (1.1) with
initial condition u0 satisfies u(t, ·)→ 1 as t→ +∞, locally uniformly in RN .

From [2, 17] (see also the comments after Proposition 1.3), the invasion property is
known to hold if f is of the ignition type (1.6), or if f > 0 in (0, 1) (as a consequence of the
previous case and the maximum principle, by putting below f a function of the ignition
type), or if f is of the bistable type (1.7) with

∫ 1

0
f(s)ds > 0, or if f is of the tristable

case (1.12) with
∫ β

0
f(s)ds > 0 and

∫ 1

β
f(s)ds > 0. From [2] and the maximum principle,

the invasion property holds for every θ ∈ (0, 1) and ρ > 0 (namely, the hair trigger effect)
if and only f is positive in (0, 1) and satisfies (1.11). In that case, Proposition 1.3 implies
that properties (1.9)-(1.10) hold for any compactly supported initial datum 0 ≤ u0 ≤ 1
such that u0 > 0 on a set of positive measure (one knows that, in that case, u(1, ·) is
continuous and positive in RN , hence it satisfies (1.8) with x0 = 0, for some θ ∈ (0, 1)
and ρ > 0).

More generally speaking, it is known that the invasion property is equivalent to some
simple conditions on the function f involving the integrals

∫ 1

t
f and the positivity of f in

a left neighborhood of 1, as stated in the following proposition.

13



Proposition 3.2 ([12, 35]). For a C1([0, 1]) function f such that f(0) = f(1) = 0, the
invasion property is equivalent to the following two conditions simultaneously:

∃ θ ∈ (0, 1), f > 0 in [θ, 1), (3.1)

and

∀ t ∈ [0, 1),

∫ 1

t

f(s) ds > 0. (3.2)

Furthermore, θ can be chosen as the same real number in Definition 3.1 and in (3.1).

The fact that the invasion property implies (3.1)-(3.2) is a consequence of [35, Propo-
sition 2.12] and the converse implication follows from [12, Lemma 2.4]. In particular, the
invasion property is satisfied if f ≥ 0 in [0, 1] and if condition (3.1) holds. We also point
out that Proposition 3.2 implies that the invasion property only depends on f and not
on the dimension N , whereas, for a function f which is positive in (0, 1), the hair trigger
effect (that is, the arbitrariness of θ ∈ (0, 1) and ρ > 0 in the invasion property) depends
on N (for instance, for the function f defined by f(s) = sp(1− s), with p ≥ 1, the invasion
property holds in any dimension N ≥ 1, but the hair trigger effect holds if and only if
p ≤ 1 + 2/N , see [2]).

The next three lemmas are part of the proof of Proposition 1.3. The first one contains
some standard properties of traveling fronts. We give its proof for the sake of completeness.

We recall that a traveling front connecting 1 to 0 is a solution to (1.1) of the form
ϕ(x · e − ct), for some e ∈ SN−1, c ∈ R and ϕ : R → (0, 1) satisfying ϕ(−∞) = 1 and
ϕ(+∞) = 0. Namely, the profile ϕ ∈ C2(R) satisfies{

ϕ′′(z) + cϕ′(z) + f(ϕ(z)) = 0, z ∈ R
ϕ(−∞) = 1 > ϕ(z) > ϕ(+∞) = 0, z ∈ R.

(3.3)

Lemma 3.3. Let ϕ ∈ C2(R) and c ∈ R satisfy (3.3). Then ϕ′ < 0 in R. Moreover c > 0

if and only if
∫ 1

0
f(s) ds > 0.

Proof. Let ϕ ∈ C2(R) and c ∈ R satisfy (3.3). Let us first show that the posi-

tivity of c is equivalent to that of
∫ 1

0
f(s) ds. Standard elliptic estimates imply that

ϕ′(±∞) = ϕ′′(±∞) = 0. Hence, integrating the equation in (3.3) against ϕ′ over R yields∫
R
c (ϕ′(z))2 dz =

∫ 1

0

f(s) ds,

which shows the desired property.
Let us show now the decreasing monotonicity of ϕ. Suppose first that c ≥ 0. Assume

by contradiction that ϕ is not non-increasing. Then there are xm < xM < y ∈ R such that
ϕ(xm) = ϕ(y) < ϕ(xM), and xm and xM are respectively a point of local minimum and of
local maximum for ϕ. Integrating the equation in (3.3) against ϕ′ over [xm, y] leads to:

c

∫ y

xm

(ϕ′)2 = −(ϕ′(y))2

2
,

we deduce that ϕ′(y) = 0 and c = 0, and thus ϕ is periodic by the Cauchy-Lipschitz
theorem (since ϕ(xm) = ϕ(y) and ϕ′(xm) = ϕ′(y) = 0). This is impossible. Therefore, ϕ
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is non-increasing. Differentiating the equation in (3.3) and applying the strong maximum
principle to ϕ′, one eventually gets that ϕ′ < 0 in R.

In the case c < 0, one finds y < xm < xM such that ϕ(y) = ϕ(xM) > ϕ(xm), and xm
and xM are respectively a point of local minimum and of local maximum for ϕ. Integrating
the equation in (3.3) against ϕ′ over [y, xM ] leads to the same contradiction as before.

The next lemma shows that Hypothesis 1.2 implies the invasion property.

Lemma 3.4. Hypothesis 1.2 implies (3.1)-(3.2) (and then the invasion property).

Proof. By Hypothesis 1.2, problem (3.3) admits a solution ϕ = ϕ0 for c = c0 > 0. We know
from Lemma 3.3 that property (3.2) holds for t = 0. Next, since ϕ′0(−∞) = ϕ′′0(−∞) = 0
owing to elliptic estimates, integrating the first equation in (3.3) against ϕ′0 over the interval
(−∞, x), for any x ∈ R, yields

(ϕ′0(x))2

2
+

∫ x

−∞
c0 (ϕ′0(z))2 dz =

∫ 1

ϕ0(x)

f(s) ds.

By the arbitrariness of x and the positivity of c0, we deduce that
∫ 1

t
f(s) ds > 0 for

all t ∈ (0, 1). Property (3.2) is thereby shown.
Let us turn to (3.1). Assume by contradiction that this property does not hold, that

is, that there exists a sequence (tn)n∈N in (0, 1) converging to 1 such that f(tn) ≤ 0 for all
n ∈ N. Together with (3.2), it follows that there exists another sequence (σn)n∈N in (0, 1)
converging to 1 such that f(σn) = 0 for all n ∈ N. We deduce in particular that f ′(1) = 0.
For n ∈ N, consider the function

ψ : z 7→ ψ(z) := σn + e−c0z/2,

where c0 > 0 is, as in the previous paragraph, given by Hypothesis 1.2. With f being
extended for convenience by 0 in (1,+∞), we have that

ψ′′(z) + c0ψ
′(z) + f(ψ(z)) = −c

2
0

4
e−c0z/2 + f(σn) +

∫ ψ(z)

σn

f ′(s) ds

≤ −c
2
0

4
e−c0z/2 +

(
max
s∈[σn,1]

f ′(s)

)
e−c0z/2

for all z ∈ R. Taking n large enough, we find that the right-hand side is negative, that
is, ψ is a strict supersolution of the equation satisfied by the front profile ϕ0. By suitable
translation in z, one can reduce to the case where ψ(z) “touches from above” ϕ0(z), i.e.,
minR(ψ−ϕ0) = 0. This contradicts the elliptic strong maximum principle. Therefore, (3.1)
is satisfied too.

As a conclusion, one has shown that Hypothesis 1.2 implies both (3.2) and (3.1), hence
it implies the invasion property from Proposition 3.2.

The last of the three lemmas gives the equivalence between the existence of a traveling
front connecting 1 to 0 with a positive speed and the existence of a positive minimal speed
for such fronts.

Lemma 3.5. If problem (3.3) admits a solution for c = c0 > 0 then there exists c∗ > 0
such that (3.3) admits a solution for c = c∗ and none for c < c∗.
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Proof. Let us assume that (3.3) admits a solution ϕ = ϕ0 for c = c0 > 0, that is, that

Hypothesis 1.2 holds. The first statement of Lemma 3.3 implies that
∫ 1

0
f(s) ds > 0, and

thus that if (3.3) admits a solution for some c ∈ R then necessarily c > 0. Let c∗ ≥ 0
be the infimum of c for which (3.3) admits a solution, and let (cn)n∈N in [c∗,+∞) be such
that (3.3) admits a solution ϕ = ϕn for c = cn, for any n ∈ N, with cn → c∗ as n→ +∞.
The functions (ϕn)n∈N are decreasing thanks to Lemma 3.3. We normalize them through
horizontal translations by the condition ϕn(0) = θ, where θ ∈ (0, 1) is the value provided
by property (3.1), which holds thanks to Lemma 3.4. By elliptic estimates, the sequence
(ϕn)n∈N converges (up to subsequence) locally uniformly towards a solution ϕ∗ of the first
equation in (3.3) with c = c∗. The function ϕ∗ is nonincreasing and satisfies 0 ≤ ϕ∗ ≤ 1,
ϕ∗(0) = θ and moreover, by elliptic estimates, (ϕ∗)′(±∞) = (ϕ∗)′′(±∞) = 0. It follows
that f(ϕ∗(±∞)) = 0, hence in particular ϕ∗(−∞) = 1 due to (3.1). Applying the strong
maximum principle to the function (ϕ∗)′, which solves a linear elliptic equation, we infer
that (ϕ∗)′ < 0 in R.

We now show that ϕ∗(+∞) = 0. To do this, we observe that, if ϕ′ < 0 in R, then the
equation in (3.3) can be reformulated in terms of the negative function p(s) := ϕ′(ϕ−1(s)) as

p′(s)p(s) = −cp(s)− f(s) for s ∈ (ϕ(+∞), ϕ(−∞)).

Moreover, by elliptic estimates, the function p satisfies p(ϕ(+∞)+) = p(ϕ(−∞)−) = 0.
We consider such reformulation for the functions p0 and p∗ associated with ϕ0 and ϕ∗ re-
spectively, recalling that (ϕ∗)′ < 0 in R, and also ϕ′0 < 0 in R thanks to Lemma 3.3.
We have that ϕ0(−∞) = 1 and ϕ0(+∞) = 0. Assume by way of contradiction
that q := ϕ∗(+∞) > 0. Hence p∗(q+) = p∗(1−) = 0. We set

q := sup
{
q ∈ (q, 1) : p0(s) < p∗(s) for all s ∈ (q, q)

}
∈ (q, 1].

It may happen that q = 1, but in any case p0(q−) = p∗(q−), and p0 < p∗ in (q, q). We then
integrate the equations satisfied by p∗ and p0 over (q, q), take their difference, and obtain

1

2
p2

0(q) =

∫ q

q

(
c0p0(s)− c∗p∗(s)

)
ds.

Since c0 > 0 and c0 ≥ c∗ ≥ 0 by the definition of c∗, while p0 < p∗ < 0 in (q, q), we have
reached a contradiction.

We have shown that ϕ∗(+∞) = 0. Therefore, ϕ∗ solves (3.3) with c = c∗ and thus
c∗ > 0 by Lemma 3.3. By the definition of c∗ there cannot be any solution to (3.3) with
c < c∗. This concludes the proof.

The last step before the proof of Proposition 1.3 is a key-result on the existence of
front profiles in finite or semi-infinite intervals, for some speeds c smaller or larger than
the minimal speed c∗, under Hypothesis 1.2. Before stating the result (which is also used
in the proof of Theorems 2.1-2.4), we first recall that f is extended by 0 outside [0, 1], and
that a planar front connecting 1 to 0 with speed c ∈ R is a solution ϕ(x− ct) of (1.1) in R.
The profile ϕ satisfies the equation

ϕ′′ + cϕ′ + f(ϕ) = 0, (3.4)

which is equivalent to the system of ODEs{
q′ = p

p′ = −cp− f(q).
(3.5)
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In the phase plane, this system generates orbits (q(x), p(x)) which, as long as p 6= 0, can
be parameterized as the graph of a function p = p(q) which solves

dp

dq
= −c− f(q)

p
. (3.6)

Hence by Lemma 3.3, a solution to (3.3) corresponds to a heteroclinic connection between
the stationary points (0, 0) and (1, 0) for (3.5), along which p < 0. We always restrict to
orbits of (3.5) contained in [0, 1]×(−∞, 0]. Hypothesis 1.2 and Lemma 3.5 translate to the
existence of a heteroclinic connection between (0, 0) and (1, 0) for (3.5) when c = c∗ > 0 and
the nonexistence of such connection when c < c∗. We also remember that, by Lemma 3.3,
Hypothesis 1.2 implies that

∫ 1

0
f(s) ds > 0.

The following result asserts that, when c is slightly below the threshold c∗ for the
existence of a heteroclinic connection for (3.5), one can find a trajectory joining (0, 1)×{0}
to {0} × (−∞, 0), whereas, for c above that threshold, there exists a trajectory joining
{1} × (−∞, 0) to {(0, 0)}.

Proposition 3.6. Assume that Hypothesis 1.2 holds, and let c∗ > 0 be given by Lemma 3.5.
Then the following properties hold:

(i) there is η ∈ (0, c∗) such that, for any c ∈ [c∗ − η, c∗), there exists a C2 decreas-
ing function ϕ defined in some interval [0, a], with a > 0, satisfying (3.4) in [0, a]
together with

θ < ϕ(0) < 1, ϕ′(0) = 0, ϕ(a) = 0,

where θ ∈ (0, 1) is the value in condition (3.1), which holds thanks to Lemma 3.4;

(ii) for any c > c∗, there exists a decreasing function ϕ ∈ C2(R) satisfying (3.4) in R
together with

ϕ(0) = 1, ϕ(+∞) = 0, 0 < m−1ϕ ≤ −ϕ′ ≤ mϕ in R, ϕ′′ ≥ 0 in [b,+∞), (3.7)

for some m > 1 and b > 0.

Proof. To start with, one observes that c∗ ≥ 2
√
f ′(0) if f ′(0) > 0. Indeed, otherwise (0, 0)

is a focus for (3.5) when c = c∗ and then no trajectory can converge toward it, whereas one
such trajectory is provided by the solution to (3.3) for c = c∗, which exists by Lemma 3.5.
In order to prove the statements (i) and (ii), we first show that c∗ coincides with the critical
speed ĉ constructed in [2].

Let us recall the construction of ĉ in [2]. First, for any c ∈ R and any ε > 0, let
p = pc,ε(q) be the trajectory of (3.5) emerging from the regular point (0,−ε). Namely,
pc,ε(q) is a negative solution to (3.6) for nonnegative q in a maximal interval [0, qc,ε), with
qc,ε ∈ (0,+∞], together with pc,ε(0) = −ε. Hence p2

c,ε is a positive solution to

(p2
c,ε)
′(q) = −2cpc,ε(q)− 2f(q) (3.8)

in [0, qc,ε). If qc,ε > 1 then pc,ε < 0 in [0, 1]. In the case qc,ε ≤ 1, one has that pc,ε is bounded
in [0, qc,ε) (because (p2

c,ε)
′ ≤ |c|p2

c,ε + |c| + 2 max[0,1] |f | in [0, qc,ε)) and then, by (3.8), p2
c,ε

is Lipschitz-continuous in [0, qc,ε) and satisfies limq↗qc,ε p
2
c,ε(q) = 0; in such a case we then

set pc,ε = 0 in [qc,ε, 1]. The functions pc,ε are nonincreasing with respect to ε in [0, 1].
Moreover the family (p2

c,ε)ε∈(0,1] is bounded in C0,1([0, 1]). One then lets pc denote the
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limit in [0, 1] as ε ↘ 0 of pc,ε. It follows that pc(0) = 0, that pc ≤ 0 in [0, 1] and that p2
c

is Lipschitz-continuous in [0, 1]. Moreover, as long as pc is negative, it parameterizes a
trajectory of (3.5), that is, it solves (3.6) hence p2

c solves (3.8). For each ε > 0 and c < c′,
equation (3.6) shows that pc,ε > pc′,ε in a right neighborhood of 0 and also that there is no
q ∈ (0, 1] such that pc,ε > pc′,ε in (0, q) and pc,ε(q) = pc′,ε(q) < 0. It follows that pc,ε ≥ pc′,ε
in [0, 1] and therefore

pc ≥ pc′ in [0, 1], for any c < c′. (3.9)

On the other hand, if c > 1 + max[0,1] |f ′| one has, for each ε > 0, pc,ε(q) ≤ −q for all
q ∈ [0, 1], because otherwise there would be q0 ∈ (0, 1] such that pc,ε(q) < −q in [0, q0) and
pc,ε(q0) = −q0. This would contradict (3.6). Therefore pc(q) ≤ −q for all q ∈ [0, 1]. Then
the critical speed ĉ is defined as the infimum of c such that pc(1) < 0.

Let us show that ĉ ≤ c∗. Let p∗(q) be the parameterization of a front with (mini-
mal) speed c∗ given by Lemma 3.5. Then p∗(q) is a negative solution of (3.6) in (0, 1)
and (its continuous extension to [0, 1]) satisfies p∗(0) = p∗(1) = 0. By construction,
pc∗ = limε↘0 pc,ε ≤ p∗ in [0, 1] (trajectories with the same c cannot cross each other), hence
pc∗ < 0 in (0, 1). We shall now prove that

∀ c > c∗, pc < 0 in (0, 1]. (3.10)

This would imply in particular that pc(1) < 0 for all c > c∗, hence, by definition, ĉ ≤ c∗. To
show (3.10), we first infer from (3.9) that, for c > c∗, one has pc ≤ pc∗ ≤ p∗ < 0 in (0, 1) and
thus both pc satisfies (3.3) in (0, 1). Next, if by contradiction pc(1) = 0, then integrating
the equations satisfied by p2

c and (p∗)2 over (0, 1) and taking the difference we get∫ 1

0

(
cpc(s)− c∗p∗(s)

)
ds = 0.

This is impossible because c > c∗ > 0 and pc ≤ p∗ < 0 in (0, 1).
Let us now show that ĉ ≥ c∗. Assume by contradiction that ĉ < c∗. Then there exists

c ∈ (ĉ, c∗) for which pc(1) < 0 = p∗(1). If by contradiction pc(q1) ≥ p∗(q1) for some
q1 ∈ (0, 1) then there would exist q2 ∈ [q1, 1) such that

pc(q2) = p∗(q2),
dpc
dq

(q2) ≤ dp∗

dq
(q2),

which is impossible due to (3.6). This means that pc < p∗ < 0 in (0, 1). Now, for ε > 0, let
p̃c,ε(q) be the parametrization of the trajectory emerging from the regular point (1,−ε).
Since p̃c,ε(1) < 0 = p∗(1), the same argument as before shows that p̃c,ε(q) < p∗(q) for all
q ∈ (0, 1]. In particular, p̃c,ε satisfies the equation (3.6) in (0, 1]. On the other hand, for
ε < −pc(1) we have that p̃c,ε(1) = −ε > pc(1) and thus by uniqueness for (3.6) one gets
p̃c,ε > pc in the whole (0, 1], and for the same reason the functions p̃c,ε are decreasing with
respect to ε at any point in (0, 1]. Furthermore, the arguments used for the functions pc,ε
imply that the family (p̃2

c,ε)ε∈(0,1] is bounded in C0,1([0, 1]). As a consequence, p̃c,ε converges
as ε↘ 0 to a function p̃c uniformly in [0, 1]. The function p̃c is continuous in [0, 1], satisfies
pc ≤ p̃c ≤ p∗ in [0, 1] and vanishes at 1 (and also at 0 since pc and p∗ do). Moreover it
solves (3.6) in (0, 1). Therefore p̃c parameterizes a trajectory of (3.5) connecting (1, 0)
to (0, 0), which then corresponds to a solution of (3.3) with speed c < c∗ contradicting
Lemma 3.5. We have thereby shown that ĉ = c∗.
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We can now prove statement (i). Let us fix ε̄ > 0. By Cauchy-Lipschitz theorem one
has pc∗,ε̄ < p∗ ≤ 0 in [0, 1). Integrating the equation satisfied by (p∗)2 and p2

c∗,ε̄ over (0, 1)
and taking the difference we get

1

2
p2
c∗,ε̄(1) =

1

2
ε̄2 + c∗

∫ 1

0

(
p∗(s)− pc∗,ε̄(s)

)
ds > 0,

hence pc∗,ε̄(1) < 0. Thus it holds that pc∗,ε̄ < p∗ ≤ 0 in [0, 1]. It follows that pc∗,ε̄
satisfies (3.6) in [0, 1] and thus there exists η ∈ (0, c∗) such that pc,ε̄ < p∗ in [0, 1] for all
c ∈ [c∗ − η, c∗). Take one of such c’s. We know that pc(0) = 0 and also that pc(1) = 0
(because c < c∗ and the latter coincides with ĉ) therefore there exists qc ∈ (0, 1) such that
pc(qc) = 0 > p∗(qc) (because otherwise pc would give rise to a solution of (3.3) with speed
c < c∗, which is impossible due to Lemma 3.5). We then define

εc := inf{ε ∈ (0, ε̄] : pc,ε < p∗ in [0,max(qc, θ)]},

where θ ∈ (0, 1) is given by (3.1), which holds thanks to Lemma 3.4. Since
limε↘0 pc,ε(qc) = pc(qc) > p∗(qc) one deduces that εc > 0. Moreover, since pc,ε solves (3.6)
in the region where it is negative, the continuous dependence with respect to ε im-
plies that pc,εc ≤ p∗ in [0,max(qc, θ)] with equality at some point q′c ∈ [0,max(qc, θ)].
Clearly q′c > 0, furthermore q′c /∈ (0,max(qc, θ)) because otherwise we would have both
pc,εc(q

′
c) = p∗(q′c) < 0 and p′c,εc(q

′
c) = (p∗)′(q′c), which is ruled out by the equations

since c < c∗. As a consequence q′c = max(qc, θ). From this one gets p′c,εc(q
′
c) > (p∗)′(q′c)

again by the equation. We finally claim that there exists sc ∈ (q′c, 1) such that pc,εc < 0 in
[0, sc) and pc,εc(sc) = 0. Otherwise there would be q′′c ∈ (q′c, 1] such that p∗ < pc,εc < 0 in
(q′c, q

′′
c ) and pc,εc(q

′′
c ) = p∗(q′′c ) which, by the usual integration, leads to the contradiction

c

∫ q′′c

q′c

pc,εc(s) ds = c∗
∫ q′′c

q′c

p∗(s) ds.

The parametrization pc,εc provides the desired function ϕ (up to translation) with
ϕ(0) = sc ∈ (θ, 1).

We finally prove (ii). Take c > c∗. We know that pc vanishes at 0 and, by (3.10),
that pc is negative in (0, 1]. Recalling that f is extended to 0 in (1,+∞), we extend pc
in (1,+∞) by solving the equation (3.6) for q > 1. Namely, pc(q) = pc(1) − c(q − 1) for
q > 1. We then define ϕ as the positive solution of (3.4) associated with this trajectory
satisfying ϕ(0) = 1. One has that ϕ(z) = Ae−cz + 1 − A for z < 0, for some A > 0, and
that ϕ is defined on the whole R. The existence of m > 1 such that |ϕ′| ≤ mϕ follows from
elliptic estimates and Harnack’s inequality. Next, by [2, Proposition 4.1], pc(q)/q ≤ −c/2
in a right neighborhood of 0, that is, ϕ′(z) ≤ −(c/2)ϕ(z) for z large enough. From this we
deduce on the one hand that, up to increasing m if need be, ϕ′ ≤ −m−1ϕ in R. On the
other hand, we infer that, for any ν > 0,

ϕ′′ ≥ c2

2
ϕ− f(ϕ) ≥

(c2

2
− f ′(0)− ν

)
ϕ,

for all z large enough. Recalling that c > c∗ ≥ 2
√

max(f ′(0), 0), we eventually get that
ϕ̄′′ > 0 in some interval [b,+∞) with b > 0.

Putting together the previous results we derive Proposition 1.3, which provides the
asymptotic speed of spreading for solutions to (1.1) with compactly supported initial data.
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Proof of Proposition 1.3. Since we here assume Hypothesis 1.2, Lemma 3.5 yields the exis-
tence of a positive minimal speed c∗ of traveling fronts for (1.1) connecting 1 to 0, and
Lemma 3.4 shows that (3.1)-(3.2) and the invasion property are fulfilled, for some θ ∈ (0, 1)
and ρ > 0. Therefore, any solution u emerging from an initial datum u0 satisfying (1.8)
spreads, in the sense that u(t, ·) → 1 as t → +∞ locally uniformly in RN , and moreover
using the function ϕ provided by Proposition 3.6 (i), exactly as in the proof of [2, Theo-
rem 5.3], one shows that such a spreading solution u satisfies (1.9). Assume now that the
initial condition u0 of (1.1) is compactly supported. As in the proof of [2, Theorem 5.1],
it follows from Proposition 3.6 (ii) that (1.10) holds.

Remark 3.7. Under the sole invasion property, the property (1.9) of Proposition 1.3 is still
fulfilled, for a certain positive speed c∗. Indeed, if u0 is as in Definition 3.1 and if v denotes
the solution to (1.1) with initial condition v0 = θ 1Bρ(x0), then v(t, ·) → 1 as t → +∞
locally uniformly in RN and there exists T > 0 such that 1 ≥ u(T, ·+ y) ≥ v(T, ·+ y) ≥ v0

in RN for every |y| ≤ 1. Hence, iterating and using the comparison principle, one finds
1 ≥ u(kT + t, · + ky) ≥ v(kT + t, · + ky) ≥ v(t, ·) in RN for all k ∈ N, t ≥ 0, and |y| ≤ 1.
Since v(t, ·)→ 1 locally uniformly as t→ +∞, one readily infers that min|x|≤ct u(t, x)→ 1
as t→ +∞, for every c ∈ [0, 1/T ).

4 Sets of convergence towards 1 and 0

Loosely speaking, the quantity w(e) defined by (1.3) separates the region where u converges
to 1 to the one where u converges to 0 as t→ +∞. In this section, we obtain some sets of
points which belong to one or the other regions.

The set where u→ 1 is immediately obtained from property (1.9) of Proposition 1.3.

Lemma 4.1. Assume that Hypothesis 1.2 holds, let c∗ > 0 and ρ > 0 be given by Proposi-
tion 1.3, and let u be the solution of (1.1)-(1.2), with U ⊂ RN satisfying Uρ 6= ∅. Then, it
holds that

∀ c ∈ (0, c∗), inf
x∈Uρ+Bct

u(t, x)→ 1 as t→ +∞.

Proof. Let v be the solution to (1.1) emerging from the initial datum v0 = 1Bρ . Take
c ∈ (0, c∗) and λ < 1. By (1.9) in Proposition 1.3, there exists T > 0 such that

∀ t ≥ T, ∀x ∈ Bct, v(t, x) > λ.

Now, for any x0 ∈ Uρ, it holds that u0 ≥ v0(· − x0) in RN and therefore, by the parabolic
comparison principle,

∀ t ≥ T, ∀x ∈ Bct(x0), u(t, x) ≥ v(t, x− x0) > λ.

This is true for any x0 ∈ Uρ, hence the result follows from the arbitrariness of λ < 1.

Unlike the previous case, the set where u→ 0 cannot be obtained from Proposition 1.3.
Instead, we make use of a new type of supersolutions whose level sets are retracting spheres.
In the strong Fisher-KPP case (i.e. when s 7→ f(s)/s is positive and nonincreasing in (0, 1)),
such supersolutions could be obtained as the sums of a finite number of solutions, see [24,
Lemma 4.2]. In order to handle the general case, we exploit the planar solutions provided
by Proposition 3.6 (ii). Actually, the functions we will construct are supersolutions to (1.1)
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in a generalized sense: namely, they are functions v ∈ C0([0, T ] × RN), with T > 0, such
that, if a solution u to (1.1) satisfies 0 ≤ u(0, ·) ≤ ψ(0, ·) in RN , then u(t, ·) ≤ ψ(t, ·) in
RN for all t ∈ [0, T ]. This is the key technical result of the paper.

Proposition 4.2. Assume that Hypothesis 1.2 holds, and let c∗ > 0 be given by Proposi-
tion 1.3. Then, for any c > c∗ and λ > 0, there exist R > 0 (depending on f , N , c and λ)
and a family of functions (vT )T>0 such that, for each T > 0, vT is a positive generalized
supersolution to (1.1) in [0, T ]× RN and satisfies{

vT (0, x) ≥ 1, ∀ |x| ≥ R + cT,

vT (t, 0) < λ, ∀ t ∈ [0, T ].
(4.1)

Proof. We start with constructing the desired family of supersolutions in dimension 1. We
then use them to construct radially symmetric supersolutions in higher dimension. But
before doing so, we introduce some auxiliary notations. For any

c′ > c′′ > c∗,

consider the function ϕ provided by Proposition 3.6 (ii) associated with c′′. Let m > 1 be
given by (3.7), and let s0 ∈ (0, 1) be such that

∀ s ∈ (0, s0), |f(s)− f ′(0)s| ≤ c′ − c′′

4m
s. (4.2)

Call then Z > 0 the quantity where ϕ(Z) = s0. For β > 0 we define

ψ(z) := ϕ(z) e−β(z−Z) for z ∈ R.

This function ψ is of class C2(R) and it satisfies in R

−ψ′′ − (c′ − β)ψ′ =
(
f(ϕ)− (c′ − 3β − c′′)ϕ′ + β(c′ − 2β)ϕ

)
e−β(z−Z).

Then, because of (3.7), we can choose β ∈ (0, c′ − c′′) small enough so that

− ψ′′ − (c′ − β)ψ′ > f(ϕ) e−β(z−Z) +
c′ − c′′

2m
ψ. (4.3)

With b > 0 as in (3.7), we also choose arbitrarily large real numbers L and R′ such that

L > max
(
Z +

log 2

β
, b
)

and R′ >
N − 1

β
. (4.4)

Step 1: the 1-dimensional case. Our goal is to connect ϕ with its reflection ϕ(−·), by using
an even function which is steeper than ϕ at some point. This will be achieved through
the function ψ defined above. Then, the symmetrized function ψ(x − c′t) + ψ(−x − c′t)
will be a supersolution where it is smaller than s0, and we take the minimum between
suitable translations of the functions ϕ(x − c′t) and ψ(x − c′t) + ψ(−x − c′t), which will
be a (generalized) supersolution for x ≤ 0. Next, we want the minimum to be achieved by
the latter function at x = 0, so that we can extend the supersolution to the whole line by
even reflection.
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More precisely, we consider an arbitrary T > 0 and we call
v1(t, r) := ϕ(r − c′(t− T ) + L),

v2(t, r) := ψ(r − c′(t− T ) + L) + ψ(−r − c′(t− T ) + L),

v(t, r) := min
(
v1(t, r), v2(t, r)

)
,

(4.5)

for (t, r) ∈ [0, T ]× R, see figure 1.

Figure 1: The definition of the generalized supersolution v = min
(
v1, v2

)
.

The functions v1, v2 are positive. Moreover, we see that

∂tv1(t, r)− ∂rrv1(t, r)− f(v1(t, r)) = (c′′ − c′)ϕ′(r − c′(t− T ) + L) > 0 in [0, T ]× R

since c′′ < c′ and ϕ′ < 0 in R, hence v1 is a supersolution to (1.1) in [0, T ]× R.
The definition of ψ and the positivity of ϕ also imply that

∀ 0 ≤ t ≤ T, ∀ r ≤ c′(t− T )− L+ Z, v2(t, r) > v1(t, r).

This means that if there exists (t̄, r̄) ∈ [0, T ] × (−∞, 0] where v(t̄, r̄) = v2(t̄, r̄), then
necessarily r̄ > c′(t̄ − T ) − L + Z. Together with the fact that ϕ is decreasing, it follows
that, for all (t̄, r̄) ∈ [0, T ]× (−∞, 0],

v(t̄, r̄) = v2(t̄, r̄) =⇒

{
0 < v2(t̄, r̄) ≤ v1(t̄, r̄) = ϕ(r̄ − c′(t̄− T ) + L) < s0,

0 < ϕ(−r̄ − c′(t̄− T ) + L) ≤ ϕ(r̄ − c′(t̄− T ) + L) < s0.
(4.6)

On the other hand, by (4.3) and the negativity of ψ′ we have that

∂tv2(t̄, r̄)− ∂rrv2(t̄, r̄)− β|∂rv2(t̄, r̄)| > f(ϕ(r̄ − c′(t̄− T ) + L)) e−β(r̄−c′(t̄−T )+L−Z)

+f(ϕ(−r̄ − c′(t̄− T ) + L)) e−β(−r̄−c′(t̄−T )+L−Z)

+
c′ − c′′

2m
v2(t̄, r̄).

Hence, estimating f(ϕ(±r̄ − c′(t̄ − T ) + L)) by (4.2), and then using (4.2) again, we
eventually derive

∂tv2 − ∂rrv2 − β|∂rv2| > f(v2) in
{

(t, r) ∈ [0, T ]× (−∞, 0] : v(t, r) = v2(t, r)
}
. (4.7)

At the point r = 0 we compute, for 0 ≤ t ≤ T ,

v2(t, 0) = 2ϕ(−c′(t− T ) + L) e−β(−c′(t−T )+L−Z) ≤ 2 v1(t, 0) e−β(L−Z).
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Since β(L− Z) > log 2 by (4.4), we have that

∀ t ∈ [0, T ], v(t, 0) = v2(t, 0) < v1(t, 0) = ϕ(−c′(t− T ) + L) ≤ ϕ(L). (4.8)

Observe that the function r 7→ v2(t, r) is even and that v(t, r) is equal to v2(t, r), hence
symmetric with respect to r, in a neighborhood of r = 0, for each 0 ≤ t ≤ T . We deduce

∀ t ∈ [0, T ], ∂rv(t, 0) = ∂rv2(t, 0) = 0. (4.9)

Remember also that v1 is a supersolution to (1.1) in [0, T ]×R. All these facts imply that,
if we restrict v(t, r) to r ≤ 0 and we take its even reflection around r = 0, we obtain
a generalized supersolution to (1.1) in [0, T ] × R, being the minimum of two classical
supersolutions. We also see that, for every 0 ≤ t ≤ T ,

∂rrv(t, 0) = ∂rrv2(t, 0) = 2ψ′′(−c′(t− T ) + L)

= 2
(
ϕ′′(−c′(t−T )+L)− 2βϕ′(−c′(t−T )+L) + β2ϕ(−c′(t−T )+L)

)
×e−β(−c′(t−T )+L−Z)

> 0

(4.10)

since ϕ′ < 0, ϕ > 0 and L > b by (4.4), where b > 0 from (3.7) is such that ϕ′′ ≥ 0
in [b,+∞).

Step 2: the case of dimension N ≥ 2. Consider the function v defined before. With R′ > 0
given by (4.4), we define, for T > 0, a continuous function vT in [0, T ]× RN as follows:

vT (t, x) :=

{
v(t, 0) if t ∈ [0, T ] and |x| ≤ R′,

v(t, R′ − |x|) if t ∈ [0, T ] and |x| > R′.

We want to show that vT is a (generalized) supersolution to (1.1) in [0, T ]× RN .
We start with checking this in the region |x| > R′. Recall that v is defined in (4.5)

as the minimum between v1 and v2. A direct computation reveals that the func-
tion v1(t, R′ − |x|) < 1 fulfills

(∂t −∆)
(
v1(t, R′ − |x|)

)
− f(v1(t, R′ − |x|))

= ∂tv1(t, R′ − |x|)− ∂rrv1(t, R′ − |x|) +
N − 1

|x|
∂rv1(t, R′ − |x|)− f(v1(t, R′ − |x|))

=

(
c′′ − c′ + N − 1

|x|

)
ϕ′(R′ − |x| − c′(t− T ) + L)

> 0

for all t ∈ [0, T ] and |x| > R′, since ϕ′ < 0 in R and c′′−c′+(N−1)/R′ < 0 by (4.4) together
with 0 < β < c′−c′′. We now turn to the function v2. At any point (t̄, x̄) ∈ [0, T ]×(RN\BR′)
such that v(t̄, R′ − |x̄|) = v2(t̄, R′ − |x̄|), we deduce from (4.4) and (4.7) that

(∂t −∆)
(
v2(t, R′ − |x|)

)∣∣
t̄, x̄
− f(v2(t̄, R′ − |x̄|))

> β |∂rv2(t̄, R′ − |x̄|)|+ N − 1

|x̄|
∂rv2(t̄, R′ − |x̄|) ≥ 0.
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We have thereby shown that vT is a supersolution to (1.1) outside the ball BR′ . Ob-
serve now that (4.9) implies that vT (t, ·) is of class W 2,∞ in a neighborhood of ∂BR′ , for
each t ∈ [0, T ]. Next, for t ∈ [0, T ] and |x| < R′, using (4.7) and (4.10) we get

∂tv
T (t, x)−∆vT (t, x) = ∂tv(t, 0) > ∂rrv(t, 0) + f(v(t, 0)) > f(vT (t, x)).

Summing up, the function vT is a positive generalized supersolution to (1.1) in [0, T ]×RN .
We further see from the definition of v and from (3.7) and (4.8) that vT satisfies{

vT (0, x) ≥ 1, ∀ |x| ≥ R′ + L+ c′T,

vT (t, 0) < ϕ(L), ∀ t ∈ [0, T ].
(4.11)

Step 3: conclusion. Consider any c > c∗ and λ > 0. Let any c′ and c′′ be such that
c > c′ > c′′ > c∗, and let s0, Z, β, L and R′ be the positive parameters (depending
on f , N , c′ and c′′, whence on f , N and c, since c′ and c′′ depend on c and c∗ while c∗

depends on f only) given as in (4.2)-(4.4). Without loss of generality, one can also assume
now that L is large enough (depending also on λ) so that ϕ(L) ≤ λ. Let (vT )T>0 be the
functions defined as in Step 2 above. Since c > c′, the conclusion (4.1) with R = R′+L > 0
follows from (4.11). The proof of Proposition 4.2 is thereby complete.

The next simple lemma concerns the sets B(U) and U(U) introduced at the beginning
of Section 2.

Lemma 4.3. Let U be a non-empty subset of RN satisfying (2.1) for some ρ > 0. Then
for every e ∈ B(U), there holds that

lim inf
τ→+∞

dist(τe, U)

τ
= inf

ξ∈U(U), ξ·e≥0

√
1− (ξ · e)2 > 0, (4.12)

with the convention that the right-hand side of the equality is 1 if there is no ξ ∈ U(U)
satisfying ξ · e ≥ 0.

Proof. Call

δ̄ := lim inf
τ→+∞

dist(τe, U)

τ
, m := inf

ξ∈U(U), ξ·e≥0

√
1− (ξ · e)2,

with the convention that m = 1 if there is no ξ ∈ U(U) satisfying ξ · e ≥ 0. The definition
of B(U) yields δ̄ > 0.

We start with proving δ̄ ≤ m. If there exists no ξ ∈ U(U) satisfying ξ · e > 0
then m = 1 ≥ δ̄ because U 6= ∅. Suppose now that there is ξ ∈ U(U) such that ξ · e > 0.
The definition of U(U) yields the existence of a family of points (xτ )τ>0 in U such that∣∣ξ − xτ

τ

∣∣→ 0 as τ → +∞.

It follows that

δ̄ ≤ lim
τ→+∞

∣∣∣ τξ·ee− xτ ∣∣∣
τ
ξ·e

= lim
τ→+∞

∣∣e− ξ · e
τ
xτ
∣∣ = |e− (ξ · e)ξ| =

√
1− (ξ · e)2.
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Since this holds for any ξ ∈ U(U) such that ξ · e > 0, the inequality δ̄ ≤ m follows.
Let us pass now to the proof of the reverse inequality m ≤ δ̄. Remember first

that 0 ≤ δ̄ ≤ 1. If δ̄ = 1 it trivially holds because m ≤ 1. Suppose that δ̄ < 1.
There exist a positive sequence (τn)n∈N diverging to +∞ and a sequence of points (xn)n∈N
in U satisfying ∣∣∣e− xn

τn

∣∣∣ < δ̄ +
1

n
for all n ∈ N.

Because δ̄ < 1, we see that |xn| → +∞ as n→ +∞, hence we can assume that xn 6= 0 for
all n ∈ N. We further deduce from the above inequality that

(xn · e)2

|xn|2
≥ 2

xn · e
τn
− |xn|

2

τ 2
n

= 1−
∣∣∣e− xn

τn

∣∣∣2 > 1−
(
δ̄ +

1

n

)2

.

hence, calling ξn := xn/|xn|,

ξn · e ≥
√

1−
(
δ̄ +

1

n

)2

.

Thus, the limit ξ ∈ SN−1 of a converging subsequence of (ξn)n∈N satisfies ξ · e ≥
√

1− δ̄2.
Furthermore, there holds that∣∣|xn|ξ − xn∣∣

|xn|
= |ξ − ξn| → 0 as n→ +∞,

which means that ξ /∈ B(U). Hence, by (2.1), ξ ∈ U(Uρ) ⊂ U(U). We eventually derive

sup
ξ∈U(U)

ξ · e ≥ ξ · e ≥
√

1− δ̄2 > 0,

that is, δ̄ ≥ m. The proof of Lemma 4.3 is thereby complete.

Thanks to Lemma 4.3, and using the family of supersolutions provided by Proposi-
tion 4.2, one can finally establish a set where the solution converges to 0.

Lemma 4.4. Assume that Hypothesis 1.2 holds, let c∗ > 0 be given by Proposition 1.3,
and let u be the solution of (1.1)-(1.2) with U 6= ∅ satisfying (2.1) for some ρ > 0. Assume
that there exists e ∈ B(U). Then, for any w > w(e), where w(e) is given by (2.3), in the
cone

C :=
⋃
τ>1

Bc∗(τ−1)(τwe),

there holds that
sup
x∈C

u(t, tx)→ 0 as t→ +∞.

Proof. Consider U, u, ρ, e, w and C as in the statement. Because w > w(e) > 0, there exists
a real number k satisfying

0 <
c∗

w
< k <

c∗

w(e)
= inf

ξ∈U(U)
ξ·e≥0

√
1− (ξ · e)2. (4.13)

Then, by Lemma 4.3, we can find τ1 > 0 such that

∀ τ ≥ τ1, dist(τe, U) ≥ kτ. (4.14)
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Take c ∈ (c∗, kw) and λ > 0. Consider the associated constant R > 0 and the func-
tions (vT )T>0 provided by Proposition 4.2. By (4.14), for all T > 0, there holds that

∀ τ > τ1 +
R + cT

k
, ∀ y ∈ Bkτ−R−cT (τe), dist(y, U) ≥ R + cT,

hence, for τ and y as above, u is less than or equal to the positive function vT (·, · − y) at
time 0, due to (4.1), and therefore the comparison principle yields u(T, y) ≤ vT (T, 0) < λ.
We rewrite this inequality using t = T , s = τ/T , x = y/T , that is,

∀ t > 0, ∀ s > c

k
+

1

t

(
τ1 +

R

k

)
, ∀x ∈ Bks−c−R/t(se), u(t, tx) < λ. (4.15)

If we show that, for t sufficiently large, any point x ∈ C can be written in the above form,
the lemma is proved, due to the arbitrariness of λ. Consider x ∈ C. We write it as follows:

x = sxe+ yx, with sx > w and |yx| < c∗
(sx
w
− 1
)
. (4.16)

Then, recalling that c < kw, we can find t1 > 0 (depending on c, k, w, τ1, R, but not on x),
such that

∀ t > t1, sx > w >
c

k
+

1

t

(
τ1 +

R

k

)
.

Next, using c∗/w < k and sx > w in (4.16), we infer that

|yx| − ksx <
(c∗
w
− k
)
sx − c∗ <

(c∗
w
− k
)
w − c∗ = −kw.

Then, because c < kw, we can find t2 ∈ [t1,+∞) (depending on t1, c, k, w,R, but not
on x), such that −kw < −c − R/t for all t > t2, hence |yx| < ksx − c − R/t for t > t2.
We have shown that x, s=sx fulfill the inclusion and inequality in (4.15), hence the proof
is concluded.

5 Proofs of Theorems 2.1-2.4

This section is devoted to the proofs of Theorems 2.1-2.4. We also state and show Propo-
sition 5.1 below on some sufficient conditions for the validity of the geometric hypothe-
sis (2.1). Lastly, Remark 5.2 below discusses the case of more general initial conditions
than (1.2).

We present the proofs of our main theorems in the following order: 2.4,2.2,2.1,2.3.

Proof of Theorem 2.4. Fix c ∈ (0, c∗), where c∗ > 0 is given by Proposition 1.3. It follows
from the assumption (2.14) that, for given c′ ∈ (c, c∗), the inclusion U + Bct ⊂ Uρ + Bc′t

holds for t > 0 sufficiently large (depending on c and c′). Thus, Lemma 4.1 implies that
infx∈U+Bct u(t, x)→ 1 as t→ +∞. Therefore, for any λ ∈ (0, 1), there holds that

U +Bct ⊂ Eλ(t),

for t sufficiently large. Since this holds for each c ∈ (0, c∗), one infers that

sup
x∈U+Bc∗t

dist(x,Eλ(t)) = o(t) as t→ +∞. (5.1)
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Conversely, by taking any c′ > c∗ and λ ∈ (0, 1), we will show that{
x ∈ RN : dist(x, U) ≥ c′t

}
⊂ RN \ Eλ(t), (5.2)

for t sufficiently large. To do so, consider any c ∈ (c∗, c′), and let R > 0 and (vT )T>0 be
given by Proposition 4.2. Denote t0 = R/(c′ − c) > 0, and consider any t ≥ t0. For any
x0 ∈ RN such that dist(x0, U) ≥ c′t, one has Bc′t(x0) ⊂ RN \U , hence u0 ≤ 1RN\Bc′t(x0)

and u0 ≤ vt(0, · − x0) in RN by (4.1) (observe that c′t ≥ R + ct). Since vt is a gen-
eralized supersolution, the maximum principle yields u(t, ·) ≤ vt(t, · − x0) in RN , hence
u(t, x0) ≤ vt(t, 0) < λ by (4.1), that is, x0 ∈ RN \Eλ(t). Therefore, one has shown (5.2), or
equivalently Eλ(t) ⊂ U +Bc′t, for all t ≥ t0. Since this holds for each c′ > c∗, one deduces

sup
x∈Eλ(t)

dist(x, U +Bc∗t) = o(t) as t→ +∞.

Together with (5.1), this gives (2.15).

Proof of Theorem 2.2. To start with, we show that the envelop set W of the function w
defined by (2.3)-(2.4) has the geometric expression (2.9). On one hand, if U(U) 6= ∅ then w
is given by the formula (2.5) (with the convention c∗/0 = +∞). Hence, in such a case, for
any e ∈ SN−1 and r ≥ 0, it holds that dist(re,R+U(U)) = r dist(e,R+U(U)) = rc∗/w(e),
which yields the equivalence between (2.8) and (2.9). On the other hand, if U(U) = ∅ then
W ≡ Bc∗ owing to (2.4), and therefore (2.9) holds true in this case under our convention
R+∅ + Bc∗ = Bc∗ .

We now turn to (2.7). We preliminarily observe that, by (2.1), one has

U(U) ⊃ U(Uρ) = SN−1 \ B(U) ⊃ U(U),

that is, U(Uρ) = U(U). Fix a compact set C contained in W . For any ξ ∈ U(U) = U(Uρ)
(if it exists), and any τ > 0 and 0 < c′ < c < c∗, the definition of U(Uρ) yields

1

t
dist(tτξ, Uρ)→ 0 as t→ +∞,

hence Bc′t(tτξ) ⊂ Uρ +Bct for t sufficiently large. It then follows from Lemma 4.1 that

inf
x∈Bc′ (τξ)

u(t, tx)→ 1 as t→ +∞. (5.3)

Note that the above limit holds good when τ = 0 (without any reference to ξ) due to
Proposition 1.3 and the fact that u0 fulfills (1.8) for some x0 ∈ RN , because Uρ 6= ∅.
Moreover, the expression (2.9) implies that any point x ∈ W is contained either in Bc′x or
in Bc′x(τxξx), for certain c′x ∈ (0, c∗), ξx ∈ U(U), and τx > 0. Then, by compactness, C can
be covered by a finite number of such balls and therefore, since (5.3) holds in each one of
them, the first limit in (2.7) follows.

Consider now a compact set C included in RN \ W . Any point y ∈ C is such
that e := y/|y| satisfies w(e) < |y| < +∞, hence necessarily e ∈ B(U), because other-
wise (2.1) would yield e ∈ U(Uρ) = U(U) and then w(e) = +∞ by the convention (2.4).
As a consequence, for an arbitrary λ > 0, applying Lemma 4.4 with w ∈ (w(e), |y|), we
infer the existence of an open neighborhood Cy of y and of some ty > 0 such that

∀ t > ty, ∀x ∈ Cy, u(t, tx) < λ.
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By a covering argument we can find tC > 0 such that

∀ t > tC , ∀x ∈ C, u(t, tx) < λ.

This gives the second limit in (2.7), concluding the proof of Theorem 2.2.

Proof of Theorem 2.1. The first limit in (2.2) is a particular instance of the first limit in
the conclusion (2.7) of Theorem 2.2. The second one only involves the directions e for
which w(e) < +∞, whence, by (2.1), the ones in B(U). Thus such a limit immediately
follows by applying Lemma 4.4 with w ∈ (w(e), c).

Proof of Theorem 2.3. We derive the limit (2.13) in the more general case where BR is
replaced by any compact set K ⊂ RN satisfying K ∩W = K ∩W (which holds true when
K = BR by the definition of W).

Take λ ∈ (0, 1) and ε > 0. For η > 0, we define the following subset of K ∩W :

Kη := K ∩
{
re : e ∈ SN−1, 0 ≤ r ≤ w(e)− η

}
.

From the continuity of w, it follows that Kη is a compact set included in the open set W .
On the one hand, since K ∩W is compact, using a covering argument one can find η > 0
small enough such that

K ∩W ⊂ K ∩W ⊂ Kη +Bε.

On the other hand, by the first line of the conclusion (2.7) of Theorem 2.2 applied with
C = Kη, we infer that, for t larger than some T > 0 depending on η, there holds that
Kη ⊂ t−1Eλ(t) and therefore Kη ⊂ K∩t−1Eλ(t). Combining these inclusions one then gets

∀ t > T, K ∩W ⊂
(
K ∩ 1

t
Eλ(t)

)
+Bε. (5.4)

Consider now, for σ > 0, the set

K ′σ := K ∩
{
re : e ∈ SN−1, r ≥ w(e) + σ

}
.

By the continuity of w, this is a compact set contained in RN \W . Let us check that

K \K ′σ ⊂
(
K ∩W

)
+Bε, (5.5)

for all σ > 0 small enough. Assume by contradiction that this is not the case. Then we
can find a sequence (rnen)n∈N in K \

(
(K ∩ W) + Bε

)
with (en)n∈N in SN−1 and (rn)n∈N

bounded and satisfying rn < w(en) + 1/n for all n ∈ N. Thus, up to subsequences, (en)n∈N
converges to some e ∈ SN−1 and then, by the continuity of w, (rn)n∈N converges to
some r ≤ w(e) (whenever w(e) be finite or not). This means that re ∈ K ∩ W and
therefore rnen ∈ (K ∩ W) + Bε for n large, a contradiction. We can then choose σ > 0
such that (5.5) holds. Applying the second line of the conclusion (2.7) of Theorem 2.2 with
C = K ′σ, we can find τ > 0 such that

∀ t > τ, K ′σ ∩
1

t
Eλ(t) = ∅,

whence

∀ t > τ, K ∩ 1

t
Eλ(t) ⊂ K \K ′σ.
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But then, since the inclusion (5.5) and the fact that K ∩ W = K ∩W yield
K \K ′σ ⊂ K ∩W +Bε, one eventually derives

∀ t > τ, K ∩ 1

t
Eλ(t) ⊂ K ∩W +Bε = (K ∩W) +Bε.

This property, together with (5.4), yields the desired result (2.13), owing to the arbitrari-
ness of ε > 0.

The last result of this section provides a list of conditions for a set U ⊂ RN to fulfill
property (2.1). As we will see in the examples listed in Section 6, conditions (2.1) and (2.14)
cannot be compared. However, condition (2.14) together with certain additional properties
imply (2.1), as the following result shows.

Proposition 5.1. For a set U ⊂ RN , property (2.1) holds if U satisfies (2.14) together
with one of the following conditions:

• either U is star-shaped with respect to some point x0 ∈ RN ;

• or there exists U ′ ⊂ RN satisfying

B(U ′) ∪ U(U ′) = SN−1 (5.6)

and dH(U,U ′) < +∞;

• or there exists U ′ ⊂ RN satisfying (5.6) and

dH(U ∩BR, U
′ ∩BR)

R
−→ 0 as R→ +∞. (5.7)

Proof. First of all, using (2.14) one sees that, for any ξ ∈ U(U),

dist(τξ, Uρ)

τ
≤ dist(τξ, U) + dH(U,Uρ)

τ
→ 0 as τ → +∞,

that is, ξ ∈ U(Uρ). Thus, it is sufficient to show (2.1) with U(U) instead of U(Uρ).
Consider the case where U is star-shaped. Since properties (2.14) and (2.1) are in-

variant under rigid transformations of the coordinate system, we can assume without
loss of generality that U is star-shaped with respect to the origin. Suppose that there
exists ξ ∈ SN−1 \ B(U) (otherwise property (2.1) trivially holds). This means that
there exists a sequence (τn)n∈N diverging to +∞ and a sequence (xn)n∈N in U such
that |τnξ − xn|/τn → 0 as n → +∞. Then, for any 0 < τ ≤ τn, since τ

τn
xn ∈ U be-

cause U is star-shaped with respect to the origin, one finds

dist(τξ, U)

τ
≤
|τξ − τ

τn
xn|

τ
=
∣∣∣ξ − 1

τn
xn

∣∣∣→ 0 as n→ +∞,

whence ξ ∈ U(U). This shows that B(U)∪U(U) = SN−1 and, as already emphasized, this
proves the statement in this case.

Consider now the hypotheses of the second case, with U ′ ⊂ RN satisfying (5.6)
and dH(U,U ′) < +∞. Then there holds that

B(U ′) = B(U) and U(U ′) = U(U), (5.8)
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hence B(U) ∪ U(U) = SN−1 and, as above, (2.1) then follows.
Let us check that the same conclusions (5.8) hold when U ′ satisfies (5.6)-(5.7). We call

DR := dH(U ∩BR, U
′ ∩BR).

For ξ ∈ SN−1 and τ > 0, there exists xτ ∈ U such

|τξ − xτ | < dist(τξ, U) + 1,

then in particular

|xτ | < τ + dist(τξ, U) + 1 ≤ τ + |τξ − x1|+ 1 ≤ 2τ + |x1|+ 1. (5.9)

Moreover, we can find x′τ ∈ U ′ ∩B|xτ |+1 for which |x′τ − xτ | < D|xτ |+1 + 1. It follows that

dist(τξ, U ′) ≤ |τξ − x′τ | ≤ dist(τξ, U) + 1 +D|xτ |+1 + 1.

By (5.7) and (5.9) one then deduces the inequality

dist(τξ, U ′) ≤ dist(τξ, U) + o(τ) as τ → +∞,

and then | dist(τξ, U ′)−dist(τξ, U)| = o(τ) as τ → +∞ by switching the roles of U and U ′.
From this, the equivalences (5.8) immediately follow, and one concludes as in the previous
paragraph.

Remark 5.2. The conclusions of Theorems 2.1-2.4 still hold for the solutions to (1.1) with
initial conditions more general than characteristic functions in (1.2). To be more precise,
firstly, if Hypothesis 1.2 is satisfied, if the minimal speed c∗ and the parameters θ ∈ (0, 1)
and ρ > 0 are given by Proposition 1.3, and if u is a solution to (1.1) such that

{u0 ≥ θ}ρ 6= ∅, B
(
{u0 ≥ θ}

)
∪ U

(
{u0 ≥ θ}ρ

)
= SN−1

and
dH
(

suppu0, {u0 ≥ θ}
)
< +∞,

then the conclusions of Theorem 2.1-2.3 hold, with U(U) replaced by U
(
{u0 ≥ θ}

)
in the

definitions (2.3)-(2.4) of w(e). Indeed, it is easy to see that B(suppu0) = B
(
{u0 ≥ θ}

)
,

that U(suppu0) = U
(
{u0 ≥ θ}

)
, that Lemma 4.1 holds with U replaced by {u0 ≥ θ}, and

that Lemmas 4.3 and 4.4 hold as well with B(U) replaced by B(suppu0) in both statements
and U replaced by suppu0 in (4.12). Meanwhile, Proposition 4.2 is kept unchanged.

Secondly, if Hypothesis 1.2 is satisfied, if the minimal speed c∗ and the parameters
θ ∈ (0, 1) and ρ > 0 are given by Proposition 1.3, and if u is a solution to (1.1) such that

{u0 ≥ θ}ρ 6= ∅, dH
(

suppu0, {u0 ≥ θ}ρ
)
< +∞

and
dH
(

suppu0, {u0 ≥ θ}
)
< +∞,

then the conclusion of Theorem 2.4 is changed into the following property: for any
λ ∈ (0, 1),

dH
(
Eλ(t) , suppu0 +Bc∗t

)
= o(t) and dH

(
Eλ(t) , {u0 ≥ θ}+Bc∗t

)
= o(t)

as t → +∞. Indeed, B(suppu0) = B
(
{u0 ≥ θ}

)
, U(suppu0) = U

(
{u0 ≥ θ}

)
, and

Lemma 4.1 holds with U replaced by {u0 ≥ θ}, while Proposition 4.2 is kept unchanged.
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6 Counter-examples

In this section, we show some counter-examples to Theorems 2.1-2.4 and to the for-
mula (2.20) when the assumptions (2.1) or (2.14) are not satisfied. In all the counter-
examples, we consider the function f(s) = s(1 − s) for s ∈ [0, 1]. Hence, the invasion
property stated in Definition 3.1 holds for arbitrary θ ∈ (0, 1) and ρ > 0, as well as Hy-
pothesis 1.2, and moreover the minimal speed of planar traveling fronts connecting 1 to 0
is equal to c∗ = 2, see [2, 18, 27].

Proposition 6.1. Let u be the solution to (1.1) with f(s) = s(1 − s) and initial datum
u0 = 1U , where

U =
⋃
n∈N

B2n+1 \B2n−1.

The set U has a non-empty interior, it does not fulfill (2.1) for any ρ > 0, but it ful-
fills (2.14) for any ρ ≤ 1 (hence, (2.15) holds). Moreover, (1.3), (2.2), (2.7) and (2.13) all
fail, for any function w : SN−1 → [0,+∞] and any open set W ⊂ RN which is star-shaped
with respect to the origin, and both limits in (2.20) do not exist.

Proof. On the one hand, the intersection of U with any ray R+e, e ∈ SN−1, is unbounded,
whence B(U) = ∅. On the other hand, for any e ∈ SN−1, the formula

dist(3× 2ne, U) = 2n − 1 (6.1)

shows that U(U) = ∅ too. Therefore (2.1) is not satisfied. Let us check that formula (1.3)
(whence the stronger one (2.2)) does not hold in any given direction e ∈ SN−1, with any
w(e)∈ [0,+∞]. Indeed, on the one hand, by Lemma 4.1

lim
t→+∞

u(t, 2ne) = 1 uniformly with respect to n. (6.2)

Thus, if (1.3) were satisfied for some e ∈ SN−1, one would necessarily have w(e) = +∞. On
the other hand, given λ ∈ (0, 1) and c = 2c∗, consider the family of functions (vT )T>0 and
the associated R > 0 provided by Proposition 4.2. For any n ∈ N satisfying n > log2(R+1),
we call Tn := (2n − 1−R)/(2c∗) > 0 and deduce from the first property in (4.1) that

∀ |x| ≥ 2n − 1, vTn(0, x) ≥ 1,

and therefore, because of (6.1), vTn(0, ·) ≥ u0(·+3×2ne) in RN , for every e ∈ SN−1. Thus,
the comparison principle together with the second property in (4.1) entail

∀ t ≤ Tn, u(t, 3× 2ne) ≤ vTn(t, 0) < λ < 1,

for every e ∈ SN−1. Calling τn := 2n−2/c∗, we have that τn < Tn for n large enough, hence
we get

lim sup
n→+∞

u(τn, 12 c∗τne) ≤ λ < 1, (6.3)

for every e ∈ SN−1. Consequently, if (1.3) were satisfied for some e ∈ SN−1, one would nec-
essarily have w(e) ≤ 12 c∗, a contradiction with w(e) = +∞. In conclusion, formula (1.3)
and then formula (2.2) do not hold in any direction e ∈ SN−1, for any w(e) ∈ [0,+∞].

The set W given by (2.8) with w(e) as in (2.3)-(2.4) is actually equal to Bc∗ . We will
see that (2.7) and (2.13) fail with W = Bc∗ , as well as with any open set W which is
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star-shaped with respect to the origin. So assume now by way of contradiction that there
exists an open set W ⊂ RN which is star-shaped with respect tot the origin and for which
either (2.7) or (2.13) hold. Because of (6.3), the first condition in (2.7) in one case, or (2.13)
in the other case, imply that {12 c∗e} /∈ W , for any e ∈ SN−1. Hence, being star-shaped,
W satisfies W ⊂ B12 c∗ . But we also know that, by (6.2), u(2n/σ, 2ne) → 1 as n → +∞
for any σ > 0. Taking σ > 12 c∗, the second line of (2.7) is violated by C = {σe} and
moreover, for given λ ∈ (0, 1), dH({σe} ∩ 1

t
Eλ(t) , {σe} ∩ W) = +∞ for t = 2n/σ and n

large enough (depending on λ), that is, (2.13) fails too. We have reached a contradiction
in both cases.

Finally, for n ∈ N and e ∈ SN−1, calling tn := 2n−1/c∗, we rewrite (6.1) as

dist(6c∗e tn, U) = 2c∗ tn − 1.

We deduce that

Bc∗−1/tn(6c∗e) ⊂ 1

tn

{
x ∈ RN : dist(x, U) > c∗ tn

}
and therefore if dH(t−1U + Bc∗ ,W ′) → 0 as t → +∞, for some set W ′, then necessarily
6c∗e /∈ W ′. But we see that, for sn := 2n/(6c∗), there holds that

6c∗e ∈ 1

sn
U,

and thus dH(t−1U + Bc∗ ,W ′) → 0 as t → +∞ would imply 6c∗e ∈ W ′. This shows that
the second limit in (2.20) does not exist, hence the first limit does not exist either, thanks
to (2.15) (notice also that (2.14) is satisfied for any ρ ∈ (0, 1], hence (2.15) holds thanks
to Theorem 2.4).

The second counter-example is the counterpart of Proposition 6.1, with a set U fulfill-
ing (2.1) but not (2.14).

Proposition 6.2. Let u be the solution to (1.1) with f(s) = s(1 − s) and initial datum
u0 = 1U , where U = U1 ∪ U2 and{

U1 :=
{
x ∈ RN : x1 ≥ 0 and x2

2 + · · ·+ x2
N ≤ 1

}
,

U2 :=
{
x ∈ RN : x1 ≥ 0 and (x2 −

√
x1)2 + x2

3 + · · ·+ x2
N ≤ e−x

2
1

}
.

(6.4)

The set U has a non-empty interior, it does not fulfill (2.14) for any ρ > 0, but it ful-
fills (2.1) for 0 < ρ ≤ 1 (hence, (1.3), (2.2), (2.7), (2.13) hold). Moreover, (2.15) fails and
the first limit in (2.20) exists and is equal to W, whereas the second one does not exist.

Proof. First of all, it is immediate to see that U(U) = U(Uρ) = {e1} for any 0 < ρ ≤ 1,
with e1 = (1, 0, · · · , 0), while B(U) = SN−1 \ {e1}. This means that the assumption (2.1)
is fulfilled for any 0 < ρ ≤ 1. One readily checks that, instead, (2.14) fails, for any ρ > 0.
The set W given by the equivalent formulas (2.8) and (2.9) is equal to the rounded half-
cylinder W = R+{e1}+Bc∗ . It is not hard to see that the second limit in (2.20) does not
exist, owing to the presence of U2 in the definition of U .

It turns out that the presence of U2 in the definition of U does not affect the asymptotic
of Eλ(t) as t→ +∞. To see this we observe that, since the function f vanishes at 0 and 1
and is concave, the maximum principle yields

0 ≤ max(v1, v2) ≤ u ≤ min(v1 + v2, 1) in [0,+∞)× RN , (6.5)
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where vi solves (1.1) with initial condition vi(0, ·) = 1Ui , for i = 1, 2. Let us
call Ei

λ(t) := {x ∈ RN : vi(t, x) > λ}. Using the comparison with the linearized equa-
tion ∂tw = ∆w+w and the explicit solution for the latter, one can check that v2(1, x) has
a Gaussian decay for |x| → +∞. It then follows from the standard theory that proper-
ties (1.9)-(1.10) hold for v2, hence dH(t−1E2

λ(t), Bc∗)→ 0 as t→ +∞ for any λ ∈ (0, 1). On
the other hand, the set U1 given in (6.4) fulfills both (2.1) and (2.14) with 0 < ρ ≤ 1, hence
the conclusions of Theorems 2.1-2.4 hold for v1. In particular, t−1dH(E1

λ(t), U1 +Bc∗t)→ 0
as t→ +∞ for any λ ∈ (0, 1). Together with (6.5), one infers that, for any λ ∈ (0, 1),

1

t
dH(Eλ(t), U1 +Bc∗t)→ 0 as t→ +∞. (6.6)

As a consequence, dH(t−1Eλ(t),W) → 0 as t → +∞ for any λ ∈ (0, 1) (that is, the first
limit in (2.20) exists and is equal to W). But since dH(U + Bc∗t, U1 + Bc∗t) = +∞ for
all t > 0, (6.6) also implies that, for any fixed λ ∈ (0, 1), dH(Eλ(t), U + Bc∗t) = +∞ for
all t large enough, hence (2.15) fails.

We now exhibit an example where all the conclusions of Theorems 2.1-2.4 fail and
moreover the two limits in (2.20) exist but they do not coincide.

Proposition 6.3. Let u be the solution to (1.1) with f(s) = u(1 − s) and initial datum
u0 = 1U , where

U =
{
x ∈ RN : |xN | ≤ e−|x

′|2}.
The set U has a non-empty interior, and it does not fulfill (2.1) or (2.14), for any ρ > 0.
Then (1.3), (2.2), (2.7), (2.13) and (2.15) all fail with w(e) and W given by (2.3)-(2.4)
and (2.8), and the two limits in (2.20) exist but do not coincide.

Proof. We have that B(U) = {e ∈ SN−1 : eN 6= 0} and that U(U) = {e ∈ SN−1 : eN = 0}
and U(Uρ) = ∅ for any ρ > 0. Hence B(U) ∪ U(Uρ) 6= SN−1. The set W defined in the
equivalent formulations (2.8) and (2.9) is given by the slab

W =
{
x ∈ RN : |xN | < c∗

}
,

and it is readily seen that

dH(t−1U +Bc∗ ,W)→ 0 as t→ +∞.

However, as for the function v2 in the proof of Proposition 6.2, one has

dH(t−1Eλ(t), Bc∗)→ 0 as t→ +∞, (6.7)

for any λ ∈ (0, 1). Namely, the first limit in (2.20) exists and coincides with Bc∗ , and then
it is not equal toW (in the sense of the Hausdorff distance). We further deduce from (6.7)
that (2.7) and (2.13) fail (just taking C = K = Bc ∩ {x ∈ RN : xN = 0} with c > c∗),
as well as (2.15), because dH(Bc∗ , t

−1U + Bc∗) = +∞ for all t > 0. Lastly, (6.7) implies
that the first lines of (1.3) and (2.2) do not hold (because w(e) given by (2.3) satisfies
w(e) = +∞ for any e ∈ SN−1 with eN = 0).

Remark 6.4. The example given in Proposition 6.3 further reveals that condition (2.1)
cannot be relaxed by replacing U(Uρ) with U(U), and moreover that, without (2.1), for-
mulas (1.3) and (2.2) can hold with some w(e) which is not given by (2.3).
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We conclude the paper by showing that (2.20) may fail even when the hypotheses of
Theorems 2.1-2.4 are fulfilled.

Proposition 6.5. Let u be the solution to (1.1) with f(s) = s(1 − s) and initial datum
u0 = 1U , where

U =
{
x ∈ RN : xN ≤

√
|x′|
}
,

which has a non-empty interior and fulfills both (2.1) and (2.14) for any ρ > 0
(hence (1.3), (2.2), (2.7), (2.13) and (2.15) all hold). Then none of the limits in (2.20)
exist and moreover

∀λ ∈ (0, 1), ∀ t > 0, dH

( 1

t
Eλ(t) , W

)
= +∞.

Proof. It is immediate to see that U(U) = U(Uρ) = {e ∈ SN−1 : eN ≤ 0} for any ρ > 0,
and that B(U) = {e ∈ SN−1 : eN > 0}, whence (2.1) holds. It is also clear that (2.14)
holds. We see from (2.9) that W = {x ∈ RN : xN < c∗}.

Next, the functions defined for n ∈ N by

(t, x) 7→ u
(
t, x+ ne1 +

√
n

2
eN

)
converge, as n → +∞, to the constant solution ũ(t, x) ≡ 1, locally uniformly in t ≥ 0,
x ∈ RN . This shows that dH(t−1Eλ(t),W) = +∞, for any λ ∈ (0, 1) and t > 0. We deduce
that the limit limt→+∞ t

−1Eλ(t) does not exist, because if it does, it must coincide withW
(in the sense of the Hausdorff distance) due to (2.13). Then the limit limt→+∞ t

−1U +Bc∗

does not exist either, owing to (2.15).
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