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Abstract

This paper is devoted to the study of the large time dynamics of bounded solutions of
reaction-diffusion equations with unbounded initial support in RN . We first prove a
general Freidlin-Gärtner type formula for the spreading speeds of the solutions in any
direction. This formula holds under general assumptions on the reaction and for so-
lutions emanating from initial conditions with general unbounded support, whereas
most of earlier results were concerned with more specific reactions and compactly
supported or almost-planar initial conditions. We also prove some results of inde-
pendent interest on some conditions guaranteeing the spreading of solutions with
large initial support and the link between these conditions and the existence of trav-
eling fronts with positive speed. Furthermore, we show some flattening properties of
the level sets of the solutions if initially supported on subgraphs. We also investigate
the special case of asymptotically conical-shaped initial conditions. For Fisher-KPP
equations, we prove some asymptotic one-dimensional symmetry properties for the
elements of the Ω-limit set of the solutions, in the spirit of a conjecture of De Giorgi
for stationary solutions of Allen-Cahn equations. Lastly, we show some logarithmic-
in-time estimates of the lag of the position of the solutions with respect to that of
a planar front with minimal speed, for initial conditions which are supported on
subgraphs with logarithmic growth at infinity. The proofs use a mix of ODE and
PDE methods, as well as some geometric arguments. The paper also contains some
related conjectures and open problems.
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1 Introduction and main results

In this paper, we are interested in the large time dynamics of solutions of the reaction-
diffusion equation

∂tu = ∆u+ f(u), t > 0, x ∈ RN , (1.1)

with N ≥ 2 and initial conditions u0 having unbounded support. More precisely, the
reaction term f : [0, 1]→ R is of class C1([0, 1]) with

f(0) = f(1) = 0,

and the initial conditions u0 are assumed to be characteristic functions 1U of sets U , i.e.

u0(x) =

{
1 if x ∈ U,
0 if x ∈ RN \U,

(1.2)

where the initial support U is an unbounded measurable subset of RN (although some re-
sults also cover the case of non-empty bounded sets U).1 This Cauchy problem is well posed

1We use the term “initial support U”, with an abuse of notation, to refer to the set U in the defini-
tion (1.2) of the initial condition u0. This set U differs in general from the usual support suppu0 of u0,
which is defined as the complement of the largest open set of RN where u0 is equal to 0 almost everywhere
with respect to the Lebesgue measure. However, U coincides with suppu0 if and only if U is closed and
the intersection of U with any non-trivial ball centered at any point of U has a positive Lebesgue measure.
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and, given u0, there is a unique bounded classical solution u of (1.1) such that u(t, ·)→ u0

as t→ 0+ in L1
loc(RN). For mathematical convenience, we extend f by 0 in R \ [0, 1], and

the extended function, still denoted f , is then Lipschitz continuous in R.
Instead of initial conditions u0 = 1U , we could also have considered multiples α1U

of characteristic functions, with α > 0, at the expense of some further assumptions on
the reaction term f , or even other more general initial conditions 0 ≤ u0 ≤ 1 for which
the upper level set {x ∈ RN : u0(x) ≥ θ} is at bounded Hausdorff distance from the
support suppu0 of u0, where θ ∈ (0, 1) is a suitable value depending on f , precisely given
by Hypothesis 1.1 below (see Remarks 3.7 and 5.3 below). But we preferred to keep the
assumption u0 = 1U for the sake of simplicity of the presentation and of readability of the
statements, all the more as this case already gives rise to many interesting and non-trivial
features, depending on the type and shape of the unbounded set U .

1.1 Two main questions

Due to diffusion, the solution u of (1.1)-(1.2) is smooth at positive times and

0 < u < 1 in (0,+∞)× RN

from the strong parabolic maximum principle, provided the Lebesgue measures of U
and RN \ U are positive. However, from parabolic estimates, at each finite time, u stays
close to 1 or 0 in subregions of U or RN \ U which are far away from ∂U .

One of the objectives of the present work is to describe the location at large time of the
regions where u stays close to 1 or 0. How do these regions move and possibly spread in
any direction? A fundamental issue is to understand whether and how the solution keeps
a memory at large time of its initial support U . A basic question is the following:

Question A. For a given vector e ∈ RN with unit Euclidean norm, is there a spreading
speed w(e) such that

u(t, cte)→ 1 as t→ +∞ for every 0 ≤ c < w(e),

and
u(t, cte)→ 0 as t→ +∞ for every c > w(e)?

Can one find a formula for w(e) and how does w(e) depend on e and the initial support U?

We will answer this question especially in Theorems 1.5 and 1.6 under some general
hypotheses, and in Theorem 1.19 and Proposition 1.20 for more specific reactions f , with
more precise estimates on the location of the level sets of the solutions in some directions
in the latter case. The speed w(e) can possibly be +∞ in some directions e, and this
actually occurs in the directions around which U is unbounded, in a sense that will be
made precise in Section 1.3. We also provide several counterexamples in Section 3.2.

Another goal of the paper is to have an insight about the profile of the solution around
its level sets. With this respect, we investigate two classes of properties: the flattening of
the level sets, and the asymptotic one-dimensional symmetry of the solution. The latter
is expressed in terms of the notion of limit set, which is defined as follows: for a given
function u : R+ × RN → R, the set

Ω(u) :=
{
ψ ∈ L∞(RN) : u(tn, xn + ·)→ ψ in L∞loc(RN) as n→ +∞,
for some sequences (tn)n∈N in R+ diverging to +∞ and (xn)n∈N in RN

} (1.3)
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is called the Ω-limit set of u.
Roughly speaking, the Ω-limit set contains all possible asymptotic profiles of the func-

tion as t → +∞. Notice that, for any bounded solution u of (1.1), the set Ω(u) is not
empty and is included in C2(RN), from standard parabolic estimates. Motivated by some
known results in the literature, the following question naturally arises.

Question B. Let u be a solution to (1.1) emerging from an initial datum u0 = 1U .
Is it true that any function ψ ∈ Ω(u) is of the form

ψ = ψ(x · e),

for some e ∈ SN−1? 2 If the answer to the question is positive, we then say that u satisfies
the asymptotic one-dimensional symmetry.

In short, we will first prove, in the case of initial supports U that are subgraphs, some
flattening properties in Theorems 1.7 and 1.9, which can be seen as some steps towards
a positive answer to Question B. We will later answer Question B and related issues, for
some specific reactions f , in Theorems 1.13 and 1.14 and in Corollaries 1.15 and 1.21.

More precisely, for the answer to Question B to possibly be affirmative, some conditions
on f and U need to be imposed, as shown by some counter-examples that we exhibit in
Section 1.5. We will also review in that section some known positive results which hold
in the case where the initial support U is bounded, or when it is at finite Hausdorff
distance from a half-space, under some assumptions on f . We will extend such results
for a nonlinearity f of the Fisher-KPP type (cf. condition (1.43) below), giving a positive
answer to Question B when U fulfills (in particular) a uniform interior ball condition and
it is convex, or, more generally, it is at bounded Hausdorff distance from a convex set, see
Theorem 1.13 below. These conditions on U are actually a very particular instance of the
geometric hypotheses under which we derive our most general result about the asymptotic
one-dimensional symmetry, Theorem 1.14 below.

Question B reclaims the De Giorgi conjecture about solutions of the Allen-Cahn equa-
tion (that is, stationary solutions of the reaction-diffusion equation ∆u+u(1−u)(u−1/2),
obtained after a change of unknown from the original Allen-Cahn equation), see [8]. We
can also wonder whether the following stronger property holds: with the existence of a
planar front connecting 1 to 0 with a positive speed (see Hypothesis 1.3 below), for a solu-
tion u to (1.1) emerging from an initial datum u0 = 1U , is it true that Ω(u) only contains
the steady states 0 and 1 and the profile of the critical planar front in certain directions
(the existence of such a critical front is then provided by Proposition 1.4 below)?

The situation considered in this paper can be viewed as a counterpart of many papers
devoted to the large time dynamics of solutions of (1.1) with initial conditions u0 that are
compactly supported or converge to 0 at infinity. We refer to e.g. [2, 9, 31, 36, 37, 55] for
extinction/invasion results in terms of the size and/or the amplitude of the initial condi-
tion u0 for various reaction terms f , and to [9, 11, 34, 35, 42] for general local convergence
and quasiconvergence results at large time. For the invading solutions u (that is, those
converging to 1 locally uniformly in RN as t → +∞) with localized initial conditions,
further estimates on the location and shape at large time of the level sets have been estab-
lished in [13, 18, 27, 45, 49, 51, 53]. Lastly, equations of the type (1.1) set in unbounded

2Throughout the paper, by the formula ψ = ψ(x · e) we mean, with a slight abuse of notation, that
there is a function Ψ : R → [0, 1] such that ψ(x) = Ψ(x · e) for all x ∈ RN where Ψ is necessarily of
class C2(R).
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domains Ω instead of RN and notions of spreading speeds and persistence/invasion in such
domains have been investigated in [5, 50].

1.2 Two main hypotheses and two preliminary results

In this section, we list some notations and hypotheses which are used in the various main
results. The hypotheses are expressed in terms of the solutions of (1.1) with more general
initial conditions than characteristic functions, or actually in terms of the reaction term f
solely. We then discuss the logical link between these hypotheses.

Throughout the paper, “| |” and “ · ” denote respectively the Euclidean norm and inner
product in RN ,

Br(x) = {y ∈ RN : |y − x| < r}

is the open Euclidean ball of center x ∈ RN and radius r > 0, Br = Br(0), and
SN−1 = {e ∈ RN : |e| = 1} is the unit Euclidean sphere of RN . The distance of a
point x ∈ RN from a set A ⊂ RN is given by dist(x,A) := inf

{
|y − x| : y ∈ A

}
, with the

convention dist(x, ∅) = +∞. We also call (e1, · · · , eN) the canonical basis of RN , that is,

ei = (0, · · · , 0, 1, 0, · · · , 0)

for 1 ≤ i ≤ N , where 1 is the ith coordinate of ei.
Since both 0 and 1 are steady states, the question of the interplay between these two

states and the diffusion is intricate. One way to differentiate the roles of 0 and 1 is to assume
that the state 1 is more stable than 0, in the sense that it attracts the solutions of (1.1)
– not necessarily satisfying (1.2) – that are “large enough” in large balls at initial time.

Hypothesis 1.1. Invasion occurs for any solution u of (1.1) with a “large enough” initial
datum u0, that is, there exist θ ∈ (0, 1) and ρ > 0 such that if

θ 1Bρ(x0) ≤ u0 ≤ 1 in RN , (1.4)

for some x0 ∈ RN , then u(t, x)→ 1 as t→ +∞, locally uniformly with respect to x ∈ RN .

If f satisfies the following conditions:

f > 0 in (0, 1) and lim inf
s→0+

f(s)

s1+2/N
> 0, (1.5)

then Hypothesis 1.1 is satisfied with any θ ∈ (0, 1) and ρ > 0, see [2]; this property is
known as the hair trigger effect. If f > 0 in (0, 1) (without any further assumption on the
behavior of f at 0+), then Hypothesis 1.1 is still satisfied with any θ ∈ (0, 1), and with
ρ > 0 large enough (this fact can also be viewed as a particular case of Proposition 1.2
below). Hypothesis 1.1 holds as well if f is of the ignition type, that is,

∃α ∈ (0, 1), f = 0 in [0, α] and f > 0 in (α, 1), (1.6)

and θ in Hypothesis 1.1 can be any real number in the interval (α, 1), provided ρ > 0 is
large enough. For a bistable function f satisfying

∃α ∈ (0, 1), f < 0 in (0, α) and f > 0 in (α, 1), (1.7)
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Hypothesis 1.1 is equivalent to
∫ 1

0
f(s) ds > 0, see [2, 15], and in that case θ in Hypo-

thesis 1.1 can be any real number in (α, 1), provided ρ > 0 is large enough. For a tristable
function f satisfying

∃ 0 < α < β < γ < 1, f < 0 in (0, α) ∪ (β, γ) and f > 0 in (α, β) ∪ (γ, 1), (1.8)

then it easily follows from [15] that Hypothesis 1.1 is equivalent to the positivity of both

integrals
∫ 1

β
f and

∫ 1

0
f , and, for such a function, these positivity conditions are in turn

equivalent to the positivity of
∫ 1

t
f for every t ∈ [0, 1).

More generally speaking, it actually turns out that Hypothesis 1.1 is equivalent to some
simple conditions on the function f involving the integrals

∫ 1

t
f and the positivity of f in

a left neighborhood of 1, as the following result shows.3

Proposition 1.2. For a C1([0, 1]) function f such that f(0) = f(1) = 0, Hypothesis 1.1
is equivalent to the following two conditions simultaneously:

∃ θ ∈ (0, 1), f > 0 in [θ, 1), (1.9)

and

∀ t ∈ [0, 1),

∫ 1

t

f(s) ds > 0. (1.10)

Furthermore, θ can be chosen as the same real number in Hypothesis 1.1 and in (1.9).

In particular, Hypothesis 1.1 is satisfied if f ≥ 0 in [0, 1] and if condition (1.9) holds.
Notice however that condition (1.9) alone is not enough to guarantee Hypothesis 1.1, since
bistable functions f of the type (1.7) satisfy (1.9) but do not satisfy Hypothesis 1.1 as soon

as
∫ 1

0
f ≤ 0. Similarly, condition (1.10) alone is not enough to guarantee Hypothesis 1.1,

since there are C1([0, 1]) functions f which vanish at 0 and 1 and satisfy (1.10) but not (1.9):
consider for instance f defined by f(1) = 0 and f(s) = s(1−s)3 sin2(1/(1−s)) for s ∈ [0, 1).

We also point out that Proposition 1.2 implies that Hypothesis 1.1 is independent of
the dimension N , whereas, for a function f which is positive in (0, 1), the hair trigger
effect (that is, the arbitrariness of θ ∈ (0, 1) and ρ > 0 in Hypothesis 1.1) depends on N
(for instance, for the function f(s) = sp(1 − s) with p ≥ 1, Hypothesis 1.1 holds in any
dimension N ≥ 1, but the hair trigger effect holds if and only if p ≤ 1 + 2/N , see [2]).

In the large time dynamics of the solutions of the Cauchy problem (1.1), a crucial role
is played by the traveling front solutions connecting the steady states 1 and 0, namely the
solutions of the form

u(t, x) = ϕ(x · e− ct)
with c ∈ R, e ∈ SN−1, and

0 = ϕ(+∞) < ϕ(z) < ϕ(−∞) = 1 for all z ∈ R. (1.11)

The level sets of these solutions are hyperplanes orthogonal to e traveling with the constant
speed c in the direction e. If they exist, their profile ϕ is necessarily decreasing and unique
up to shifts, for a given speed c (see also the proof of Lemma 2.1 below for further details
on these properties). Most of our main results are derived under the following hypothesis:

3To the best of our knowledge, the equivalence stated in Proposition 1.2 is not present in the literature,
for general functions f . However, the fact that (1.9)-(1.10) imply Hypothesis 1.1 is contained in [11,
Lemma 2.4].
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Hypothesis 1.3. Equation (1.1) in R admits a traveling front connecting 1 to 0 with
positive speed c0 > 0.

Hypothesis 1.3 is fulfilled for instance if f > 0 in (0, 1), or if f is of the ignition

type (1.6), or if f is of the bistable type (1.7) with
∫ 1

0
f(s) ds > 0 (in the last two cases,

the speed c0 is unique), see [2, 15, 28]. Hypothesis 1.3 is also satisfied for some functions f
having multiple oscillations in the interval [0, 1], see the comments on the example (1.8)
after Proposition 1.4 below.

It actually turns out that Hypothesis 1.3 is equivalent to the existence of a positive
minimal speed c∗ of traveling fronts connecting 1 to 0, and that Hypothesis 1.3 also implies
Hypothesis 1.1 and further spreading properties for the solutions of (1.1) fulfilling the
conditions of Hypothesis 1.1. These facts are expressed by the following.

Proposition 1.4. Assume Hypothesis 1.3. Then equation (1.1) in R admits a traveling
front connecting 1 to 0 with minimal speed c∗, and c∗ > 0. Furthermore, Hypothesis 1.1 is
fulfilled and, for any solution u as in Hypothesis 1.1, there holds that

∀ c ∈ [0, c∗), min
|x|≤ct

u(t, x)→ 1 as t→ +∞. (1.12)

Lastly, for any compactly supported initial condition 0 ≤ u0 ≤ 1, the solution u of (1.1)
satisfies

∀ c > c∗, sup
|x|≥ct

u(t, x)→ 0 as t→ +∞. (1.13)

Several comments are in order. Firstly, the minimality of c∗ means that (1.1) in R
admits a solution of the form ϕ(x− c∗t) satisfying (1.11), and it does not admit a solution
of the same type with c∗ replaced by a smaller quantity (notice that, necessarily, c∗ ≤ c0

under the notation of Hypothesis 1.3).
Secondly, the part of Proposition 1.4 asserting that the existence of a traveling front

with positive minimal speed c∗ yields the spreading properties (1.12)-(1.13), answers af-
firmatively to Question A of Section 1.1 under Hypothesis 1.3, in the particular case of
compactly supported initial data. This can be viewed as a natural extension of some results
of the seminal paper [2], which were originally obtained under more specific assumptions
on f . Furthermore, we mention that, if there is δ > 0 such that f is nonincreasing in [0, δ]
and in [1− δ, 1], it has also been known that the existence of a traveling front with positive
minimal speed c∗ implies Hypothesis 1.1 in this case (see [12, Theorem 1.5] which contains
a more general result concerning periodic equations). Proposition 1.4 means that this im-
plication holds without any further assumption on f , and that the existence of a traveling
front with positive speed is actually sufficient to get the conclusion.

Thirdly, whereas Proposition 1.4 shows the implication “Hypothesis 1.3 =⇒ Hypothe-
sis 1.1”, we point out that the converse implication “Hypothesis 1.1 =⇒ Hypothesis 1.3” is
false in general. For instance, consider equation (1.1) in dimension N = 1 with a tristable

function f satisfying (1.8) and such that
∫ β

0
f > 0 and

∫ 1

β
f > 0, and let c1 and c2 be the

unique (positive) speeds of the traveling fronts ϕ1(x−c1t) and ϕ2(x−c2t) connecting β to 0
on the one hand, and 1 to β on the other hand. It follows from [15] that, if c1 ≥ c2, then
Hypothesis 1.3 is not satisfied, while Hypothesis 1.1 is (from [15], or from Proposition 1.2).
In that case, it turns out that the compactly supported initial conditions u0 giving rise to
invading solutions u as in Hypothesis 1.1 develop into a terrace of two expanding fronts
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with speeds c1 and c2 (the notions of terraces have been further investigated in more gene-
ral frameworks in [10, 14, 20, 44]). On the other hand, still with (1.8) and the positivity

of
∫ β

0
f and

∫ 1

β
f , Hypothesis 1.3 is satisfied if (and, then, only if) c1 < c2, see [15].

Lastly, under Hypothesis 1.3, Proposition 1.4 gives the exact spreading speed (1.12)-
(1.13) of the solutions u satisfying the conditions of Hypothesis 1.1 with compactly sup-
ported initial conditions. However, as observed in Remark 2.5 below, under the sole Hy-
pothesis 1.1, the property (1.12) is still fulfilled, for a certain positive speed c∗ which
nevertheless may not be any speed of a traveling front connecting 1 to 0.

Most of our main results are derived under Hypothesis 1.3, which then yields Hy-
pothesis 1.1 and property (1.12) with the minimal speed c∗. But one result (namely,
Theorem 1.9), only requires Hypothesis 1.1 (but not necessarily Hypothesis 1.3).

1.3 A general notion of spreading set and a Freidlin-Gärtner
type formula

In this section, under Hypothesis 1.3, we investigate the asymptotic set of spreading for
the solutions u of (1.1)-(1.2) with general unbounded sets U containing large enough
balls. Such solutions u then converge to 1 as t → +∞ locally uniformly in RN , and even
satisfy (1.12), with c∗ > 0 given by Proposition 1.4. But we now want to provide a more
precise description of the invasion of the state 0 by the state 1. We point out that the
invasion cannot be uniform in all directions in general, since it shall strongly depend on
the initial set U . For e ∈ SN−1, we then look for a quantity w(e) ∈ (0,+∞] satisfying

lim
t→+∞

u(t, cte) =

{
1 if 0 ≤ c < w(e),

0 if c > w(e),
(1.14)

and even the stronger condition
lim
t→+∞

(
min

0≤s≤c
u(t, ste)

)
= 1 if 0 ≤ c < w(e),

lim
t→+∞

(
sup
s≥c

u(t, ste)
)

= 0 if c > w(e).
(1.15)

This quantity is referred to as the spreading speed and represents the asymptotic speed at
which the level sets between 0 and 1 move in the direction e. If it exists, it necessarily
satisfies w(e) ≥ c∗ by Proposition 1.4. However, in contradistinction with the case of
compactly supported initial data, the spreading speed may not exist when the support of
the initial datum is unbounded, as we show in Proposition 3.8 below.

We will derive a geometric condition on U under which the spreading speed exists and,
in addition, it fulfills the following Freidlin-Gärtner type formula:

w(e) = sup
ξ∈U(U)
ξ·e≥0

c∗√
1− (ξ · e)2

, (1.16)
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where U(U)⊂SN−1 is a suitable set of directions, depending on U .4 We use the conventions:{
w(e) = c∗ if there is no ξ ∈ U(U) such that ξ · e ≥ 0,

w(e) = +∞ if e ∈ U(U).
(1.17)

Loosely speaking, U(U) is the set of directions “around which U is unbounded”. Here is
the precise definition:

U(U) :=
{
ξ ∈ SN−1 : lim

τ→+∞

dist(τξ, U)

τ
= 0
}
.

Its counterpart is the set B(U) of directions “around which U is bounded”, defined by:

B(U) :=
{
ξ ∈ SN−1 : lim inf

τ→+∞

dist(τξ, U)

τ
> 0
}
.

The sets B(U) and U(U) are respectively open and closed relatively to SN−1. The con-
dition ξ ∈ B(U) is equivalent to the existence of an open cone C containing the ray
R+ξ = {τ ξ : τ > 0} such that U ∩ C is bounded, that is, R+ξ ⊂ C ⊂ (RN \U) ∪ BR for
some R > 0. Conversely, for any ξ ∈ U(U) and any open cone C containing the ray R+ξ,
there holds that the set U ∩ C is unbounded.

Our first main result, Theorem 1.5 below, also provides a description of the asymptotic
shape of the level sets of a solution u, defined for λ ∈ (0, 1) and t > 0 by

Eλ(t) :=
{
x ∈ RN : u(t, x) > λ

}
. (1.18)

This description involves the envelop set of w(e) given in (1.16), i.e.,

W :=
{
re : e ∈ SN−1, 0 ≤ r < w(e)

}
, (1.19)

and is expressed in terms of the Hausdorff distance between some sets involving Eλ(t)
and tW . The Hausdorff distance is defined, for any pair of subsets A,B ⊂ RN , by

dH(A,B) := max
(

sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)
)
,

with the conventions that

dH(A, ∅) = dH(∅, A) = +∞ if A 6= ∅ and dH(∅, ∅) = 0.

Notice that a first relation between Eλ(t) and tW immediately follows from (1.14), provided
this formula holds: for any λ ∈ (0, 1),{

x ∈ W =⇒ tx ∈ Eλ(t)
x /∈ W =⇒ tx /∈ Eλ(t)

for large t,

for which reason the set W (actually its closure) is referred to as the asymptotic set of
spreading in [48]. Lastly, before stating our first main result, we define the notion of
positive-distance-interior Uρ (with ρ > 0) of the set U as

Uρ :=
{
x ∈ U : dist(x, ∂U) ≥ ρ

}
.

4We call (1.16) a Freidlin-Gärtner type formula since Freidlin and Gärtner [17] were the first to charac-
terize the spreading of solutions of reaction-diffusion equations in RN by a variational formula. They were
actually concerned with the spreading of solutions of KPP-type reaction-diffusion equations in periodic
media with compactly supported initial conditions. Such formulas have been recently extended to more
general reaction terms in [48].
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Theorem 1.5. Assume that Hypothesis 1.3 holds (hence Hypothesis 1.1 as well). Let c∗ > 0
be the minimal speed given by Proposition 1.4, let ρ>0 be given by Hypothesis 1.1, and let u
be the solution of (1.1) with an initial datum u0 =1U , where U ⊂ RN satisfies Uρ 6= ∅ and

B(U) ∪ U(Uρ) = SN−1. (1.20)

Then, letting w(e), for e ∈ SN−1, be given by (1.16)-(1.17) and letting W be its envelop,
defined by (1.19), the following properties hold:

(i) the limits (1.15) hold for every e ∈ SN−1 and the map e 7→ w(e) ∈ [c∗,+∞] is
continuous on SN−1;

(ii) for any compact set C ⊂ RN , there holds that
lim
t→+∞

(
min
x∈C

u(t, tx)
)

= 1 if C ⊂ W ,

lim
t→+∞

(
max
x∈C

u(t, tx)
)

= 0 if C ⊂ RN \W ;
(1.21)

(iii) for any compact set K ⊂ RN satisfying K ∩W = K ∩W, there holds that

dH

(
K ∩ 1

t
Eλ(t) , K ∩W

)
→ 0 as t→ +∞, for all λ ∈ (0, 1). (1.22)

Several comments are in order, on formula (1.16) and on the hypotheses and state-
ments (i)-(iii) of Theorem 1.5. Firstly, since U(U) is closed in SN−1, it follows from for-
mula (1.16) and the convention (1.17) that

w(e) = +∞ if and only if e ∈ U(U),

w(e) > c∗ if and only if there is ξ ∈ U(U) such that ξ · e > 0,

w(e) = c∗ if and only if there is no ξ ∈ U(U) such that ξ · e > 0.

In particular, if U is bounded in (1.2), then U(U) = ∅, B(U) = SN−1, hence (1.20) is
automatically fulfilled, and Theorem 1.5 – which means that (1.15), (1.21) and (1.22) hold
with w(e) ≡ c∗ in SN−1 and W = Bc∗ – can be viewed in that case as a consequence of
Proposition 1.4. Furthermore, (1.22) then holds without reference to any compact set K,
that is, dH(t−1Eλ(t),W)→ 0 as t→ +∞.

Secondly, we observe that, for an arbitrary set U satisfying U(U) 6= ∅, formula (1.16)
with the convention (1.17) can be rephrased in a more geometric way:

w(e) =
c∗

dist(e,R+ U(U))
=

c∗

sinϑ
, (1.23)

where ϑ ∈ [0, π/2] is the minimum between π/2 and the smallest angle between the direc-
tion e and the directions in U(U) (with the convention c∗/0 = +∞). This immediately
implies the continuity of the map e 7→ w(e) ∈ [c∗,+∞] in SN−1 (if U(U) = ∅, then the map
e 7→ w(e) is constant equal to c∗, hence continuous in SN−1).5 Formula (1.23) also reveals

5For reaction-diffusion equations in RN with spatially periodic coefficients, the spreading speed w(e),
in the sense of (1.15), may depend on the direction e, even for spreading solutions u with compactly
supported initial conditions. However, the continuity of the map e 7→ w(e) still holds for monostable,
ignition or bistable reactions f , as follows from the Freidlin-Gärtner formula given in [17, 48] and from
the (semi)continuity of the minimal or unique speeds of pulsating traveling fronts with respect to the
direction [1, 21, 48] (but the continuity of the spreading speeds and even their existence do not hold in
general when pulsating waves connecting 1 to 0 do not exist anymore [20]).
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that the envelop set W defined in (1.19) has the following simple geometric expression:

W = R+ U(U) + Bc∗ (1.24)

(actually whenever U(U) be empty or not, with the convention that R+∅ + Bc∗ = Bc∗).
Indeed, on the one hand, if U(U) = ∅, then w(e) = c∗ for all e ∈ SN−1, and
W = Bc∗ . On the other hand, if U(U) 6= ∅, for any e ∈ SN−1 and r ≥ 0 there
holds dist(re,R+U(U)) = r dist(e,R+U(U)) = rc∗/w(e) by (1.23) (using the convention
rc∗/(+∞) = 0), and therefore the equivalence between (1.19) and (1.24) follows. For-
mula (1.24) means that W is given by the c∗-neighborhood of the positive cone generated
by the directions U(U), and immediately shows that W is an open set which is either
unbounded (when U(U) 6= ∅), or it coincides with Bc∗ .

Thirdly, we point out that property (1.21) contains (1.14), owing to the continuity of the
map e 7→ w(e) in SN−1. It further yields the first line of (1.15) by taking C as the segment
between 0 and ce with 0 ≤ c < w(e). Compared to the first lines of (1.14)-(1.15), the first
line of (1.21) provides an additional uniformity with respect to the direction e. Let us also
remark that property (1.22) applies in particular with K = BR, for an arbitrary R > 0,

since BR ∩W = BR ∩W .
As far as the assumptions of Theorem 1.5 are concerned, we first remind that Hypothe-

sis 1.3 is known to hold in the classical monostable case (f > 0 in (0, 1)), ignition case (1.6),

and bistable case (1.7) (in the latter case, with
∫ 1

0
f(s)ds > 0). Hence Theorem 1.5 implies

that the convergences (1.15), (1.21) and (1.22) hold in such cases for initial data u0 = 1U

associated with a set U ⊂ RN satisfying Uρ 6= ∅ and (1.20). Moreover, in the case of a
positive nonlinearity satisfying (1.5), for which the hair trigger effect holds, it suffices that
such geometric conditions on U hold with ρ arbitrarily small.

Let us now comment on the geometric assumption (1.20), which is readily seen to be
invariant under rigid transformations of U . Some sufficient conditions for the validity
of (1.20) are given in Proposition 3.6 below. Next, it is clear that U(Uρ) ⊂ U(U) for
every ρ ≥ 0, but the converse is not true in general (for instance, if B′ denotes the open
Euclidean unit ball of RN−1 and U = R+ × B′, then U(U) = U(Uρ) = {e1} if ρ ∈ [0, 1],
while U(Uρ) = ∅ if ρ > 1). Here are some sufficient conditions and examples to have that
a direction ξ belongs to U(Uρ):

• the set C \ U is bounded, for some open cone C containing the ray R+ξ, or, more
generally, for a half-cylinder C with axis ξ whose section orthogonal to ξ contains an
(N − 1)-dimensional ball of radius ρ;

• U satisfies the uniform interior sphere condition of radius ρ (that is, for every p ∈ ∂U ,
there is a ∈ U such that |a− p| = ρ and Bρ(a) ⊂ U) and it is strongly unbounded in
the direction ξ, in the sense that R+ξ ⊂ U +BR for some R > 0;

• U ∪ BR ⊃
⋃
n∈NBρ(n

αξ) for some R > 0 and α > 0 (observe that when α > 1, the
distance between two consecutive centers is |(n+1)αξ−nαξ| ∼ nα−1→+∞ as n→∞).

A situation which is of particular interest for us is when U is a subgraph (we will focus
on the subgraph case in Section 1.4). Let us consider some typical examples of application
of Theorem 1.5 in such case. Let us use x = (x′, xN) ∈ RN−1 × R for the generic notation
of a point x ∈ RN , and let

U =
{
x ∈ RN : xN ≤ γ(x′)

}
,
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with γ : RN−1 → R. Assume in this paragraph that γ satisfies

γ(x′) = α |x′|+ o(|x′|) as |x′| → +∞,

for some α ∈ R, which is for instance the case if γ ∈ C1(RN−1) and ∇γ(x′) · x′/|x′| → α
as |x′| → +∞. We see that Uρ 6= ∅ for any ρ > 0 and that

B(U) =
{
e ∈ SN−1 : eN > α|e′|

}
, U(U) = U(Uρ) =

{
e ∈ SN−1 : eN ≤ α|e′|

}
.

Thus (1.20) is fulfilled and Theorem 1.5 entails the validity of (1.15), (1.21) and (1.22)
under Hypothesis 1.3. However, the shape of the envelop set W of w(e) given
by (1.19) or (1.24) is completely different depending on the sign of α: if α > 0 then
W = {x ∈ RN : xN < α |x′|+ c∗

√
1 + α2} – which is simply a translation of the interior of

the cone R+U(U) – hence it is non-convex and not C1. If α < 0 then the setW is given by
the c∗-neighborhood of the same cone R+U(U), which now becomes “rounded” in its upper
part; indeed in such case w(e) = c∗ if eN ≥ |e′|/|α|, and the envelop W is convex and C1

(but not C2). If α = 0 (which includes the case γ bounded) thenW = {x ∈ RN : xN < c∗}
is an half-space, with w(e) = +∞ if eN ≤ 0, and w(e) = c∗/eN if eN > 0.

In the case where γ is locally bounded and satisfies

γ(x′)

|x′|
→ −∞ as |x′| → +∞,

then Uρ 6= ∅ for any ρ > 0, B(U) = SN−1 \ {−eN}, and U(U) = U(Uρ) = {−eN}.
Hence (1.20) is fulfilled and therefore, under Hypothesis 1.3, Theorem 1.5 implies
that (1.15), (1.21) and (1.22) hold with the quantities w(e) having the envelop
W = {x ∈ RN : |x′| < c∗, xN ≤ 0} ∪ Bc∗ . This is a cylinder with a “rounded” top,
which is convex and C1, but not C2.

Statements (iii) of Theorem 1.5 gives the approximation of t−1Eλ(t) by W locally with
respect to the Hausdorff distance as t → +∞. But we point out that this convergence
is not global in general, that is, the truncation by the compact set K is truly needed
for (1.22) to hold and dH(t−1Eλ(t),W) 6→ 0 as t → +∞ in general, even under the
assumptions of Theorem 1.5 (see Proposition 3.12 below and also the discussion at the
end of this subsection about the possible lack of convergence of t−1Eλ(t)). However, the
next result provides an asymptotic approximation of t−1Eλ(t) by a family of sets, namely
t−1U + Bc∗ , globally with respect to the Hausdorff distance. For this, we do not need the
geometric hypothesis (1.20), but rather that the Hausdorff distance between U and its
positive-distance-interior Uρ is finite.

Theorem 1.6. Assume that Hypothesis 1.3 holds (hence Hypothesis 1.1 as well). Let c∗ > 0
be the minimal speed given by Proposition 1.4, let ρ>0 be given by Hypothesis 1.1, and let u
be the solution of (1.1) with an initial datum u0 =1U , where U ⊂ RN satisfies Uρ 6= ∅ and

dH(U,Uρ) < +∞. (1.25)

Then, for any λ ∈ (0, 1), there holds that

dH
(
Eλ(t) , U +Bc∗t

)
= o(t) as t→ +∞. (1.26)
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Property (1.26) means that Eλ(t) behaves at large time t as the set U thickened by c∗t.
A sufficient condition for (1.25) to hold is that the (non-empty) set U fulfills the uniform
interior sphere condition of radius ρ: in such case dH(U,Uρ) ≤ 2ρ. In particular, if f
satisfies condition (1.5) ensuring the hair trigger effect, then Theorem 1.6 applies to any
non-empty set U which is uniformly smooth.

To complete this subsection, we present a list of situations where one or both
hypotheses (1.20) and (1.25) of Theorems 1.5 and 1.6 do not hold and the conclu-
sions (1.15), (1.21), (1.22) and (1.26) fail (the examples will then also show that the
conditions (1.20) and (1.25) on U cannot be compared in general). We also further discuss
the validity of the following convergences:

lim
t→+∞

1

t
Eλ(t) =W = lim

t→+∞

1

t
U +Bc∗ , (1.27)

that one may expect to hold but that actually fail in general. This will enlighten the
sharpness of our result (1.22). The above convergences are understood with respect to
the Hausdorff distance (which, we point out, does not guarantee the uniqueness of the
limit). We first observe that, if (1.20) is fulfilled together with the other hypotheses of
Theorem 1.5, then (1.22) holds and the limit of t−1Eλ(t), if any, must be the set W (in
the sense that the Hausdorff distance between the limit set and W must be 0). All of the
following instances refer to the equation (1.1) with logistic term f(u) = u(1−u), for which
Hypothesis 1.3 holds, as well as the hair trigger effect, i.e., Hypothesis 1.1 for any θ ∈ (0, 1)
and ρ > 0. Then (1.20) and (1.25) are understood here with ρ > 0 arbitrarily small.

• There exists U violating (1.20), but fulfilling (1.25) (hence (1.26) holds), for which
(1.14), (1.15), (1.21) and (1.22) all fail, for any function w : SN−1 → [0,+∞] and
any star-shaped, open set W ⊂ RN , and moreover both limits in (1.27) do not exist
(see Proposition 3.8).

• There exists U violating (1.25), but fulfilling (1.20) (hence (1.14), (1.15), (1.21)
and (1.22) hold), for which (1.26) fails and the first limit in (1.27) exists whereas the
second one does not (see Proposition 3.9).

• There exists U violating both (1.20) and (1.25), for which (1.14), (1.15), (1.21), (1.22)
and (1.26) all fail, with w(e) and W given by (1.16)-(1.17) and (1.19), and the two
limits in (1.27) exist but do not coincide (see Proposition 3.10).

• There exists U fulfilling (1.20) and (1.25) (hence (1.14), (1.15), (1.21), (1.22)
and (1.26) all hold), for which both limits in (1.27) do not exist and, for all λ ∈ (0, 1)
and t > 0, dH(t−1Eλ(t),W) = +∞ (see Proposition 3.12).

1.4 The subgraph case and flattening properties

In this section, we focus on the important class of initial conditions which are characteristic
functions of subgraphs in RN . Up to rotation, let us consider graphs in the direction xN ,
and initial conditions u0 given by

u0(x′, xN) =

{
0 if xN > γ(x′),

1 otherwise,
(1.28)
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that is, u0 = 1U with

U =
{
x = (x′, xN) ∈ RN−1 × R : xN ≤ γ(x′)

}
.

In all statements involving it, the function γ : RN−1 → R is always assumed
to be measurable and locally bounded. First of all, from parabolic estimates, one
has u(t, x′, xN)→ 0 as xN → +∞ and u(t, x′, xN)→ 1 as xN → −∞, locally uniformly in
(t, x′) ∈ [0,+∞)×RN−1. Furthermore, u(t, x′, xN) is non-increasing with respect to xN by
the parabolic maximum principle, because the initial datum u0 is, and one actually sees
that ∂xNu < 0 in (0,+∞) × RN by differentiating (1.1) with respect to xN and applying
the strong maximum principle to ∂xNu. As a consequence, one infers that, for every t > 0,
x′ ∈ RN−1 and λ ∈ (0, 1), there exists a unique value xN such that u(t, x′, xN) = λ, which
will be denoted Xλ(t, x

′) in the sequel, that is,

u(t, x′, Xλ(t, x
′)) = λ.6 (1.29)

In other words, the sets Eλ(t) given in (1.18) are the open subgraphs of x′ 7→ Xλ(t, x
′).

Hence Theorems 1.5 and 1.6 applied to this case give some information on the shape of
the graphs of Xλ(t, ·) at large time and large space in terms of the function γ, provided
the assumptions of these theorems are fulfilled (some explicit examples were provided in
the comments after Theorem 1.5). We are now interested in the local-in-space behavior of
the graphs of Xλ(t, ·) at large time. Let us first point out that, because of the asymmetry
of the roles of the rest states 0 and 1 (assuming Hypothesis 1.3), the behavior of the
graphs of Xλ(t, ·) will be radically different depending on the profile of the function γ
at infinity, and especially on whether the function γ be large enough or not at infinity.
This difference is already inherent in the results of the previous subsection. Indeed, in the
particular case γ(x′) = α |x′| of the example given after Theorem 1.5, whatever α ∈ R
may be, the graphs of the functions Xλ(t, ·) look like the sets {x ∈ RN : dist(x, U) = c∗t}
at large time t, as a consequence of Theorem 1.6. If α > 0, then for each t > 0 the set
{x ∈ RN : dist(x, U) = c∗t} is a shift of the graph of γ in the direction xN and therefore
it has a vertex, whereas it is C1 if α ≤ 0. Of course, for each t > 0, in both cases α > 0
and α ≤ 0, each level set of u (that is, each graph of Xλ(t, ·)) is at least of class C2 from
the implicit function theorem and the fact that ∂xNu < 0 in (0,+∞)× RN . Nevertheless,
the previous observations imply that there should be a difference between the flattening
properties of the level sets of u according to the coercivity of the function γ at infinity.

The following result deals with the non-coercive case, i.e., lim sup|x′|→+∞ γ(x′)/|x′| ≤ 0.

Theorem 1.7. Assume that Hypothesis 1.3 holds (hence Hypothesis 1.1 as well). Let u be
the solution of (1.1) with an initial datum u0 given by (1.28). If

lim sup
|x′|→+∞

γ(x′)

|x′|
≤ 0, (1.30)

then, for every λ ∈ [θ, 1), with θ ∈ (0, 1) given by Hypothesis 1.1, and every basis
(e′1, · · · , e′N−1) of RN−1, there holds

lim inf
t→+∞

(
min

|x′|≤R, 1≤i≤N−1
|∇x′Xλ(t, x

′) · e′i|
)
−→ 0 as R→ +∞, (1.31)

6The above arguments also easily imply that the function (λ, t, x′) 7→ Xλ(t, x′) is continuous in
(0, 1)× (0,+∞)× RN−1.
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and even

sup
x′0∈RN−1

[
lim inf
t→+∞

(
min

x′∈B′R(x′0), 1≤i≤N−1
|∇x′Xλ(t, x

′) · e′i|
)]
−→ 0 as R→ +∞, (1.32)

where the function Xλ : (0,+∞)×RN−1 → R is defined by (1.29) and B′R(x′0) denotes the
open Euclidean ball of center x′0 and radius R in RN−1.

Notice that, in dimension N = 2, property (1.31) means that

lim inf
t→+∞

(
min

[−R,R]
|∂x1Xλ(t, ·)|

)
−→ 0 as R→ +∞,

for every λ ∈ [θ, 1), and that an analogous consideration holds for (1.32).
Roughly speaking, Theorem 1.7 says that the level set of any value λ ∈ [θ, 1) becomes

almost flat in some directions along some sequences of points and some sequences of times
converging to +∞. We point out that the estimates on ∇x′Xλ(t, x

′) immediately imply
analogous estimates on ∇x′u(t, x′, Xλ(t, x

′)), because

∇x′u(t, x′, Xλ(t, x
′)) = −∂xNu(t, x′, Xλ(t, x

′))∇x′Xλ(t, x
′), (1.33)

and ∂xNu is bounded in [1,+∞) × RN from standard parabolic estimates.7 Hence, the
conclusions (1.31)-(1.32) imply that

lim inf
t→+∞

(
min

|x′|≤R, 1≤i≤N−1
|∇x′u(t, x′, Xλ(t, x

′)) · e′i|
)
−→ 0 as R→ +∞

and

sup
x′0∈RN−1

[
lim inf
t→+∞

(
min

x′∈B′R(x′0), 1≤i≤N−1
|∇x′u(t, x′, Xλ(t, x

′)) · e′i|
)]
−→ 0 as R→ +∞,

for every λ ∈ [θ, 1) and every basis (e′1, · · · , e′N−1) of RN−1. The proof of (1.31)-(1.32)
is done by way of contradiction and uses the fact that the level value λ belongs to the
interval [θ, 1), where θ ∈ (0, 1) is given by Hypothesis 1.1. Since the interface between
the values 0 and 1 is initially sharp, we expect, as in the one-dimensional case dealt with
in [38], that the transition between 0 and 1 has a uniformly bounded width (in the sense
of [4]) in the direction xN if, say, γ is Lipschitz continuous (although the proof of this
property in higher dimensions does not extend easily). If so, it would follow from the
proof of Theorem 1.7 that (1.31)-(1.32) would then hold for any λ ∈ (0, 1). Actually, for
a function f which is positive in (0, 1), Hypothesis 1.1 is satisfied for any θ ∈ (0, 1) and it
follows from Theorem 1.7 that (1.31)-(1.32) then hold for all λ ∈ (0, 1).

We stress that, without the assumption (1.30), the conclusions (1.31)-(1.32) immedi-
ately do not hold in general (immediate couterexamples are given by solutions whose level
sets are parallel hyperplanes which are not orthogonal to the vector eN , see Remark 4.5
below). Moreover, if one assumes that lim inf |x′|→+∞ γ(x′)/|x′| ≥ 0 instead of (1.30), the
conclusions (1.31)-(1.32) do not hold either in general (counterexamples are given by ro-
tated bistable V -shaped fronts, see Proposition 4.6 (i) for further details). However, with
the assumption (1.30), we expect that the liminf of the minimum can be replaced by a
limit in (1.31), without any reference to the size R, leading to the following conjecture.

7Since u is of class C1 in (0,+∞) × RN and the function (λ, t, x′) 7→ Xλ(t, x′) is continuous
in (0, 1) × (0,+∞) × RN−1, it follows that the function (λ, t, x′) 7→ ∇x′Xλ(t, x′) is also continuous
in (0, 1)× (0,+∞)× RN−1.
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Conjecture 1.8. Under the assumptions of Theorem 1.7, the conclusion (1.31) can be
strengthened by the limit

∇x′Xλ(t, x
′) −→ 0 as t→ +∞, locally uniformly in x′∈RN−1, (1.34)

for every λ ∈ [θ, 1).

Even for x′-symmetric solutions u, property (1.34) does not hold in general without
the assumption (1.30) of Theorem 1.7 (as for (1.31)-(1.32), counterexamples are given by
bistable V -shaped fronts, see Proposition 4.6 (ii) for further details). We also point out
that, even with the assumption (1.30), property (1.34) does not hold in general uniformly
with respect to x′ ∈ RN−1 (for instance, in dimension N = 2, easy counterexamples are
given by nonpositive functions γ with a negative slope as x1 → +∞, see Proposition 4.6 (iii)
for further details). On the other hand, a strong support to the validity of Conjecture 1.8
is provided by the conclusion of Theorem 1.6. Indeed, it asserts that, for any λ ∈ (0, 1),
Eλ(t) ∼ U +Bc∗t for t large, in the sense of (1.26), and one can check that condition (1.30)
entails that the exterior unit normals to the set U+Bc∗t at the points (x′, xN) ∈ ∂(U+Bc∗t)
(whenever they exist) approach the vertical direction eN = (0, · · · , 0, 1) as t→ +∞, locally
uniformly with respect to x′ ∈ RN−1. Hence the same is expected to hold for the sets Eλ(t),
which is what (1.34) asserts. This kind of arguments can be made rigorous, building on
the results of the previous subsection, and lead to a weaker version of Conjecture 1.8, see
Proposition 4.3 below. Two other weaker statements than Conjecture 1.8 are derived in
the case where f fulfills (1.5) or the more restrictive Fisher-KPP condition (1.43) below,
see Proposition 4.4 and Corollary 5.6 respectively.

As for the full Conjecture 1.8, the following result shows that, under (1.30) and the other
assumptions of Theorem 1.7, the conclusion (1.34) holds in the case of initial conditions u0

having an asymptotically x′-symmetric conical support. Notice also that the following
result uses the weaker Hypothesis 1.1 instead of Hypothesis 1.3.

Theorem 1.9. Assume that Hypothesis 1.1 holds. Let u be the solution of (1.1) with
an initial datum u0 given by (1.28), where the function γ satisfies one of the following
assumptions:

(i) either γ is of class C1 outside a compact set and there is ` ≥ 0 such that
γ′(x1)→ ∓` as x1 → ±∞ ifN=2,

∇γ(x′) = −` x′

|x′|
+O(|x′|−1−η) as |x′| → +∞, for some η > 0, ifN≥3;

(1.35)

(ii) or γ is continuous outside a compact set and γ(x′)/|x′| → −∞ as |x′| → +∞;

(iii) or γ(x′) = Γ(|x′ − x′0|) outside a compact set, for some x′0 ∈ RN−1 and some con-
tinuous nonincreasing function Γ : R+ → R;

(iv) or γ(x′) = Γ(|x′ − x′0|) outside a compact set, for some x′0 ∈ RN−1 and some C1

function Γ : R+ → R such that Γ′(r)→ 0 as r → +∞.

Then, for every λ0 ∈ (0, 1), there holds that

∇x′Xλ(t, x
′) −→ 0 as t→ +∞, locally in x′∈RN−1 and uniformly in λ∈(0, λ0] (1.36)

and moreover

∇x′u(t, x′, xN) −→ 0 as t→ +∞, locally in x′∈RN−1 and uniformly in xN ∈R. (1.37)
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In dimension N = 3, by writing γ(x′) = γ̃(r, ϑ) in the standard polar coordinates,
condition (1.35) means that ∂rγ̃(r, ϑ) = −`+O(r−1−η) and ∂ϑγ̃(r, ϑ) = O(r−η) as r → +∞.

It is easy to see that, even under Hypothesis 1.3 (which is stronger than Hypothe-
sis 1.1), if (1.35) holds with ` > 0, then the convergence in (1.36) cannot be uniform with
respect to x′ ∈ RN−1, see Proposition 4.6 (iv) for further details. In other words, if the
initial interface between the states 0 and 1 has a non-zero slope at infinity, then the level
sets cannot become uniformly flat at large time. This observation naturally leads to the
following conjecture.

Conjecture 1.10. Assume that Hypothesis 1.3 holds (hence Hypothesis 1.1 as well).
Let θ ∈ (0, 1) be given by Hypothesis 1.1 and let u be the solution of (1.1) with an initial
datum u0 given by (1.28). If

lim
|x′|→+∞

∇γ(x′) = 0, (1.38)

then, for every λ0 ∈ (0, 1),

∇x′Xλ(t, x
′) −→ 0 as t→ +∞, uniformly in x′∈RN−1 and in λ∈(0, λ0] (1.39)

and moreover
∇x′u(t, x) −→ 0 as t→ +∞, uniformly in x∈RN . (1.40)

Properties (1.39)-(1.40) obviously hold if γ is constant. Furthermore, if condition (1.38)
is replaced by the boundedness of γ, then, at least for some classes of functions f , pro-
perties (1.39) (with λ ∈ (0, λ0] replaced by λ ∈ [a, b], for some fixed 0 < a ≤ b < 1)
and (1.40) hold: more precisely, if the function f is of the bistable type (1.7), these
properties follow from some results in [3, 15], and the same conclusions hold for more
general functions f of the multistable type [43] or for KPP type functions f satisfying (1.43)
below or slightly weaker conditions, see [3, 7, 52]. Further estimates on the exact position
of the level sets Xλ in the bistable or KPP cases have been established in [32, 33, 47]. We
can also relax the boundedness of γ for the validity of the conclusion (1.40) in the KPP
case, see Corollary 1.15 below.

However, by considering some functions γ with large local oscillations at infinity, it
turns out that both conclusions of Conjecture 1.10 cannot hold if (1.38) is replaced by the
weaker condition lim|x′|→+∞ γ(x′)/|x′| = 0, as the following result shows.

Proposition 1.11. Conjecture 1.10 fails in general if assumption (1.38) is replaced by

∇γ ∈ L∞(RN−1) and lim
|x′|→+∞

γ(x′)

|x′|
= 0. (1.41)

To complete this section, let us point out that, under the assumptions of Theorems 1.5
and 1.7, the solution u of (1.1) with (1.28) propagates with speed c∗ in the direction xN ,
owing to Theorem 1.5, that is, w(eN) = c∗ in (1.15). We conjecture that the solution u
then locally converges along its level sets to the front profile ϕ with speed c∗.

Conjecture 1.12. Under the assumptions of Theorems 1.5 and 1.7, there holds, for every
λ ∈ (0, 1), for every sequence (tn)n∈N converging to +∞, and for every bounded sequence
(x′n)n∈N in RN−1,

u(tn + t, x′n + x′, Xλ(tn, x
′
n) + xN) −→ ϕ(xN − c∗t+ ϕ−1(λ)) as n→ +∞, (1.42)

in C1;2
loc (Rt × RN−1

x′ ) and uniformly with respect to xN ∈ R. If one further assumes (1.38),
then the above limit holds for every sequence (x′n)n∈N in RN−1, bounded or not.
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As before, by Proposition 1.11, the second conclusion does not hold in general if assump-
tion (1.38) is replaced by lim|x′|→+∞ γ(x′)/|x′| = 0. On the other hand, Conjecture 1.12,
and especially its second part, holds if γ is bounded, for some classes of functions f ,
see [3, 32, 33, 43, 47].

1.5 The asymptotic one-dimensional symmetry

Let us present our asymptotic symmetry results, related to Question B in Section 1.1.
They concern the case where f is of the Fisher-KPP type [16, 28], that is,

f(0)=f(1)=0, f(s)>0 for all s∈(0, 1), and s 7→ f(s)

s
is nonincreasing in [0, 1]. (1.43)

In this case the hair trigger effect holds [2], i.e., Hypothesis 1.1 is fulfilled for any θ, ρ>0,
moreover Hypothesis 1.3 also holds and the minimal speed with the properties stated in
Proposition 1.4 is explicit: c∗ = 2

√
f ′(0) [2, 28]. We use again the notion of positive-

distance-interiors of a set U ⊂ RN , that is,

Uδ :=
{
x ∈ U : dist(x, ∂U) ≥ δ

}
, δ > 0.

Theorem 1.13. Assume that f is of the Fisher-KPP type (1.43). Let u be the solution
of (1.1) with an initial datum u0 = 1U such that U ⊂ RN satisfies

∃ δ > 0, dH(U,Uδ) < +∞. (1.44)

Assume moreover that U is convex, or more generally, that there exists a convex
set U ′ ⊂ RN satisfying dH(U,U ′) < +∞. Then, any function ψ ∈ Ω(u) is of the form
ψ = ψ(x · e), for some e ∈ SN−1.

Theorem 1.13 extends the asymptotic one-dimensional symmetry property for the
Fisher-KPP equation, known to hold when U is bounded, as a consequence of [27], as
well as when U is the subgraph of a bounded function, by [3, 7, 52]. Condition (1.44)
means that there exists some R > 0 such that, for any x ∈ U , there is a ball Bδ(x0) ⊂ U
with |x−x0| < R. It is fulfilled in particular if U satisfies a uniform interior ball condition.
One can show that, in dimension N = 2, for a convex set U , property (1.44) is equivalent
to require that U has nonempty interior.

The idea of the proof of Theorem 1.13 consists in reducing to a case where it is possible
to apply the reflection argument of Jones [27]. This is achieved by an approximation of the
solution through a suitable truncation of its initial support. In order to control the error,
we exploit a new type of supersolutions initially supported in exterior domains, which are
also one of the key ingredients behind the results of Section 1.3.

As a matter of fact, the convexity (or convex proximity) assumption on U in Theo-
rem 1.13 is a very special case of a geometric hypothesis that we now introduce. For a given
nonempty set U ⊂ RN and a given point x ∈ RN , we let πx denote the set of orthogonal
projections of x onto U , i.e.,

πx =
{
ξ ∈ U : |x− ξ| = dist(x, U)

}
, (1.45)

and, for x /∈ U , we set

O(x) := sup
ξ∈πx

y∈U\{ξ}

x− ξ
|x− ξ|

· y − ξ
|y − ξ|

, (1.46)
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with the convention that O(x) = −∞ if U = ∅ or U is a singleton (otherwise
−1 ≤ O(x) ≤ 1). Namely, when −1 ≤ O(x) ≤ 1, the quantity 2 arccos(O(x)) is the
infimum among all ξ ∈ πx of the opening of the largest circular cone intersecting U having
apex ξ and axis x− ξ. Here is our more general asymptotic symmetry result.

Theorem 1.14. Assume that f is of the Fisher-KPP type (1.43). Let u be the solution
of (1.1) with an initial datum u0 = 1U such that U ⊂ RN satisfies (1.44) and moreover

lim
R→+∞

(
sup

x∈RN ,dist(x,U)=R

O(x)

)
≤ 0. (1.47)

Then, any function ψ ∈ Ω(u) is of the form ψ = ψ(x · e), for some e ∈ SN−1.

It is understood that the left-hand side in condition (1.47) is equal to −∞ (hence the
condition is fulfilled) if supx∈RN dist(x, U) < +∞ (and indeed in such case the asymptotic
one-dimensional symmetry trivially holds because condition (1.44) yields that u(t, x)→ 1
uniformly in x ∈ RN as t → +∞). We remark that the limit in (1.47) always exists,
because the involved quantity is nonincreasing with respect to R, see Lemma 5.2 below.

Theorem 1.14 yields Theorem 1.13 because, firstly, convex sets satisfy O(x) ≤ 0 for
every x /∈ U (actually, they are characterized by such condition in the class of closed
sets) and, secondly, if (1.47) holds for a given set, then it holds true for any set at finite
Hausdorff distance from it, as stated in Lemma 5.2. However, there are also other sets
satisfying (1.47), such as the subgraphs of functions γ with vanishing global mean, i.e.

γ(x′)− γ(y′)

|x′ − y′|
−→ 0 as |x′ − y′| → +∞. (1.48)

As a byproduct of the proof of Theorem 1.14, we characterize the set of directions e in
which u becomes asymptotically one-dimensional. Namely, we prove that

E := {e ∈ SN−1 : ∃ψ ∈ Ω(u), ψ = ψ(x · e) is non-constant}

coincides with the set of limits (xn−ξn)/|xn−ξn| as n→+∞, for all sequences (xn)n∈N in RN

and (ξn∈πxn)n∈N such that |xn− ξn|=dist(xn, U)→+∞. In particular, if U is of class C1,
then the set E is contained in the closure of the set of the unit normal vectors to U ; if U is
convex then E coincides with the closure of the set of the unit normal vectors to the suppor-
ting hyperplanes of U . Moreover, when u0 = 1U with U given by the subgraph of a func-
tion γ satisfying (1.30), it is possible to show that (xn− ξn)/|xn− ξn| → eN = (0, · · · , 0, 1)
whenever xn/|xn| → eN as n→ +∞, see Theorem 5.5 below. One then infers in particular
that, in such case, the solution u satisfies

∇x′u(t, x′, xN)→ 0 as t→ +∞, locally in x′ ∈ RN−1 and uniformly in xN ∈ R.

Observe that this is weaker than the property (1.34) stated in Conjecture 1.8, but it
would be equivalent if one knew that ∂xNu stays bounded away from zero on the level
set corresponding to the value λ. This actually necessarily occurs along some sequence of
times, and therefore we infer that the convergence in (1.34) holds along such sequence and
locally in x′, see Corollary 5.6 below. Finally, when the condition (1.30) is strengthened by
the requirement that γ has vanishing global mean in the sense of (1.48), then E = {eN}.
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Corollary 1.15. Assume that f is of the Fisher-KPP type (1.43). Let u be the solution
of (1.1) with an initial condition u0 of the type (1.28), where γ is a continuous function
satisfying (1.48). Then, any function ψ ∈ Ω(u) is of the form ψ = ψ(xN).

The conclusion of Corollary 1.15 can be equivalently rephrased as

∇x′u(t, x)→ 0 as t→ +∞, uniformly with respect to x.

Hence this result yields that property (1.40) of Conjecture 1.10 holds in the Fisher-KPP
case, even if the hypothesis (1.38) is relaxed by (1.48). A way to interpret Corollary 1.15
is that the oscillations of the initial datum are “damped” as time goes on through some
kind of averaging process.

Remark 1.16. One can wonder whether the reciprocal of Theorem 1.14 is true in the
following sense: if the asymptotic one-dimensional symmetry holds for a solution u of (1.1)
with initial datum 1U and U satisfying (1.44), does necessarily U fulfill (1.47)? The answer
is immediately negative in general: take for instance U given by

U =
⋃
n∈N

[2n, 2n + 1]× RN−1,

which satisfies (1.44) but not (1.47), while any element of Ω(u) necessarily depends on the
variable x1 only. However, the question still makes sense if one adds another condition
on U , for instance the connectivity. In this case, the question is open.

Towards a De Giorgi-type conjecture for reaction-diffusion equations

To complete this section, for more general reactions f than the Fisher-KPP case (1.43), we
state two conjectures suggesting a positive answer to Question B addressed in Section 1.1,
that is, the one-dimensional symmetry of the elements of the Ω-limit set of solutions to (1.1)
with initial conditions u0 = 1U . Actually, for the answer to Question B to be affirmative,
some conditions on U need to be imposed.

Firstly, let us recall in which cases Question B has a positive answer:

• when U is bounded and has a non-empty positive-distance-interior Uρ, with f satis-
fying Hypothesis 1.1 and ρ > 0 given there, by [27];

• when U is between two half-spaces and f is of the bistable type (1.7) or of the
Fisher-KPP type (1.43), by [3, 7, 15, 52];

• in the Fisher-KPP case (1.43), when U satisfies (1.44) and when it is at bounded
Hausdorff distance from a convex set or more generally speaking when (1.47) holds,
from Theorem 1.14.

Secondly, cases in which Question B has a negative answer are:

• when U is “V-shaped”, and f is of the bistable type (1.7) with positive integral
over [0, 1] as follows from [23, 24, 39, 46] (see Proposition 4.6) or f is of the Fisher-
KPP type (1.43) as follows from [7, 25];
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• as follows from the previous item, in the Fisher-KPP or bistable cases (1.43) or (1.7)
with positive integral over [0, 1], when there exist two sequences (xn)n∈N in RN and
(Rn)n∈N in R+ such that |xn| → +∞ and Rn → +∞ as n → +∞ and U ∩ BRn(xn)
is “V-shaped” (notice that a set U with such property can also be given by the
subgraph of a function γ satisfying (1.41));

• when f is of the bistable type (1.7) with positive integral over [0, 1] and U = Bδ,
for a suitable choice of δ which guarantees that the emerging solution u converges to
a ground state as t → +∞, in the sense that u(t, ·) → u∞ as t → +∞ in C2(RN),
with u∞ > 0 in RN and u∞(x) → 0 as |x| → +∞ (the existence and uniqueness of
such value δ > 0 is proved in [9, 41], and necessarily δ < ρ, where ρ is any positive
real number as in Hypothesis 1.1, which is satisfied in the bistable case (1.7) with
positive integral over [0, 1]);

• when f is of the bistable type (1.7) with positive integral over [0, 1] and

U = BR ∪
⋃
n∈N

Bδ(2
ne),

for any R > 0 and e ∈ SN−1, and δ > 0 is such that the solution with initial
datum 1Bδ converges to a ground state (that is, a similar phenomenon as in the
above counter-example can occur even with u(t, ·)→ 1 as t→ +∞).

Thirdly, cases where our results and previous conjectures suggest a positive answer to
Question B are:

• when U is asymptotic to a convex cone, suggested by Theorem 1.9;

• when u0 is given by (1.28) with γ satisfying (1.38), suggested by Conjecture 1.10.

These observations lead us to formulate the following De Giorgi type conjecture for the
solutions of the reaction-diffusion equation (1.1).

Conjecture 1.17. Assume that Hypothesis 1.1 holds for some ρ > 0. Let u be the solution
to (1.1) with an initial datum u0 = 1U such that U ⊂ RN satisfies (1.25) and (1.47). Then,
for any function ψ ∈ Ω(u), there exists e ∈ SN−1 such that ψ = ψ(x · e).

Another conjecture is that of the stability of the asymptotic one-dimensional symmetry
with respect to bounded perturbations of the initial support.

Conjecture 1.18. Assume that Hypothesis 1.1 holds for some ρ > 0. Let u be the solution
to (1.1) with an initial datum 1U such that U ⊂ RN satisfies (1.25) and u satisfies the
asymptotic one-dimensional symmetry. If U ′ ⊂ RN satisfies (1.25) and dH(U ′, U) < +∞,
then the solution u′ to (1.1) with initial datum 1U ′ still satisfies the asymptotic one-
dimensional symmetry.

1.6 The logarithmic lag in the KPP case

We are still concerned here with f satisfying the Fisher-KPP condition (1.43). We recall
that Hypotheses 1.1 and 1.3 are fulfilled, and the minimal speed c∗ of traveling fronts
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connecting 1 to 0 is given by c∗ = 2
√
f ′(0). It is known that in the one-dimensional case,

the solution u of (1.1) with initial condition u0 = 1R− is such that

sup
x∈R

∣∣∣u(t, x)− ϕ
(
x− c∗t+

3

c∗
log t+ x0

)∣∣∣→ 0 as t→ +∞,

for some x0 ∈ R. Hence, there is a lag by (3/c∗) log t of the position of the level sets of u
behind the position c∗t given by the spreading speed. The first proof of this logarithmic
lag was given in [7], and further results and other proofs have been given in [26, 30, 40, 52].
In dimension N = 2, for initial conditions trapped between two shifts of 1R×R− , then

sup
(x1,x2)∈R2

∣∣∣u(t, x1, x2)− ϕ
(
x2 − c∗t+

3

c∗
log t+ a(t, x1)

)∣∣∣→ 0 as t→ +∞,

for some bounded function a, see [47]. In any dimension N ≥ 2, for nonnegative compactly
supported initial conditions 0 6≡ u0 ≤ 1, then

sup
x∈RN\{0}

∣∣∣u(t, x)− ϕ
(
|x| − c∗t+

N + 2

c∗
log t+ a

( x
|x|

))∣∣∣→ 0 as t→ +∞,

for some Lipschitz continuous function a defined in SN−1, see [13, 18, 45]. Notice
that N + 2 = 3 + (N − 1) corresponds to an additional lag by ((N − 1)/c∗) log t, compared
with the 1-dimensional case, which is due to the curvature of the level sets inherited from
the fact that the initial condition is compactly supported.

Let us now consider the case of a solution to (1.1) with an initial condition given
by (1.28) with γ bounded from above, and investigate the lag between the position of the
level sets of u behind c∗t in the direction xN . By comparison, we know that, up to an
additive constant, the lag is between (3/c∗) log t, which is the lag in the 1-dimensional
case, and ((N + 2)/c∗) log t, which is the lag in the case of compactly supported initial
conditions: namely, for every λ ∈ (0, 1) and x′ ∈ RN−1, under the notations (1.29), the lag
c∗t−Xλ(t, x

′) satisfies

3

c∗
log t+O(1) ≤ c∗t−Xλ(t, x

′) ≤ N + 2

c∗
log t+O(1) as t→ +∞. (1.49)

But it is not clear in principle whether or not this lag is equal to one of these bounds
or whether it takes intermediate values. Our first main result of this section states that,
for an initial condition u0 satisfying (1.28) with −γ sufficiently large at infinity, the lag
coincides with the above upper bound, that is, the position of the level sets of u in the
direction xN is the same as when the initial condition is compactly supported.

Theorem 1.19. Assume that f is of the Fisher-KPP type (1.43) and let u be the solution
of (1.1) with an initial condition u0 satisfying (1.28). If

lim sup
|x′|→+∞

γ(x′)

log(|x′|)
< −2(N − 1)

c∗
, (1.50)

then

Xλ(t, x
′) = c∗t− N + 2

c∗
log t+O(1) as t→ +∞, (1.51)

locally uniformly with respect to λ ∈ (0, 1) and x′ ∈ RN−1, and the inequality “≤” holds
true in the above formula locally uniformly in λ ∈ (0, 1) and uniformly in x′ ∈ RN−1.
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If the upper bound for γ in (1.50) is relaxed, we expect the lag of the solution with
respect to the critical front to differ from the one associated with compactly supported
initial data, that is ((N + 2)/c∗) log t. We derive the following lower bound for the lag.

Proposition 1.20. Assume that f is of the Fisher-KPP type (1.43) and let u be the
solution of (1.1) with an initial condition u0 satisfying (1.28). If there is σ ≥ −(N − 1)
such that

lim sup
|x′|→+∞

γ(x′)

log |x′|
≤ 2σ

c∗
, (1.52)

then, for any λ ∈ (0, 1),

Xλ(t, x
′) ≤ c∗t− 3− σ

c∗
log t+ o(log t) as t→ +∞, (1.53)

locally uniformly with respect to x′ ∈ RN−1.

Property (1.53) means that the lag c∗t−Xλ(t, x
′) is at least ((3− σ)/c∗) log t+ o(log t)

as t → +∞. We point out that this holds even for positive σ. We conjecture that, if
the limsup is replaced by a limit in (1.52) and the inequality by an equality, then the lag
should precisely be

c∗t−Xλ(t, x
′) =

3− σ
c∗

log t+ o(log t) as t→ +∞,

for every λ ∈ (0, 1) and x′ ∈ RN−1. When σ = 0, this formula would be coherent with
the 1-dimensional lag. This formula would also mean that the constant −2(N − 1)/c∗

in (1.50) would be optimal for the lag to be equivalent to that of solutions with compactly
supported initial conditions. Lastly, it would provide a continuum of lags with logarithmic
factors ranging in the whole half-line (−∞, (N + 2)/c∗]. In particular, solutions with
initial conditions of the type (1.28) with γ(x′) ∼ (6/c∗) log |x′| as |x′| → +∞ would have
no logarithmic lag, i.e., the same position c∗t along the xN -axis as that of the planar front
moving in the direction eN , up to a o(log t) term as t → +∞. While γ(x′) ∼ κ log |x′|
as |x′| → +∞ for some κ > (6/c∗), would lead to a negative logarithmic lag, i.e., the
position of the solution would be ahead of that of the front by a logarithmic-in-time term
(observe that the term is linear in time when γ(x′) ∼ α|x′| as |x′| → +∞ with α > 0,
according to formula (1.16)).

More precise estimates of the position of the solutions with initial conditions of the
type (1.28) and functions γ having some logarithmic or more general asymptotics at infinity
will be the purpose of a following paper.

Theorem 1.19 allows us to prove the conjecture about the flattening of the level sets
under the hypotheses of that theorem.

Corollary 1.21. Assume that f is of the Fisher-KPP type (1.43) and let u be the solution
of (1.1) with an initial condition u0 satisfying (1.28) and (1.50). Then the following hold:

(i) the conclusion (1.34) of Conjecture 1.8 holds, and even locally uniformly with respect
to λ ∈ (0, 1), that is,

∇x′Xλ(t, x
′)→ 0 as t→ +∞, locally uniformly in x′ ∈ RN−1 and λ ∈ (0, 1);
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(ii) for any λ ∈ (0, 1) and x′0 ∈ RN−1, the function

ũ(t, x′, xN) := lim
s→+∞

u(s+ t, x′, Xλ(s, x
′
0) + xN),

which exists (up to subsequences) locally uniformly with respect to (t, x′, xN) ∈ R×RN ,
is independent of x′ and satisfies

lim
xN→−∞

ũ(t, xN + c∗t) = 1, lim
xN→+∞

ũ(t, xN + c∗t) = 0,

uniformly with respect to t ∈ R.

Corollary 1.21 shows that, in the large time limit, the solution approaches a one-
dimensional entire solution whose level sets move in the direction eN with an av-
erage velocity equal to the minimal speed c∗. It is then natural to expect that
ũ(t, xN) = ϕ(xN−c∗t+ϕ−1(λ)) for all (t, xN) ∈ R2, where ϕ is the front connecting 1 and 0
with minimal speed c∗. That would correspond to property (1.42) in Conjecture 1.12. By
comparison and some arguments based on the number of intersections of solutions to (1.1)
in dimension 1, it can be shown that ũ(t, xN) ≥ ϕ(xN − c∗t + ζ) in R2, for some ζ ∈ R.
But the proof of (1.42) would still require additional arguments.

Outline of the paper. Propositions 1.2 and 1.4 as well as some other auxiliary results on
planar fronts are shown in Section 2. Section 3 contains the proofs of Theorems 1.5 and 1.6
on the spreading results for general initial support U , which make use of a new type of
supersolutions constructed using the results of the previous section; we also exhibit some
counter-examples when the hypotheses (1.20) and (1.25) of Theorems 1.5 and 1.6 do not
hold. Section 4 is concerned with the case of initial conditions u0 that are characteristic
functions of subgraphs. The proofs of Theorems 1.7 and 1.9 on the local flatness of the level
sets of the solution u at large time in the general and the conical cases are carried out, as
well as that of other flatness results and some counterexamples, such as Proposition 1.11,
on the non-global flatness in general, even under condition (1.41). Section 5 contains
the proofs of Theorems 1.13, 1.14 and Corollary 1.15 on the asymptotic one-dimensional
symmetry in the Fisher-KPP case (1.43). Lastly, Section 6 is devoted to the proof of
Theorem 1.19, Proposition 1.20 and Corollary 1.21 on the logarithmic lag for solutions of
KPP type equations.

2 Preliminary considerations on planar fronts and the

proof of Propositions 1.2 and 1.4

This section is devoted to the proof of Propositions 1.2 and 1.4, together with other auxi-
liary results on planar fronts. We start with the proof of Proposition 1.2 on the equivalence
between Hypothesis 1.1 and some simple conditions on the function f .

Proof of Proposition 1.2. The fact that (1.9)-(1.10) imply Hypothesis 1.1 is contained in
[11, Lemma 2.4].

Conversely, let us assume that Hypothesis 1.1 holds, for some θ ∈ (0, 1) and ρ > 0. If
there would exist θ′ ∈ [θ, 1) such that f(θ′) ≤ 0, then the solution u of (1.1) with initial
condition u0 = θ 1Bρ would be such that u(t, ·) ≤ θ′ in RN for all t ≥ 0, by the maximum
principle, and then this solution would not converge to 1 as t → +∞ locally uniformly
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in RN . Therefore, one necessarily has f > 0 in [θ, 1), that is, (1.9) holds (with the same
value θ as in Hypothesis 1.1).

Still with Hypothesis 1.1, assume now by way of contradiction that (1.10) does not
hold. From (1.9), there is then α ∈ [0, 1) such that∫ 1

α

f(s) ds = 0 <

∫ 1

t

f(s) ds for all t ∈ (α, 1).

Thus, f(α) ≤ 0 and
∫ t
α
f(s) ds < 0 for all t ∈ (α, 1). Two cases may then occur: either

f(α) < 0, or f(α) = 0. If f(α) < 0, it then follows from standard elementary arguments
that there is an even C2(R) function φ : R→ [α, 1) such that φ(0) = α, φ(±∞) = 1, φ′ < 0
in (−∞, 0), and φ′′ + f(φ) = 0 in R. Similarly, if f(α) = 0, there is a C2(R) function

φ̃ : R → (α, 1) such that φ̃(−∞) = 1, φ̃(+∞) = α, φ̃′ < 0 in R, and φ̃′′ + f(φ̃) = 0 in R.
Let us then define

φ := φ if f(α) < 0, and φ := φ̃ if f(α) = 0.

Consider now the solution u of (1.1) with initial condition u0 = θ 1Bρ . Hypothesis 1.1 im-

plies that u(t, x)→ 1 as t→ +∞ locally uniformly in x ∈ RN . But, since φ(−∞) = 1 > θ,
there is A > 0 large enough such that

0 ≤ u0(x) ≤ φ(x1 − A) < 1 for all x = (x1, . . . , xN) ∈ RN ,

and, since the function RN 3 x 7→ φ(x1 − A) is a steady solution of (1.1), the parabolic
comparison principle implies that u(t, x) ≤ φ(x1 − A) < 1 for all t ≥ 0 and x ∈ RN . The
limit as t→ +∞ leads to a contradiction. To sum up, one has shown that Hypothesis 1.1
implies both (1.9) and (1.10).

The next two lemmas are part of the proof of Proposition 1.4. The first one shows that
Hypothesis 1.3 implies Hypothesis 1.1.

Lemma 2.1. Hypothesis 1.3 implies (1.9)-(1.10) (hence Hypothesis 1.1).

Proof. Let us first consider any traveling front ϕ(x · e− ct) for (1.1) connecting 1 to 0, for
some e ∈ SN−1 and c ∈ R, that is, ϕ : R→ (0, 1) solves ϕ′′(z) + cϕ′(z) + f(ϕ(z)) = 0 in R
with ϕ(−∞) = 1 > ϕ(z) > 0 = ϕ(+∞) for all z ∈ R. Let us first shortly check that ϕ is
decreasing, in the case c ≥ 0 (the case c < 0 can be dealt with similarly; the monotonicity
of ϕ can also be deduced from phase-plane analysis). Assume for a moment that ϕ is not
non-increasing. Then there are xm < xM < y ∈ R such that ϕ(xM) > ϕ(xm) = ϕ(y),
and xm (resp. xM) is a local minimum (resp. maximum) of ϕ. Integrating the equation
ϕ′′ + cϕ′ + f(ϕ) = 0 against ϕ′ over [xm, y] leads to:

c

∫ y

xm

(ϕ′)2 = −(ϕ′(y))2

2
,

hence ϕ′(y) = 0, c = 0, and ϕ is periodic by the Cauchy-Lipschitz theorem (since
ϕ(xm) = ϕ(y) and ϕ′(xm) = ϕ′(y) = 0). This is impossible. Therefore, ϕ is non-increasing
and, by differentiating the equation ϕ′′+cϕ′+f(ϕ) = 0 and applying the strong maximum
principle to ϕ′, one gets that ϕ′ < 0 in R. From standard elliptic estimates, one also has
that ϕ′(±∞) = ϕ′′(±∞) = 0. Now, the function p : s ∈ (0, 1) 7→ ϕ′(ϕ−1(s)) < 0 obeys
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p′(s)p(s) = −cp(s) − f(s) for all s ∈ (0, 1) with p(0+) = p(1−) = 0 and it easily follows
that p is unique (for a given c), hence ϕ is unique up to shifts (for a given c).

Next, let c0 > 0 be given as in Hypothesis 1.3, that is, c0 > 0 is the speed of a
traveling front ϕ0(x − c0t) of (1.1) in R, connecting 1 to 0. Integrating the equation
ϕ′′0 + c0ϕ

′
0 + f(ϕ0) = 0 against ϕ′0 over the interval (−∞, x), for any x ∈ R, leads to:

(ϕ′0(x))2

2
+

∫ x

−∞
c0(ϕ′0(z))2 dz =

∫ 1

ϕ0(x)

f(s) ds.

By the arbitrariness of x and the positivity of c0, we deduce that
∫ 1

t
f(s) ds > 0 for

all t ∈ (0, 1) and, taking the limit x→ +∞, we get∫ +∞

−∞
c0(ϕ′0(z))2 dz =

∫ 1

0

f(s) ds, (2.1)

hence
∫ 1

0
f(s) ds is positive too. This show (1.10).

Let us finally show that (1.9) is satisfied as well. Assume by contradiction that this
property does not hold, that is, that there exists a sequence (tn)n∈N in (0, 1) converging
to 1 such that f(tn) ≤ 0 for all n ∈ N. Together with (1.10), it follows that there exists
another sequence (σn)n∈N in (0, 1) converging to 1 such that f(σn) = 0 for all n ∈ N. We
deduce in particular that f ′(1) = 0. For n ∈ N, consider the function

ψ : z 7→ ψ(z) := σn + e−c0z/2,

where c0 > 0 is, as in the previous paragraph, given by Hypothesis 1.3. With f being
extended for convenience by 0 in (1,+∞), we have that

ψ′′(z) + c0ψ
′(z) + f(ψ(z)) = −c

2
0

4
e−c0z/2 + f(σn) +

∫ ψ(z)

σn

f ′(s) ds

≤ −c
2
0

4
e−c0z/2 +

(
max
s∈[σn,1]

f ′(s)

)
e−c0z/2

for all z ∈ R. Taking n large enough, we find that the right-hand side is negative, that is, ψ
is a strict supersolution of the equation satisfied by the front profile ϕ0. By suitable trans-
lation, one can reduce to the case where ψ “touches from above” ϕ0, i.e., minR(ψ−ϕ0) = 0.
This contradicts the elliptic strong maximum principle. Therefore, (1.9) is satisfied too.

As a conclusion, one has shown that Hypothesis 1.3 implies both (1.10) and (1.9), hence
it implies Hypothesis 1.1 from Proposition 1.2.

The next lemma shows the equivalence between the existence of a positive speed of
traveling front connecting 1 to 0 and the existence of a minimal positive speed.

Lemma 2.2. There is a traveling front with positive speed c0 connecting 1 to 0 if and only
if there is a traveling front with positive minimal speed c∗ connecting 1 to 0.

Proof. We obviously only have to show the “only if” part. So, let us assume that there is
a traveling front ϕ0(x− c0t) for (1.1) in R, connecting 1 and 0 in the sense of (1.11), with
positive speed c0 (that is, we assume Hypothesis 1.3). Making use of the existence of the
[0, 1]-minimal system of waves, provided by [54, Theorem 3.6], it follows from our hypothe-
sis that the minimal system of waves reduces to a single front solution ϕ∗(x−c∗t) connecting
1 to 0, for some c∗ ∈ R. We further know from [54] that c∗ is the minimal speed of traveling

fronts connecting 1 to 0, see also [44, Theorem 2.4]. Since
∫ 1

0
f(s)ds > 0 by (1.10) and

Lemma 2.1, formula (2.1) applied with (c∗, ϕ∗) instead of (c0, ϕ0) yields c∗ > 0.
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The last step before the proof of Proposition 1.4 is a key-result on the existence of
front profiles in finite or semi-infinite intervals, for some speeds smaller or larger than the
minimal speed c∗, under Hypothesis 1.3. Before stating the result (which is also used in
the proof of Theorems 1.5 and 1.6), we first recall that f is extended by 0 outside [0, 1],
and that a planar front connecting 1 to 0 with speed c ∈ R is a solution ϕ(x− ct) of (1.1)
in R, that is,

ϕ′′ + cϕ′ + f(ϕ) = 0 (2.2)

in R, satisfying ϕ(−∞) = 1 and ϕ(+∞) = 0 (it is also understood that 0 < ϕ < 1 in R).
Equation (2.2) is equivalent to the system of ODEs{

q′ = p

p′ = −cp− f(q).
(2.3)

In the phase plane, this system generates orbits (q(x), p(x)) which, as long as p 6= 0, can
be parameterized as the graph of a function p = p(q) which solves

dp

dq
= −c− f(q)

p
. (2.4)

From the arguments used in the proof of Lemma 2.1, a planar front ϕ connecting 1 to 0
corresponds to a heteroclinic connection between the stationary points (0, 0) and (1, 0)
for (2.3), with p < 0 along the orbit, that is, ϕ′ < 0 in R. We always restrict to orbits
of (2.3) contained in [0, 1]×(−∞, 0] and moreover, if they contain a point (q0, 0) for some
q0 ∈ (0, 1), we extend them by (q0, 1]×{0}. Hypothesis 1.3 and Lemma 2.2 translate to the
existence of a heteroclinic connection between (0, 0) and (1, 0) for (2.3) when c = c∗ and
the nonexistence of such connection when c < c∗. We also remember that, by Lemma 2.1,
Hypothesis 1.3 implies (1.10), hence in particular∫ 1

0

f(s)ds > 0. (2.5)

The following result asserts that, when c is slightly below the threshold c∗ for the
existence of a heteroclinic connection for (2.3), one can find a trajectory joining (0, 1)×{0}
to {0}×R−, whereas, for c above that threshold, there exists a trajectory joining {1}×R−
to {(0, 0)}.

Proposition 2.3. Assume that Hypothesis 1.3 holds, and let c∗ > 0 be given by Lemma 2.2.
Then the following properties hold:

(i) there is η ∈ (0, c∗) such that, for any c ∈ [c∗ − η, c∗), there exists a C2 decreasing
function ϕ defined in some interval [a, b] with a < b ∈ R, satisfying (2.2) in [a, b]
together with

0 < ϕ(a) < 1, ϕ′(a) = 0, ϕ(b) = 0;

(ii) for any c > c∗, there exists a C2(R) decreasing positive function ϕ, satisfying (2.2)
in R together with

ϕ(0) = 1, ϕ(+∞) = 0, 0 < m−1ϕ ≤ −ϕ′ ≤ mϕ in R, ϕ′′ ≥ 0 in [b,+∞), (2.6)

for some m > 1 and b > 0.
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Proof. We use several results from [2], which, combined with Hypothesis 1.3, provide the
desired properties. In [2], a critical speed ĉ is constructed. We now recall its construction
and show that it coincides with the quantity c∗ > 0 given in Lemma 2.2.

First, for any given c ∈ R, one lets pc denote the (uniform) limit in [0, 1] as ε↘ 0 of the
parameterization p = pc,ε(q) of the trajectory emerging from the regular point (0,−ε) (that
is, pc,ε solves (2.4) with pc,ε(0) = −ε). It may happen that pc ≡ 0 in [0, 1]. Otherwise,
as long as pc is negative, it parameterizes a trajectory of (2.3) whence it corresponds
to a solution of (2.2) in some interval of R. It follows from [2, Proposition 4.2] that
pc(1) < 0 for c large enough. Then the critical speed ĉ is defined as the infimum of c such
that pc(1) < 0. Since (2.5) holds under Hypothesis 1.3, [2, Proposition 4.3] yields ĉ > 0.

Let us show that ĉ ≤ c∗. Let p∗(q) be the parameterization of a front with (minimal)
speed c∗ given by Lemma 2.2. Then p∗ < 0 in (0, 1) and (its continuous extension to
[0, 1]) satisfies p∗(0) = p∗(1) = 0. One readily sees that c∗ ≥ 2

√
f ′(0) if f ′(0) > 0

(because otherwise (0, 0) is a focus for (2.3) and no trajectory can converge toward it).
By construction, pc∗ ≤ p∗ in [0, 1] (trajectories cannot cross each other), hence pc∗ < 0
in (0, 1). Then, [2, Lemma 4.2] yields pc(1) < pc∗(1) ≤ p∗(1) = 0 for c > c∗, that is, ĉ ≤ c∗.

Let us now show that ĉ ≥ c∗. Assume by contradiction that ĉ < c∗. Then for
any c ∈ (ĉ, c∗) there holds pc(1) < 0 = p∗(1). If by contradiction pc(q1) > p∗(q1) for
some q1 ∈ (0, 1) then there would exist q2 ∈ (q1, 1) such that

pc(q2) = p∗(q2),
dpc
dq

(q2) ≤ dp∗

dq
(q2),

which is impossible due to (2.4). This means that pc ≤ p∗ in [0, 1], and thus pĉ ≤ p∗ in [0, 1]
by continuity, see the Remark after [2, Proposition 4.5]. In particular, pĉ < 0 in (0, 1). On
the other hand, pĉ(1) = 0 by the definition of ĉ, and again by continuity. We conclude
that pĉ parameterizes an orbit corresponding to a front connecting 1 to 0 with speed ĉ.
This contradicts Lemma 2.2. We have thereby shown that ĉ = c∗.

We can now prove statement (i). Take 0 < c < c∗. If f ′(0) > 0 and c < 2
√
f ′(0)

then the existence of the solution ϕ simply follows from the fact that (0, 0) is a focus for
the system (2.3). Otherwise, it follows from [2, Lemma 4.2] and the inequality pc∗ < 0
in (0, 1) that 0 ≥ pc > pc∗ in (0, 1), and moreover that pc cannot be negative in the whole
interval (0, 1), because otherwise pc would provide a front connecting 1 to 0 with speed c,
contradicting Lemma 2.2. This means that pc vanishes somewhere in (0, 1). Consider
θ ∈ (0, 1) provided by (1.9) (from Lemma 2.1). By continuity, there is η ∈ (0, c∗) such that
pc(θ) < 0 if c ∈ [c∗ − η, c∗). For any such c, there is then a unique qc ∈ (θ, 1) such that

pc(qc) = 0 and pc < 0 in (0, qc) (and then also pc = 0 in [qc, 1]). Take θ̃ ∈ (qc, 1) and let (q̃, p̃)

be the solution of (2.3) emerging from the regular point (θ̃, 0). Since f > 0 in [θ, θ̃] by (1.9),
it follows from (2.4) that the parameterization p̃(q) of the trajectory of (q̃, p̃) is strictly

negative in [θ, θ̃), whence in particular p̃(qc) > pc(qc) = 0. Thus, by definition of pc, for ε
sufficiently small there holds that pc,ε(qc) < p̃(qc) and therefore, since trajectories cannot

cross each other, we deduce p̃ ≤ pc,ε ≤ pc ≤ 0 in (0, θ̃]. It follows that the first zero of pc,ε
is in [θ, θ̃], hence it corresponds to a regular point. The parameterization pc,ε provides the
desired subsolution ϕ (up to translation).

We finally prove (ii). For c > c∗, the function pc satisfies pc(1) < 0 by the definition
of ĉ = c∗. We also extend pc in (1,+∞) by setting pc(q) = pc(1)−c(q−1) for q > 1. We then
define ϕ as the positive solution of (1.1) associated with this trajectory, for which ϕ(0) = 1.
Recalling that f is extended to 0 in (1,+∞), we have that ϕ(z) = Ae−cz + 1−A for z < 0,
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for some A > 0. The existence of m > 1 such that |ϕ′| ≤ mϕ follows from elliptic
estimates and Harnack’s inequality. Next, by [2, Proposition 4.1], pc(q)/q ≤ −c/2 in a
right neighborhood of 0, that is, ϕ′(z) ≤ −(c/2)ϕ(z) for z large enough. From this we
deduce on the one hand that, up to increasing m if need be, ϕ′ ≤ −m−1ϕ in R. On the
other hand, we infer that, for any ν > 0,

ϕ′′ ≥ c2

2
ϕ− f(ϕ) ≥

(c2

2
− f ′(0)− ν

)
ϕ,

for all z large enough. Thus, recalling that c > c∗ ≥ 2
√

max(f ′(0), 0), we get that ϕ′′ > 0
in some interval [b,+∞) with b > 0.

Putting together the previous results allows one to derive Proposition 1.4 about the
asymptotic speed of spreading for the solutions of (1.1).

Proof of Proposition 1.4. Since we here assume Hypothesis 1.3, Lemma 2.2 yields the exis-
tence of a positive minimal speed c∗ of traveling fronts connecting 1 to 0, and Lemma 2.1
shows that (1.9)-(1.10) and Hypothesis 1.1 are fulfilled, for some θ ∈ (0, 1) and ρ > 0.
Therefore, any solution u as in Hypothesis 1.1 spreads, in the sense that u(t, ·) → 1 as
t→ +∞ locally uniformly in RN , and using the function ϕ provided by Proposition 2.3 (i),
exactly as in the proof of [2, Theorem 5.3], one shows that such a spreading solution u
satisfies (1.12). Assume now that the initial condition u0 of (1.1) is compactly supported.
As in the proof of [2, Theorem 5.1], it follows from Proposition 2.3 (ii) that (1.13) holds.

Remark 2.4. Under Hypothesis 1.3, if the hair trigger effect holds then Hypothesis 1.1
and properties (1.12)-(1.13) hold (with c∗ > 0 given by Proposition 1.4) for any compactly
supported initial datum 0 ≤ u0 ≤ 1 such that u0 > 0 on a set of positive measure.

Remark 2.5. Under the sole Hypothesis 1.1, the property (1.12) of Proposition 1.4 is
still fulfilled, for a certain positive speed c∗. Indeed, if u0 is as in Hypothesis 1.1 and if v
denotes the solution to (1.1) with initial condition v0 = θ 1Bρ(x0), then there exists T > 0
such that 1 ≥ u(T, · + y) ≥ v(T, · + y) ≥ v0 in RN for every |y| ≤ 1. Hence, iterating and
using the comparison principle, one finds 1 ≥ u(kT + t, ·+ ky) ≥ v(kT + t, ·+ ky) ≥ v(t, ·)
in RN for all k ∈ N, t ≥ 0, and |y| ≤ 1. Since v(t, ·) → 1 locally uniformly as t → +∞,
one readily infers that min|x|≤ct u(t, x)→ 1 as t→ +∞, for every c ∈ [0, 1/T ).

3 General support and the Freidlin-Gärtner formula:

proofs of Theorems 1.5 and 1.6

Theorems 1.5 and 1.6 are shown in Section 3.1, together with Proposition 3.6 providing
some sufficient conditions for the validity of the hypothesis (1.20). Section 3.2 is devoted
to some counter-examples of Theorems 1.5 and 1.6 when the assumptions (1.20) or (1.25)
are violated.

3.1 The asymptotic speed of spreading: proofs of Theorems 1.5
and 1.6

There are two main parts in the proof of Theorems 1.5 and 1.6. On the one hand, lower
bounds for the spreading speeds of upper level sets of the solutions can be established
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from the assumptions (1.20) or (1.25), together with Proposition 1.4. On the other hand,
upper bounds for the spreading speeds will follow from the derivation of upper bounds
for solutions vanishing initially in large balls, which are obtained through a new type of
supersolution. We start with the following lemma, which is a straightforward consequence
of Proposition 1.4.

Lemma 3.1. Assume that Hypothesis 1.3 holds (hence Hypothesis 1.1 as well). Let c∗ > 0
be given by Proposition 1.4, and let u be a solution of (1.1) emerging from an initial datum
u0 = 1U , with a set U ⊂ RN satisfying Uρ 6= ∅, where ρ > 0 is given by Hypothesis 1.1.
Then, there holds that

∀ c ∈ (0, c∗), inf
x∈Uρ+Bct

u(t, x)→ 1 as t→ +∞.

Proof. Let v be the solution to (1.1) emerging from the initial datum v0 = 1Bρ . Take
c ∈ (0, c∗) and λ < 1. By Proposition 1.4, there exists T > 0 such that

∀ t ≥ T, ∀x ∈ Bct, v(t, x) > λ.

Now, for any x0 ∈ Uρ, there holds that u0 ≥ v0(·−x0) in RN and therefore, by the parabolic
comparison principle,

∀ t ≥ T, ∀x ∈ Bct(x0), u(t, x) ≥ v(t, x− x0) > λ.

This is true for any x0 ∈ Uρ, hence the result follows from the arbitrariness of λ < 1.

The following key result provides us with a family of supersolutions that will be used
for the proof of both Theorems 1.5 and 1.6 to get upper bounds for the spreading speeds.
In the KPP case, such supersolutions could be obtained as the sums of solutions. In order
to handle the general case, we construct some radially symmetric supersolutions which
retract with a speed c > c∗. Such supersolutions are obtained by modulating the function ϕ
provided by Proposition 2.3 (ii). More precisely, by a (generalized) supersolution ψ to (1.1)
in [0, T ]×RN with T > 0, we mean a continuous function ψ : [0, T ]×RN → R such that,
if a solution u to (1.1) satisfies 0 ≤ u0 ≤ ψ(0, ·) in RN , then u(t, ·) ≤ ψ(t, ·) in RN for
all t ∈ [0, T ]. We recall that f is extended by 0 in R \ [0, 1].

Proposition 3.2. Assume that Hypothesis 1.3 holds, and let c∗ > 0 be given by Proposi-
tion 1.4. Then, for any c > c∗ and λ > 0, there exist R > 0 (depending on f , N , c and λ)
and a family of functions (vT )T>0 such that, for each T > 0, vT is a positive supersolution
to (1.1) in [0, T ]× RN and satisfies{

vT (0, x) ≥ 1, ∀ |x| ≥ R + cT,

vT (t, 0) < λ, ∀ t ∈ [0, T ].
(3.1)

Proof. We start with constructing the desired family of supersolutions in dimension 1. We
then use them to construct radially symmetric supersolutions in higher dimension. But
before doing so, we use some auxiliary notations. For any

c′ > c′′ > c∗,
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consider the function ϕ provided by Proposition 2.3 (ii) associated with c′′. Let m > 1 be
given by (2.6), and s0 ∈ (0, 1) be such that

∀ s ∈ (0, s0), |f(s)− f ′(0)s| ≤ c′ − c′′

4m
s. (3.2)

Call then Z > 0 the quantity where ϕ(Z) = s0. For β > 0 we define

ψ(z) := ϕ(z) e−β(z−Z) for z ∈ R.

This function ψ is of class C2(R) and it satisfies in R

−ψ′′ − (c′ − β)ψ′ =
(
f(ϕ)− (c′ − 3β − c′′)ϕ′ + β(c′ − 2β)ϕ

)
e−β(z−Z).

Then, because of (2.6), we can choose β ∈ (0, c′ − c′′) small enough so that

− ψ′′ − (c′ − β)ψ′ > f(ϕ) e−β(z−Z) +
c′ − c′′

2m
ψ. (3.3)

With b > 0 as in (2.6), we also choose arbitrarily large real numbers L and R′ such that

L > max
(
Z +

log 2

β
, b
)

and R′ >
N − 1

β
. (3.4)

Step 1: the 1-dimensional case. Our goal is to connect ϕ with its reflection ϕ(−·), by using
an even function which is steeper than ϕ at some point. This will be achieved through
the function ψ defined above. Then, the symmetrized function ψ(x − c′t) + ψ(−x − c′t)
will be a supersolution where it is smaller than s0, and we take the minimum between the
functions ϕ(x−c′t) and ψ(x−c′t)+ψ(−x−c′t), which will be a (generalized) supersolution
for x ≤ 0. Next, we want the minimum to be achieved by the latter function at t = 0, so
that we can extend the supersolution to the whole line by even reflection.

More precisely, we consider an arbitrary T > 0 and we call
v1(t, r) := ϕ(r − c′(t− T ) + L),

v2(t, r) := ψ(r − c′(t− T ) + L) + ψ(−r − c′(t− T ) + L),

v(t, r) := min
(
v1(t, r), v2(t, r)

)
,

(3.5)

for (t, r) ∈ [0, T ]× R. These functions are positive. Moreover, we see that

∂tv1(t, r)− ∂rrv1(t, r)− f(v1(t, r)) = (c′′ − c′)ϕ′(r − c′(t− T ) + L) > 0 in [0, T ]× R

since c′′ < c′ and ϕ′ < 0 in R, hence v1 is a supersolution to (1.1) in [0, T ]× R.
The definition of ψ and the positivity of ϕ also imply that

∀ 0 ≤ t ≤ T, ∀ r ≤ c′(t− T )− L+ Z, v2(t, r) > v1(t, r).

This means that if there exists (t̄, r̄) ∈ [0, T ] × (−∞, 0] where v(t̄, r̄) = v2(t̄, r̄), then
necessarily r̄ > c′(t̄ − T ) − L + Z. Together with the fact that ϕ is decreasing, it follows
that, for all (t̄, r̄) ∈ [0, T ]× (−∞, 0],

v(t̄, r̄) = v2(t̄, r̄) =⇒

{
0 < v2(t̄, r̄) ≤ v1(t̄, r̄) = ϕ(r̄ − c′(t̄− T ) + L) < s0,

0 < ϕ(−r̄ − c′(t̄− T ) + L) ≤ ϕ(r̄ − c′(t̄− T ) + L) < s0.
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On the other hand, by (3.3) and the negativity of ψ′ we have that

∂tv2(t̄, r̄)− ∂rrv2(t̄, r̄)− β|∂rv2(t̄, r̄)| > f(ϕ(r̄ − c′(t̄− T ) + L)) e−β(r̄−c′(t̄−T )+L−Z)

+f(ϕ(−r̄ − c′(t̄− T ) + L)) e−β(−r̄−c′(t̄−T )+L−Z)

+
c′ − c′′

2m
v2(t̄, r̄).

Hence, estimating f(ϕ(±r̄ − c′(t̄ − T ) + L)) by (3.2), and then using (3.2) again, we
eventually derive

∂tv2 − ∂rrv2 − β|∂rv2| > f(v2) in
{

(t, r) ∈ [0, T ]× (−∞, 0] : v(t, r) = v2(t, r)
}
. (3.6)

At the point r = 0 we compute, for 0 ≤ t ≤ T ,

v2(t, 0) = 2ϕ(−c′(t− T ) + L) e−β(−c′(t−T )+L−Z) ≤ 2 v1(t, 0) e−β(L−Z).

Since β(L− Z) > log 2 by (3.4), we have that

∀ t ∈ [0, T ], v(t, 0) = v2(t, 0) < v1(t, 0) = ϕ(−c′(t− T ) + L) ≤ ϕ(L). (3.7)

Observe that the function r 7→ v2(t, r) is even and that v(t, r) is equal to v2(t, r) and then
symmetric with respect to r in a neighborhood of r = 0, for each 0 ≤ t ≤ T . Hence

∀ t ∈ [0, T ], ∂rv(t, 0) = ∂rv2(t, 0) = 0. (3.8)

Remember also that v1 is a supersolution to (1.1) in [0, T ]×R. All these facts imply that,
if we restrict v(t, r) to r ≤ 0 and we take its even reflection around r = 0, we obtain a
(generalized) supersolution to (1.1) in [0, T ]× R.

We also see that, for every 0 ≤ t ≤ T ,

∂rrv(t, 0) = ∂rrv2(t, 0) = 2ψ′′(−c′(t− T ) + L)

= 2
(
ϕ′′(−c′(t−T )+L)− 2βϕ′(−c′(t−T )+L) + β2ϕ(−c′(t−T )+L)

)
×e−β(−c′(t−T )+L−Z)

> 0

(3.9)

since ϕ′ < 0, ϕ > 0 and L > b by (3.4), where b > 0 from (2.6) is such that ϕ′′ ≥ 0
in [b,+∞).

Step 2: the case of dimension N ≥ 2. Consider the function v defined before. With R′ > 0
given by (3.4), we define, for T > 0, a continuous function vT in [0, T ]× RN as follows:

vT (t, x) :=

{
v(t, 0) if t ∈ [0, T ] and |x| ≤ R′,

v(t, R′ − |x|) if t ∈ [0, T ] and |x| > R′.

We want to show that vT is a (generalized) supersolution to (1.1) in [0, T ]× RN .
We start with checking this in the region |x| > R′. Recall that v is defined in (3.5)

as the minimum between v1 and v2. A direct computation reveals that the func-
tion v1(t, R′ − |x|) < 1 fulfills

(∂t −∆)
(
v1(t, R′ − |x|)

)
− f(v1(t, R′ − |x|))

= ∂tv1(t, R′ − |x|)− ∂rrv1(t, R′ − |x|) +
N − 1

|x|
∂rv1(t, R′ − |x|)− f(v1(t, R′ − |x|))

=

(
c′′ − c′ + N − 1

|x|

)
ϕ′(R′ − |x| − c′(t− T ) + L)

> 0
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for all t ∈ [0, T ] and |x| > R′, since ϕ′ < 0 in R and c′′−c′+(N−1)/R′ < 0 by (3.4) together
with 0 < β < c′−c′′. We now turn to the function v2. At any point (t̄, x̄) ∈ [0, T ]×(RN\BR′)
such that v(t̄, R′ − |x̄|) = v2(t̄, R′ − |x̄|), we deduce from (3.4) and (3.6) that

(∂t −∆)
(
v2(t, R′ − |x|)

)∣∣
t̄, x̄
− f(v2(t̄, R′ − |x̄|))

> β |∂rv2(t̄, R′ − |x̄|)|+ N − 1

|x̄|
∂rv2(t̄, R′ − |x̄|) ≥ 0.

We have thereby shown that vT is a supersolution to (1.1) outside the ball BR′ . Observe
now that (3.8) implies that vT is W 2,∞ with respect to x in a neighborhood of [0, T ]×∂BR′

(relatively to [0, T ]× RN). Next, for t ∈ [0, T ] and |x| < R′, using (3.6) and (3.9) we get

∂tv
T (t, x)−∆vT (t, x) = ∂tv(t, 0) > ∂rrv(t, 0) + f(v(t, 0)) > f(vT (t, x)).

Summing up, the function vT is a positive supersolution to (1.1) in [0, T ] × RN . We
further see from the definition of v and from (2.6) and (3.7) that vT satisfies{

vT (0, x) ≥ 1, ∀ |x| ≥ R′ + L+ c′T,

vT (t, 0) < ϕ(L),∀ t ∈ [0, T ].
(3.10)

Step 3: conclusion. Consider any c > c∗ and λ > 0. Let any c′ and c′′ be such that
c > c′ > c′′ > c∗, and let s0, Z, β, L and R′ be the positive parameters (depending on f ,
N , c′ and c′′, hence on f , N and c, since c′ and c′′ depend on c and c∗ while c∗ depends on f
only) given as in (3.2)-(3.4). Without loss of generality, one can also assume now that L
is large enough (depending also on λ) so that ϕ(L) ≤ λ. Let (vT )T>0 be the functions
defined as in Step 2 above. Since c > c′, the conclusion (3.1) with R = R′ + L > 0 follows
from (3.10). The proof of Proposition 3.2 is thereby complete.

With Lemma 3.1 and Proposition 3.2 in hand, the proof of Theorem 1.6 easily follows.

Proof of Theorem 1.6. Fix c ∈ (0, c∗), where c∗ > 0 is given by Proposition 1.4. It follows
from the assumption (1.25) that, for given c′ ∈ (c, c∗), the inclusion U + Bct ⊂ Uρ + Bc′t

holds for t > 0 sufficiently large (depending on c, c′). Thus, Lemma 3.1 implies that
infx∈U+Bct u(t, x)→ 1 as t→ +∞. Therefore, for any λ ∈ (0, 1), there holds that

U +Bct ⊂ Eλ(t),

for t sufficiently large. Since this holds for each c ∈ (0, c∗), one infers that

sup
x∈U+Bc∗t

dist(x,Eλ(t)) = o(t) as t→ +∞. (3.11)

Conversely, by taking any c′ > c∗ and λ ∈ (0, 1), we will show that{
x ∈ RN : dist(x, U) ≥ c′t

}
⊂ RN \ Eλ(t), (3.12)

for t sufficiently large. To do so, consider any c ∈ (c∗, c′), and let R > 0 and (vT )T>0 be
given by Proposition 3.2. Denote t0 = R/(c′ − c) > 0, and consider any t ≥ t0. For any
x0 ∈ RN such that dist(x0, U) ≥ c′t, one has Bc′t(x0) ⊂ RN\U , hence u0 ≤ 1RN\Bc′t(x0) and
u0 ≤ vt(0, · − x0) in RN by (3.1) (observe that c′t ≥ R + ct). By the maximum principle,
the fact that vt is a supersolution imply in particular that u(t, ·) ≤ vt(t, ·−x0) in RN , hence
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u(t, x0) ≤ vt(t, 0) < λ by (3.1), whence x0 ∈ RN \ Eλ(t). Therefore, one has shown (3.12)
for all t ≥ t0, that is, Eλ(t) ⊂ U +Bc′t for all t ≥ t0. Since this holds for each c′ > c∗, one
infers that

sup
x∈Eλ(t)

dist(x, U +Bc∗t) = o(t) as t→ +∞.

Together with (3.11), this gives (1.26).

Before turning to the proof of Theorem 1.5, we derive two auxiliary lemmas. The first
one follows from simple geometric considerations.

Lemma 3.3. Let U be a non-empty subset of RN satisfying (1.20) for some ρ > 0. Then
for every e ∈ B(U), there holds that

lim inf
τ→+∞

dist(τe, U)

τ
= inf

ξ∈U(U)
ξ·e≥0

√
1− (ξ · e)2 > 0, (3.13)

with the convention that the right-hand side is 1 if there is no ξ ∈ U(U) satisfying ξ ·e ≥ 0.

Proof. Call

δ̄ := lim inf
τ→+∞

dist(τe, U)

τ
, m := inf

ξ∈U(U)
ξ·e≥0

√
1− (ξ · e)2.

The definition of B(U) yields δ̄ > 0.
We start with proving δ̄ ≤ m. If there exists no ξ ∈ U(U) satisfying ξ · e > 0

then m = 1 ≥ δ̄ because U 6= ∅. Suppose now that there is ξ ∈ U(U) such that ξ · e > 0.
The definition of U(U) yields the existence of a family of points (xτ )τ>0 in U such that∣∣ξ − xτ

τ

∣∣→ 0 as τ → +∞.

It follows that

δ̄ ≤ lim
τ→+∞

∣∣∣ τξ·ee− xτ ∣∣∣
τ
ξ·e

= lim
τ→+∞

∣∣e− ξ · e
τ
xτ
∣∣ = |e− (ξ · e)ξ| =

√
1− (ξ · e)2.

Since this holds for any ξ ∈ U(U) such that ξ · e > 0, the inequality δ̄ ≤ m follows.
Let us pass now to the proof of the reverse inequality m ≤ δ̄. Remember first

that 0 ≤ δ̄ ≤ 1. If δ̄ = 1 it trivially holds because m ≤ 1. Suppose that δ̄ < 1.
There exist a positive sequence (τn)n∈N diverging to +∞ and a sequence of points (xn)n∈N
in U satisfying ∣∣∣e− xn

τn

∣∣∣ < δ̄ +
1

n
for all n ∈ N.

Because δ̄ < 1, we see that |xn| → +∞ as n→ +∞, hence we can assume that xn 6= 0 for
all n ∈ N. We further deduce from the above inequality that

(xn · e)2

|xn|2
≥ 2

xn · e
τn
− |xn|

2

τ 2
n

= 1−
∣∣∣e− xn

τn

∣∣∣2 > 1−
(
δ̄ +

1

n

)2

.

hence, calling ξn := xn/|xn|,

ξn · e ≥
√

1−
(
δ̄ +

1

n

)2

.
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Thus, the limit ξ ∈ SN−1 of a converging subsequence of (ξn)n∈N satisfies ξ · e ≥
√

1− δ̄2.
Furthermore, there holds that∣∣|xn|ξ − xn∣∣

|xn|
= |ξ − ξn| → 0 as n→ +∞,

which means that ξ /∈ B(U). Hence, by (1.20), ξ ∈ U(Uρ) ⊂ U(U). We eventually derive

sup
ξ∈U(U)

ξ · e ≥
√

1− δ̄2 > 0,

that is, δ̄ ≥ m. The proof of Lemma 3.3 is thereby complete.

Thanks to the above geometric lemma, using the family of supersolutions provided
by Proposition 3.2 one can derive an upper bound for the spreading speeds in a cone of
directions around B(U).

Lemma 3.4. Assume that Hypothesis 1.3 holds, and let c∗ > 0 be given by Proposition 1.4.
Let u be a solution of (1.1) with an initial datum u0 = 1U , where the non-empty set
U ⊂ RN satisfies (1.20) for some ρ > 0. Assume that there exists e ∈ B(U). Then, for
any w > w(e), where w(e) is given by (1.16), in the cone

C :=
⋃
τ>1

Bc∗(τ−1)(τwe),

there holds that
sup
x∈C

u(t, tx)→ 0 as t→ +∞.

Proof. Consider U, u, ρ, e, w and C as in the statement. Because w > w(e) > 0, there exists
a real number k satisfying

0 <
c∗

w
< k <

c∗

w(e)
= inf

ξ∈U(U)
ξ·e≥0

√
1− (ξ · e)2. (3.14)

Then, by Lemma 3.3, we can find τ1 > 0 such that

∀ τ ≥ τ1, dist(τe, U) ≥ kτ. (3.15)

Take c ∈ (c∗, kw) and λ > 0. Consider the associated constant R > 0 and the func-
tions (vT )T>0 provided by Proposition 3.2. By (3.15), for all T > 0, there holds that

∀ τ > τ1 +
R + cT

k
, ∀ y ∈ Bkτ−R−cT (τe), dist(y, U) ≥ R + cT,

hence, for τ and y as above, u is less than or equal to the positive function vT (·, · − y) at
time 0, due to (3.1), and therefore the comparison principle yields u(T, y) ≤ vT (T, 0) < λ.
We rewrite this inequality using t = T , s = τ/T , x = y/T , that is,

∀ t > 0, ∀ s > c

k
+

1

t

(
τ1 +

R

k

)
, ∀x ∈ Bks−c−R/t(se), u(t, tx) < λ. (3.16)
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If we show that, for t sufficiently large, any point x ∈ C can be written in the above form,
the lemma is proved, due to the arbitrariness of λ. Consider x ∈ C. We write it as follows:

x = sxe+ yx, with sx > w and |yx| < c∗
(sx
w
− 1
)
. (3.17)

Then, recalling that c < kw, we can find t1 > 0 (depending on c, k, w, τ1, R, but not on x),
such that

∀ t > t1, sx > w >
c

k
+

1

t

(
τ1 +

R

k

)
.

Next, using c∗/w < k and sx > w in (3.17), we infer that

|yx| − ksx <
(c∗
w
− k
)
sx − c∗ <

(c∗
w
− k
)
w − c∗ = −kw.

Then, because c < kw, we can find t2 ∈ [t1,+∞) (depending on t1, c, k, w,R, but not
on x), such that −kw < −c − R/t for all t > t2, hence |yx| < ksx − c − R/t for t > t2.
We have shown that x, s=sx fulfill the inclusion and inequality in (3.16), hence the proof
is concluded.

Remark 3.5. The conclusion of Lemma 3.4 holds good when the assumption (1.20) is
replaced by

lim inf
τ→+∞

dist(τe, U)

τ
≥ 1

(that is, dist(τe, U) ∼ τ as τ → +∞ since lim supτ→+∞ dist(τe, U)/τ ≤ 1 as soon as U is
not empty). Indeed, in that case, one has e ∈ B(U) and U(U) ⊂ {e′ ∈ SN−1 : e′ · e ≤ 0},
hence w(e) = c∗. Therefore, k in (3.14) is now chosen so that c∗/w < k < 1 and (3.15) is
satisfied for τ1 large enough. The rest of the proof after (3.15) is identical.

With the previous results in hand, we are now in position to prove Theorem 1.5.

Proof of Theorem 1.5. We prove the statements of the theorem in a different order.

Statement (ii). First of all, we deduce from (1.20) that

U(U) ⊃ U(Uρ) = SN−1 \ B(U) ⊃ U(U),

that is, U(Uρ) = U(U). Next, fix a compact set C included in W , where W is given by
the equivalent formulas (1.19) or (1.24). For any ξ ∈ U(U) = U(Uρ) (if it exists), and
any τ > 0 and 0 < c′ < c < c∗, one has, by the definition of U(Uρ),

1

t
dist(tτξ, Uρ)→ 0 as t→ +∞,

hence Bc′t(tτξ) ⊂ Uρ +Bct for t sufficiently large. It then follows from Lemma 3.1 that

inf
x∈Bc′ (τξ)

u(t, tx)→ 1 as t→ +∞. (3.18)

Observe that the above limit holds good when τ = 0 (without any reference to ξ) due
to Proposition 1.4 and the fact that u0 fulfills (1.4) for some x0 ∈ RN , because Uρ 6= ∅.
Moreover, from (1.24), any point x ∈ W is contained either in Bc′x or in Bc′x(τxξx), for
certain c′x ∈ (0, c∗), ξx ∈ U(U), and τx > 0. Then, by compactness, C can be covered by a
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finite number of such balls and therefore, since (3.18) holds in each one of them, the first
limit in (1.21) follows.

Consider now a compact set C included in RN \ W . Any point y ∈ C is such
that e := y/|y| satisfies w(e) < |y| < +∞, hence necessarily e ∈ B(U), because other-
wise (1.20) would yield e ∈ U(Uρ) = U(U) and then w(e) = +∞. As a consequence, for
an arbitrary λ > 0, applying Lemma 3.4 with w ∈ (w(e), |y|), we infer the existence of an
open neighborhood Cy of y and of some ty > 0 such that

∀ t > ty, ∀x ∈ Cy, u(t, tx) < λ.

By a covering argument we can find tC > 0 such that

∀ t > tC , ∀x ∈ C, u(t, tx) < λ.

This concludes the proof of (1.21).

Statement (i). The continuity of w : SN−1 → [c∗,+∞] is provided by formula (1.23),
since so is the map e 7→ dist(e,R+U(U)) (when U(U) = ∅, then the map e 7→ w(e) ≡ c∗ is
obviously continuous too!). The first limit in (1.15) is a particular instance of the first limit
in (1.21). The second one only involves the directions e for which w(e) < +∞, whence,
by (1.20), the ones in B(U). But then the second limit in (1.15) immediately follows by
applying Lemma 3.4 with w ∈ (w(e), c).

Statement (iii). Consider λ ∈ (0, 1) and a compact set K ⊂ RN satisfying K ∩W = K∩W .
Take ε > 0. For η > 0, we define the following subset of K ∩W :

Kη := K ∩
{
re : e ∈ SN−1, 0 ≤ r ≤ w(e)− η

}
.

From the continuity of w, we deduce that Kη is a compact set included in the open setW .
On the one hand, since K ∩W is compact, using a covering argument one can find η > 0
small enough such that

K ∩W ⊂ K ∩W ⊂ Kη +Bε.

On the other hand, by the first line of (1.21) applied with C = Kη, we infer that, for t
larger than some T > 0 depending on η, there holds that Kη ⊂ t−1Eλ(t) and there-
fore Kη ⊂ K ∩ t−1Eλ(t). Combining these inclusions one then gets

∀ t > T, K ∩W ⊂
(
K ∩ 1

t
Eλ(t)

)
+Bε. (3.19)

Consider now, for σ > 0, the set

K ′σ := K ∩
{
re : e ∈ SN−1, r ≥ w(e) + σ

}
.

By the continuity of w, this is a compact set contained in RN \W . Let us check that

K \K ′σ ⊂
(
K ∩W

)
+Bε, (3.20)

for all σ > 0 small enough. Assume by contradiction that this is not the case. Then we
can find a sequence (rnen)n∈N in K \

(
(K ∩ W) + Bε

)
with (en)n∈N in SN−1 and (rn)n∈N

bounded and satisfying rn < w(en) + 1/n for all n ∈ N. Thus, up to subsequences, (en)n∈N
converges to some e ∈ SN−1 and then, by the continuity of w, (rn)n∈N converges to
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some r ≤ w(e) (whenever w(e) be finite or not). This means that re ∈ K ∩ W and
therefore rnen ∈ (K ∩ W) + Bε for n large, a contradiction. We can then choose σ > 0
such that (3.20) holds. Applying the second line of (1.21) with C = K ′σ, we can find τ > 0
such that

∀ t > τ, K ′σ ∩
1

t
Eλ(t) = ∅,

whence

∀ t > τ, K ∩ 1

t
Eλ(t) ⊂ K \K ′σ.

Using the inclusion (3.20) and recalling that K ∩ W = K ∩W , one finds that
K \K ′σ ⊂ K ∩W +Bε, and therefore

∀ t > τ, K ∩ 1

t
Eλ(t) ⊂ K ∩W +Bε = (K ∩W) +Bε.

This property, together with (3.19), yields the desired result (1.22), owing to the arbitrari-
ness of ε > 0.

The last result of this section provides a list of conditions for a set U ⊂ RN to satisfy
property (1.20). As we will see in the examples listed in Section 3.2, conditions (1.20)
and (1.25) cannot be compared. However, condition (1.25) together with certain additional
properties imply (1.20), as the following result shows.

Proposition 3.6. For a set U ⊂ RN , property (1.20) holds if U satisfies (1.25) together
with one of the following conditions:

• either U is star-shaped with respect to some point x0 ∈ RN ;

• or there exists U ′ ⊂ RN satisfying

B(U ′) ∪ U(U ′) = SN−1 (3.21)

and dH(U,U ′) < +∞;

• or there exists U ′ ⊂ RN satisfying (3.21) and

dH(U ∩BR, U
′ ∩BR)

R
−→ 0 as R→ +∞. (3.22)

Proof. First of all, using (1.25) one sees that, for any ξ ∈ U(U),

dist(τξ, Uρ)

τ
≤ dist(τξ, U) + dH(U,Uρ)

τ
→ 0 as τ → +∞,

that is, ξ ∈ U(Uρ). Thus, it is sufficient to show (1.20) with U(U) instead of U(Uρ).
Consider the case where U is star-shaped. Since properties (1.25) and (1.20) are

invariant under rigid transformations of the coordinate system, we can assume with-
out loss of generality that U is star-shaped with respect to the origin. Suppose that
there exists ξ ∈ SN−1 \ B(U) (otherwise property (1.20) trivially holds). This means
that there exists a sequence (τn)n∈N diverging to +∞ and a sequence (xn)n∈N in U such
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that |τnξ − xn|/τn → 0 as n→ +∞. Then, for any 0 < τ ≤ τn, since τ
τn
xn ∈ U because U

is star-shaped with respect to the origin, one finds

dist(τξ, U)

τ
≤
|τξ − τ

τn
xn|

τ
=
∣∣∣ξ − 1

τn
xn

∣∣∣→ 0 as n→ +∞,

hence ξ ∈ U(U). This shows that B(U) ∪ U(U) = SN−1 and, as already emphasized, this
proves the statement in this case.

Consider now the hypotheses of the second case, with U ′ ⊂ RN satisfying (3.21)
and dH(U,U ′) < +∞. Then there holds that

B(U ′) = B(U) and U(U ′) = U(U), (3.23)

hence B(U) ∪ U(U) = SN−1 and, as above, (1.20) then follows.
Let us check that the same conclusions (3.23) are true when U ′ satisfies (3.21)-(3.22).

We call
DR := dH(U ∩BR, U

′ ∩BR).

For ξ ∈ SN−1 and τ > 0, there exists xτ ∈ U such

|τξ − xτ | < dist(τξ, U) + 1,

then in particular

|xτ | < τ + dist(τξ, U) + 1 ≤ τ + |τξ − x1|+ 1 ≤ 2τ + |x1|+ 1. (3.24)

Moreover, we can find x′τ ∈ U ′ ∩B|xτ |+1 for which |x′τ − xτ | < D|xτ |+1 + 1. It follows that

dist(τξ, U ′) ≤ |τξ − x′τ | ≤ dist(τξ, U) + 1 +D|xτ |+1 + 1.

By (3.22) and (3.24) one then deduces the inequality

dist(τξ, U ′) ≤ dist(τξ, U) + o(τ) as τ → +∞,

and then | dist(τξ, U ′)−dist(τξ, U)| = o(τ) as τ → +∞ by switching the roles of U and U ′.
From this, the equivalences (3.23) immediately follow, and one concludes as in the previous
paragraph.

Remark 3.7. The conclusions of Theorems 1.5 and 1.6 still hold for the solutions to (1.1)
with initial conditions more general than characteristic functions. To be more precise,
firstly, if Hypothesis 1.3 is satisfied, if c∗ > 0 is the minimal speed given by Proposition 1.4,
if θ ∈ (0, 1) and ρ > 0 are given by Hypothesis 1.1, and if u is a solution to (1.1) such that

{u0 ≥ θ}ρ 6= ∅, B
(
{u0 ≥ θ}

)
∪ U

(
{u0 ≥ θ}ρ

)
= SN−1, and dH

(
suppu0, {u0 ≥ θ}

)
< +∞,

then the conclusions (i), (ii) and (iii) of Theorem 1.5 hold, with U(U) replaced
by U

(
{u0 ≥ θ}

)
in the definitions (1.16)-(1.17) of w(e). Indeed, it is easy to see that

B(suppu0) = B
(
{u0 ≥ θ}

)
, that U(suppu0) = U

(
{u0 ≥ θ}

)
, that Lemma 3.1 holds with U

replaced by {u0 ≥ θ}, and that Lemmas 3.3 and 3.4 hold as well with B(U) replaced
by B(suppu0) in both statements and U replaced by suppu0 in (3.13). Meanwhile, Propo-
sition 3.2 is kept unchanged. Secondly, if Hypothesis 1.3 is satisfied, if c∗ > 0 is the minimal
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speed given by Proposition 1.4, if θ ∈ (0, 1) and ρ > 0 are given by Hypothesis 1.1, and
if u is a solution to (1.1) such that

{u0 ≥ θ}ρ 6= ∅, dH
(

suppu0, {u0 ≥ θ}ρ
)
< +∞ and dH

(
suppu0, {u0 ≥ θ}

)
< +∞,

then, for any λ ∈ (0, 1),

dH
(
Eλ(t) , suppu0 +Bc∗t

)
= o(t) and dH

(
Eλ(t) , {u0 ≥ θ}+Bc∗t

)
= o(t) as t→ +∞.

Indeed, B(suppu0) = B
(
{u0 ≥ θ}

)
, U(suppu0) = U

(
{u0 ≥ θ}

)
, and Lemma 3.1 holds

with U replaced by {u0 ≥ θ}, while Proposition 3.2 is kept unchanged.

3.2 Counter-examples

In this section, we show some counter-examples to Theorems 1.5 and 1.6 and to the for-
mula (1.27) when the assumptions (1.20) or (1.25) are not satisfied. In all the counter-
examples, we consider the function f(s) = s(1 − s) for s ∈ [0, 1]. Hence, Hypothesis 1.1
(with any θ ∈ (0, 1) and ρ > 0) and Hypothesis 1.3 hold, and the minimal speed of planar
traveling fronts connecting 1 and 0 is equal to c∗ = 2, see [2, 28].

Proposition 3.8. Let u be the solution to (1.1) with f(s) = s(1 − s) and initial datum
u0 = 1U , where

U =
⋃
n∈N

B2n+1 \B2n−1.

The set U does not fulfill (1.20) for any ρ > 0, but fulfills (1.25) for any ρ ≤ 1
(hence, (1.26) holds). Moreover, (1.14), (1.15), (1.21) and (1.22) all fail, for any func-
tion w : SN−1 → [0,+∞] and any open set W ⊂ RN which is star-shaped with respect to
the origin, and both limits in (1.27) do not exist.

Proof. On the one hand, the intersection of U with any ray R+e, e ∈ SN−1, is unbounded,
hence B(U) = ∅. On the other hand, for any e ∈ SN−1, the formula

dist(3× 2ne, U) = 2n − 1 (3.25)

shows that U(U) = ∅ too. Therefore (1.20) is not satisfied. Let us check that formula (1.14)
(hence the stronger one (1.15)) does not hold in any given direction e ∈ SN−1, with any
w(e)∈ [0,+∞]. Indeed, on the one hand, by Lemma 3.1

lim
t→+∞

u(t, 2ne) = 1 uniformly with respect to n. (3.26)

Thus, if (1.14) were satisfied for some e ∈ SN−1, one would necessarily have w(e) = +∞.
On the other hand, given λ ∈ (0, 1) and c = 2c∗, consider the family of functions (vT )T>0

and the associated R > 0 provided by Proposition 3.2. For any n ∈ N satisfying
n > log2(R + 1), we call Tn := (2n − 1− R)/(2c∗) > 0 and deduce from the first property
in (3.1) that

∀ |x| ≥ 2n − 1, vTn(0, x) ≥ 1,

and therefore, because of (3.25), vTn(0, ·) ≥ u0(· + 3 × 2ne) in RN , for every e ∈ SN−1.
Thus, the comparison principle together with the second property in (3.1) entail

∀ t ≤ Tn, u(t, 3× 2ne) ≤ vTn(t, 0) < λ < 1,
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for every e ∈ SN−1. Calling τn := 2n−2/c∗, we have that τn < Tn for n large enough, hence
we get

lim sup
n→+∞

u(τn, 12 c∗τne) ≤ λ < 1, (3.27)

for every e ∈ SN−1. Consequently, if (1.14) were satisfied for some e ∈ SN−1, one would nec-
essarily have w(e) ≤ 12 c∗, a contradiction with w(e) = +∞. In conclusion, formula (1.14)
and then formula (1.15) do not hold in any direction e ∈ SN−1, for any w(e) ∈ [0,+∞].

The set W given by (1.19) with w(e) as in (1.16)-(1.17) is actually equal to Bc∗ . We
will see that (1.21) and (1.22) fail with W = Bc∗ , as well as with any open set W which
is star-shaped with respect to the origin. So assume now by way of contradiction that
there exists an open set W ⊂ RN which is star-shaped with respect tot the origin and for
which either (1.21) or (1.22) hold. Because of (3.27), the first condition in (1.21) in one
case, or (1.22) in the other case, imply that {12 c∗e} /∈ W , for any e ∈ SN−1. Hence, being
star-shaped, W satisfies W ⊂ B12 c∗ . But we also know that, by (3.26), u(2n/σ, 2ne) → 1
as n → +∞ for any σ > 0. Taking σ > 12 c∗, the second line of (1.21) is violated
by C = {σe} and moreover, for given λ ∈ (0, 1), dH({σe} ∩ 1

t
Eλ(t) , {σe} ∩ W) = +∞

for t = 2n/σ and n large enough (depending on λ), that is, (1.22) fails too. We have
reached a contradiction in both cases.

Finally, for n ∈ N and e ∈ SN−1, calling tn := 2n−1/c∗, we rewrite (3.25) as

dist(6c∗e tn, U) = 2c∗ tn − 1.

We deduce that

Bc∗−1/tn(6c∗e) ⊂ 1

tn

{
x ∈ RN : dist(x, U) > c∗ tn

}
and therefore if dH(t−1U + Bc∗ ,W ′) → 0 as t → +∞, for some set W ′, then necessarily
6c∗e /∈ W ′. But we see that, for sn := 2n/(6c∗), there holds that

6c∗e ∈ 1

sn
U,

and thus dH(t−1U+Bc∗ ,W ′)→ 0 as t→ +∞ would imply 6c∗e ∈ W ′. This shows that the
second limit in (1.27) does not exist, whence the first limit does not exist either, thanks
to (1.26) (notice also that (1.25) is satisfied for any ρ ∈ (0, 1], hence (1.26) holds thanks
to Theorem 1.6).

The second counter-example is the counterpart of Proposition 3.8, with a set U fulfill-
ing (1.20) but not (1.25).

Proposition 3.9. Let u be the solution to (1.1) with f(s) = s(1 − s) and initial datum
u0 = 1U , where U = U1 ∪ U2 and{

U1 =
{
x ∈ RN : x1 ≥ 0 and x2

2 + · · ·+ x2
N ≤ 1

}
,

U2 =
{
x ∈ RN : x1 ≥ 0 and (x2 −

√
x1)2 + x2

3 + · · ·+ x2
N ≤ e−x

2
1

}
.

(3.28)

The set U does not fulfill (1.25) for any ρ > 0, but fulfills (1.20) for 0 < ρ ≤ 1
(hence, (1.14), (1.15), (1.21), (1.22) hold). Moreover, (1.26) fails and the first limit
in (1.27) exists and is equal to W, whereas the second one does not exist.
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Proof. First of all, it is immediate to see that U(U) = U(Uρ) = {e1} for any 0 < ρ ≤ 1,
with e1 = (1, 0, · · · , 0), while B(U) = SN−1 \ {e1}. In particular, the assumption (1.20)
is fulfilled for any 0 < ρ ≤ 1. Observe also that (1.25) is not fulfilled, for any ρ > 0.
The set W given by the equivalent formulas (1.19) and (1.24) is equal to the rounded
half-cylinder W = R+e1 + Bc∗ . It is not hard to see that the second limit in (1.27) does
not exist, owing to the presence of U2 in the definition of U .

It turns out that the presence of U2 in the definition of U does not affect the asymptotic
of Eλ(t) as t→ +∞. To see this we observe that, since the function f vanishes at 0 and 1
and is concave, the maximum principle yields

0 ≤ max(v1, v2) ≤ u ≤ min(v1 + v2, 1) in [0,+∞)× RN , (3.29)

where vi solves (1.1) with initial condition vi(0, ·) = 1Ui , for i = 1, 2. Let us
call Ei

λ(t) := {x ∈ RN : vi(t, x) > λ}. Using the comparison with the linearized equa-
tion ∂tw = ∆w + w and the explicit solution for the latter, one can check that v2(1, x)
has a Gaussian decay for |x| → +∞. It then follows from the standard theory that
properties (1.12)-(1.13) hold for v2, hence dH(t−1E2

λ(t), Bc∗) → 0 as t → +∞ for
any λ ∈ (0, 1). On the other hand, the set U1 given in (3.28) fulfills both (1.20) and (1.25)
with 0 < ρ ≤ 1, hence the conclusions of Theorems 1.5 and 1.6 hold for v1. In particular,
t−1dH(E1

λ(t), U1 +Bc∗t)→ 0 as t→ +∞ for any λ ∈ (0, 1). Together with (3.29), one infers
that, for any λ ∈ (0, 1),

1

t
dH(Eλ(t), U1 +Bc∗t)→ 0 as t→ +∞. (3.30)

As a consequence, dH(t−1Eλ(t),W) → 0 as t → +∞ for any λ ∈ (0, 1) (that is, the first
limit in (1.27) exists and is equal to W). But since dH(U + Bc∗t, U1 + Bc∗t) = +∞ for
all t > 0, (3.30) also implies that, for any fixed λ ∈ (0, 1), dH(Eλ(t), U + Bc∗t) = +∞ for
all t large enough, hence (1.26) fails.

We now exhibit an example where all the conclusions of Theorems 1.5 and 1.6 fail and
moreover the two limits in (1.27) exist but they do not coincide.

Proposition 3.10. Let u be the solution to (1.1) with f(s) = u(1 − s) and initial datum
u0 = 1U , where

U =
{
x ∈ RN : |xN | ≤ e−|x

′|2},
which does not fulfill (1.20) or (1.25), for any ρ > 0. Then (1.14), (1.15), (1.21), (1.22)
and (1.26) all fail with w(e) and W given by (1.16)-(1.17) and (1.19), and the two limits
in (1.27) exist but do not coincide.

Proof. We have that B(U) = {e ∈ SN−1 : eN 6= 0} and that U(U) = {e ∈ SN−1 : eN = 0}
and U(Uρ) = ∅ for any ρ > 0. Hence B(U) ∪ U(Uρ) 6= SN−1. The set W defined in the
equivalent formulations (1.19) and (1.24) is given by the slab

W =
{
x ∈ RN : |xN | < c∗

}
,

and it is readily seen that

dH(t−1U +Bc∗ ,W)→ 0 as t→ +∞.
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However, as for the function v2 in the proof of Proposition 3.9, one has

dH(t−1Eλ(t), Bc∗)→ 0 as t→ +∞, (3.31)

for any λ ∈ (0, 1). Namely, the first limit in (1.27) exists and coincides with Bc∗ , and then
it is not equal toW (in the sense of the Hausdorff distance). We further deduce from (3.31)
that (1.21) and (1.22) fail (just taking C = K = Bc ∩ {x ∈ RN : xN = 0} with c > c∗),
as well as (1.26), because dH(Bc∗ , t

−1U + Bc∗) = +∞ for all t > 0. Lastly, (3.31) implies
that the first lines of (1.14) and (1.15) do not hold (because w(e) given by (1.16) satisfies
w(e) = +∞ for any e ∈ SN−1 with eN = 0).

Remark 3.11. The example given in Proposition 3.10 further reveals that condition (1.20)
cannot be relaxed by replacing U(Uρ) with U(U), and moreover that, without (1.20),
formulas (1.14) and (1.15) can hold with some w(e) which is not given by (1.16).

We conclude this section by showing that (1.27) may fail even when the hypotheses of
Theorems 1.5 and 1.6 are fulfilled.

Proposition 3.12. Let u be the solution to (1.1) with f(s) = s(1 − s) and initial datum
u0 = 1U , where

U =
{
x ∈ RN : xN ≤

√
|x′|
}
,

which fulfills both (1.20) and (1.25) for any ρ > 0 (hence (1.14), (1.15), (1.21), (1.22)
and (1.26) all hold). Then both limits in (1.27) do not exist and there holds that

∀λ ∈ (0, 1), ∀ t > 0, dH

( 1

t
Eλ(t) , W

)
= +∞.

Proof. It is immediate to see that U(U) = U(Uρ) = {e ∈ SN−1 : eN ≤ 0} for any ρ > 0,
and that B(U) = {e ∈ SN−1 : eN > 0}, whence (1.20) holds. It is also clear that (1.25)
holds. We see from (1.24) that W = {x ∈ RN : xN < c∗}.

Next, the functions

(t, x) 7→ u
(
t, x+ ne1 +

√
n

2
eN

)
converge, as n → +∞, to the constant solution ũ(t, x) ≡ 1, locally uniformly in t ≥ 0,
x ∈ RN . This shows that dH(t−1Eλ(t),W) = +∞, for any λ ∈ (0, 1) and t > 0. But then
the limit limt→+∞ t

−1Eλ(t) cannot exist, because if it does, it must coincide with W (in
the sense of the Hausdorff distance) due to (1.22). Then the limit limt→+∞ t

−1U+Bc∗ does
not exist either, owing to (1.26).

4 The subgraph case: proofs of Theorems 1.7 and 1.9,

and Proposition 1.11

Section 4.1 is devoted to the proof of Theorem 1.7 about the flatness property of the level
sets of solutions at large time if the initial support is below a graph which is not coercive
at infinity. Section 4.2 contains the proofs of other flatness results and weaker versions of
Conjecture 1.8. In Sections 4.3 and 4.4, we respectively show Theorem 1.9 on the case of
conical initial support, and Proposition 1.11 on the counterexample to the global flatness
of the level sets even if the initial support is asymptotically flat.

43



4.1 Proof of Theorem 1.7

We start with two auxiliary lemmas that will be used in the proof of Theorem 1.7 and in
Sections 4.2 and 5.2 below.

Lemma 4.1. Assume that Hypothesis 1.3 holds (hence Hypothesis 1.1 as well). Let c∗ > 0
be the minimal speed given by Proposition 1.4, and let u be a solution of (1.1) with an
initial datum u0 given by (1.28) with γ satisfying (1.30). Then, for every λ ∈ (0, 1) and
every x′0 ∈ RN−1, there holds that

Xλ(t, x
′
0) = c∗t+ o(t) as t→ +∞, (4.1)

and moreover

∀α > 0, max
x′∈B′αt(x′0)

Xλ(t, x
′) ≤ c∗t+ o(t) as t→ +∞. (4.2)

Proof. Since hypothesis (1.30) on the initial datum u0 is invariant by translation of the
coordinate system of RN−1, we can restrict to the case x′0 = 0. Fix λ ∈ (0, 1). Because u0

is given by (1.28) with γ ∈ L∞loc(RN−1), there is x0 ∈ RN such that 1 ≥ u0 ≥ 1Bρ(x0)

in RN , with ρ > 0 given by Hypothesis 1.1. Property (1.12) of Proposition 1.4 and the
monotonicity of u(t, x) with respect to xN then imply that

lim inf
t→+∞

Xλ(t, 0)

t
≥ c∗.

It remains to show (4.2). Together with the previous formula, (4.2) will then yield (4.1).
To show (4.2), we will make use of Remark 3.5. One readily checks that (1.30) implies
that, for the set U = suppu0, there holds that

dist(τeN , U)

τ
→ 1 as τ → +∞,

and {e ∈ SN−1 : e · eN > 0} ⊂ B(U). It follows that w(eN) given by (1.16)-(1.17) is equal
to c∗, hence Remark 3.5 entails that

sup
x∈Cw

u(t, tx)→ 0 as t→ +∞ (4.3)

holds for any w > c∗, where

Cw :=
⋃
τ>1

Bc∗(τ−1)(τweN).

Take α > 0 and any c > c∗. For given τ > 1, we call

wτ := c∗ +
c− c∗

2τ
,

and we compute, for x′ ∈ B′α,

|(x′, c)− τwτeN |2 ≤ α2 +
(
τc∗ − c+ c∗

2

)2

= α2 +
(
c∗(τ − 1)− c− c∗

2

)2

= α2 +
(
c∗(τ − 1)

)2
+
(c− c∗

2

)2

− (c− c∗)c∗(τ − 1).
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We can then choose τ > 1 large enough in such a way that |(x′, c) − τwτeN | < c∗(τ − 1)
for all x′ ∈ B′α, and therefore B′α × {c} ⊂ Cwτ . We deduce from (4.3) that

max
x′∈B′α

u(t, tx′, ct)→ 0 as t→ +∞,

whence maxx′∈B′αt
Xλ(t, x

′) ≤ ct for t sufficiently large. Property (4.2) then follows by the
arbitrariness of c > c∗.

Lemma 4.2. Assume that Hypothesis 1.3 holds, hence Hypothesis 1.1 as well, for
some θ ∈ (0, 1) and ρ > 0. Let u be a solution of (1.1) with an initial datum u0 given
by (1.28) with γ satisfying (1.30), and let Eθ(t) be the upper level set {x ∈ RN : u(t, x) > θ}
and (Xλ)λ∈(0,1) be the functions given by (1.29). Then, for every λ ∈ (0, 1) and ω > 0,
there exists R̄ > 0 such that

∀x′0 ∈ RN−1, lim inf
t→+∞

(
sup

x′∈∂B′
R̄

(x′0)

dist
(
(x′, Xλ(t, x

′
0) + ωR̄) , RN \ Eθ(t)

))
≤ ρ.

Proof. Fix a real number c such that

c∗√
1 + ω2

< c < c∗. (4.4)

Let v be the solution of (1.1) with initial condition v0 := θ 1Bρ . By Proposition 1.4, the
function v spreads with the speed c∗. In particular, we can find T > 0 such that

min
|x|≤cT

v(T, x) ≥ λ. (4.5)

Call
R̄ :=

ω√
1 + ω2

cT.

For all y′ ∈ RN−1 such that |y′| = R̄, we compute

∣∣(0, cT√1 + ω2)− (y′, ωR̄)
∣∣ = cT

√
ω2

1 + ω2
+
(√

1 + ω2 − ω2

√
1 + ω2

)2

= cT.

It follows that
v
(
T, (0, cT

√
1 + ω2)− (y′, ωR̄)

)
≥ λ. (4.6)

We now use the contradictory assumption. Namely, there exist x′0 ∈ RN−1 and τ > 0
such that

∀ t ≥ τ, sup
x′∈∂B′

R̄
(x′0)

dist
(
(x′, Xλ(t, x

′
0) + ωR̄) , RN \ Eθ(t)

)
> ρ.

Because condition (1.30) is invariant by translation of the coordinate system of RN−1, we
can assume without loss of generality that x′0 = 0. Namely, for any t ≥ τ , there exists a
point y′t ∈ RN−1 with |y′t| = R̄ such that

u(t, x) > θ for all x ∈ Bρ(y
′
t, Xλ(t, 0) + ωR̄).
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This means that, for all t ≥ τ ,

u
(
t, x+ (0, Xλ(t, 0))

)
≥ θ1Bρ(y′t,ωR̄)(x) = v0(x− (y′, ωR̄)),

hence, by comparison, thanks to (4.6) one infers

u
(
t+ T, (0, cT

√
1 + ω2) + (0, Xλ(t, 0))

)
≥ λ.

We have thereby shown that

∀ t ≥ τ, Xλ(t+ T, 0) ≥ Xλ(t, 0) + cT
√

1 + ω2,

hence, by iteration,

∀n ∈ N, Xλ(τ + nT, 0) ≥ Xλ(τ, 0) + cnT
√

1 + ω2.

Therefore,

lim sup
t→+∞

Xλ(t, 0)

t
≥ lim sup

n→+∞

Xλ(τ + nT, 0)

τ + nT
≥
√

1 + ω2 c,

which is larger than c∗ by the choice of c. This is in contradiction with Lemma 4.1.

Proof of Theorem 1.7. Throughout the proof, one assumes Hypothesis 1.3. Hence Hy-
pothesis 1.1 is satisfied too, by Proposition 1.4. Let θ ∈ (0, 1) and ρ > 0 be given by
Hypothesis 1.1, and let c∗ > 0 be given by Proposition 1.4. Let u be a solution to (1.1),
with an initial condition u0 given by (1.28), where γ : RN−1 → R satisfies (1.30). The
functions Xλ : (0,+∞)× RN−1 → R are given by (1.29), for all λ ∈ (0, 1).

We will show (1.32), which yields (1.31). To show (1.32), we argue by way of con-
tradiction. Namely, by assuming that (1.32) does not hold for some λ ∈ [θ, 1) and some
basis (e′1, · · · , e′N−1) of RN−1, one will show that u(Tn, xn) = λ and u(Tn + τn, ξn) ≥ λ for
some sequences of large times (Tn) and (τn) and points (xn) and (ξn) of RN with the same
projections on RN−1 and such that the difference (ξn − xn) · eN is large compared to c∗τn.
That will eventually lead to a spreading speed larger than c∗ in the direction eN , and then
to a contradiction, thanks to Lemma 4.1.

Notice that the conclusion (1.32) could also be easily viewed as a consequence of
Lemma 4.2 in dimension N = 2. The arguments used below in the general case N ≥ 2 are
actually more involved, and first require some notations.

Step 1: some notations. In the sequel, we fix a basis (e′1, · · · , e′N−1) of RN−1. The desired
property (1.32) is invariant by multiplying any vector e′i by any factor αi ∈ R∗. Therefore,
without loss of generality, one can assume in the sequel that each vector e′i has unit norm
in RN−1, that is,

|e′i| = 1 for each 1 ≤ i ≤ N − 1.

Observe that, for any ε = (εi)1≤i≤N−1 ∈ {−1, 1}N−1, one can choose a point y′ε ∈ RN−1

such that

B′ρ(y
′
ε) ⊂

{
x′ =

N−1∑
i=1

ti,ε,x′εie
′
i : ti,ε,x′ ∈ R+

}
,

where one recalls that the notation B′r(y
′) stands for the open Euclidean ball in RN−1

of center y′ ∈ RN−1 and radius r > 0. In the above formula, for any x′ ∈ RN−1 and
any ε = (ε1, · · · , εN−1) ∈ {−1, 1}N−1, the real numbers t1,ε,x′ , . . . , tN−1,ε,x′ denote the
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(unique) coordinates of x′ in the basis (ε1e′1, · · · , εN−1e′N−1). One then defines a positive
real number ρ′ by

ρ′ = max
ε∈{−1,1}N−1, x′∈B′ρ(y′ε), 1≤i≤N−1

ti,ε,x′ . (4.7)

Step 2: the proof of (1.32). In addition to the basis (e′1, · · · , e′N−1) of RN−1, we now fix any
λ ∈ [θ, 1). Assume by way of contradiction that (1.32) does not hold. Since the quantities
involved in (1.32) are nonnegative and nonincreasing with respect to R > 0, there exists
then ω > 0 such that

∀R > 0, sup
x′0∈RN−1

[
lim inf
t→+∞

(
min

x′∈B′R(x′0), 1≤i≤N−1
|∇x′Xλ(t, x

′) · e′i|
)]
≥ 3ω. (4.8)

We now fix a real number c such that

c∗√
1 + ω2

< c < c∗. (4.9)

Let v be the solution of (1.1) with initial condition v0 := θ 1Bρ . By Proposition 1.4, the
function v spreads with the speed c∗. In particular, there is T > 0 such that

min
|x|≤ct

v(t, x) ≥ λ for all t ≥ T. (4.10)

Let us now consider any n ∈ N and apply (4.8) with R = n+(N−1)ρ′ > 0, with ρ′ > 0
given in (4.7). There is then a point x′n ∈ RN−1 such that

lim inf
t→+∞

(
min

x′∈B′
n+(N−1)ρ′ (x

′
n), 1≤i≤N−1

|∇x′Xλ(t, x
′) · e′i|

)
≥ 2ω.

Since the function Xλ is at least of class C1 in (0,+∞)×RN−1 from the implicit function
theorem and the negativity of ∂xNu in (0,+∞) × RN , it follows by continuity that there
exist Tn > 0 and εn = (εn,i)1≤i≤N−1 ∈ {−1, 1}N−1 such that

∇x′Xλ(t, x
′) · (εn,ie′i) ≥ ω for all t ≥ Tn, x′ ∈ B′n+(N−1)ρ′(x

′
n) and 1 ≤ i ≤ N − 1. (4.11)

One then infers from the fundamental theorem of calculus and from the definitions of y′εn
and ρ′ in Step 2, that

Xλ(Tn, x
′
n + n εn,1 e′1) ≥ Xλ(Tn, x

′
n) + ω n

and then, for any x′ ∈ B′ρ(y′εn),

Xλ(Tn, x
′
n + n εn,1 e′1 + x′) ≥ Xλ(Tn, x

′
n + n εn,1 e′1) +

N−1∑
i=1

ω ti,εn,x′︸ ︷︷ ︸
≥0

≥ Xλ(Tn, x
′
n) + ω n.

(4.12)

Call

z′n = x′n + n εn,1 e′1 + y′εn ∈ RN−1 and zn =
(
z′n, Xλ(Tn, x

′
n) + ω n− ρ

)
∈ RN . (4.13)
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For any x = (x′, xN) ∈ Bρ(zn), there holds x′ ∈ B′ρ(z
′
n) = x′n + n εn,1 e′1 + B′ρ(y

′
εn) and

xN ≤ Xλ(Tn, x
′
n) + ω n, hence

Xλ(Tn, x
′) ≥ Xλ(Tn, x

′
n) + ω n ≥ xN

by (4.12). From the definition (1.29) of Xλ and the fact that u is decreasing with respect
to xN in (0,+∞)× RN , one then infers that

u(Tn, ·) ≥ λ ≥ θ in Bρ(zn).

Hence, u(Tn, ·) ≥ v0(· − zn) in RN , and

u(Tn + t, ·) ≥ v(t, · − zn) in RN for all t > 0 (4.14)

from the maximum principle.
In addition to (4.13), let us now introduce a few other notations, for each n ∈ N. Call

xn = (x′n, Xλ(Tn, x
′
n)) ∈ RN , ξn =

(
x′n, Xλ(Tn, x

′
n) + |xn − zn|

√
1 + ω2

ω

)
∈ RN , (4.15)

and

τn =
|ξn − zn|

c
.

Remember that the sequence (|y′εn|)n∈N takes only a finite number of values, and is therefore
bounded. It is then easy to check from (4.13) and (4.15) that

|xn − zn| ∼ n
√

1 + ω2, |xn − ξn| ∼ n
1 + ω2

ω
, |ξn − zn| ∼ n

√
1 + ω2

ω
, τn ∼ n

√
1 + ω2

c ω
,

as n → +∞. In other words, the angle between the segments [zn, xn] and [zn, ξn] is
almost right, and then the angle between the segments [xn, zn] and [xn, ξn] is almost
arccos(ω/

√
1 + ω2) = π/2− arctanω. As a consequence, τn → +∞ as n→ +∞, and

|xn − zn|
τn

√
1 + ω2

ω
→ c
√

1 + ω2 > c∗ as n→ +∞,

by (4.9). We can then fix n0 ∈ N such that

τn0 ≥ T and
|xn0 − zn0|

τn0

√
1 + ω2

ω
> c∗, (4.16)

with T > 0 defined in (4.10).
Lastly, (4.10) and (4.14) yield

u
(
Tn0 +τn0 , x

′
n0
, Xλ(Tn0 , x

′
n0

)+|xn0−zn0|
√

1 + ω2

ω

)
=u(Tn0 +τn0 , ξn0)≥v(τn0 , ξn0−zn0)≥λ,

hence Xλ(Tn0 +τn0 , x
′
n0

) ≥ Xλ(Tn0 , x
′
n0

)+ |xn0−zn0|
√

1 + ω2/ω. Starting again from (4.11)
(applied with n = n0) and repeating the above arguments, one infers that

u
(
Tn0 + 2τn0 , x

′
n0
, Xλ(Tn0 , x

′
n0

) + 2 |xn0 − zn0|
√

1 + ω2

ω

)
≥ λ
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and Xλ(Tn0 + 2τn0 , x
′
n0

) ≥ Xλ(Tn0 , x
′
n0

) + 2 |xn0 − zn0 |
√

1 + ω2/ω. By an immediate induc-
tion, there holds

Xλ(Tn0 + kτn0 , x
′
n0

) ≥ Xλ(Tn0 , x
′
n0

) + k |xn0 − zn0|
√

1 + ω2

ω

for all k ∈ N. Therefore,

lim sup
t→+∞

Xλ(t, x
′
n0

)

t
≥ |xn0 − zn0|

τn0

√
1 + ω2

ω
> c∗

by (4.16). One has finally reached a contradiction with Lemma 4.1, and the proof of
Theorem 1.7 is thereby complete.

4.2 Weaker versions of Conjecture 1.8 and counterexamples

We here derive some counterexamples to the conclusions (1.31)-(1.32) of Theorem 1.7
when the non-coercivity assumption (1.30) is not fulfilled, as well as two weaker versions
of Conjecture 1.8. The first one is a result which, compared to the conclusion (1.31) of
Theorem 1.7, provides a refined upper bound for ∇x′Xλ(x

′, t) for every sequence of times
t→ +∞, at the price of taking the minimum on sets of x′ growing linearly in time.

Proposition 4.3. Under the same assumptions and with u as in Theorem 1.7, for
any λ ∈ (0, 1) and α > 0, there holds that

min
|x′|≤αt

|∇x′Xλ(t, x
′)| −→ 0 as t→ +∞. (4.17)

Proof. Take λ ∈ (0, 1) and α > 0. Fix ε > 0 and, for t > 0, define the function
Yt : RN−1 → R by

Yt(x
′) := Xλ(t, x

′)− ε

t
|x′|2.

It follows, on the one hand, that Yt(0) = c∗t + o(t) as t → +∞, thanks to Lemma 4.1.
On the other hand, (4.2) yields, for |x′| = αt, Yt(x

′) ≤ (c∗− εα2)t+ o(t) as t→ +∞. This
shows that, for t large enough, depending on α and ε, Yt has a local maximum at some ξ′t
with |ξ′t| < αt, and thus there holds that

|∇x′Xλ(t, ξ
′
t)| = 2

ε

t
|ξ′t| < 2αε.

This concludes the proof by the arbitrariness of ε.

The second weaker version of Conjecture 1.8, which nevertheless gives a more precise
conclusion than the properties (1.31)-(1.32) of Theorem 1.7, is concerned with positive
functions f of the type (1.5).

Proposition 4.4. Assume that f satisfies (1.5) and let u be a solution of (1.1) with an
initial datum u0 given by (1.28), where γ satisfies (1.30). Then, for every λ ∈ (0, 1), there
holds that

lim inf
t→+∞

(
min
|x′|≤R

|∇x′Xλ(t, x
′)|
)
−→ 0 as R→ +∞,

and even

sup
x′0∈RN−1

[
lim inf
t→+∞

(
min

x′∈B′R(x′0)
|∇x′Xλ(t, x

′)|
)]
−→ 0 as R→ +∞. (4.18)
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Proof. Take λ ∈ (0, 1) and ω > 0. Recall that condition (1.5) ensures the validity of
Hypothesis 1.1 for any θ ∈ (0, 1) and ρ > 0, see [2]. We take in particular θ = λ/2 and
ρ > 0 such that

∀ t ≥ 1, ∀ |x− y| ≤ 2ρ, |u(t, x)− u(t, y)| ≤ λ

2
, (4.19)

which is a possible by interior parabolic estimates. Consider then the positive number R̄
given by Lemma 4.2, associated with such θ = λ/2 and ρ > 0, and also λ, ω. Take
x′0 ∈ RN−1. Then by Lemma 4.2 there exists a sequence of positive numbers (tn)n∈N
diverging to +∞ such that, for every n ∈ N and every x′ ∈ ∂B′

R̄
(x′0), we can find yn ∈ RN

with the properties

|yn − (x′, Xλ(tn, x
′
0) + ωR̄)| ≤ 2ρ and u(tn, yn) ≤ θ =

λ

2
.

It is not restrictive to assume that the (tn)n∈N are larger than 1, hence we derive from (4.19)

∀n ∈ N, ∀x′ ∈ ∂B′R̄(x′0), u(tn, x
′, Xλ(tn, x

′
0) + ωR̄) ≤ λ,

that is,
∀n ∈ N, ∀x′ ∈ ∂B′R̄(x′0), Xλ(tn, x

′) ≤ Xλ(tn, x
′
0) + ωR̄. (4.20)

We now deduce from this a bound on ∇x′Xλ(tn, ·) at some point. Namely, for n ∈ N, we
consider the function Yn : RN−1 → R defined by

Yn(x′) := Xλ(tn, x
′)− ω

R̄
|x′ − x′0|2.

It follows from (4.20) that Yn(x′0) = Xλ(tn, x
′
0) ≥ max∂B′

R̄
(x′0) Yn, hence the maximum of Yn

in B′
R̄

(x′0) is attained at some ξ′n ∈ B′R̄(x′0). We infer that

|∇x′Xλ(tn, ξ
′
n)| = 2

ω

R̄
|ξ′n − x′0| < 2ω.

In the end, we have shown that, for any x′0 ∈ RN−1,

lim inf
t→+∞

(
min

x′∈B′
R̄

(x′0)
|∇x′Xλ(t, x

′)|
)
≤ 2ω,

hence
lim inf
t→+∞

(
min

x′∈B′R(x′0)
|∇x′Xλ(t, x

′)|
)
≤ 2ω

for all R ≥ R̄. By the arbitrariness of ω > 0, and recalling that R̄ depends on λ and ω but
not on x′0, we conclude that (4.18) holds.

To complete this section, we list some counterexamples to Theorem 1.7 when the con-
dition (1.30) is not satisfied. We start with the following immediate remark.

Remark 4.5. Without the assumption (1.30), the conclusions (1.31)-(1.32) of Theorem 1.7
immediately do not hold in general. For instance, if γ(x′) = x′ · e′ for some nonzero
vector e′ ∈ RN−1, then by uniqueness the solution u of (1.1) with initial condition given
by (1.28) only depends on the variables t and xN − x′ · e′, and is still decreasing with
respect to xN in (0,+∞) × RN . Therefore, for every t > 0 and λ ∈ (0, 1), the level
set {x ∈ RN : u(t, x) = λ} is an affine hyperplane of RN orthogonal to the vector (e′,−1),
that is, Xλ(t, x

′) = x′ ·e′+cλ,t for some cλ,t ∈ R, hence∇x′Xλ(t, x
′) = e′ and (1.31)-(1.32) do

not hold, for any basis (e′1, · · · , e′N−1) of RN−1 such that e′i · e′ 6= 0 for every 1 ≤ i ≤ N − 1.
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In the following proposition, we show that the flatness properties (1.31)-(1.32), (1.34)
and (1.36) of Theorems 1.7, 1.9 and Conjecture 1.8 do not hold in general when the as-
sumptions (1.30) or (1.35) are modified, or do not hold uniformly as far as (1.34) and (1.36)
are concerned.

Proposition 4.6. The following properties hold:

(i) if one assumes that lim inf |x′|→+∞ γ(x′)/|x′| ≥ 0 instead of (1.30), the conclu-
sions (1.31)-(1.32) of Theorem 1.7 do not hold in general;

(ii) even for x′-symmetric solutions u, the conclusion (1.34) of Conjecture 1.8 does not
hold in general without the assumption (1.30);

(iii) even with the assumption (1.30), the conclusion (1.34) of Conjecture 1.8 does not
hold in general uniformly with respect to x′ ∈ RN−1;

(iv) if ` > 0 in condition (1.35), then the conclusion (1.36) of Theorem 1.9 cannot be
uniform with respect to x′ ∈ RN−1.

Proof. (i) To see it, consider for instance a bistable function f satisfying (1.7) with

f ′(0) < 0, f ′(1) < 0 and

∫ 1

0

f(s)ds > 0. (4.21)

In that case, there is a unique up to shift decreasing function ϕ : R → (0, 1) and a
unique speed c∗ > 0 such that ϕ(x − c∗t) is a traveling front connecting 1 to 0 for (1.1).
Hence, Hypothesis 1.3 is fulfilled. Consider now (1.1) in dimension N = 2. For any angle
β ∈ (0, π/2), it is known that there is a V -shaped function φ : R2 → (0, 1) such that

φ
(
x1, x2 −

c∗

sin β
t
)

is a traveling front solving (1.1), such that φ is even in x1 and, for every λ ∈ (0, 1), there
exists an even function γλ ∈ C1(R) for which there holds

{(x1, x2) ∈ R2 : φ(x1, x2) = λ
}

= {(x1, x2) ∈ R2 : x2 = γλ(x1)
}
,

γ′λ(x1)→ ± 1

tan β
as x1 → ±∞,

φ(x1, x2)→ 0 (resp. → 1) as x2−γλ(x1)→+∞ (resp. as x2−γλ(x1)→−∞),

uniformly in x1 ∈ R,

(4.22)

see [23, 24, 39]. Moreover,

sup
a≤λ≤b, x1∈R

∂x2φ(x1, γλ(x1)) < 0

for every 0 < a ≤ b < 1, and the function φ is decreasing in every direction (cosω, sinω)
with |ω − π/2| ≤ β. Consider now any angle ϑ ∈ (0, β), let R be the rotation of angle ϑ,
and let u be the solution of (1.1) with initial condition (1.28) and γ defined by

{(x1, x2) ∈ R2 : x2 = γ(x1)} = R
(
{(x1, x2) ∈ R2 : x2 = γ1/2(x1)}

)
.8

8The function γ is well defined in R since φ is decreasing in the direction (cos(π/2− ϑ), sin(π/2− ϑ)).
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Notice in particular that (1.30) is not fulfilled. Instead, one has

lim inf
|x′|→+∞

γ(x′)

|x′|
> 0.

It follows from applications of some results of [46] that the solution U of (1.1) with initial
condition 1{x2≤γ1/2(x1)} satisfies

U(t, x1, x2)− φ
(
x1, x2 −

c∗

sin β
t+ a

)
→ 0 as t→ +∞ in C2(R2),

for some a ∈ R. Since u(t, x1, x2) = U(t,R−1(x1, x2)) for all t ≥ 0 and (x1, x2) ∈ R2 and
since γ′λ(x1)→ ±1/ tan β > 0 as x1 → ±∞, one then infers that, for every λ ∈ (0, 1),

∂x1Xλ(t, x1)→ 1

tan(β − ϑ)
> 0 as t→ +∞, locally uniformly in x1 ∈ R.

In particular, properties (1.31)-(1.32) of Theorem 1.7 do not hold.
(ii) Consider again a function f of the bistable type (1.7) and (4.21) (hence, Hypo-

thesis 1.3 is fulfilled), assume that N = 2, fix β ∈ (0, π/2) and let φ and γλ be as in (4.22).
Then the solution u of (1.1) with initial condition (1.28) defined with, say, γ = γ1/2

(hence, (1.30) is not fulfilled) is such that u(t, x1, x2) − φ(x1, x2 − (c∗/ sin β)t + a) → 0
as t → +∞ in C2(R2), for some a ∈ R. As a consequence, ∂x1Xλ(t, x1) → γ′λ(x1)
as t→ +∞, locally uniformly in x1 ∈ R, for every λ ∈ (0, 1). Since γ′λ(x1)→ ±1/ tan β 6= 0
as x1 → ±∞, property (1.34) of Conjecture 1.8 does not hold for all x′ = x1 ∈ R (although
of course it holds at x1 = 0, and even ∂x1Xλ(t, 0) = 0 for all t > 0, by even symmetry
in x1).

(iii)-(iv) Assuming Hypothesis 1.3, consider first equation (1.1) in dimension N = 2,
and let γ : R → R be a C1(R) nonpositive function (hence, (1.30) is satisfied) such
that γ(x1) = −ax1 < 0 for all x1 ≥ 1, for some a > 0. Let u be the solution of (1.1) with
initial condition u0 given by (1.28). From standard parabolic estimates, the functions

(t, x) 7→ u(t, x1 + r, x2 − ar)

converge, as r → +∞, in C1;2
loc ((0,+∞) × R2) to the unique solution u∞ of (1.1) such

that u∞(0, x1, x2) = 0 if x2 > −ax1−b and u∞(0, x1, x2) = 1 otherwise. By uniqueness, u∞
is then a function of the variables t and x2 + ax1 only, that is,

(1,−a) · ∇u∞(t, x1, x2) = 0 for all (t, x1, x2) ∈ (0,+∞)× R2.

Furthermore, u∞ is decreasing with respect to the variable x2 +ax1 in (0,+∞)×R2 (more
precisely, (a, 1) · ∇u∞(t, x1, x2) < 0 in (0,+∞) × R2), and, for each t ≥ 0, u∞(t, x) → 1
as x2 + ax1 → −∞ and u∞(t, x1, x2) → 0 as x2 + ax1 → +∞. Therefore, for every t > 0
and every λ ∈ (0, 1), the function Xλ(t, ·) defined by (1.29) is such that Xλ(t, x1) + ax1

has a finite limit as x1 → +∞, and also

∂x1Xλ(t, x1)→ −a as x1 → +∞.

Finally, for any λ ∈ (0, 1), ∂x1Xλ(t, x
′) cannot converge to 0 as t → +∞ uniformly with

respect to x′ ∈ R. The conclusion is the same if one just assumes that γ′(x1) → −a < 0
as x1 → +∞, and it also holds in higher dimensions N ≥ 2 under similar assumptions
on γ. In particular, if ` > 0 in condition (1.35), then the conclusion (1.36) of Theorem 1.9
is not uniform with respect to x′ ∈ RN−1.
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4.3 Proof of Theorem 1.9

We start with the proof of (1.36) firstly under condition (1.35) if N = 2, secondly under
condition (1.35) if N ≥ 3, thirdly under the condition γ(x′)/|x′| → −∞ as |x′| → +∞ in
any dimension N ≥ 2, fourthly if γ is nonincreasing with respect to |x′ − x′0| for large |x′|
and for some x′0 ∈ RN−1 in any dimension N ≥ 2, and fifthly if γ has small derivatives with
respect to |x′ − x′0| as |x′ − x′0| → +∞. The main idea is to argue by way of contradiction
and to compare the solution with its reflection with respect to a suitable hyperplane at
time 0 and then at all positive times from the maximum principle. This will eventually
contradict the Hopf lemma at a suitable point of this hyperplane. We finally derive (1.37)
in any dimension N ≥ 2, from (1.36). Throughout the proof, one assumes Hypothesis 1.1.

Step 1: property (1.36) in dimension N = 2 under condition (1.35). Assume by way of
contradiction that (1.36) does not hold. Then there exist a sequence (λn)n∈N in (0, 1), a se-
quence (tn)n∈N of positive real numbers diverging to +∞, and a bounded sequence (x′n)n∈N
in R, such that supn∈N λn < 1 and infn∈N |∂x′Xλn(tn, x

′
n)| > 0. Up to extraction of a

subsequence and changing the variable x′ into −x′, it is not restrictive to assume that

sup
n∈N

∂x′Xλn(tn, x
′
n) ≤ −2ε

for some ε > 0. In the sequel, we denote y the variable x2 and set yn := Xλn(tn, x
′
n)

and σn := ∂x′Xλn(tn, x
′
n) < 0. Since u(tn, x

′
n, yn) = λn is away from 1 and since tn → +∞

as n → +∞, it follows from Hypothesis 1.1 and from the boundedness of (x′n)n∈N
that yn → +∞ as n→ +∞. Notice that

(1, σn) · ∇u(tn, x
′
n, yn) = (1, ∂x′Xλn(tn, x

′
n)) · ∇u(tn, x

′
n, yn) = 0

by definition of Xλn , and denote

(αn, βn) :=
∇u(tn, x

′
n, yn)

|∇u(tn, x′n, yn)|
=

(σn,−1)√
1 + σ2

n

.

(βn is negative since ∂x2u < 0 in (0,+∞)×R2, and then αn is negative too since so is σn).
One then has σn = −αn/βn and

0 < ε ≤ −1

2
sup
n∈N

σn =
1

2
inf
n∈N

αn
βn
. (4.23)

We use now a reflection argument inspired by Jones [27]. For n ∈ N, consider the
line Ln passing through the point (x′n, yn) and directed as ∇u(tn, x

′
n, yn). It is the graph

of the function

x′ 7→ ρn(x′) :=
βn
αn

(x′ − x′n) + yn = − 1

σn
(x′ − x′n) + yn.

Then, consider the half-plane given by its open subgraph:

Ωn :=
{

(x′, y) ∈ R2 : y < ρn(x′)
}
.

The vector (1, σn) is then an inward normal to Ωn. Finally, let Rn denote the affine
orthogonal reflection with respect to Ln, that is,

Rn(x′, y) = (x′, y)− 2
[
(x′ − x′n, y − yn) · (−βn, αn)

]
(−βn, αn).
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We then define the function vn in [0,+∞)× Ωn by

vn(t, x′, y) := u(t,Rn(x′, y)).

We claim that, for n large enough,

vn(0, ·, ·) ≤ u0 in Ωn.

To prove this, we need to check that if (x′, y) ∈ Ωn is such that Rn(x′, y) ∈ suppu0, then
necessarily (x′, y) ∈ suppu0, which is equivalent to show that

Rn(suppu0\Ωn) ⊂ suppu0. (4.24)

Since (x′n)n∈N is bounded and (yn)n∈N diverges to +∞, and since γ is locally bounded,
we can assume without loss of generality that, for all n ∈ N, (x′n, yn) /∈ suppu0. We set

ξn := sup
{
x′ < x′n : γ(x′) ≥ ρn(x′)

}
and ζn := inf

{
x′ > x′n : γ(x′) ≥ ρn(x′)

}
.

If the above sets are empty we define ξn = −∞, and ζn = +∞, respectively. Observe
that the sequence of functions (ρn)n∈N tends locally uniformly to +∞, because yn → +∞
and the sequences (x′n)n∈N and (βn/αn)n∈N = (−1/σn)n∈N are bounded. Furthermore, γ is
locally bounded, and at least continuous outside a compact interval. It follows that

ξn → −∞ and ζn → +∞ as n→ +∞. (4.25)

We have that (suppu0\Ωn) ∩
(
(ξn, ζn) × R

)
= ∅ for all n large enough, hence for all n

without loss of generality. By hypothesis (1.35), there exists k > supn∈N |x′n| + 1 such
that γ is of class C1 in (−∞,−k] ∪ [k,+∞), and

γ′ ≥ `− ε in (−∞,−k] and γ′ ≥ −`− ε in [k,+∞). (4.26)

Without loss of generality, we can assume that

ξn < −k < k < ζn

for all n. We finally define
K1
n := Rn(suppu0\Ωn) ∩

(
(−∞,−k)× R

)
,

K2
n := Rn(suppu0\Ωn) ∩

(
[−k, k]× R

)
,

K3
n := Rn(suppu0\Ωn) ∩

(
(k,+∞)× R

)
,

These sets are depicted in Figure 1. We show separately that they are contained in suppu0,
for all n large enough. That will provide the desired property (4.24) for n large.
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Figure 1: The reflection argument, with the sets K1
n and K2

n.

The inclusion K1
n ⊂ suppu0. Consider a point in K1

n. It can be written as (x′, y)+ τ(1, σn)
with (x′, y) ∈ suppu0 \Ωn and 0 ≤ τ < −x′ − k. Notice that x′ < −τ − k ≤ −k,
hence y ≤ γ(x′). We write

γ(x′ + τ) = γ(x′) +

∫ τ

0

γ′(x′ + s)ds.

Conditions (4.23) and (4.26) yield γ′(x′ + s) ≥ `− ε > σn for x′ + s ≤ −k. We eventually
deduce that γ(x′ + τ) ≥ γ(x′) + σnτ ≥ y + σnτ . Since x′ + τ < −k, this implies that
(x′, y) + τ(1, σn) ∈ suppu0.

The inclusion K2
n ⊂ suppu0 for n sufficiently large. In this case we consider a point of the

type (x′, y) + τ(1, σn) with (x′, y) ∈ suppu0\Ωn and τ ≥ 0 such that −k ≤ x′ + τ ≤ k.
Since x′ ≤ k − τ ≤ k and (suppu0 \ Ωn) ∩

(
(ξn, ζn) × R

)
= ∅ with ξn < −k < k < ζn,

we get that x′ ≤ ξn < −k. Moreover, by hypothesis, there exists M > 0 (independent
of n, x′, y and τ) such that γ(s) ≤M + ε|s| for all s ∈ R. As a consequence, using (4.23),
we infer that

y + τσn ≤M − (ε+ σn)x′ − σnk ≤M − σn
(
x′

2
+ k

)
≤M − σn

(
ξn
2

+ k

)
.

The latter term tends to −∞ as n→ +∞ by (4.23) and (4.25). It follows that for n large
enough (independent of x′, y, τ) there holds that

y + τσn < inf
[−k,k]

γ − 1,

whence (x′, y) + τ(1, σn) ∈ suppu0. Therefore, K2
n ⊂ suppu0 for all n large enough, and

even K2
n ( suppu0 (by that, we mean that the difference suppu0\K2

n contains a non-trivial
ball).

The inclusion K3
n ⊂ suppu0 for n sufficiently large. We recall that ξn < −k < k < ζn and

(suppu0\Ωn) ∩
(
(ξn, ζn)× R

)
= ∅ for all n. We can then divide this case in the following

two subcases.
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Subcase 1: the points in K3
n of the type Rn(x′, y) with (x′, y) ∈ suppu0 \ Ωn

and x′ ≥ ζn (> k). If ` > 0 then γ is bounded from above and such points do not exist
for n sufficiently large, since they would satisfy ρn(x′) ≤ y ≤ γ(x′), whereas the sequence
of functions (ρn)n∈N tends to +∞ uniformly in any half-line [A,+∞). In the case ` = 0,
we write Rn(x′, y) = (x′, y) + τ(1, σn) for some τ ≥ 0. Then, because x′ ≥ ζn > k, we can
argue as in the case of K1

n and, by virtue of (4.23) and (4.26), derive

γ(x′ + τ) ≥ γ(x′)− ετ ≥ γ(x′) + σnτ ≥ y + σnτ,

that is, (x′, y) + τ(1, σn) ⊂ suppu0.
Subcase 2: the points in K3

n of the type Rn(x′, y) with (x′, y) ∈ suppu0 \ Ωn

and x′ ≤ ξn (< −k). Of course, these points exist only if ξn > −∞. By definition
of ξn, we see that ρ′n(ξn) ≥ γ′(ξn). Then, it follows from (4.26) that

βn
αn

= ρ′n(ξn) ≥ γ′(ξn) ≥ inf
(−∞,ξn]

γ′ ≥ `− ε,

whence (x′, y) is contained in the cone

Cn :=
{

(ξn, γ(ξn)) + s(−1,−(`− ε)) + t(αn, βn) : s, t ≥ 0
}
,

see Figure 1. The point Rn(x′, y) is contained in the reflected cone

Rn(Cn) =
{

(ξn, γ(ξn)) + s(ηn, ϑn) + t(αn, βn) : s, t ≥ 0
}
,

where

(ηn, ϑn) = R̃n(−1,−(`− ε)) = (−1,−(`− ε))− 2
[
(−1,−(`− ε)) · (−βn, αn)

]
(−βn, αn),

and R̃n denotes the linear orthogonal reflection with respect to the one-dimensional sub-
space R (αn, βn). We see that

ηn = −1 + 2βn

[
(−1,−(`− ε)) · (−βn, αn)

]
= 1− 2α2

n− 2(`− ε)αnβn ≤ 1− 2αn(αn− εβn),

which is not larger than 1 by (4.23) and the negativity of αn and βn. If ηn ≤ 0
then Rn(Cn) ⊂ (−∞, ξn] × R ⊂ (−∞,−k) × R ⊂ (−∞, k] × R, and therefore in this
case K3

n = ∅ and we are done. Suppose that ηn > 0, i.e., that

(−1,−(`− ε)) · (−βn, αn) <
1

2βn
.

We deduce that

ϑn = −`+ ε− 2αn

[
(−1,−(`− ε)) · (−βn, αn)

]
< −`+ ε− αn

βn
≤ −`− ε,

always by (4.23). This means that ϑn/ηn ≤ −`− ε, whence

Rn(Cn) ⊂
{

(ξn, γ(ξn)) + s(1,−`− ε) + t(αn, βn) : s, t ≥ 0
}
.

It eventually follows from (4.26) and from the fact that ξn → −∞ and γ(ξn)/ξn → −` ≤ 0
as n → +∞, that Rn(Cn) ∩

(
(k,+∞) × R

)
⊂ suppu0 for n large enough, that

is, Rn(x′, y) ∈ suppu0 in this last case too.
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Conclusion. We have shown that Rn(suppu0\Ωn) ⊂ suppu0, hence vn(0, ·, ·) ≤ u0 in Ωn

for n sufficiently large, and actually that u0 − vn(0, ·, ·) = 1 in a non-trivial ball included
in Ωn, because K2

n ( suppu0. The functions vn and u match on ∂Ωn. It then follows from
the parabolic strong maximum principle that vn < u in (0,+∞)× Ωn, and from the Hopf
lemma that, in particular,

∇u(tn, x
′
n, yn) · (1, σn) > ∇vn(tn, x

′
n, yn) · (1, σn) = R̃n(∇u(tn, x

′
n, yn)) · (1, σn).

We have reached a contradiction because ∇u(tn, x
′
n, yn) = R̃n(∇u(tn, x

′
n, yn)) (the vector

∇u(tn, x
′
n, yn) is indeed parallel to (αn, βn)). As a consequence, (1.36) has been proved

under condition (1.35) in dimension N = 2.

Step 2: common notations for the proof of (1.36) under conditions (i)-(iv) withN≥2. As-
sume any of the conditions (i)-(iv) of Theorem 1.9 and assume by way of contradiction
that (1.36) does not hold. Then there exist a sequence (λn)n∈N in (0, 1), a sequence (tn)n∈N
of positive real numbers diverging to +∞, a bounded sequence (x′n)n∈N in RN−1, and a se-
quence (e′n)n∈N in SN−2 (if N = 2, this means that e′n ∈ {−1, 1}), such that supn∈N λn < 1
and

sup
n∈N
∇x′Xλn(tn, x

′
n) · e′n︸ ︷︷ ︸

=:σn

< 0. (4.27)

Call
yn = Xλn(tn, x

′
n).

As in Step 1, one has yn → +∞ as n→ +∞. Notice that, for each n ∈ N,

(e′n, σn) · ∇u(tn, x
′
n, yn) = 0 (4.28)

by definition of Xλn , and denote Hn the affine hyperplane passing through the point (x′n, yn)
and orthogonal to (e′n, σn). This hyperplane is the graph of the function

x′ 7→ ρn(x′) := − 1

σn
(x′ − x′n) · e′n + yn. (4.29)

Then, consider the half-space given by its open subgraph:

Ωn :=
{

(x′, xN) ∈ RN : xN < ρn(x′)
}
. (4.30)

The vector (e′n, σn) is then an inward normal to Ωn. Finally, let Rn denote the affine
orthogonal reflection with respect to Hn, that is,

Rn(x′, xN) = (x′, xN)− 2
[
(x′ − x′n, xN − yn) · (e′n, σn)

] (e′n, σn)

1 + σ2
n

. (4.31)

We then define the function vn in [0,+∞)× Ωn by

vn(t, x′, xN) := u(t,Rn(x′, xN)), (4.32)

and we claim that, for n large enough, vn(0, ·, ·) ≤ u0 in Ωn and that u0 − vn(0, ·, ·) = 1
in a non-trivial ball. As in Step 1, this will then lead to a contradiction and complete the
proof.
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So, we just need to show that

Rn(suppu0\Ωn) ⊂ suppu0 (4.33)

and that suppu0 \ Rn(suppu0\Ωn) contains a non-trivial ball, for all n large enough.
To prove the latter, observe firstly that for any non-empty compact set K ⊂ RN , one

has

min
(x′,xN )∈K

(
xN − 2

[
(x′ − x′n, xN − yn) · (e′n, σn)

] σn
1 + σ2

n

)
→ +∞ as n→ +∞,

and

lim inf
n→+∞

min
(x′,xN )∈K

 xN − 2
[
(x′ − x′n, xN − yn) · (e′n, σn)

] σn
1 + σ2

n∣∣∣x′ − 2
[
(x′ − x′n, xN − yn) · (e′n, σn)

] e′n
1 + σ2

n

∣∣∣
 ≥ lim inf

n→+∞
|σn| > 0,

since yn → +∞, supn∈N σn < 0 and since the sequence (x′n)n∈N is bounded and (e′n)n∈N is
unitary. But γ in (1.28) is always assumed to be locally bounded, and it is easy to see that

lim sup
|x′|→+∞

γ(x′)

|x′|
≤ 0 (4.34)

in all cases (i)-(iv) of Theorem 1.9. Therefore, owing to the definition (4.31) of Rn, one
gets that Rn(K) ∩ suppu0 = ∅ for all n large enough, that is,

K ∩Rn(suppu0) = ∅, for all n large enough. (4.35)

In particular, suppu0 \Rn(suppu0\Ωn) contains a non-trivial ball for any n large enough.
Assume now by way of contradiction that (4.33) does not hold (for all n large enough).

Then, up to extraction of a subsequence, there is a sequence of points zn = (z′n, $n) in RN

such that
zn ∈ suppu0\Ωn and Rn(zn) /∈ suppu0, for all n ∈ N.

Denote

δn :=
(z′n − x′n, $n − yn) · (e′n, σn)

1 + σ2
n

, (4.36)

that is,
Rn(zn) = (z′n − 2δne

′
n, $n − 2δnσn). (4.37)

Since zn 6∈ Ωn, one has δn ≤ 0, and even

δn < 0

(since otherwise zn would lie on Hn and Rn(zn), which does not belong to suppu0, would
be equal to zn ∈ suppu0). Since yn → +∞ as n → +∞ and supn∈N σn < 0, together
with the boundedness of the sequences (x′n)n∈N and (e′n)n∈N, one infers that ρn(x′)→ +∞
as n → +∞ locally uniformly in x′ ∈ RN−1. Since zn = (z′n, $n) ∈ suppu0\Ωn, it then
follows from the local boundedness of γ and the definition (4.30) of Ωn, that

|z′n| → +∞ as n→ +∞, (4.38)
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and, together with (4.34), that

lim sup
n→+∞

$n

|z′n|
≤ 0. (4.39)

We also claim that
|z′n − 2δne

′
n| → +∞ as n→ +∞. (4.40)

Indeed, otherwise, up to extraction of a subsequence, the sequence (|z′n − 2δne
′
n|)n→+∞

would be bounded, hence δn → −∞ and −2δn ∼ |z′n| as n → +∞, since |z′n| → +∞,
δn < 0 and |e′n| = 1. Furthermore, since the points R(zn) given in (4.37) do not belong
to suppu0 and since γ is locally bounded, the sequence ($n − 2δnσn)n∈N would then be
bounded from below, that is, there would exist A ∈ R such that $n ≥ 2δnσn + A for
all n ∈ N. Finally, together with (4.27) and (4.38), one would have

lim inf
n→+∞

$n

|z′n|
≥ lim inf

n→+∞

2δnσn
|z′n|

= − lim sup
n→+∞

σn > 0,

a contradiction with (4.39). As a consequence, (4.40) has been proved.
Lastly, since Rn(zn) = (z′n − 2δne

′
n, $n − 2δnσn) 6∈ suppu0 and γ is at least continuous

outside a compact set in all cases (i)-(iv) of Theorem 1.9, one gets from (4.40) that

$n − 2δnσn > γ(z′n − 2δne
′
n) (4.41)

for all n large enough, and then for all n without loss of generality. Moreover, since
zn = (z′n, $n) ∈ suppu0\Ωn, it follows from (4.30) and (4.38) that ρn(z′n) ≤ $n ≤ γ(z′n)
for all n large enough, and then for all n without loss of generality. Therefore,

γ(z′n − 2δne
′
n)− γ(z′n) < −2δnσn. (4.42)

Step 3: property (1.36) in any dimension N≥3 under condition (1.35). Since the func-
tion γ is always locally bounded, the assumption (1.35) and the nonnegativity of ` then
imply that γ is here globally bounded from above. With the notations of Step 2, define,
for each n ∈ N,

ξn := sup
{
x′ · e′n : γ(x′) ≥ ρn(x′)

}
(with the value −∞ if the above set is empty). Since yn → +∞ as n → +∞
and supn∈N σn < 0, together with the boundedness of the sequences (x′n)n∈N and (e′n)n∈N,
one infers that infx′·e′n≥A ρn(x′) → +∞ for every A ∈ R. Together with the boundedness
from above of γ and the fact that it is at least continuous (and even C1) in RN−1\B′R for
some R > 0, one gets that ξn → −∞ as n→ +∞, and then that

ξn ≤ −R and suppu0\Ωn ⊂
{

(x′, xN) ∈ RN : x′ · e′n ≤ ξn
}

for all n, without loss of generality. In particular, since zn = (z′n, $n) ∈ suppu0\Ωn, one
has z′n · e′n ≤ ξn ≤ −R, and

z′n · e′n → −∞ as n→ +∞. (4.43)

Furthermore, owing to the definition (4.36) of δn, one has

|z′n|2 − |z′n−2δne
′
n|2 = −4δn(δn−z′n · e′n) =

−4δn
1+σ2

n

(
− σ2

n(z′n · e′n)−x′n · e′n+σn($n−yn)
)
.
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Since supn∈N σn < 0, since z′n · e′n → −∞, since the sequences (x′n)n∈N and (e′n)n∈N are
bounded, since the sequence ($n)n∈N is bounded from above (because γ is globally bounded
from above and zn = (z′n, $n) ∈ suppu0), and since yn → +∞, one infers that

−σ2
n(z′n · e′n)− x′n · e′n + σn($n − yn)→ +∞ as n→ +∞.

Together with the negativity of δn, one gets that |z′n|2 − |z′n − 2δne
′
n|2 > 0 for all n large

enough, while limn→+∞ |z′n − 2δne
′
n| = +∞ by (4.40), hence

|z′n| > |z′n − 2δne
′
n| ≥ R (4.44)

for all n, without loss of generality.
Let us now complete the argument. Since γ is here assumed to be of class C1 outside B′R

and since it satisfies (1.35) (use here the condition on the radial gradients at large |x′| and
the positivity of η), there is M > 0 such that

∣∣γ(x′) + `|x′|
∣∣ ≤M for all |x′| ≥ R. Together

with (4.42)-(4.44) and the nonnegativity of `, it follows that

−2δnσn > −`|z′n − 2δne
′
n| −M + `|z′n| −M ≥ −2M

for all n. But δn < 0 and supn∈N σn < 0. Thus, the sequence (δn)n∈N is bounded. Together
with (4.38), that implies that |z′n − 2sδne

′
n| ≥ R for all s ∈ [0, 1] and for all n ∈ N,

without loss of generality. Dividing (4.42) by −2δn > 0 and using the C1 smoothness of γ
outside B′R, one then gets the existence of a sequence (ϑn)n∈N in (0, 1) such that

∇γ(z′n − 2ϑnδne
′
n) · e′n < σn (4.45)

for all n ∈ N. Since the sequences (ϑn)n∈N, (δn)n∈N and (e′n)n∈N are bounded, one then
infers from (1.35) and (4.38) that

∇γ(z′n − 2ϑnδne
′
n) · e′n = −` z′n · e′n

|z′n − 2ϑnδne′n|
+ o(1) as n→ +∞,

hence lim infn→+∞∇γ(z′n − 2ϑnδne
′
n) · e′n ≥ 0 from (4.43) and the nonnegativity of `. But

this last formula contradicts (4.27) and (4.45).
One has then reached a contradiction, implying that the desired property (4.33) holds

for all n large enough, while suppu0 \ Rn(suppu0 \Ωn) contains a non-trivial ball, for
all n large enough. Therefore, the functions vn defined by (4.32) satisfy vn(0, ·, ·) ≤ u0

in Ωn for n large enough, and u0 − vn(0, ·, ·) = 1 in a non-trivial ball included in Ωn. The
functions vn and u match on ∂Ωn. It then follows from the parabolic strong maximum
principle that vn < u in (0,+∞)× Ωn, and from the Hopf lemma that, in particular,

∇u(tn, x
′
n, yn) · (e′n, σn) > ∇vn(tn, x

′
n, yn) · (e′n, σn) = R̃n(∇u(tn, x

′
n, yn)) · (e′n, σn), (4.46)

where R̃n denotes the linear orthogonal reflection with respect to the linear hyperplane
orthogonal to the vector (e′n, σn). But the vector ∇u(tn, x

′
n, yn) is orthogonal to (e′n, σn)

by (4.28), hence ∇u(tn, x
′
n, yn) = R̃n(∇u(tn, x

′
n, yn)). This finally contradicts (4.46). As a

consequence, (1.36) has been proved under condition (1.35) in any dimension N ≥ 3.

Step 4: property (1.36) for any N ≥ 2 if γ(x′)/|x′| → −∞ as |x′| → +∞. Arguing by way
of contradiction as in Step 2, there exist a sequence (λn)n∈N in (0, 1), a sequence (tn)n∈N
of positive real numbers diverging to +∞, a bounded sequence (x′n)n∈N in RN−1,
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and a sequence (e′n)n∈N in SN−2 such that supn∈N λn < 1 and supn∈N σn < 0, with
σn = ∇x′Xλn(tn, x

′
n) · e′n. One still has yn := Xλn(tn, x

′
n) → +∞ as n → +∞ and one

can then define the functions ρn as in (4.29), the half-spaces Ωn as in (4.30) and the affine
orthogonal reflections Rn as in (4.31). Since supn∈N σn < 0 and yn → +∞, it then easily
follows that, for all n large enough,

suppu0 ⊂ Ωn,

hence (4.33) is automatically satisfied with Rn(suppu0 \Ωn) = ∅ ( suppu0 for all n large
enough. One then concludes as in the last paragraph of Step 3.

Step 5: property (1.36) for any N≥2 if γ is nonincreasing in |x′−x′0|. More precisely, let

us assume here that there are x′0 ∈ RN−1 and a continuous nonincreasing function
Γ : R+ → R such that γ(x′) = Γ(|x′ − x′0|) for all x′ outside a compact set. Since
the desired conclusion (1.36) is invariant by translation with respect to the first N −1
variables of RN , one can assume without loss of generality that x′0 = 0 and that γ is
continuous and nonincreasing with respect to |x′| for |x′| large enough. Since γ is locally
bounded, it is then globally bounded from above. By using the same notations and repeat-
ing the same arguments as in Steps 2 and 3 above until (4.44) (as far as γ is concerned,
the arguments until (4.44) only use the boundedness of γ from above), one gets (4.42)-
(4.44). But both |z′n| and |z′n − 2δne

′
n| converge to +∞ as n→ +∞ by (4.38) and (4.40),

and γ is nonincreasing with respect to |x′| outside a compact set. Therefore, (4.44) implies
that γ(z′n − 2δne

′
n) − γ(z′n) ≥ 0 for all n large enough, contradicting (4.42) since both δn

and σn are negative. One then concludes as in the last paragraph of Step 3.

Step 6: property (1.36) for any N≥2 if γ = Γ(| · −x′0|) with Γ′(+∞) = 0. More precisely,

let us assume here that there are x′0 ∈ RN−1 and a C1 function Γ : R+ → R such
that Γ′(r) → 0 as r → +∞ and γ(x′) = Γ(|x′ − x′0|) for all x′ outside a compact set.
As in Step 5, one can assume without loss of generality that x′0 = 0. With the same
notations as in Step 2, both |z′n| and |z′n − 2δne

′
n| converge to +∞ as n → +∞ by (4.38)

and (4.40). Therefore, for every ε > 0, there holds

|γ(z′n − 2δne
′
n)− γ(z′n)| =

∣∣Γ(|z′n − 2δne
′
n|)− Γ(|z′n|)

∣∣ ≤ ε
∣∣|z′n − 2δne

′
n| − |z′n|

∣∣ ≤ 2ε|δn|

for all n large enough (remember that |e′n| = 1). Since ε > 0 can be arbitrarily small and
since δn < 0 for all n and supn∈N σn < 0 by (4.27), the above formula contradicts (4.42).
One then concludes as in the last paragraph of Step 3.

Step 7: proof of property (1.37). We assume in this last step any of the assumptions (i)-(iv)

of Theorem 1.9. Consider any bounded sequence (x′n)n∈N of RN−1, any sequence (tn)n∈N
of positive real numbers diverging to +∞, and any sequence (yn)n∈N in R. Two cases may
occur, up to extraction of a subsequence.

On the one hand, if lim supn→+∞ u(tn, x
′
n, yn) < 1, then |∇x′Xu(tn,x′n,yn)(tn, x

′
n)| → 0

as n→ +∞ from (1.36), hence

|∇x′u(tn, x
′
n, yn)| = |∂xNu(tn, x

′
n, yn)| |∇x′Xu(tn,x′n,yn)(tn, x

′
n)| → 0 as n→ +∞

from the boundedness of ∂xNu in [1,+∞)× RN .
On the other hand, if u(tn, x

′
n, yn)→ 1 as n→ +∞, then, up to extraction of a subse-

quence, the functions un : (t, x′, xN) 7→ u(t+ tn, x
′+x′n, xN + yn) converge in C1;2

loc (R×RN)
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to a classical solution u∞ of ∂tu∞ = ∆u∞+f(u∞) in R×RN , with 0 ≤ u∞ ≤ 1 in R×RN ,
and u∞(0, 0, 0) = 1. The strong parabolic maximum principle and the uniqueness of the
bounded solutions of the Cauchy problem (1.1) imply that u∞ ≡ 1 in R × RN . In par-
ticular, |∇x′u(tn, x

′
n, yn)| = |∇x′un(0, 0, 0)| → |∇x′u∞(0, 0, 0)| = 0 as n → +∞. Since

the limit (namely, 0) does not depend on the subsequence, one concludes that the whole
sequence (|∇x′u(tn, x

′
n, yn)|)n∈N converges to 0 as n→ +∞.

The previous paragraphs provide property (1.37) under any of the assumptions (i)-(iv)
and the proof of Theorem 1.9 is thereby complete. �

4.4 Proof of Proposition 1.11

Let N = 2. Consider a function f such that Hypothesis 1.3 is satisfied (hence, Hypothe-
sis 1.1 as well), and let θ ∈ (0, 1) be given by Hypothesis 1.1. Let us call for short y the
variable x2. We consider a function γ defined for |x′| > 1 by

γ(x′) =
√
|x′| sin(

√
|x′|),

and extended in a smooth way to the whole R. For x′ > 1, we compute

γ′(x′) =
1

2
√
x′

sin(
√
x′) +

1

2
cos(
√
x′).

The function γ then fulfills condition (1.41). Furthermore, γ′(x′ + 4π2n2) → 1/2
as n→ +∞, locally uniformly in x′ ∈ R. As a consequence, u0(·+ 4π2n2, ·)→ H(2y − x′)
as n→ +∞ in Lploc(R2), for any p ≥ 1, where H is the Heaviside function:

H(s) =

{
1 if s ≤ 0,

0 if s > 0.

Then, by parabolic estimates, u(t, x′+4π2n2, y) converges as n→ +∞ (up to subsequences)
in C1;2

loc ((0,+∞) × R2), to the solution v of (1.1) with initial datum H(2y − x′). By
uniqueness, the function v is of the form v(t, x′, y) = w(t, 2y − x′). Moreover, as for the
xN -monotonicity of u with initial conditions satisfying (1.28), the comparison principle
shows that w(t, z) is nonincreasing with respect to z, and the strong maximum principle
applied to ∂zw implies that ∂zw < 0 in (0,+∞)× R2.

Fix now any λ ∈ (θ, 1), and consider an arbitrary t > 0. Let zt ∈ R be
such that w(t, zt) = λ (as in (1.29), such zt exists and is unique because the func-
tion w(t, ·) is continuous and decreasing, and w(t,−∞) = 1 and w(t,+∞) = 0). We
see that v(t, 0, zt/2) = λ and

∂1v(t, 0, zt/2)

∂2v(t, 0, zt/2)
=
−∂zw(t, zt)

2 ∂zw(t, zt)
= −1

2
.

As a consequence, there holds from one hand that

lim
n→+∞

u(t, 4π2n2, zt/2) = λ,

and from the other hand that

lim
n→+∞

∂1u(t, 4π2n2, zt/2)

∂2u(t, 4π2n2, zt/2)
= −1

2
.
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Hence, owing to (1.33), one has ∂x′Xu(t,4π2n2,zt/2)(t, 4π
2n2)→ 1/2 as n→ +∞. Therefore,

for every λ0 ∈ (λ, 1) and every t > 0, one has

sup
θ≤λ′≤λ0, x′∈R

|∂x′Xλ′(t, x
′)| ≥ 1

2
.

This shows that u violates the conclusion (1.39) of Conjecture 1.10.
Moreover, since Hypothesis 1.1 holds, [14, Theorem 1.11] implies that the functions

w(t, zt+·) converge as t→ +∞ in C2
loc(R) to the profile of a decreasing or constant solution

connecting some values a to b with 1 ≥ a ≥ λ ≥ b ≥ 0, and belonging to the minimal
propagating terrace solution to (1.1) connecting 1 to 0. But this minimal propagating
terrace reduces here to a single decreasing traveling front owing to Hypothesis 1.3. It
follows in particular that limt→+∞−∂zw(t, zt) > 0. Since

lim
n→+∞

∂1u(t, 4π2n2, zt/2) = −∂zw(t, zt)

for every t > 0, conclusion (1.40) fails too. �

5 The asymptotic one-dimensional symmetry: proofs

of Theorems 1.13 and 1.14, and Corollary 1.15

Section 5.1 is devoted to the proofs of Theorems 1.13 and 1.14 on the asymptotic one-
dimensional symmetry of the solutions in all directions, under some conditions on the initial
support in (1.2). In Section 5.2, we are concerned with the asymptotic one-dimensional
symmetry in some specific directions, related to a notion of directional Ω-limit set, and
we also prove Corollary 1.15. We recall that in the Fisher-KPP case (1.43) dealt with
throughout this section, Hypotheses 1.1 and 1.3 are fulfilled, with any θ ∈ (0, 1) and ρ > 0
in Hypothesis 1.1, and the minimal speed of traveling fronts connecting 1 to 0 is equal to
c∗ = 2

√
f ′(0).

5.1 Asymptotic one-dimensional symmetry in all directions

We start with the proof of Theorem 1.14. The cornerstone of the proof is the following
approximation result.

Lemma 5.1. Assume that f is of the Fisher-KPP type (1.43). Let u be a solution to (1.1)
with an initial condition u0 = 1U , where U ⊂ RN has nonempty interior and satisfies, for
some δ, L > 0 and some σ ∈ (0, c∗/2),

Uδ ∩BL 6= ∅ and U \ (B′L × R) ⊂
{

(x′, xN) ∈ RN : xN ≤
σ

2c∗
|x′|
}
. (5.1)

Let (uR)R>0 be the solutions to (1.1) emerging from the initial data (uR0 )R>0 defined by

uR0 = 1U∩(B′R×R).

Then, for any ε > 0, there exists τε > 0, only depending on f,N, δ, L, σ and ε, such that

∀ τ ≥ τε,
∥∥u(τ, ·)− u3στ (τ, ·)

∥∥
C1(B′στ×R+)

< ε. (5.2)
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Proof. For ε > 0, we will show the existence of τε > 0 depending on f,N, δ, L, σ, ε such that

∀ τ ≥ τε,
∥∥u(τ + 1, ·)− u3στ (τ + 1, ·)

∥∥
L∞(Cτ )

< ε, (5.3)

where Cτ is the half-cylinder

Cτ := B′στ × R+ = B′στ × (0,+∞).

Once (5.3) is proved, observing that u−u3στ is nonnegative (by the comparison principle)
and it solves a linear parabolic equation, one infers from the parabolic Harnack inequality
and interior estimates, given for instance by [29], that (5.2) holds with ε replaced by Cε,
where C only depends on f and N . Then, to prove the lemma it is sufficient to derive (5.3)
for an arbitrary ε > 0.

Fix ε > 0. Consider the solutions (wR)R>0 to (1.1) emerging from the initial
data (wR0 )R>0 given by

wR0 = 1WR , WR :=
{

(x′, xN) ∈ RN : |x′| ≥ R, xN ≤
σ

2c∗
|x′|
}
.

Note that u0 ≤ min(uR0 +wR0 , 1) for all R ≥ L, hence, since under the KPP condition (1.43)
the minimum between 1 and the sum of two solutions ranging in [0, 1] is a supersolution
(because f(1) = 0 and f(a+ b) ≤ f(a) + f(b) for all a, b ∈ [0, 1] with a+ b ≤ 1), we infer
by comparison that, for R ≥ L,

0 ≤ uR ≤ u ≤ min(uR + wR, 1).

Thus, property (5.3) holds for some τε ≥ L/(3σ) if we show that

∀ τ ≥ τε, sup
Cτ

(
min(u3στ (τ + 1, ·) + w3στ (τ + 1, ·), 1)− u3στ (τ + 1, ·)

)
< ε. (5.4)

For this, with a value c ∈ (2σ, c∗) that will be chosen later, we divide the half-cylinder Cτ
into the subsets

Ciτ :=
(
B′στ × R+

)
∩Bcτ , Ceτ :=

(
B′στ × R+

)
\Bcτ .

Let us first deal with the set Ciτ , with any c ∈ (2σ, c∗). By hypothesis, there exists a ball
Bδ(x0) ⊂ U with |x0| < L, hence u3στ

0 (x+ x0) = 1 for |x| < δ, provided that 3στ ≥ L+ δ.
Applying the spreading result of Proposition 1.4 to the solution of (1.1) with initial datum
1Bδ , and then using the comparison principle, we find a value τ1 ≥ (L+ δ)/(3σ) depending
on f,N, c, δ, L, σ, ε such that

∀ τ ≥ τ1, inf
x∈B(c∗+c)τ/2

u3στ (τ + 1, x+ x0) > 1− ε.

Since Ciτ ⊂ Bcτ ⊂ Bcτ+L(x0) for all τ > 0, and Bcτ+L(x0) ⊂ B(c∗+c)τ/2(x0) if (c∗−c)τ/2 ≥ L,
there exists τ2 > 0 depending on f,N, c, c∗, δ, L, σ, ε (hence on f,N, c, δ, L, σ, ε since c∗ only
depends on f) for which

inf
Ciτ
u3στ (τ + 1, x) ≥ inf

B(c∗+c)τ/2(x0)
u3σ(τ + 1, x) > 1− ε.

This shows that (5.4) holds when Cτ is replaced by Ciτ , for all τ ≥ τ2 and for any choice of
c ∈ (2σ, c∗).
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As for the set Ceτ , we estimate its distance from W 3στ in order to derive an upper bound
for w3στ . In this paragraph, τ > 0 is arbitrary and c ∈ (2σ, c∗) will be fixed at the end
of the paragraph. Take two arbitrary points x = (x′, xN) ∈ Ceτ and y = (y′, yN) ∈ W 3στ .
There holds

|x′| < στ ≤ 1

3
|y′| and xN >

√
c2 − σ2 τ, yN ≤

σ

2c∗
|y′|.

We compute

|x− y|2 = |x′ − y′|2 + (xN − yN)2 ≥ 4

9
|y′|2 + (xN − yN)2.

If σ|y′|/(2c∗) ≥
√
c2 − σ2 τ , we find that

|x− y|2 ≥ 16

9
(c∗)2

( c2

σ2
− 1
)
τ 2 ≥ 16

3
(c∗)2τ 2

since c > 2σ > 0. Instead, in the opposite case σ|y′|/(2c∗) <
√
c2 − σ2 τ , one has

yN ≤ σ|y′|/(2c∗) <
√
c2 − σ2 τ < xN , whence

|x− y|2 ≥ 4

9
|y′|2 +

(√
c2 − σ2 τ − σ

2c∗
|y′|
)2

=
4

9
|y′|2 + (c2 − σ2)τ 2 +

σ2

4(c∗)2
|y′|2 − σ

c∗

√
c2 − σ2 τ |y′|,

and we estimate the negative terms by observing that

4

9
|y′|2 − σ2τ 2 − σ

c∗

√
c2 − σ2 τ |y′| ≥ |y′|

(1

3
|y′| − σ

c∗

√
c2 − σ2 τ

)
≥ 0

since |y′|/3 ≥ στ ≥ σ
√
c2 − σ2τ/c∗. Thus, in such case one has

|x− y|2 ≥ c2τ 2 +
σ2

4(c∗)2
|y′|2 ≥ c2τ 2 +

9σ4τ 2

4(c∗)2
,

which is larger than (c∗)2τ 2 for c ∈ (2σ, c∗) close enough to c∗, depending on c∗ = 2
√
f ′(0)

and σ only. Summing up, we have shown the existence of some c ∈ (2σ, c∗) and c′ > c∗,
depending on c∗ = 2

√
f ′(0) and σ, such that

dist(x,W 3στ ) ≥ c′τ for all τ > 0 and x ∈ Ceτ . (5.5)

Finally, we invoke the supersolutions (vT )T>0 provided by Proposition 3.2, associated
with a fixed c̃ ∈ (c∗, c′) and λ = ε; they satisfy (3.1) with c̃ instead of c and a quan-
tity R depending on f,N, c̃, c∗ and ε (hence, R depends on f,N, σ and ε, since c′ and c̃
only depend on c∗ = 2

√
f ′(0) and σ). Take τ3 > 0 large enough (depending on R, c̃, c′,

hence on f,N, σ, ε) so that R + c̃(T + 1) ≤ c′T for all T ≥ τ3, whence vT+1(0, x) ≥ 1
for |x| ≥ c′T . On the other hand, for all τ > 0 and x0 ∈ Ceτ , we know from (5.5)
that Bc′τ (x0) ∩W 3στ = ∅, which implies that w3στ

0 (x + x0) = 0 for |x| < c′τ . This means
that, for τ ≥ τ3, w3στ (0, · + x0) ≤ vτ+1(0, ·) in RN , and thus w3στ (t, · + x0) ≤ vτ+1(t, ·)
in RN for all t ≥ 0 by comparison. We conclude by (3.1) that

∀ τ ≥ τ3, ∀x0 ∈ Ceτ , w3στ (τ + 1, x0) ≤ vτ+1(τ + 1, 0) < ε.

This yields that (5.4) holds in the set Ceτ too, for a suitable choice of c depending
on c∗ = 2

√
f ′(0) and σ, and for all τ ≥ τ3 > 0 with τ3 depending on f,N, σ, ε.

Therefore (5.4) holds true in the whole Cτ , for some τε ≥ max(τ2, τ3) > 0 depending
on f,N, δ, L, σ, ε. The proof of the lemma is complete.
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We now derive Theorem 1.14 combining Lemma 5.1 with some of our previous results
about the speed of propagation, and finally with a reflection argument “à la Jones” [27].

Proof of Theorem 1.14. Consider a function ψ ∈ Ω(u), and let (tn)n∈N in R+ and (xn)n∈N
in RN be the associated sequences given in the definition (1.3) of Ω(u), with (tn)n∈N
diverging to +∞ and u(tn, xn + ·)→ ψ as n→ +∞ in L∞loc(RN). In order to show that ψ
is one-dimensional, we proceed in several steps: we first derive some properties of (tn)n∈N
and (xn)n∈N and use them to define some new coordinate systems; next, assuming by
contradiction that ψ is not one-dimensional, we show that a line orthogonal to a level set
of u at time tn is far from a suitable half-cylinder with radius of order tn, which in the
following step is used for the truncation of the initial support U to which we apply the
convergence result of Lemma 5.1 (this is where the geometric assumption (1.47) is used);
finally, we get a contradiction by applying Jones’ reflection argument to the truncated
solution.

First of all, if U = ∅, then u(t, x) = 0 for all t ≥ 0 and x ∈ RN , hence Ω(u) is reduced
to the zero function and the desired conclusion trivially holds in this case. Therefore,
we can assume in the sequel without loss of generality that U is not empty, and then its
positive-distance-interior Uδ is not empty either for some δ > 0, thanks to (1.44).

Step 1: properties of the sequences and coordinates transformations. For n ∈ N, we call
for short hn := dist(xn, U) and we take a point ξn in the set πxn of the projections of xn
onto U (i.e., ξn ∈ U and |xn − ξn| = hn). Using some of our previous results about the
spreading speed, we claim that (1.44) yields

∀ c ∈ (0, c∗), hn ≥ ctn for all n sufficiently large, (5.6)

unless ψ ≡ 1, in which cases ψ is trivially one-dimensional. Suppose indeed that
hn < ctn for infinitely many n ∈ N, for some c ∈ (0, c∗). By assumption (1.44), for
given c < c1 < c2 < c∗, the inclusion U +Bc1t ⊂ Uδ +Bc2t holds for t > 0 sufficiently large.
Hence, Lemma 3.1 yields infx∈U+Bc1t

u(t, x)→ 1 as t→ +∞, from which one infers ψ ≡ 1.
Thus, in the rest of the proof, we assume that ψ 6≡ 1 hence (5.6) holds and then, in

particular, hn > 0 for all n ∈ N (up to extraction of a subsequence). We set

en :=
xn − ξn
hn

.

Next, we consider a family of N ×N orthogonal matrices (Mn)n∈N such that Mn(eN) = en,
and we define, for t ≥ 0 and x ∈ RN ,

un(t, x) := u(t, ξn +Mn(x)).

These are still solutions to (1.1), because the equation is invariant under isometry. We
have that, up to subsequences, (en)n∈N and (Mn)n∈N converge respectively to some direction
e ∈ SN−1 and some orthogonal matrix M , with M(eN) = e. It follows that

un(tn, hneN + x) = u(tn, xn +Mn(x)) −→ ψ(M(x)) =: ψ̃(x) as n→ +∞, (5.7)

locally uniformly in x ∈ RN . Moreover, un(0, ·) = 1Un with

Un := M−1
n (U)−M−1

n (ξn)
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(a rigid transformation of U). The set Un is constructed in a way that 0 ∈ Un is an
orthogonal projection of hneN onto Un and thus, since dist(hneN , Un) = hn → +∞ as
n → +∞ by (5.6), the geometric assumption (1.47) (which is invariant by isometries)
yields

Un ⊂
{
y ∈ RN : y · eN ≤ αn|y′|

}
with αn → 0 as n→ +∞. (5.8)

Step 2: the choice of the truncation. We claim that

∇x′ψ̃ ≡ 0 in RN , (5.9)

that is,
∇ψ · e′ ≡ (M(∇ψ̃)) · e′ ≡ ∇ψ̃ · (M t(e′)) ≡ 0 in RN

for any direction e′ ∈ SN−1 such that M t(e′) ⊥ eN , i.e., e′ ⊥M(eN) = e. Hence this would
imply that ψ = ψ(x · e).

Assume by contradiction that the above claim (5.9) fails, that is, that ∇x′ψ̃(x̄) 6= 0
for some x̄ ∈ RN . By interior parabolic estimates, up to extraction of a subsequence, the
L∞loc(RN) convergence (5.7) holds true in C1

loc(RN), hence in particular

∇un(tn, hneN + x̄)→ ∇ψ̃(x̄) as n→ +∞. (5.10)

Take a real number ϑ > 0, that will be fixed at the end of this paragraph. Let (Hn)n∈N
be the family of closed half-cylinders in RN defined by

Hn := B′ϑtn × (−∞, ϑtn].

Consider also the conical sets (Vn)n∈N given by

Vn :=
{
hneN + s(∇ψ̃(x̄) + ζ) : s ∈ R, ζ ∈ Bϑ

}
. (5.11)

We look for ϑ small enough so that

Hn ∩ Vn = ∅ for all n sufficiently large. (5.12)

To do so, consider a generic point P ∈ Vn, written as P = hneN + x̄ + s
(
∇ψ̃(x̄) + ζ

)
for

some s ∈ R and ζ ∈ Bϑ, and suppose that P ∈ Hn, whence

ϑtn ≥
(
|∇x′ψ̃(x̄)| − ϑ

)
|s| − |x̄|.

We then impose that ϑ < |∇x′ψ̃(x̄)| to infer that, when P ∈ Hn,

|s| ≤ ϑtn + |x̄|
|∇x′ψ̃(x̄)| − ϑ

,

that we use to estimate

P · eN ≥ hn − |x̄| −
(
|∂xN ψ̃(x̄)|+ ϑ

)
|s| ≥ hn − |x̄| −

|∂xN ψ̃(x̄)|+ ϑ

|∇x′ψ̃(x̄)| − ϑ
(ϑtn + |x̄|).

Using (5.6), one finds that the above right-hand side is larger than ϑtn for n large, provided

that ϑ is sufficiently small, only depending on |∂xN ψ̃(x̄)|, |∇x′ψ̃(x̄)| and the quantity c > 0
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chosen in (5.6). This means that, for such values of ϑ, condition (5.12) holds. We then
choose ϑ small enough in such a way that (5.12) holds and, in addition,

0 < ϑ <
3c∗

2
. (5.13)

This fixes the choice of the half-cylinders (Hn)n∈N.

Step 3: the approximation procedure. We now apply Lemma 5.1 to the sequence of solu-
tions (un)n∈N. Take δ > 0 from hypothesis (1.44),

σ :=
ϑ

3
> 0, L := dH(U,Uδ) + 1 > 0, ε :=

ϑ

2
> 0, (5.14)

where ϑ is given in the previous step. One has that σ < c∗/2 by (5.13) and 0 < L < +∞
by (1.44). We further have, on the one hand, that (Un)δ ∩ BL 6= ∅, because 0 ∈ Un and
dH(Un, (Un)δ) = dH(U,Uδ) < L. On the other hand, it follows from (5.8) that, for n large,

Un ⊂
{

(x′, xN) ∈ RN : xN ≤
σ

2c∗
|x′|
}
.

This means that the sets Un fulfill the hypotheses of Lemma 5.1 for n large enough.
Therefore, for such values of n, considering the solutions uϑtnn of (1.1) whose initial datum
is given by the indicator function of the set

Un ∩ (B′ϑtn × R), 9

the estimate (5.2) implies in particular that∥∥un(tn, ·)− uϑtnn (tn, ·)
∥∥
C1(B′

ϑtn/3
×R+)

<
ϑ

2
,

provided that tn > τε, where τε is independent of n. This means that the above estimate
holds true for all n sufficiently large. One infers, using also (5.10),∣∣∇uϑtnn (tn, hneN + x̄)−∇ψ̃(x̄)

∣∣ < ϑ for all n sufficiently large. (5.15)

This means that, for such values of n, the line Γn passing through the point hneN + x̄ and
directed as ∇uϑtnn (tn, hneN + x̄) is contained in the set Vn defined in (5.11), and therefore,
by (5.12), (

Γn ∩Hn

)
⊂
(
Vn ∩Hn

)
= ∅ for all n sufficiently large.

Next, owing to (5.8), we also have that Un ∩ (B′ϑtn × R) ⊂ Hn for all n sufficiently
large, i.e.,

suppuϑtnn (0, ·) ⊂ Hn for all n sufficiently large. (5.16)

Step 4: the reflection argument. Let Hn, Vn,Γn and uϑtnn be as in the previous steps. For n
large enough, the half-cylinder Hn and the line Γn are convex, closed and disjoint; we can
then separate them with an hyperplane, which, up to translation, can be assumed without
loss of generality to contain Γn. Namely, for n large, there exists an open half-space Ωn

such that
Γn ⊂ ∂Ωn and Hn ⊂ Ωn. (5.17)

9Notice that, for every n large enough, this set contains a non-empty open ball, since (Un)δ ∩BL 6= ∅.

68



By (5.16), one has suppuϑtnn (0, ·) ⊂ Ωn for n large. Let Rn denote the affine orthogonal
reflection with respect to ∂Ωn. Then define the function vn in [0,+∞)× Ωn by

vn(t, x) := uϑtnn (t,Rn(x)).

The function vn coincides with uϑtnn on [0,+∞) × ∂Ωn, and furthermore it vanishes
identically at t = 0 in Ωn, provided n is large enough for (5.16)-(5.17) to hold.
Then, for such values of n, it follows from the comparison principle that vn ≤ uϑtnn
in (0,+∞)×Ωn, and moreover, by the Hopf lemma, that ∂νnv

n > ∂νnu
ϑtn
n on (0,+∞)×∂Ωn,

where νn is the exterior normal to Ωn. Since clearly ∂νnv
n = −∂νnuϑtnn , this means

that ∂νnu
ϑtn
n < 0 on (0,+∞)× ∂Ωn, and thus in particular that ∂νnu

ϑtn
n (tn, hneN + x̄) < 0,

because hneN + x̄ ∈ Γn ⊂ ∂Ωn. This is however impossible because ∇uϑtnn (tn, hneN + x̄)
is parallel to Γn and thus orthogonal to νn. We have reached a contradiction. This shows
that ψ = ψ(x · e) and then concludes the proof of Theorem 1.14.

Theorem 1.13 will be a consequence of Theorem 1.14 and the following lemma.

Lemma 5.2. For any U ⊂ RN , the map

R 7→ sup
x∈RN , dist(x,U)=R

O(x)

is nonincreasing, where O(x) is defined in (1.46). Moreover, for any U ′ ⊂ RN satisfying
dH(U,U ′) < +∞, then U fulfills (1.47) if and only if U ′ does (with the corresponding O
defined as in (1.46) with U ′ instead of U).

Proof. The monotonicity property involving O is readily derived. Consider indeed any

0 < R′ < R.

If the set {x ∈ RN : dist(x, U) = R} is empty, then supx∈RN , dist(x,U)=RO(x) = −∞ and
the inequality supx∈RN , dist(x,U)=RO(x) ≤ supx∈RN , dist(x,U)=R′ O(x) is trivially true. Assume

now that the set {x ∈ RN : dist(x, U) = R} is not empty, and consider any x in this
set and any ξ ∈ πx, that is, ξ ∈ U and |x − ξ| = dist(x, U) = R. Consider the point
x′ := ξ+(R′/R)(x− ξ). Its unique projection onto U is ξ, that is, πx′ = {ξ}. Furthermore,
dist(x′, U) = |x′ − ξ| = R′. One also observes that, for any y ∈ U \{ξ},

x− ξ
|x− ξ|

· y − ξ
|y − ξ|

=
x′ − ξ
|x′ − ξ|

· y − ξ
|y − ξ|

≤ O(x′) ≤ sup
z∈RN , dist(z,U)=R′

O(z).

Since x with dist(x, U) = R, together with ξ ∈ πx and y ∈ U \{ξ}, were arbitrary, this
shows that

sup
z∈RN , dist(z,U)=R

O(z) ≤ sup
z∈RN , dist(z,U)=R′

O(z).10

Let us turn to the second statement of the lemma. One considers any two subsets U
and U ′ of RN satisfying dH(U,U ′) < +∞. Denote π′x and O′(x) the objects defined as
in (1.45)-(1.46) with U ′ instead of U .

10Notice that this property is also satisfied when there is no y in U \{ξ}, that is, when U = {ξ}, since
in this case O(z) = −∞ for all z 6∈ U .
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Assume by way of contradiction that U fulfills (1.47) and U ′ does not. Then there
are ε > 0 and a sequence (xn)n∈N in RN \U ′ such that

0 < R′n := dist(xn, U
′)→ +∞ as n→ +∞, and O′(xn) ≥ 2ε > 0 for all n ∈ N. (5.18)

Calling d := dH(U,U ′) < +∞, one then has Rn := dist(xn, U) → +∞ as n → +∞, and
moreover

Rn − d ≤ R′n ≤ Rn + d for all n ∈ N. (5.19)

Without loss of generality, one has Rn > 0 for every n ∈ N. Since U is assumed to
satisfy (1.47), there holds lim supn→+∞O(xn) ≤ 0, that is,

O(xn)+ := max
(
O(xn), 0

)
→ 0 as n→ +∞. (5.20)

Now, from (5.18), for each n ∈ N, there are ξ′n ∈ π′xn , that is, ξ′n ∈ U ′ and
|xn − ξ′n| = dist(xn, U

′) = R′n > 0, and y′n ∈ U ′\{ξ′n} such that

xn − ξ′n
|xn − ξ′n|

· y
′
n − ξ′n
|y′n − ξ′n|

≥ ε > 0. (5.21)

For each n ∈ N, consider any ξn ∈ πxn , that is, ξn ∈ U and |xn−ξn| = dist(xn, U) = Rn > 0,
and then there is a point yn ∈ U such that

|yn − y′n| ≤ dH(U,U ′) + 1 = d+ 1. (5.22)

We estimate from above the quantities in (5.21) by writing:

xn−ξ′n
|xn−ξ′n|

· y
′
n−ξ′n
|y′n−ξ′n|

≤
∣∣∣ xn−ξ′n|xn−ξ′n|

− xn−ξn
|xn−ξn|

∣∣∣︸ ︷︷ ︸
=:I1,n

+
∣∣∣ y′n−ξ′n|y′n−ξ′n|

− yn−ξn
|yn−ξn|

∣∣∣︸ ︷︷ ︸
=:I2,n

+
xn−ξn
|xn−ξn|

· yn−ξn
|yn−ξn|︸ ︷︷ ︸

=:I3,n

. (5.23)

This inequality is understood to hold whenever yn 6= ξn, which we will show to occur
for n sufficiently large. We will then prove that I1,n, I2,n, I3,n → 0 as n→ +∞, which will
eventually contradict (5.21). In order to estimate I1,n, we take zn ∈ U such that |zn−ξ′n| ≤ d
and we compute

(xn − ξn) · (xn − ξ′n) = R2
n + (xn − ξn) · (ξn − zn) + (xn − ξn) · (zn − ξ′n)

≥ R2
n −O(xn)Rn|zn − ξn| −Rnd

≥ Rn

(
Rn − 2(Rn + d)O(xn)+ − d

)
,

(5.24)

where the last inequality follows from

|zn − ξn| ≤ |zn − ξ′n|+ |ξ′n − xn|+ |xn − ξn| ≤ d+R′n +Rn ≤ 2(Rn + d).

One then derives from (5.19) and (5.24) that

0 ≤ I1,n ≤

√
2−

2
(
Rn − 2(Rn + d)O(xn)+ − d

)
R′n

≤ 2

√
(Rn + d)O(xn)+ + d

R′n
. (5.25)

Together with (5.18)-(5.20), one gets that

I1,n → 0 as n→ +∞. (5.26)
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Next, let us check that yn 6= ξn for n large. We first control |y′n− ξ′n| from below. We write

|y′n − xn|2 = |y′n − ξ′n|2 + (R′n)2 − 2(y′n − ξ′n) · (xn − ξ′n),

which together with (5.21) and the inequality |y′n − xn| ≥ dist(xn, U
′) = R′n yields

|y′n − ξ′n|
(
|y′n − ξ′n| − 2εR′n

)
≥ |y′n − xn|2 − (R′n)2 ≥ 0.

Since y′n 6= ξ′n, this means that
|y′n − ξ′n| ≥ 2εR′n. (5.27)

Now, using (5.24) and R′n ≤ Rn + d, one infers

|ξn − ξ′n|2 = R2
n + (R′n)2 − 2(xn − ξn, xn − ξ′n) ≤ 4Rnd+ d2 + 4Rn(Rn + d)O(xn)+. (5.28)

Gathering together the inequalities (5.22), (5.27) and (5.28) shows that

|yn − ξn| ≥ |y′n − ξ′n| − |yn − y′n| − |ξ′n − ξn|
≥ 2εR′n − (d+ 1)−

√
4Rnd+ d2 + 4Rn(Rn + d)O(xn)+.

(5.29)

The right-hand side is positive for all n large enough and is equivalent to 2εR′n as n→ +∞,
because of (5.18)-(5.20). This means that yn 6= ξn for n large enough. Let us estimate I2,n.
One has, for n large,

0 ≤ I2,n =

√
2− 2

(y′n − ξ′n) · (yn − ξn)

|y′n − ξ′n| × |yn − ξn|

=

√
|(y′n − ξ′n)− (yn − ξn)|2 − (|y′n − ξ′n| − |yn − ξn|)2

|y′n − ξ′n| × |yn − ξn|

≤ |(y
′
n−ξ′n)− (yn−ξn)|√
|y′n−ξ′n|×|yn−ξn|

≤ |yn−y
′
n|+ |ξn−ξ′n|√

|y′n−ξ′n|×|yn−ξn|
≤ d+1+|ξn−ξ′n|√

|y′n−ξ′n|×|yn−ξn|
,

(5.30)

where the last inequality follows from (5.22). Putting together (5.27)-(5.30) leads to

0 ≤ I2,n ≤
d+ 1 +

√
4Rnd+ d2 + 4Rn(Rn + d)O(xn)+√

2εR′n ×
√

2εR′n − (d+1)−
√

4Rnd+d2+4Rn(Rn+d)O(xn)+

for all n large enough. Using again (5.18)-(5.20), it follows that

I2,n → 0 as n→ +∞. (5.31)

Finally, one has that 0 ≤ I3,n ≤ O(xn) ≤ O(xn)+ for all n, hence I3,n → 0 as n → +∞,
by (5.20). Together with (5.23), (5.26) and (5.31), one gets that

lim sup
n→+∞

xn − ξ′n
|xn − ξ′n|

· y
′
n − ξ′n
|y′n − ξ′n|

≤ 0,

a contradiction with (5.21). The conclusion of the lemma then follows by changing the
roles of U and U ′.
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Proof of Theorem 1.13. If the set U is convex, then the quantity O(x) defined by (1.46)
satisfies O(x) ≤ 0 for all x /∈ U , hence condition (1.47) holds in this case. Condition (1.47)
holds true as well when U is at bounded Hausdorff distance from a convex set U ′, thanks
to Lemma 5.2. The conclusion then follows from that of Theorem 1.14.

Remark 5.3. The conclusions of Theorems 1.13 and 1.14 still hold for the solutions
to (1.1) with measurable initial conditions u0 : RN → [0, 1] more general than characteristic
functions. To be more precise, if there are h ∈ (0, 1] and δ > 0 such that (1.44) is replaced
by

dH
(
{u0 ≥ h}, suppu0

)
< +∞ and dH

(
{u0 ≥ h}, {u0 ≥ h}δ

)
< +∞, (5.32)

and if (1.47) is replaced by

lim
R→+∞

(
sup

x∈RN ,dist(x,suppu0)=R

O(x)

)
≤ 0, (5.33)

then the conclusion of Theorem 1.14 is satisfied. Indeed, first of all, it is straightforward
to check that Lemma 5.1 still hlods with uR0 := u0 1B′R×R and the assumption

{u0 ≥ h}δ ∩BL 6= ∅ and suppu0 \ (B′L × R) ⊂
{

(x′, xN) ∈ RN : xN ≤
σ

2c∗
|x′|
}

instead of (5.1) (but now in the conclusion (5.2) the time τε depends on h too). Since
Lemma 3.1 is still valid with U replaced by {u0 ≥ h}, it is easy to see that the proof of
Theorem 1.14 works, where now hn := dist(xn, suppu0), Un are rigid transformations of
suppu0 instead of U , and L := dH

(
{u0 ≥ h}, {u0 ≥ h}δ

)
+ 1 in (5.14). It then follows that

the conclusion of Theorem 1.13 is satisfied when u0 fulfills (5.32)-(5.33) instead of (1.2)
and (1.44), and when the convexity of U is replaced by the convexity of suppu0 or the
convexity of a set at a bounded Hausdorff distance from suppu0.

5.2 Directional asymptotic one-dimensional symmetry

This section is devoted to the proof of Corollary 1.15 and further asymptotic one-
dimensional symmetry results. As a matter of fact, the same arguments as in the proof of
Theorem 1.14 can be used to precise the asymptotic one-dimensional symmetry property
when one focuses on a fixed direction. For this, it is sufficient to have a “localized” version
of the geometric assumption (1.47). Namely, we derive a result for the directional Ω-limit
set, defined as follows.

Definition 5.4. For a given function u : R+ × RN → R and for any direction e ∈ SN−1,
the set

Ωe(u) :=
{
ψ ∈ L∞(RN) : u(tn, xn + ·)→ ψ in L∞loc(RN)
for some sequences (tn)n∈N in R+ diverging to +∞
and (xn)n∈N in RN \ {0} such that xn/|xn| → e as n→ +∞

}
is called the Ω-limit set in the direction e of u. For any bounded solution u of (1.1) and
any e ∈ SN−1, the set Ωe(u) is not empty and included in C2(RN), from standard parabolic
estimates.
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Theorem 5.5. Assume that f is of the Fisher-KPP type (1.43). Let u be a solution of (1.1)
with an initial condition u0 =1U , where U⊂RN has nonempty interior and satisfies

U ⊂
{

(x′, xN) ∈ RN : xN ≤ γ(x′)
}
, (5.34)

for a function γ ∈ L∞loc(RN−1) satisfying (1.30). Then, any function ψ ∈ ΩeN (u) is of the
form ψ = ψ(xN). In particular, for any X ∈ R, there holds

∇x′u(t, x′, xN)→ 0 as t→ +∞, locally in x′∈RN−1 and uniformly in xN ∈ [X,+∞),

and if the inclusion is replaced by an equality in (5.34), then

∇x′u(t, x′, xN)→ 0 as t→ +∞, locally in x′∈RN−1 and uniformly in xN ∈R.

Proof. The proof consists in showing that, when restricted to the directional Ω-limit set,
the arguments of the proof of Theorem 1.14 can be performed when hypotheses (1.44)
and (1.47) are replaced by the assumptions that U has non-empty interior and fulfills (5.34)
and (1.30). We also need to prove that the functions in ΩeN (u) are one-dimensional pre-
cisely in the direction eN . The only place where (1.44) and (1.47) were used in the proof
of Theorem 1.14 is the Step 1. In that step, we also determined the direction e which, in
the end, turns out to be the direction of symmetry; we then need to verify that e = eN in
the present case, in addition to the onther conclusions of that Step 1, and we will be done
here with ΩeN (u). In the sequel, we fix a point z0 in U (U is not empty since its interior
itself is not empty).

Consider a function ψ ∈ ΩeN (u), and let (tn)n∈N in R+ and (xn)n∈N in RN\{0} be the as-
sociated sequences given in the Definition 5.4 of ΩeN (u), with tn → +∞ and xn/|xn| → eN
as n→ +∞. We set hn := dist(xn, U) and Rn := |xn|. Let us first deal with property (5.6),
which was previously deduced from assumption (1.44). Take c ∈ (0, c∗). If Rn ≤ ctn for
infinite values of n, then, remembering that U has a non-empty interior, Proposition 1.4
yields ψ ≡ 1 and the result trivially holds. Suppose then without loss of generality that
Rn > ctn for all n large enough. Owing to (5.34), (1.30) and limn→+∞ xn/|xn| = eN , one
infers that hn → +∞ as n→ +∞, hence hn > 0 for all n without restriction. We further
call en := (xn−ξn)/hn, where ξn ∈ πxn . For any ε > 0, (5.34) and (1.30) yield the existence
of Cε > 0 such that

ξn · eN ≤ Cε + ε|ξ′n| for all n ∈ N,

where ξ′n ∈ RN−1 is the vector of the first N − 1 components of ξn, and moreover

|ξ′n| ≤ |ξn| ≤ hn + |xn| = dist(xn, U) +Rn ≤ |xn − z0|+Rn ≤ 2Rn + |z0|.

We deduce from these properties

h2
n

R2
n

=
|xn − ξn|2

R2
n

= 1 +
|ξn|2

R2
n

− 2
xn
Rn

· ξn
Rn

≥ 1− 2
∣∣∣ xn
Rn

− eN

∣∣∣× |ξn|
Rn

− 2eN ·
ξn
Rn

≥ 1− 4
∣∣∣ xn
Rn

− eN

∣∣∣(1 +
|z0|
2Rn

)
− 2

Cε
Rn

− 2ε
|ξ′n|
Rn

≥ 1− 4
∣∣∣ xn
Rn

− eN

∣∣∣(1 +
|z0|
2Rn

)
− 2

Cε
Rn

− 4ε
(

1 +
|z0|
2Rn

)
,
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which tends to 1−4ε as n→ +∞ because xn/Rn → eN and Rn > ctn → +∞ as n→ +∞.
Since ε > 0 is arbitrary and hn ≤ Rn + |z0|, we deduce that

hn
Rn

→ 1 as n→ +∞

and therefore hn fulfills property (5.6), because Rn does without loss of generality, for every
c ∈ (0, c∗). We also infer that, for every ε > 0,

en·eN =
xn · eN
hn

− ξn · eN
hn

≥ xn · eN
hn

−Cε
hn
−ε|ξ

′
n|

hn
≥ xn · eN

hn
−Cε
hn
−ε(2Rn + |z0|)

hn
−→
n→+∞

1−2ε,

whence
e = lim

n→+∞
en = eN .

It only remains to prove property (5.8), that was a consequence of (1.47) in the proof
of Theorem 1.14. Here, to get (5.8), it is therefore sufficient to show that

lim sup
n→+∞

(
sup

y∈U\{ξn}

y − ξn
|y − ξn|

· en
)
≤ 0. (5.35)

Assume by contradiction that this property fails. Then up to extraction of a subsequence,
there exist ` > 0 and a sequence (yn)n∈N in U such that

yn 6= ξn and
yn − ξn
|yn − ξn|

· en ≥ ` for all n. (5.36)

Combining (5.36) with the fact that |yn − xn| ≥ dist(xn, U) = hn, one finds

1 ≤ |yn − xn|
2

h2
n

=
|yn − ξn|2

h2
n

+ 1− 2
yn − ξn
hn

· en ≤
|yn − ξn|2

h2
n

+ 1− 2`
|yn − ξn|

hn
,

that is,
|yn − ξn| ≥ 2`hn. (5.37)

Next, using that hn/Rn → 1, xn/Rn = xn/|xn| → eN and also en → eN as n → +∞, one
gets

ξn · en
Rn

=
ξn − xn
Rn

· en +
xn
Rn

· en = − hn
Rn

+
xn
Rn

· en −→ 0 as n→ +∞, (5.38)

which, together with (5.36) and (5.37), yields

|yn|
Rn

≥ yn · en
Rn

≥ `
|yn − ξn|
Rn

+
ξn · en
Rn

≥ 2`2 hn
Rn

+
ξn · en
Rn

−→
n→+∞

2`2 as n→ +∞,

hence in particular |yn| → +∞ as n → +∞. Finally, gathering the above estimate with
the contradictory assumption (5.36) one infers, for n large,

yn
|yn|
· en =

|yn − ξn|
|yn|

× yn − ξn
|yn − ξn|

· en +
Rn

|yn|
× ξn
Rn

· en ≥ `
|yn − ξn|
|yn|

− |ξn · en|
`2Rn

. (5.39)

Let us analyze the behavior of the last two terms as n → +∞. The first term satis-
fies lim infn→+∞ |yn − ξn|/|yn| > 0, since otherwise one would have |yn − ξn|/|yn| → 0
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as n→ +∞ up to extraction of a subsequence, hence hn/|yn| → 0 as n→ +∞ by (5.37),
but then |yn − ξn|/|yn| ≥ 1 − |ξn|/|yn| ≥ 1 − (2Rn + |z0|)/|yn| → 1 as n → +∞
(since Rn/hn → 1 as n→ +∞), leading to a contradiction. As for the second term of the
right-hand side of (5.39), it converges to 0 because, we recall, ξn · en/Rn does by (5.38).
In conclusion,

lim inf
n→+∞

yn
|yn|
· en > 0

and thus
lim inf
n→+∞

yn
|yn|
· eN > 0,

because (en)n∈N converges to eN . Recalling that the points (yn)n∈N belong to U and
that |yn| → +∞ as n → +∞, we have found a contradiction with the hypotheses (5.34)
and (1.30), and the local boundedness of γ. This finally shows (5.35) and this concludes
the proof of the fact that any function in ΩeN (u) is of the form ψ(xN).

The last statements of the theorem then immediately follow from parabolic estimates
and Proposition 1.4.

The following result, which is a consequence of Theorem 5.5 and Lemma 4.1, states
that, under conditions (1.28) and (1.30), the level curves of u become locally uniformly
flat along sequences of times diverging to +∞.

Corollary 5.6. Assume that f is of the Fisher-KPP type (1.43). Let u be a solution
of (1.1) with an initial condition of the type (1.28). If γ satisfies (1.30), then

lim inf
t→+∞

∣∣∇x′Xλ(t, x
′)
∣∣ = 0

for every λ ∈ (0, 1) and x′ ∈ RN−1, and even

lim inf
t→+∞

(
max

a≤λ≤b, |x′|≤A

∣∣∇x′Xλ(t, x
′)
∣∣) = 0 (5.40)

for every 0 < a ≤ b < 1 and A > 0.11

Proof. Fix A > 0, 0 < a ≤ b < 1 and then any a′, b′ and b′′ such that

0 < a′ < a ≤ b < b′ < b′′ < 1.

Let ζ be the solution of the ordinary differential equation ζ̇(t) = f(ζ(t)) for t ∈ R, with
ζ(0) = a′. Because of (1.43), there is τ > 0 such that ζ(τ) = b′′. Now, for ρ > 0, let vρ
denote the solution of (1.1) with initial condition

vρ(0, ·) = a′1Bρ .

Since f is Lipschitz continuous in [0, 1], it is easy to see that vρ(τ, ·) → b′′ as ρ → +∞,
locally uniformly in RN . In particular, let us fix in the sequel a large enough real number ρ
such that

ρ > c∗τ and vρ(τ, 0) > b′, (5.41)

where we recall that c∗ = 2
√
f ′(0) is the minimal speed of traveling fronts connecting 1

to 0 in the Fisher-KPP case (1.43).

11We recall that the function (λ, t, x′) 7→ ∇x′Xλ(t, x′) is continuous in (0, 1)× (0,+∞)× RN−1.
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We now claim that there exist ε > 0 and T > 0 such that

∀ t ≥ T, ∀ |x′| ≤ A, ∀λ ∈ [a, b],

|∂xNu(t, x′, Xλ(t, x
′))| ≤ ε =⇒ a′< min

Bρ+A(x′,Xλ(t,x′))
u(t, ·)≤ max

Bρ+A(x′,Xλ(t,x′))
u(t, ·)<b′. (5.42)

Indeed, otherwise, there would exist a sequence of positive numbers (tn)n∈N diverging
to +∞, a sequence (xn)n∈N in B′A × R such that ∂xNu(tn, xn) → 0 as n → +∞, together
with a ≤ u(tn, xn) ≤ b,

and either min
Bρ+A(xn)

u(tn, ·)≤a′<a or max
Bρ+A(xn)

u(tn, ·)≥b′>b, for all n ∈ N. (5.43)

Up to extraction of a subsequence, the functions (t, x) 7→ u(tn + t, xn + x) converge
in C1;2

loc (R×RN) to a solution u∞ of (1.1) such that 0 ≤ u∞ ≤ 1 and ∂xNu∞ ≤ 0 in R×RN

(remember that ∂xNu < 0 in (0,+∞)×RN), while ∂xNu∞(0, 0) = 0. The strong parabolic
maximum principle applied to the function ∂xNu∞ then yields ∂xNu∞ ≡ 0 in (−∞, 0]×RN

and then in R × RN . Furthermore, since the sequence (x′n)n∈N is bounded (in RN−1), it
follows from Theorem 5.5 that ∇x′u∞ ≡ 0 in R × RN . Finally, ∇u∞ ≡ 0 in R × RN and
there holds in particular maxBρ+A(xn) |u(tn, ·)−u(tn, xn)| → 0 as n→ +∞, a contradiction

with (5.43). Therefore, the claim (5.42) has been proved.
To complete the proof of Corollary 5.6, assume by way of contradiction that the con-

clusion (5.40) does not hold. Then, using (1.33) and Theorem 5.5, one gets that

min
a≤λ≤b, |x′|≤A

|∂xNu(t, x′, Xλ(t, x
′))| → 0 as t→ +∞.

Together with (5.42), there is then T ′ > 0 such that, for every t ≥ T ′, there are x′t ∈ B′A
and λt ∈ [a, b] such that

a′ < min
Bρ+A(x′t,Xλt (t,x

′
t))
u(t, ·) ≤ max

Bρ+A(x′t,Xλt (t,x
′
t))
u(t, ·) < b′.

Since Bρ(0, Xλt(t, x
′
t)) ⊂ Bρ+A(x′t, Xλt(t, x

′
t)), it then follows that

a′ < min
Bρ(0,Xλt (t,x

′
t))
u(t, ·) ≤ max

Bρ(0,Xλt (t,x
′
t))
u(t, ·) < b′.

In particular, for every t ≥ T ′, one has on the one hand Xb′(t, 0) < Xλt(t, x
′
t) − ρ,

and on the other hand u(t, · + (0, Xλt(t, x
′
t))) ≥ a′1Bρ = vρ(0, ·) in RN . The maxi-

mum principle then yields in particular u(t + τ, 0, Xλt(t, x
′
t)) ≥ vρ(τ, 0) > b′ from (5.41),

hence Xb′(t + τ, 0) > Xλt(t, x
′
t). As a consequence, Xb′(t + τ, 0) > Xb′(t, 0) + ρ for every

t ≥ T ′, and thus

lim sup
s→+∞

Xb′(s, 0)

s
≥ ρ

τ
> c∗

owing to (5.41). This last formula is in contradiction with Lemma 4.1. As a conclu-
sion, (5.40) has been proved.

We complete this section with the proof of Corollary 1.15.
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Proof of Corollary 1.15. We claim that, under the assumptions of this corollary, the set
U = suppu0 fulfills the hypotheses (1.44) and (1.47) of Theorem 1.14. For the former,
observe that, by (1.48), there exists R > 0 such that

∀ x̃′ ∈ RN−1, ∀ y′ ∈ RN−1\B′R(x̃′), γ(y′) ≥ γ(x̃′)− |y′ − x̃′|. (5.44)

Take an arbitrary δ > 0 and any x ∈ U . One has that either x ∈ Uδ, or there exists x̃ ∈ ∂U
with |x̃− x| ≤ δ. In the latter case, writing x̃ = (x̃′, γ(x̃′)), one gets from (5.44)

U ⊃
{

(y′, yN) ∈ (RN−1\B′R(x̃′))× R : yN ≤ γ(x̃′)− |y′ − x̃′|
}

=: E,

and any ball Bδ((x̃′ + z′, γ(x̃′) + zN)) with |z′| = R+ δ and zN = −R− 3δ is contained in
the latter set, hence in U . This shows that

dist(x, Uδ) ≤ δ + dist(x̃, Uδ) ≤ δ +
√

(R + δ)2 + (R + 3δ)2,

and, since x was arbitrary in U , one infers that dH(U,Uδ) ≤ δ +
√

(R + δ)2 + (R + 3δ)2,
i.e., (1.44) holds.

In order to deal with (1.47), we will reduce to the situation of the proof of Theorem 5.5
by suitable translations. Consider ψ ∈ Ω(u), and let (tn)n∈N in R+ and (xn)n∈N in RN be
the associated sequences given in the definition (1.3). For n ∈ N, we write xn = (x′n, xN,n)
and then consider the translation Tn : RN → RN given by

Tn(x) := x−
(
x′n, γ(x′n)

)
.

We then call

Ũn := Tn(U), x̃n := Tn(xn) =
(
0, xN,n − γ(x′n)

)
, ξ̃n := Tn(ξn),

where ξn ∈ πxn . One sees that 0 ∈ ∂Ũn and ξ̃n is an orthogonal projection of x̃n onto Ũn.
We want to apply the arguments of the proof of Theorem 5.5 to these new objects. One has

Rn := |x̃n| = |x̃n − 0| ≥ dist(x̃n, Ũn) = dist(xn, Un) =: hn,

and, as in the proof of Theorem 1.14, one restricts to the case where (hn)n∈N ful-
fills (5.6), because otherwise ψ ≡ 1 due to condition (1.44). Observe further that we

now directly have x̃n/|x̃n| = eN for all n large enough (since dist(x̃n, Ũn) = hn > 0

for all n large enough). Finally, the sets Ũn are the subgraphs of the functions γ̃n given
by γ̃n(x′) := γ(x′+x′n)−γ(x′n), which, by (1.48) fulfill (1.30) (with equality) uniformly with
respect to n ∈ N. This allows one to repeat exactly the same arguments as in the proof of
Theorem 5.5, with (xn)n∈N, (ξn)n∈N and U replaced by (x̃n)n∈N, (ξ̃n)n∈N and Ũn respectively,
and conclude that ψ is one-dimensional in the direction eN . The corollary is proved.

6 Lag behind the front in the Fisher-KPP case

This section is devoted to the proofs of Theorem 1.19, Proposition 1.20, and Corollary 1.21
on the lag behind the front in the Fisher-KPP case, and on further asymptotic one-
dimensional symmetry results in the direction eN , when the initial conditions u0 are of
the type (1.28), with γ(x′) going to −∞ suitably fast as |x′| → +∞.

77



Proof of Theorem 1.19. Throughout the proof, we assume that f is of the Fisher-KPP
type (1.43) (hence, Hypotheses 1.1 and 1.3 are satisfied and c∗ = 2

√
f ′(0) is the minimal

speed of traveling fronts connecting 1 to 0), and that u0 satisfies (1.28) and (1.50). By the
monotonicity of the functions Xλ with respect to λ, it is sufficient to derive the result (1.51)
for any given λ ∈ (0, 1), which is fixed throughout the proof.

Let u be the solution to (1.1) emerging from a continuous, compactly supported, radially
symmetric and non-trivial initial datum u0 such that 0 ≤ u0 ≤ u0 ≤ 1 in RN . We know
from [18] or [45, Theorem 1.1] that there exists σ ∈ R such that, for any K > 0, there
exists TK > 0 for which there holds

∀ t ≥ TK , ∀ |x′| ≤ K, u
(
t, x′, c∗t− N + 2

c∗
log t+ σ

)
> λ.

Since 1 ≥ u ≥ u ≥ 0 in [0,+∞)×RN by the parabolic comparison principle, we find that

Xλ(t, x
′) ≥ c∗t− N + 2

c∗
log t+ σ + o(1) as t→ +∞, (6.1)

locally uniformly in x′ ∈ RN−1.
In order to show the reverse inequality, we will construct a supersolution v larger than u

at time 0, for which we are able to explicitly compute the lag. First of all, owing to (1.50),
we can take β ∈ R satisfying

lim sup
|x′|→+∞

γ(x′)

log(|x′|)
< β < −2(N − 1)

c∗
.

We then take M > 0 large enough so that

∀x′ ∈ RN−1, γ(x′) ≤ β log(1 + |x′|) +M.

Hence, by the parabolic comparison principle, if we show the desired upper bound for Xλ

when γ(x′) is replaced by β log(1+ |x′|) +M , we are done. Up to a translation of the
coordinate system, we can further assume that M = 0. We then assume from now on that

γ(x′) = β log(1 + |x′|).

Next, since γ is globally Lipschitz continuous, we can find a radius δ > 0 large enough,
depending on N and the Lipschitz constant of γ, such that{

(x′, xN) ∈ RN−1 × R : xN ≤ γ(x′)
}
⊂

⋃
k∈ZN−1

⋃
h∈N∪{0}

Bδ(k, γ(k)− h). (6.2)

We then consider the solution 0 ≤ w ≤ 1 of (1.1) emerging from a C∞ compactly supported
and radially symmetric initial datum w0 such that 1Bδ ≤ w0 ≤ 1 in RN , and we define a
nonnegative function v in [0,+∞)× RN by

v(t, x) = v(t, x′, xN) :=
∑

k∈ZN−1

∞∑
h=0

w(t, x′ − k, xN − γ(k) + h). (6.3)

From Gaussian estimates, for any T > 0, there are some positive constants αT and CT such
that 0 ≤ w(t, x) ≤ CT e

−αT |x|2 and |∂tw(t, x)|+ |∂xiw(t, x)|+ |∂xixjw(t, x)| ≤ CT e
−αT |x|2 for
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all (t, x) ∈ [0, T ] × RN and 1 ≤ i, j ≤ N . Therefore, the function v is well defined
in [0,+∞) × RN and of class C1;2

t;x ([0,+∞) × RN). Furthermore, since the function f
is at least Lipschitz continuous in [0, 1] and satisfies (1.43), then, for any series

∑
aj of

nonnegative real numbers such that
∑

j∈N aj ≤ 1, the series
∑
f(aj) converges too and

f(
∑

j∈N aj) ≤
∑

j∈N f(aj). It then follows that min(v, 1) is a (generalized) supersolution

of (1.1) in [0,+∞)×RN . For any (x′, xN) ∈ Bδ(k, γ(k)−h), with k ∈ ZN−1 and h ∈ N∪{0},
there holds that v(0, x′, xN) ≥ w0(x′−k, xN−γ(k)+h) = 1, whence v(0, ·) ≥ u0 due to (6.2).
The parabolic comparison principle then implies that

0 ≤ u ≤ min(v, 1) in [0,+∞)× RN . (6.4)

Let us estimate the position of the level sets of v. Let ϕ denote the profile of a traveling
front connecting 1 to 0 with minimal speed c∗ = 2

√
f ′(0). It is known [13, 18, 45] that

w(t, x)− ϕ
(
|x| − ρ(t)

)
→ 0 as t→ +∞,

uniformly with respect to x ∈ RN , where ρ(t) satisfies, for some t̃ > 0 and C̃ ∈ R,

0 < ρ(t) ≤ c∗t− N + 2

c∗
log t+ C̃ for all t ≥ t̃. (6.5)

We also know that there exists a constant A > 0 such that ϕ(r) ≤ Ar e−c
∗r/2 for all r ≥ 1.

Lastly, by [45, Proposition 5], there is a constant C > 0 such that

w(t, x) ≤ C
(
|x| − ρ(t)

)
e−c

∗(|x|−ρ(t))/2 for all t ≥ 1 and |x| − ρ(t) ≥ 1. (6.6)

Using the fact γ(k) ≤ 0 for all k ∈ ZN−1 (since β < −2(N − 1)/c∗ < 0), we infer that, for
every t ≥ max(t̃, 1) (for which ρ(t) ≥ 0 by (6.5) and moreover (6.6) holds) and every y ≥ 1,

v(t, 0, ρ(t) + y)≤C
∑

k∈ZN−1

∞∑
h=0

(
|(−k, ρ(t) + y− γ(k) + h)| − ρ(t)

)
e−c

∗(|(−k,ρ(t)+y−γ(k)+h)|−ρ(t))/2.

Because r 7→ re−c
∗r/2 is decreasing for r ≥ 2/c∗, we then deduce that, for every

t ≥ max(t̃, 1) and every y ≥ max(1, 2/c∗),

v(t, 0, ρ(t) + y) ≤ C
∑

k∈ZN−1

∞∑
h=0

(y − γ(k) + h)e−c
∗(y−γ(k)+h)/2

= C
( ∑
k∈ZN−1

ec
∗γ(k)/2

)( ∞∑
h=0

(y + h)e−c
∗(y+h)/2

)
+ C

( ∑
k∈ZN−1

|γ(k)|ec∗γ(k)/2
)( ∞∑

h=0

e−c
∗(y+h)/2

)
.

As a consequence, calling

C1 :=
∞∑
h=0

e−c
∗h/2 =

1

1− e−c∗/2
and C2 :=

∞∑
h=0

he−c
∗h/2 =

e−c
∗/2

(1− e−c∗/2)2
, (6.7)
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we find that, for every t ≥ max(t̃, 1) and every y ≥ max(1, 2/c∗),

v(t, 0, ρ(t) + y) ≤ C(C1y + C2)e−c
∗y/2

∑
k∈ZN−1

ec
∗γ(k)/2 + CC1e

−c∗y/2
∑

k∈ZN−1

|γ(k)|ec∗γ(k)/2.

Let us study these series in k. Recalling that γ(x′) = β log(1 + |x′|), we compute∑
k∈ZN−1

|γ(k)|ec∗γ(k)/2 = |β|
∑

k∈ZN−1

(1 + |k|)c∗β/2 log(1 + |k|).

We now use the fact that, for any pair of nonnegative functions p, q : R → R, with p
nonincreasing and q nondecreasing, there holds that

∀ k ∈ ZN−1, p(|k|) q(|k|) ≤
∫
k+(0,1)N−1

p(|x′| −
√
N − 1) q(|x′|+

√
N − 1) dx′,

and therefore, for any measurable set A ⊂ RN−1, we get∑
k∈ZN−1∩A

p(|k|) q(|k|) ≤
∫
A+B′√

N−1

p(|x′| −
√
N − 1) q(|x′|+

√
N − 1) dx′. (6.8)

By using p(r) = (1 + r+)c
∗β/2 and q(r) = log(1 + r+), this allows us to estimate∑

k∈ZN−1\B′
2
√
N−1

(1 + |k|)c∗β/2 log(1 + |k|)

≤
∫
|x′|≥

√
N−1

(1 + |x′| −
√
N − 1)c

∗β/2 log(1 + |x′|+
√
N − 1) dx′,

which is finite because β < −2(N − 1)/c∗. This shows that
∑

k∈ZN−1 |γ(k)|ec∗γ(k)/2 con-
verges, as well as

∑
k∈ZN−1 ec

∗γ(k)/2 (since |γ(k)| → +∞ as |k| → +∞). It follows that

there exists a constant C ′ > 0 such that, for every t ≥ max(t̃, 1) and y ≥ max(1, 2/c∗),

v(t, 0, ρ(t) + y) ≤ C ′y e−c
∗y/2.

Because u ≤ v by (6.4), we eventually deduce from the definition of Xλ(t, 0) that there is
a constant C ′′ ∈ R such that Xλ(t, 0) ≤ ρ(t) + C ′′ for all t ≥ max(t̃, 1), that is, by (6.5),

Xλ(t, 0) ≤ c∗t− N + 2

c∗
log t+ C̃ + C ′′ for all t ≥ max(t̃, 1).

Finally, since γ(x′) = β log(1+ |x′|) is radially symmetric and decreasing (remember that β
is here negative), it follows from a standard reflection argument with respect to hyperplanes
parallel to eN (similarly as in the proof of Theorem 1.9) that, for every t > 0 and xN ∈ R,
the function x′ 7→ u(t, x′, xN) is radially symmetric and decreasing with respect to |x′|. We
then deduce from the above estimate that

Xλ(t, x
′) ≤ c∗t− N + 2

c∗
log t+ C̃ + C ′′ for all x′ ∈ RN−1 and t ≥ max(t̃, 1). (6.9)

The proof of Theorem 1.19 is thereby complete.
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We continue with the proof of Proposition 1.20 which provides a bound of the lag for
functions γ satisfying a logarithmic upper bound at infinity.

Proof of Proposition 1.20. Throughout the proof, λ is any fixed real number in (0, 1). Con-
sider first the case where σ > −(N − 1) and γ is given by

γ(x′) =
2σ

c∗
log(1 + |x′|) for all x′ ∈ RN−1. (6.10)

Since γ is globally Lipschitz continuous, as in the proof of Theorem 1.19, we can find δ > 0
sufficiently large so that, for the functions w and v defined as in (6.3), the inequality (6.4)
holds true, and the function w still fulfills (6.6) for some positive constant C, with ρ(t)
satisfying (6.5). Let us fix

β >
σ +N − 1

c∗
> 0. (6.11)

Our aim is to show that

v(t, 0, ρ(t) + β log t)→ 0 as t→ +∞. (6.12)

Let us postpone for a moment the proof of (6.12) and conclude the argument.
Together with (6.4), this will imply that u(t, 0, ρ(t) + β log t) → 0 as t → +∞,
hence Xλ(t, 0) ≤ ρ(t) + β log t for all t large enough, and then by (6.5),

lim sup
t→+∞

Xλ(t, 0)− c∗t
log t

≤ β − N + 2

c∗
.

Since γ is given by (6.10), we infer from Theorem 1.9 with assumption (iv) that the
above estimate holds true for Xλ(t, x

′), locally uniformly with respect to x′ ∈ RN−1, and
then (1.53) follows from the arbitrariness of β in (6.11). If we now consider a general γ
satisfying (1.52) with σ ≥ −(N − 1), we take an arbitrary σ′ > σ and then, since γ
satisfies γ(x′) < (2σ′/c∗) log(1 + |x′|) for x′ ∈ RN−1 up to an additive constant, we deduce
from what precedes and the comparison principle, that (1.53) holds with σ replaced by σ′,
locally uniformly with respect to x′ ∈ RN−1. This gives the conclusion of the proposition,
owing to the arbitrariness of σ′ ∈ (σ,+∞).

So, we are left to prove that (6.12) holds with β and σ as in (6.11), when γ is given
by (6.10). We can take α ∈ (1/2, 1), close enough to 1/2, in such a way that

2ασ

c∗
≤ 2α(σ +N − 1)

c∗
< β. (6.13)

For every t > 0, let us divide the following sum

0 ≤ v(t, 0, ρ(t) + β log t) =
∑

k∈ZN−1

∞∑
h=0

w(t,−k, ρ(t) + β log t− γ(k) + h)

into two subsums over k, namely:

0 ≤ v(t, 0, ρ(t) + β log t) =
∑

k∈ZN−1∩B′tα

∞∑
h=0

w(t,−k, ρ(t) + β log t− γ(k) + h)

︸ ︷︷ ︸
=:I1(t)

+
∑

k∈ZN−1\B′tα

∞∑
h=0

w(t,−k, ρ(t) + β log t− γ(k) + h)

︸ ︷︷ ︸
=:I2(t)

.
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Let us first deal with the sum I1(t). Recalling that γ is given in (6.10), one has

∀ t > 0, ∀ k ∈ ZN−1 ∩B′tα , β log t− γ(k) ≥ β

α
log |k| − 2σ

c∗
log(1 + |k|).

Hence, by (6.13) and the positivity of β, there is t1 ≥ 1 large enough such
that β log t − γ(k) ≥ max(1, 2/c∗) for all t ≥ t1 and k ∈ ZN−1 ∩ B′tα . In particular,
we can use the estimate (6.6) in the expression of I1(t) for t ≥ t1. Then, owing to the
monotonicity of the function r 7→ r−c

∗r/2 in [2/c∗,+∞) and the fact that ρ(t) ≥ 0 by (6.5)
for t ≥ t̃, we infer that, for t ≥ max(t1, t̃), there holds

I1(t) ≤ C
∑

k∈ZN−1∩B′tα

∞∑
h=0

(β log t− γ(k) + h) e−c
∗(β log t−γ(k)+h)/2

≤ C (C1β log t+ C2) t−c
∗β/2

∑
k∈ZN−1∩B′tα

ec
∗γ(k)/2

+C C1 t
−c∗β/2

∑
k∈ZN−1∩B′tα

|γ(k)| ec∗γ(k)/2,

where C, C1, C2 are given in (6.6)-(6.7). We now use the estimate (6.8), which, we recall,
holds if p is nonnegative and nonincreasing and q is nonnegative and nondecreasing. We
here use it with p(s) = 1 and q(s) = (1 + s+)σ if σ ≥ 0, and with p(s) = (1 + s+)σ

and q(s) = 1 if σ < 0. We get, for some CN > 0 and with “±” is in accordance with the
sign of σ,

∑
k∈ZN−1∩(B′tα\B

′
2
√
N−1

)

ec
∗γ(k)/2 ≤ CN

∫ tα+
√
N−1

√
N−1

rN−2(1 + r ±
√
N − 1)σ dr

≤ CN

∫ tα+2
√
N−1

0

(r +
√
N − 1)N−2(1 + r)σ dr

≤ CN(N − 1)N/2−1

∫ tα+2
√
N−1

0

(1 + r)σ+N−2 dr.

As a consequence, since σ +N − 1 > 0, we find∑
k∈ZN−1∩B′tα

ec
∗γ(k)/2 ≤ CN(N − 1)N/2−1

σ +N − 1
(1 + tα + 2

√
N − 1)σ+N−1.

Together with (6.13), one concludes that

C (C1β log t+ C2) t−c
∗β/2

∑
k∈ZN−1∩B′tα

ec
∗γ(k)/2 −→ 0 as t→ +∞.

Similarly, using again (6.10) and (6.13), one gets that

C C1 t
−c∗β/2

∑
k∈ZN−1∩B′tα

|γ(k)| ec∗γ(k)/2 −→ 0 as t→ +∞.

As a consequence, I1(t)→ 0 as t→ +∞.

82



Let us finally deal with the second sum I2(t). For each t ≥ max(t̃, 1) (with t̃ > 0 given
by (6.5)) and each k ∈ ZN−1 \B′tα and h ∈ N ∪ {0}, one has

|(−k, ρ(t) + β log t− γ(k) + h)| − ρ(t)

=
|k|2 + (β log t− γ(k) + h)2 + 2ρ(t)(β log t− γ(k) + h)

|(−k, ρ(t) + β log t− γ(k) + h)|+ ρ(t)

≥ |k|
2 + h2 − 2hγ(k)− 2γ(k)(β log t+ ρ(t))

|(−k, ρ(t) + β log t− γ(k) + h)|+ ρ(t)
,

(6.14)

since (β log t)2+γ(k)2+2βh log t+2βρ(t) log t+2hρ(t) ≥ 0 (remember that β > 0 by (6.11)).
In order to estimate the numerator, we use the facts that max(t̃, 1) ≤ t ≤ |k|1/α, with
0 < 1/α < 2, and that ρ(t) ∼ c∗t as t → +∞ and |γ(k)| = O(log |k|) as |k| → +∞. We
infer the existence of some t2 ≥ max(t̃, 1) such that, for every t ≥ t2, k ∈ ZN−1 \ B′tα
and h ∈ N ∪ {0},

|k|2 + h2 − 2hγ(k)− 2γ(k)(β log t+ ρ(t)) ≥ |k|
2 + h2

2
≥ 0. (6.15)

Using the same estimates and 1 < 1/α, one gets for the denominator,

0 < |(−k, ρ(t) + β log t− γ(k) + h)|+ ρ(t) ≤ |k|+ β log t+ |γ(k)|+ h+ 2ρ(t)

≤ 3c∗|k|1/α + h ≤ 6c∗|(k, h)|1/α,
(6.16)

for all t larger than some t3 ≥ max(t̃, 1) and for all k ∈ ZN−1 \ B′tα . Summing up (6.14)-
(6.16) and recalling that 1 < 1/α < 2, one has that, for t ≥ max(t2, t3) and k ∈ ZN−1\B′tα ,

|(−k, ρ(t) + β log t− γ(k) + h)| − ρ(t) ≥ |(k, h)|2−1/α

12c∗
,

which is larger than max(1, 2/c∗) for t larger than some t4 ≥ max(t2, t3), since |k| ≥ tα.
One eventually gets from (6.6) that, for every t ≥ t4,

I2(t) ≤ C
∑

k∈ZN−1\B′tα

∞∑
h=0

[(
|(−k, ρ(t) + β log t− γ(k) + h)| − ρ(t)

)
× e−c

∗(|(−k,ρ(t)+β log t−γ(k)+h)|−ρ(t))/2
]

≤ C

12c∗

∑
k∈ZN−1\B′tα

∞∑
h=0

|(k, h)|2−1/α e−(1/24)|(k,h)|2−1/α

≤ C

12c∗

∑
k∈ZN−1\B′tα

∑
h∈Z

|(k, h)|2−1/α e−(1/24)|(k,h)|2−1/α

.

We then use an estimate of the type (6.8) in dimension N , and the inequality 2− 1/α > 0,
to finally infer that I2(t)→ 0 as t→ +∞.

As a conclusion, v(t, 0, ρ(t) + β log t) → 0 as t → +∞. The claim (6.12) has been
shown, and, as already emphasized, this completes the proof of Proposition 1.20.

Proof of Corollary 1.21. (i) On the one hand, we know from Proposition 1.4 that

Xλ(t, x
′)→ +∞ as t→ +∞,
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locally uniformly in λ ∈ [0, 1) and x′ ∈ RN−1. On the other hand, we know from Theo-
rem 5.5 that

∇x′u(t, x′, xN)→ 0 as t→ +∞, locally in x′ ∈ RN−1 and uniformly in xN ∈ R.

Then, owing to (1.33), in order to show that (1.34) holds locally uniformly in λ ∈ (0, 1),
it is sufficient to derive a lower bound on |∂xNu| on the level sets. Namely, if we assume
that (1.34) does not hold locally uniformly in λ ∈ (0, 1), then there necessarily exist
a sequence (λn)n∈N contained in some interval [λ, λ] ⊂ (0, 1) (with λ < λ without loss
of generality), a sequence (tn)n∈N in (0,+∞) diverging to +∞ and a bounded sequence
(x′n)n∈N in RN−1 such that

∂xNu
(
tn, x

′
n, Xλn(tn, x

′
n)
)
→ 0 as n→ +∞.

Since the function ∂xNu is a negative solution of a linear parabolic equation in (0,+∞)×RN ,
it readily follows from the strong maximum principle and parabolic estimates, as in the
proof of Corollary 5.6, that

∂xNu
(
tn, x

′, xN +Xλn(tn, x
′
n)
)
→ 0 as n→ +∞, locally uniformly in (x′, xN) ∈ RN .

Writing

λ− λ =

∫ Xλ(tn,x′n)

Xλ(tn,x′n)

∂xNu(tn, x
′
n, xN) dxN

and observing that Xλ(tn, x
′
n) ≤ Xλn(tn, x

′
n) ≤ Xλ(tn, x

′
n), one deduces from the above

convergence that Xλ(tn, x
′
n)−Xλ(tn, x

′
n)→ +∞ as n→ +∞. This is impossible because

Xλ(t, x
′) − Xλ(t, x

′) is bounded uniformly in t large enough and locally in x′ thanks to
Theorem 1.19. We have reached a contradiction, and the desired property follows.

(ii) By standard parabolic estimates, for given λ ∈ (0, 1) and x′0 ∈ RN−1 and any
sequence (sn)n∈N diverging to +∞, the limit

ũ(t, x′, xN) := lim
n→+∞

u(sn + t, x′, Xλ(sn, x
′
0) + xN),

exists (up to subsequences) locally uniformly in (t, x′, xN) ∈ R × RN . We apply the
estimates derived in the proof of Theorem 1.19. Namely, by (6.1), (6.9), for any η ∈ (0, 1),
there exist Cη > 0 such that, for any x′ ∈ RN−1,∣∣∣Xη(t, x

′)−
(
c∗t− N + 2

c∗
log t

)∣∣∣ ≤ Cη + o(1) as t→ +∞.

We deduce that, for any η1, η2 ∈ (0, 1), any t ∈ R, and any x′1, x
′
2 ∈ RN−1,

|Xη1(s, x′1) + c∗t−Xη2(s+ t, x′2)| ≤ N + 2

c∗
| log s− log(s+ t)|+ Cη1 + Cη2 + o(1)

≤ Cη1 + Cη2 + o(1) as s→ +∞.

It follows, for any η ∈ (0, 1) and any t ∈ R, x′ ∈ RN−1, from the one hand that

ũ(t, x′, c∗t+ Cλ + Cη + 1) = lim
n→+∞

u(sn + t, x′, Xλ(sn, x
′
0) + c∗t+ Cλ + Cη + 1)

≤ lim
n→+∞

u(sn + t, x′, Xη(sn + t, x′)) = η,
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and from the other hand that

ũ(t, x′, c∗t− Cλ − Cη − 1) ≥ lim
n→+∞

u(sn + t, x′, Xη(sn + t, x′)) = η.

Owing to the arbitrariness of η ∈ (0, 1), and the fact that ũ is nonincreasing with respect
to xN (as so is u) and independent of x′ (from Theorem 5.5), the proof of Corollary 1.21
is complete.
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