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Nomenclature :

ACH : Air Change Rate in [v.hour -1 ] ADH : Annual weighted average discomfort degree-hours in [°C.hour.year -1 ] ATED : Annual thermal energy demand in [kWh.m -2 .year -1 ] Ac : Total surface of conditioned zones in [m 2 ] Al : Automatic learning coefficient [-] A-m,f : Air mass flow coefficient in [kg.s -1 .m -1 ] Ba : Building azimuth in [°] Bg : Building Geometry [-] bi : ANN Bias [-] C : Thermal capacity in [kJ.kg -1 .K -1 ] CDD : Cooling Degree-Day in [°C.day] DH : Discomfort degree-hours in [°C.hour.year -1 ] Ed : Daily electricity consumption in [Wh.day -1 ] Et : Thermal effusivity in [J.K -1 .m -2 .s -1/2 ] fBD : Value of one of the two objectives for base design [-] fOD : Value of one of the two objectives for optimized design [-] I : Set of variables [-] IN : Number of inputs [-] IP : Improvement potential in [%] J : Set of variables' levels [-] k : Index of conditioned zones [-] l : Equipment number [-] n : Total number of conditioned zones [-] ni : Total incoming ANN connections [-] nk : Number of observations [-] ns : Continuous variable coefficient [-] NS : Number of simulations [-] Net1 : ANN of ATED in [kWh.m -2 .year -1 ] Net2 : ANN of ADH in [°C.hour.year -1 ] Nnum : Total electrical equipment [-] Pt : Linear coefficient of thermal bridges in [W.m -1 .K -1 ] Pi : Electrical power consumption in [W] P-type : Wall type [-] Qc : Total heat demand for cooling in [kWh.year -1 ] Qh : Total heat demand for heating in [kWh.year -1 ] R : Correlation coefficient [-] R-s : Solar reflectance [-] Rs,g : Annual average horizontal global solar radiation in [kWh.m -2 .day -1 ] Scw-n : Shading coefficient of north-facing windows [-] Scw-s : Shading coefficient of south-facing windows [-] Scw-e : Shading coefficient of east-facing windows [-] SHGC : Solar Heat Gain Coefficient [-] ti : Operating time in [heure] Tps : Thermal phase shift in [ Φi : ANN activation function [-] ε : Emissivity [-] αM : Solar radiation absorption coefficient of the exterior walls [-] αT : Solar radiation absorption coefficient of the Roof [-] αt : Thermal Diffusivity in [m 2 .s -1 ] αf : Solar radiation absorption coefficient of the frames [-] λ : Thermal conductivity in [W.m -1 .K -1 ] ρ : Density in [kg.m -3 ] β : Discrete variable coefficient [-] Acronyms : 

Introduction

Today, the transition to a more sustainable model is necessary to live in a more equitable world and to preserve the planet's natural resources, which will enable human and living beings to benefit from an appropriate quality of life. In Morocco, energy efficiency is a priority action path, aiming to mobilize all operators and stakeholders in favour of limiting global warming and controlling energy demand, in order to achieve energy savings of 12% by 2020 and 15% by 2030 [START_REF]Ministère de l'Energie des Mines de l'Eau et de l'Environnement[END_REF]. Indeed, buildings are mainly responsible for energy consumption, energy waste and local and global warming, as well as urban pollution. Therefore, in one way or another, controlling energy demand represents a key factor in minimising CO2 emissions.

The building sector constitutes a major energy consumer in Morocco, accounting for about 33.6% of the country's total final energy consumption, of which 25.4% for the residential sector and 8,2% for the tertiary sector [START_REF]BUILDINGS -ENERGY EFFICIENCY -Department of Housing and Urban Policy[END_REF].

Therefore, this sector must undergo a very important mutation since it represents the 2 nd highest energy consumer in Morocco. In this respect and in order to initiate the construction of energy-efficient buildings, an energy regulation (RTCM) [START_REF] Amee | Règlement thermique de construction au Maroc[END_REF] has been introduced to reduce energy consumption while improving indoor thermal comfort. The passive building strategy depends on different design parameters, through which the various indicators related to energy consumption, thermal comfort, visual comfort, acoustic comfort, environmental impact, economic impact, etc., could be determined. In this regard, building performance optimization (BPO) has a crucial role in promoting sustainability, while at the same time responding strongly to the needs of designers in cases of contrasting objectives that simultaneously consider several design variables [START_REF] Machairas | Algorithms for optimization of building design: A review[END_REF]. The following lines present, on the same wavelength of this paper, some recent and noteworthy studies on this technique to enhance passive building design.

To address the challenges of multi-objective optimization of building performance using a new meta-model-based approach, Bre et al. [START_REF] Bre | An efficient metamodel-based method to carry out multiobjective building performance optimizations[END_REF] presented an efficient method, using the NSGA-II algorithm and artificial neural networks.

To optimize glazing design, Zhai et al. [START_REF] Zhai | A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance[END_REF] proposed a multi-objective optimization method that combines NSGA-II with EnergyPlus software. The method provides architects with rich and valuable information about the effects of parameters on different building design objectives. It can assist designers in achieving an optimal window design solution to minimize the building's energy consumption while improving indoor thermal environment and visual performance. Shi et al. [START_REF] Shi | Optimizing the thermal performance of building envelopes for energy saving in underground office buildings in various climates of China[END_REF] studied the influence of building envelope on the annual energy demand of an underground building using DeST software. The results show that the U-values of the building envelope components have a crucial role in assessing the annual energy demand of the building envelope. Therefore, it is fundamental to optimize them in order to improve the energy performance of the building. Papadopoulos et al. [START_REF] Papadopoulos | Data Analytics for Renewable Energy Integration[END_REF] applied the Gradient Boosted Regression Trees (GBRT) as a Machine Learning technique to approximate a Building Performance Simulation (BPS) model and identify, using a GA optimization process, the optimal building design in terms of heating and cooling loads. Yao et al. [START_REF] Yao | The effect of passive measures on thermal comfort and energy conservation. A case study of the hot summer and cold winter climate in the Yangtze River region[END_REF] demonstrated how the use of passive climate-sensitive design solutions can contribute towards improving indoor thermal conditions while reducing energy demand and carbon emissions. Bamdad et al. [START_REF] Bamdad | Building energy optimisation under uncertainty using ACOMV algorithm[END_REF] developed scenario-based optimization to manage the uncertainty of construction parameters, for example, due to internal loads and infiltration rate. A modified version of the ant colony optimization algorithm for mixed variables (ACOMV-M) is proposed and compared to a reference algorithm, showing that ACOMV-M achieves convergence with approximately 50% fewer simulations. Gou et al. [START_REF] Gou | Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand[END_REF] proposed a new optimization approach to reduce the energy demand of buildings and maximize the thermal comfort of occupants. The optimization technique has three steps: (1) Definition of objective functions and decision variables; (2) Definition of the spectrum of variables through a sensitivity analysis; (3) Multi-objective optimization by combining NSGA-II with ANN. Li et al. [START_REF] Li | Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study[END_REF] developed an optimization process based on the interactive use of MATLAB® to improve the energy performance of residential buildings. The single-objective optimization is proposed by comparing three algorithms. However, for multiobjective optimization, four popular algorithms are compared, NSGA-II, MOPSO, MOGA, and Multi-Objective Differential Evolution (MODE). The results indicate that the MODE algorithm provides near-optimal solutions with the best diversity and execution time. In contrast, MOPSO achieves a non-competitive result in this case study. Mostavi et al. [START_REF] Mostavi | Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction[END_REF] developed a new multi-objective optimization model, which is an algorithm based on the harmony search, at the level of the building envelope parameters in order to minimize life cycle cost and greenhouse gas emissions, while ensuring a more satisfactory level of thermal comfort for its occupants. Zhang et al. [START_REF] Zhang | Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China[END_REF] applied an optimization method, which combines a genetic algorithm with thermal and light simulations, to select optimal values for school building design parameters in order to minimize energy consumption while maximizing thermal and visual comfort.

Harmathy et al. [START_REF] Harmathy | Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement[END_REF] proposed a methodology to improve the energy performance of office buildings worldwide.

The objective consists in defining appropriate window/wall ratios and window geometry according to visual comfort criteria and electrical energy demand. Delgarm et al. [START_REF] Delgarm | Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)[END_REF] studied a single room model in four major climatic regions in Iran. This study was carried out using Single and Multi-Objective Optimization (MOPSO), combined with the EnergyPlus software, to find optimal solutions for building envelope design. The annual electrical energy demands for cooling, heating and lighting are examined as objective functions. Azari et al. [START_REF] Azari | Multi-objective optimization of building envelope design for life cycle environmental performance[END_REF] proposed an optimization method, combining MOGA with eQuest software, to explore the optimal building envelope design regarding energy consumption and life cycle contribution to environmental impacts. Brown et al. [START_REF] Brown | Design for structural and energy performance of long span buildings using geometric multi-objective optimization[END_REF] demonstrated how multi-objective optimization, using NSGA-II, can be applied to geometrically and architecturally important design problems. This allows to obtain diverse and powerful results, which are difficult to generate by other methods. Echenagucia et al. [START_REF] Méndez Echenagucia | The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis[END_REF] proposed an integrative approach for the early steps of building design to obtain detailed information on energy-efficient envelope configurations. This approach uses genetic algorithms to perform a multi-objective optimization to minimize the energy demand for heating, cooling and lighting of the studied building. Romani et al. [START_REF] Romani | Metamodeling the heating and cooling energy needs and simultaneous building envelope optimization for low energy building design in Morocco[END_REF] developed and validated heating and cooling energy demand meta-models for single-family houses. The results show that this methodology is successfully applied to achieve rapid operational optimization of the building envelope, thus improving the implementation of low-energy buildings. Yu et al. [START_REF] Yu | Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design[END_REF] proposed a multi-objective optimization model to determine the optimal or near-optimal design of buildings under given conditions. This model describes the role of combining ANN with NSGA-II in reducing energy demand and thermal discomfort. Yang et al. [START_REF] Yang | High throughput computing based distributed genetic algorithm for building energy consumption optimization[END_REF] presented an optimization approach, web-based parallel GA using a high-speed distributed computing environment, to reduce the computational time of complex building energy optimization applications. This approach has been used to optimize the energy consumption of large-scale buildings. The obtained optimization results for a pilot building, showed a significant deduction of the calculation time while obtaining acceptable optimal results. Finally, the approaches presented in the state of the art above as well as in Table 1 aim to meet the requirements of energy-efficient buildings, either absolutely or partially, through a significant fit between the different design variables. Indeed, some researchers have incorporated artificial intelligence into their approach, while others have not. As for optimization, some have applied it to the building envelope and HVAC set-point temperatures [START_REF] Giouri | Zero energy potential of a high-rise office building in a Mediterranean climate: Using multi-objective optimization to understand the impact of design decisions towards zero-energy high-rise buildings[END_REF]- [START_REF] Perez | Development of a multiobjective optimization procedure dedicated to the design of district energy concept[END_REF], while others have applied it only to the building envelope. This diversity of approaches leads to a set of findings related to relevant criteria in this field, such as performance, reliability and calculation time. Although the objective remains the same, i.e., the optimization of the different energy expectations across the building envelope, these findings vary from one approach to another. Thus, some research studies have shown better performance results with a significant degree of reliability, but the calculation time is too high, while others have shown the opposite. This means that the present issue still has shortcomings with regard to the adequacy between the various criteria mentioned above. In other words, a methodology that can lead to an optimal design of the building envelope regarding energy savings, thermal comfort, etc., by ensuring a very high reliability of the calculated performances and a very short calculation time, represents an existing knowledge gap.

For this reason, this article represents a significant contribution that provides a scientific add-value to the existing body of knowledge, since a new and robust method, in terms of performance, reliability and calculation time, is provided to overcome the existing knowledge gap. To this end, a well-defined and detailed plan is presented, which includes 4 steps, the first of which is related to the modeling, the second step defines the optimization problem, the third is dedicated to the development of the ANN model and the last to the selection of the appropriate multiobjective optimization algorithm. As part of this plan, the document is organized as follows, starting with an overview of recent works on this issue, in order to emphasize the usefulness of this contribution in section 2, which will be devoted to the background, by referring to the the state of art presented in Table 1. The technical part of the contribution will then be discussed in the other sections, based on the methodology presented in section 2.2, which provides in-depth details on the modeling of the considered systems, then on the optimization and finally on the results. 

Background

Objective and originality

The issue considered in this study concerns the building performance optimization technique (BPO). This is a very complex process involving a large number of potential objective functions and design variables. The objective functions can refer to energy, environmental, economic and/or comfort indicators. The design variables can be related to the building geometry, envelope and energy systems. In this respect, the objective of this study is to discover a new and robust method, in terms of performance, reliability and calculation time, to meet the requirements of energy-efficient buildings. This method consists in finding the optimal building envelope design, considering its opaque and glazed walls, shading devices, thermal bridges and ventilation, in order to minimize the thermal energy demand, in particular that of heating and cooling, as well as the thermal discomfort of the occupants.

According to the existing literature, there are several approaches available to remedy the same issue using different techniques, in terms of methods, simulations, evaluation criteria, etc. In the present study, several criteria have been exposed, mainly that of computation time, which should be minimized as much as possible by introducing artificial neural networks. These could be well learned thanks to a rather small database in terms of the number of samples simulated by TRNSYS software, i.e. 35 samples for about 11 variables. This software remains a very efficient tool regarding a certain number of criteria (see section 3.3), especially accuracy [START_REF] Chatzinikolaou | Energy, Transportation and Global Warming[END_REF], [START_REF] Attia | Early Design Simulation Tools for Net Zero Energy Buildings : a Comparison of Ten Tools Design Process & Tools of Nzeb[END_REF], although it has not been used frequently for this kind of case. Indeed, the number of simulations has been in the majority of recent studies, for a number of variables that varies around 11, about 2000. This number is very high in terms of simulation time compared to the proposed path, although this is done automatically, using many DTS software packages, unlike TRNSYS. For this reason, researchers such as Romani et al. [START_REF] Romani | Développement d ' une méthode d ' aide à la décision multicritère pour la conception des bâtiments neufs et la réhabilitation des bâtiments existants à haute efficacité énergétique Zaid Romani To cite this version[END_REF] and Jeremy Bois [START_REF] Bois | Outil d ' Aide à la[END_REF], for example, have carried out studies in this sense in order to achieve the same desired objective by performing a minimum of simulation, using meta-models based on design of experiments where the DTS tool was TRNSYS.

However, for high precision, i.e. the complete quadratic polynomial case, at least 100 simulations are required. In this regard, the approach proposed in this paper represents an original contribution allowing to enrich considerably the current state of scientific research on the concerned issue.

Methodology

Very low energy buildings do not behave like traditional buildings. A detailed modelling of their behaviour is necessary to optimise their design regarding thermal needs, in particular those of heating and cooling, and indoor thermal comfort. Thus, the use of BPS technique is important in designing highly energy-efficient buildings, both for new buildings as well as for those undergoing major renovations. This technique involves reproducing certain aspects of building performance using a computerized mathematical model created according to fundamental physical principles and good engineering practice. The objective is to quantify the different aspects of building performance that are relevant to their design, construction, operation and control [START_REF] De Wilde | Building Performance Analysis[END_REF].

Currently, one of the main challenges for building performance simulation technology worldwide is the high computational time involved [START_REF] Salimi | Performance analysis of simulation-based optimization of construction projects using High Performance Computing[END_REF]. The approach presented in Fig. 1 is designed to address this challenge, while meeting the requirements of energy-efficient buildings. 

Modeling

Description of the reference building

The studied building corresponds to a typical GFFF house, often built in Marrakech region of Morocco, with three facades. Fig. 2, Fig. 3 and Fig. 4 show the 3D and 2D architectural plans of the house as well as their designed and modelled dimensions with AutoCAD [START_REF]AutoCAD For Mac &amp[END_REF] and SketchUp [START_REF]SketchUp Pro Software | Create 3D Model Online | SketchUp[END_REF]. Each level has a floor area of 140m 2 and a height of 3m. The ground floor includes two living rooms, an indwelling, a kitchen and a WC. As for the first floor, it includes two rooms, two dressing, two WC, a parental suite and an indwelling. In addition, each level is occupied by four people (two adults and two children).

It should be noted that other studies related to the evaluation of building performance are carried out on the same building [START_REF] Chegari | Local energy self-sufficiency for passive buildings: Case study of a typical Moroccan building[END_REF]- [START_REF] Chegari | The impact of the thermos-physical parameters of insulation on the energy performance of a building in Morocco[END_REF]. 

Thermal zoning

The studied building is divided into 13 thermal zones. The two WCs on the first floor are considered as a single zone (11) due to their similar geometries and internal heat gains. As for the stairwell, it is modelled as part of the dwelling since there is no thermal separation. Fig. 3 and Fig. 4 show the thermal zoning of this house. 

Modelling of the calculation process in TRNSYS environment

Achieving the objective of this study requires the use of a tool that allows the modeling of the reference building, as well as its dynamic thermal simulation. The DTS consists in studying over a defined period of at least a few days, at an hourly time step or less, the thermal behaviour of a building, either of its envelope or of its technical systems. This calculation takes into account all the parameters influencing the energy balance, namely internal and external gains, thermal inertia, transmission through the walls, etc.

In this study, the simulations were performed using TRNSYS software [START_REF] Klein | TRNSYS: A Transient System Simulation Program[END_REF], the worldwide reference in the field of dynamic simulation of buildings and systems, combined with the TRNBuild [START_REF] Klein | Multizone Building modeling with Type56 and[END_REF] platform. It is a complete simulation package, proposed by the CSTB [START_REF]Centre Scientifique et Technique du Bâtiment -CSTB[END_REF] and recognized by ASHRAE [41], containing several tools, simulation engine programs, a graphic connection with plotters and spreadsheets, etc. It is an integrated and smart tool that can be used from project design to simulation. It offers high accuracy, flexibility and infinite customization, high granularity of reported data and the ability of working with many programs. Thanks to this package, a platform has been designed and developed (see Fig. 1) to calculate the required number of simulations in order to create the database, which constitutes a fundamental element for developing the ANNs models.

Before starting the simulation, it is necessary to provide the characteristics of the studied building, such as geometry, orientation, thermo-physical parameters of the opaque and glazed walls, internal heat gains, air conditioning conditions and meteorological data. 

Internal heat gains

Table 3 shows the internal loads of the building [START_REF]Les charges thermiques internes pour les bureaux[END_REF], which represent a source of heat gain in winter and a charge in summer. In addition, the daily energy consumption can be estimated using the Eq. ( 1) at 24 kWh.day -1 .
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Location and meteorological data

The TMY2 file generated using Meteonorm software [START_REF]Meteonorm Global Meteorological databas Version 7[END_REF] was used in this case study to describe the climatic characteristics of the studied region, some of which are summarized in Table 5. 

Definition of the optimization problem

The increasing energy consumption of buildings in Morocco has attracted the government's attention. Thus, a thermal code has been implemented to apply an energy efficiency approach in the building sector, whether residential or tertiary. This was introduced by the publication of Decree No. 2-13-874 of October 15, 2014 in Official Gazette No. 6306 of November 6, 2014 [START_REF]Cadre réglementaire[END_REF], entitled «Règlement Thermique de Construction au Maroc» (RTCM). This decree approves the general construction code, which defines the energy performance standards for buildings as well as establishing the National Committee for the Energy Efficiency in Buildings. The main objective of the RTCM, which is developed by the AMEE, is to improve the thermal performance of new and existing buildings, while ensuring a better thermal environment for the occupants [START_REF] Amee | Règlement thermique de construction au Maroc[END_REF].

The assessment of the building envelope design regarding the energy efficiency plan can be established under various indicators, which can be referred to the energy demand, thermal comfort, visual comfort, acoustic comfort, indoor air quality and the economic and environmental impact, etc. In this study, two evaluation indicators were retained, namely energy demand and occupant thermal comfort, since they account for a very significant degree of impact compared to the others [START_REF] Li | A review of performance-oriented architectural design and optimization in the context of sustainability: Dividends and challenges[END_REF]- [START_REF] Boeck | Improving the energy performance of residential buildings: A literature review[END_REF], as well as being the most widely used in the literature presented in Table 1.

Objective Functions

With the purpose of identifying the interactions between energy consumption and indoor thermal comfort in hot and semi-arid climatic zone of Morocco, the two objective functions, namely the annual thermal energy demand, in particular that of heating and cooling, and the discomfort degree-hours, were simultaneously minimized.

Annual thermal energy demand

The ATED is defined as an indicator, representing the sum of heating and cooling loads over the total conditioned area of the studied building. In this study, the energy demand for artificial lighting, domestic hot water and electronic equipment was not taken into account, as they represent less than 40% of the total energy needs.

Therefore, the objective function ATED can be calculated according to Eq. ( 2) [START_REF] Chegari | Local energy self-sufficiency for passive buildings: Case study of a typical Moroccan building[END_REF]:

h c c 1 ATED = ×(Q + Q ) A (2)

Annual weighted average of discomfort degree-hours

The thermal comfort assessment can be carried out using several methods, such as calculating the number of hours during which occupants feel uncomfortable; the ASHRAE adaptive thermal comfort model; the Fanger thermal comfort model and the EN adaptive thermal comfort model. An approach, based on these methods, has been developed by Chegari et al. [START_REF] Chegari | Shading Devices' Benefits on Thermal Comfort and Energy Performance of a Residential Building in Different Climates in Morocco[END_REF], [START_REF] Chegari | Energy savings and thermal comfort benefits of shading devices: Case study of a typical Moroccan building[END_REF] to assess thermal comfort through the calculation of DH values.

The ADH is defined as an indicator, representing the annual weighted average of the degree-hours, during which the occupant feels uncomfortable, in areas where he/she should feel more comfortable. Therefore, the objective function ADH can be calculated according to Eq. ( 3):

n k k=1 1 ADH = DH n ∑ (3) 

Design variables

In Morocco, the RTCM addresses the issue of energy efficiency in buildings through two approaches, the first of which is called perspective and the second, performance. According to the perspective approach, which is related to the building design, certain thermo-physical parameters of the building envelope are well recommended, notably the thermal transmission coefficient of the external walls, roof, windows, the thermal resistance of the floor and the solar factor of the glazing. Thus, this indicates that there are shortcomings in terms of variable design, which constitutes an anomaly for successfully addressing the main issue.

With the objective of optimizing the two objective functions defined above, this study has introduced certain design variables (see Table 6 andTable 7), that present a major interest for architects, engineers and all stakeholders in this field, given that they have a significant impact on these two objective functions. The selection of these design variables was not made randomly, but rather through a whole bibliographical study that brings together recent research work that deconstructs the same problem, while taking into account the anomaly presented in the RTCM.

Opaque walls

The heat flow through the building envelope represents the main heat gain or loss of a building. Therefore, optimizing heat transfer through opaque walls is important for designing high performance buildings. In this respect, UM, UT, UP, αM, αT and Pt are selected as design variables. The upper limit of the heat transfer coefficients is defined according to those of the reference building, since this building belongs to the energy-consuming buildings, while the lower limit is defined in accordance with existing best practices. The limits for solar absorption coefficients of opaque wall claddings, particularly those of the exterior walls and roof, are defined according to the absorption characteristics of existing claddings on the market. Finally, the limits for thermal bridges are defined as follows: lower limit according to the recommendation of the Passivhaus label, while the upper limit is defined according to the reference building situation.

Glass walls

Glass walls generally require special attention, since they represent the weakest part of the building envelope insulation. In this respect, Glz is selected as a design variable consisting of 5 levels, each of which is composed of several parameters, namely Ug, SHGC, T-s, R-s and T-v (see Table 6). The latter is defined as a discrete variable due to the different typologies available on the market (single glazing, double glazing, triple glazing, etc.).

Shading

Shading devices are an effective way to reduce the amount of heat that penetrates the building through lightexposed windows. This is done in order to keep the freshness inside the building. In this respect, Scw-n, Scw-s and Scw-e are selected as design variables related to the ratio of the non-transparent surface of the shading device to the total glazed area. The lower limit indicates that there is no solar shading, while the upper limit indicates that the windows are 100% shaded from solar radiation.

Air change

Air change is one of the major features of the building, especially for its occupants. However, it can become an extremely critical factor, in terms of energy consumption, if it is not well controlled. In this respect, the overall air change rate (ACH) is selected as a design variable for air infiltration and ventilation. The lower limit is defined in accordance with the fact that there is no purely airtight building, while the upper limit is defined according to the reference building situation. 

Development of the ANN model

The introduction of ANNs in energy efficiency improvement approaches for buildings is an important step in achieving the desired performances, as they offer a greater degree of accuracy and timeliness than other conventional methods. Thus, their application in building energy efficiency improvement approaches remains a central idea and a future development for researchers [START_REF] Georgiou | Implementing artificial neural networks in energy building applications -A review[END_REF], [START_REF] Guyot | Overview of the use of artificial neural networks for energy-related applications in the building sector[END_REF].

In this study, the predictions obtained by the ANNs are used to define the envisaged objective functions. Indeed, prediction is a kind of dynamic filtering, in which past values of one or more time series are used to predict future values. This has been used in several research works to predict a possible need in the building sector [START_REF] Pandey | Artificial neural network for predation of cooling load reduction using green roof over building in sustainable city[END_REF]- [START_REF] Lin | Development of building thermal load and discomfort degree hour prediction models using data mining approaches[END_REF].

To this end, a database consisting of 35 samples was created, in accordance with the philosophy described in Section 5.1. This represents an important preliminary step for the different ANNs modelling.

Creation of the database

In this study, the objective functions are defined through the learning of artificial neural networks. Therefore, the availability of a database is indispensable to define them. Indeed, a number of databases have been set up, whose principle and number of simulations differ from a database to another.The objective is to identify the database that has been the subject of a minimum number of simulations while allowing very precise learning. For this reason, a mathematical approach has been well developed according to the envisaged criteria, whose modeling is presented in Eq. ( 4) and Eq. ( 5):

1 f ( ) = ATED( ) X X (4) 2 f ( ) = ADH( ) X X (5) 
f1 and f2 are defined as functions that represent, in a certain way, the calculation mechanism related to the designed platform in TRNSYS software environment (see Fig. 5), aiming to obtain the ATED and the ADH as a function of xi,j variable (Eq. ( 6)).
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x x [START_REF] Papadopoulos | Data Analytics for Renewable Energy Integration[END_REF] The Xz set is a size data matrix (35x11) that characterizes the database designed for automatic learning, of which it contains 35 samples. Indeed, this number of samples was not randomly selected, but rather after several trialand-error-based evaluation simulations. This database is based on a particular philosophy, as expressed in the following lines:

This philosophy is based on two fundamental principles that are used to achieve high quality learning, the first of which is called level samples, while the second is called weight samples.

-Level samples: this means that in each simulation of a sample, only one level must be taken for all variables.

-Weight samples: this means that in each simulation of a sample, only one variable must be isolated, i.e. its level is different from the other variables whose level, called pivot, is constant. Note that level 6 is the reproduction pivot, since it represents the middle of the levels.

The vectors X1, X2, ..., X11 represent the so-called level samples, i.e. in each sample simulation, only one level must be taken for all variables, with the exception of x11 since it has 5 levels instead of 11. Thus, the levels of x11 are distributed in such a way as to comply with the principle of the others by simulating each one twice, or even three times in the case of X9, X10, X11 vectors.

The vectors X12, X13, ..., X35 represent the so-called weight samples, i.e. in each sample simulation, only one xi variable must be isolated from the others, whose level varies in this case between the pivot level -1 and +1. The only exception is x11 since it is a discrete variable that has only 5 levels, which does not prevent the addition of its two other levels (X32, X35) in order to improve its weight learning. It should be noted that the X34 and X35 correspond to the complements coefficient β introduced by discrete variables (Fig. 6).

Finally, the different simulations necessary for creating the database, through which the ANN learning will be carried out, are performed as presented in Eq. ( 9):

1 2 1 1 1 2 2 2 1 2 35 35 [f , f ]( ) [ATED, ADH]( ) [f , f ]( ) [ATED, ADH]( ) [f , f ]( ) [ATED, ADH]( ) X X X X X X = = = = = M M M M (9) 
Figure 6. Approval process of the number of simulations adopted for creating the database

Training and validation of the ANN model

For the purpose of training and validating the artificial neural networks under consideration, the 35 samples were randomly divided into a training set (70%), a validation set (15%) and a test set (15%), as suggested by Shahin et al. [START_REF] Shahin | Data division for developing neural networks applied to geotechnical engineering[END_REF]. Indeed, the Multilayer Feed Forward Neural Network (MFNN) is used as a type of these ANNs, given that it represents the most recommended type in the literature [START_REF] Roman | Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review[END_REF]. MFNNs are computational models composed of many neurons (nodes), which are connected by connective links (weights) and are arranged layer by layer. Thus, the fi output is calculated mathematically according to Eq. ( 10):

i n i i i, j i, j i j=1 f = w z + b φ       ∑ ( 10 
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The architecture of both ANNs is shown in Fig. 7, where each ANNs has an input layer that contains 11 neurons corresponding to the 11 optimization variables, then a hidden layer composed of 4 neurons, and finally an output layer, either f1 or f2. The number of neurons in the hidden layer is essential to ensure the performance of the ANN model. An excessive number of hidden neurons will lead to over-fitting, while an insufficient number of hidden neurons will hinder the robustness and reliability of the learning process. In fact, there is no general rule but rather empirical rules. According to the literature, the size of the hidden layer must be either equal to that of the input layer [START_REF] Wierenga | Neural nets versus marketing models in time series analysis: A simulation study[END_REF], or equal to 75% of it [START_REF] Venugopal | Neural networks and statistical techniques in marketing research[END_REF], [START_REF] Venugopal | Neural networks & their applications in marketing management[END_REF] or equal to the square root of the product of the number of neurons in the input and output layer [START_REF] Shepard | The new direct marketing How to implement a profit-driven database marketing strategy[END_REF]. In this study, the number of hidden neurons was determined using the trial-anderror method based on the mean relative error of the ANN predictions for each output. Thus, the best fit was 4 neurons in the hidden layer for each of the networks, which does not correspond to any of the aforementioned empirical rules (Fig. 7).

The networks were trained using Le-venberg-Marquardt back-propagation algorithm. A sigmoidal function for the hidden layer and a linear function for the output layer were used as transfer functions. This training is not based on the conventional principle, i.e. it stops automatically when the MSE of the validation samples has stabilized, but rather on a special combination with the PSO as suggested by Keshtkarbanaeemoghadam et al. [START_REF] Keshtkarbanaeemoghadam | Estimation and optimization of heating energy demand of a mountain shelter by soft computing techniques[END_REF]. Indeed, when ANNs start training, specifically when the process reaches the classical MSE, the PSO is invited to find the most MSE-optimized weights (wi,j) and biases (bi) of the neural networks. Then, after a set of well-defined iterations, which are 50 in this case, the coupling process compares each time the two MSEs in order to finally achieve the best training at a very low MSE. Thus, the best performance of the ANN-MLP model is obtained as illustrated in Fig. 8. It should be noted that the implementation of the two ANNs, each one assigned to a single objective function, consists in defining each function separately from the other. Thus, the optimization can be carried out in a suitable way. 

Assessment of the ANN model accuracy

For any approach, leading to build a surrogate model should undergo an accuracy evaluation, in order to have a visibility on its reliability. So, before proceeding to the optimization step, the reliability of the developed ANNs must be evaluated.

The most commonly used error functions to measure the accuracy during the training of ANNs were the mean square error (MSE) and the root mean square error (RMSE). On the other hand, the preferred parameters to quantify the performance of ANN metamodels were RMSE, the coefficient of determination (R2), and the correlation coefficient (R) [START_REF] Roman | Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review[END_REF]. In this paper, the accuracy of the developed surrogate models has been assessed using the most important and frequently used indicators of forecast reliability in the literature, which are RMSE and R. Quite naturally, the root mean square error provides a complete view of the error distribution for any kind of predictive evaluation similar to the present one.

Indeed, the evaluation of ANN-MLP models through these indicators has no rule in terms of reference value since this depends absolutely on the number of observations as many authors have confirmed. In other words, an RMSE that varies around 2 for a prediction evaluation of such an observation size similar to the one presented in this paper seems very satisfactory.

In order to select a surrogate model that has a significant reliability, 10 simulations were established as indicated in Fig. 6, each of which was subject to an RMSE calculation according to Eq. [START_REF] Gou | Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand[END_REF].

k 1 n 2 -1 ' 2 k i i i=1 RMSE = n | y -y |       ∑ (11) 
Following the establishment of the 10 simulations planned during the development of the database creation algorithm, it turns out that the distribution of errors evolves in a scalable way. However, for each of the performance indicators, namely ATED and ADH, it shows RMSE values below 2.5, which is small enough to provide a good prediction as illustrated in Fig. 9 and Fig. 10. In this case, the selected ANN-MLP models are those with the smallest RMSE, i.e. RMSE = 1.12 and RMSE = 2.22 for ATED and ADH respectively. This ensures a high predictive reliability since the correlation, measured by the selected models, between ANN predictions and TRNSYS simulations is close to 1, which corresponds to a very high correlation, as shown in Fig. 11 and Fig. 12. 

Sensibility analysis

In this section, a sensitivity analysis of the learning process was discussed. In particular, the effect of each input parameter on ATED and ADH was examined using the well-known Garson 1991 algorithm [START_REF] Garson | Interpreting neural-network connection weights[END_REF]. The purpose of using this algorithm is to evaluate the relative importance of each input parameter on the deserted output(s). The algorithm procedure is presented in Appendix-A in the Supplementary Data section.

Some researchers such as Calleja Rodríguez et al. [START_REF] Calleja | Uncertainties and sensitivity analysis in building energy simulation using macroparameters[END_REF] and Laine et al. [START_REF] Laine | Application of multi-step simulation and multi-eKPI sensitivity analysis in building energy design optimization[END_REF] have performed a sensitivity analysis using different metaheuristic methods to determine the most important impact of input parameters on the energy performance of buildings. In this research, the sensitivity analysis of the ANN-PSO model is presented in Fig. 13.

This analysis was performed based on the algorithm of Garson as suggested by Keshtkarbanaeemoghadam et al. [START_REF] Keshtkarbanaeemoghadam | Estimation and optimization of heating energy demand of a mountain shelter by soft computing techniques[END_REF]. The results show that the different input parameters have an important impact on ATED and ADH, which is already expected from the choice of envelope design parameters. Thus, the three parameters that have a greater 

Discussion and results

In this section, we will discuss possible recommendations for designing a building envelope that perfectly meets the requirements of energy-efficient buildings. This will be addressed once the appropriate multi-objective algorithm has been selected.

Appropriate metaheuristic algorithm

The optimization is generally defined by the selection of the best candidate from a set of available alternatives according to certain criteria. In the simplest case, an optimization problem aims to find the minimum or maximum value of a function by choosing a number of variables subjected to a number of constraints according to specific problems. The optimization function is also called a fitness or objective function, which is often calculated by scientific simulation tools. In this study, the optimization problem consists of minimizing the two functions defined by Eq. ( 2) and Eq. (3) as mathematically described by Eq. ( 12):
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Subject to the constraints presented in Eq. ( 13): 

.01 1 0 , , , 1.9 0.1 2.5 0.1 2.9 0.1 , 0.9 0 
x x x x x x x x x x x > >   ≤ ≤   ≤ ≤  ≤ ≤   ≤ ≤   ≤ ≤  ≤ ≤   ≤ ≤  1 1 5 and 

Application of metaheuristic algorithms

It appears from the literature, particularly that presented in Table 1, that a number of metaheuristic optimization algorithms have been used in different cases, involving different parameters and obviously different approaches, although some of them are frequently reproduced, namely evolutionary algorithms and those based on particle swarms. These have been compared with each other in numerous research works [START_REF] De Souza | Comparing PSO and NSGA II for the biobjective Oil Derivatives Distribution Problem[END_REF]- [START_REF] Babaveisi | Optimizing a multi-product closed-loop supply chain using NSGA-II, MOSA, and MOPSO meta-heuristic algorithms[END_REF]. Furthermore, Nguyen et al. [START_REF] Nguyen | A review on simulation-based optimization methods applied to building performance analysis[END_REF] showed in a very detailed review of simulation-based optimization methods applied to building performance analysis that, according to 200 published papers in this field, genetic algorithms ranked first in terms of use, followed by PSO algorithms and then hybrid algorithms. In this respect, considering the rank of use of genetic and PSO algorithms, three population-based stochastic multi-objective optimization algorithms, namely NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF], MOGA [START_REF] Isibushi | MOGA: Multi-objective genetic algorithms[END_REF] and MOPSO [START_REF] Coello Coello | MOPSO: a proposal for multiple objective particle swarm optimization[END_REF], were selected for application to the proposed optimization problem.

All these algorithms were implemented on Matlab R2016a according to their operating principle referenced above.

It is well known that the performance of optimization algorithms does not only depend on the optimization problem but also on the control parameters. In this study, the parameters of each optimization algorithm were taken according to the default parameters chosen by Li et al. [START_REF] Li | Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study[END_REF] (Table 8). With the exception of population size and iteration number, since these parameters have an important impact on the optimization algorithms convergence. Indeed, several tests have been carried out to define the interval in which the desired optimums are frequently found, taking into account as priorities population size, iteration number and simulation time. These tests show that this interval ranges between 25 and 100, both for population size and iteration number, as long as their product is the same throughout the interval. Thus, the greatest convergence leading to a better solution was evaluated according to 4 tests as shown in Table 9, within the same interval, in order to select the appropriate algorithm. The selection of the appropriate multi-objective algorithm is based on the performance evaluation of the set of implemented algorithms, according to several criteria that depend mainly on the expected objective. An important concept of multi-objective optimization is called the Pareto front, which is a set of solutions that are not dominated by each other [START_REF] Deb | Multi-objective Optimization[END_REF] (i.e. no design objective can be improved without first judging the others). Indeed, the performance evaluation of a multi-objective algorithm depends on the evaluation of the optimal Pareto set properties, estimated by this algorithm, as well as the computational resources required to generate this set. These properties are diverse, including diversity, generational distance, normalized inverted generational distance, etc [START_REF] Hamdy | A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems[END_REF], [START_REF] Si | Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms[END_REF]. In this study, the implementation of an optimization algorithm aims, in general, towards responding to the present issue while guaranteeing a minimum calculation time, which is partially taken into account when defining the range of tests presented in Table 9. In addition, three criteria have been highlighted in order to select the appropriate algorithm, i.e. calculation time, optimality and diversity of solutions.

Fig. 14, Fig. 15 and Fig. 16 show the Pareto-optimal spectrum of the different applied optimization algorithms, respectively NSGA-II, MOPSO and MOGA. It should be noted that this Pareto-optimal spectrum, derived from the multi-objective algorithm performance, represents the optimums with respect to the objective space rather than the decision space, since the most important reason for using multi-objective algorithms is to examine the balance between conflicting objectives. These figures can be better understood by looking at Table 10, which shows the three best Pareto-optimal solutions obtained by each algorithm in the four proposed tests. Thus, the performance of the applied optimization algorithms can be assessed with respect to the three considered criteria:

-Firstly, computation time constitutes the main criterion of this study. The MOPSO was therefore able to show that it could beat the other algorithms regarding the moment at which convergence is perfectly achieved. However, this outperformance could only be useful if the other evaluation criteria are the same for all algorithms, since this latter does not represent a very significant response time (See Table 11).

-As for optimality, which is a basic criterion for all studies aimed at optimizing any kind of need, it turns out that each of NSGA-II and MOPSO have succeeded, at the end of their convergence, in providing well-optimized pareto-optimal solutions compared to MOGA (i.e., the best achievable pareto-optimal solutions in the objective plan). These solutions are virtually identical in all the tests proposed. Moreover, their particular property in terms of proximity between their Pareto-optimal solutions becomes more important as the number of iterations increases.

-Finally, the third criterion, which is diversity, serves to offer decision-makers a multiple option in terms of Pareto-optimal solutions, in order to provide sufficient flexibility in case where there are constraints regarding certain factors, i.e. feasibility, availability, cost, etc. Indeed, all of the implemented algorithms, i.e. NSGA-II, MOPSO and MOGA have shown in each of the 4 tests that they can generate distinct Pareto-optimal solutions, but in a rather limited way.

Finally, the comparative analysis can show that NSGA-II and MOPSO present the most efficient multi-objective algorithms compared to MOGA, in terms of balance between the considered criteria. However, the MOPSO is the one that will be selected because it offers a slight advantage in computation time compared to NSGA-II. It should be noted that, in this study, only the spectrum that meets the objective plan is concerned. Note that the composition [Glzj -Glzj] means that this variable corresponds to the middle of the two boundaries. 

Building envelope recommendations

It is well-known that the BPO technique brings gains at the end of its application. In this study, it led to a significant improvement in the energy performance, in particular that related to heating and cooling, as well as indoor thermal comfort, of a residential building located in Marrakech region. Indeed, this reference building is based on assumptions concerning the same characteristics as a building constructed before 2014 in the same region, when the RTCM was not yet mandatory. As a result, it is not a monitored building, i.e., it does not have an energy and data management system. In this respect, its optimised performance can only be compared to the RTCM recommendations, as it represents the thermal building code in Morocco as described in section 4. In fact, the RTCM doesn't have any specific recommendations regarding thermal comfort, except for the set temperatures, which implies that the optimised ADH in this study can only be compared to that of the base building. In contrast, a thermal performance indicator, particularly for heating and cooling, is well recommended for the same region, i.e. 130 kWh.m -2 .yr -1 as an upper limit that should not be exceeded.

Optimal building design

The application of the different multi-objective optimization algorithms used in this study showed that the NSGA-II and MOPSO are the most appropriate for addressing the present issue. In this respect, as the MOPSO is the one selected in section 6.1.2, four solutions have been selected among the different alternatives proposed by this latter,

i.e. one solution from each of the four tests, in order to construct the most efficient solutions as presented in Table 11. This Table shows that each solution presents some diversity with respect to the others in terms of design variables, with the exception of the variable x5, which is constant in all of the proposed solutions. The reason for this is that the roof constitutes a critical component that must be taken with some caution compared to other opaque walls, in order to limit heat loss as much as possible. In addition, it should be noted that the variable x11 is also important, since it represents the glazed part of the building envelope. This is why it varies between the most efficient glazings proposed in this study. 

Improvement potential

Following the selection of the four building design solutions, it appears from Table 12 that they represent suitable solutions for this study, due to the successful performance of both ATED and ADH. Thus, in case only one solution should be selected, it will be solution 2, although it presents only a slight difference in advantage, which seems negligible compared to the others. Consequently, the studied building will have to be in full compliance with the RTCM since the ATED varies around 35 kWh.m -2 .yr -1 , which represents about 4 times less than the regulatory upper limit. Furthermore, the ADH has practically improved through a reduction of about 2 °C.h.yr -1 with respect to the reference building, which remains a simultaneous improvement of its thermal performance.

In this study, the solution 2, using Eq. ( 14), provided a very significant potential of improvement in the building's energy performance, particularly in terms of thermal needs (Table 13). This solution averaged 74.52%, which means that the achieved savings on the energy consumption of the air-conditioning systems represent more than half of the total. In addition, a further improvement of 4.32% has been made for the occupants in terms of thermal comfort.

OD BD p BD f -f I (%) f = [START_REF] Zhang | Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China[END_REF] Note that the Ip can only be calculated if the fOD and the fBD have the same unit. 

Conclusion

In this study, the BPO technique was well applied in order to design energy-efficient buildings, i.e. a GFFF residential building located in Marrakech region of Morocco (5th climatic zone according to the RTCM). The purpose is minimizing its energy demand, especially for heating and cooling, as well as maximizing indoor thermal comfort, which are the two most important targets for building designers. The design variables considered in this optimization include the thermo-physical parameters of all opaque and glazed walls, shading devices, thermal bridges and ventilation.

Indeed, a surrogate model with good predictive accuracy has been developed by the ANN in order to target the overall research space of the two expected objectives. This was accomplished by using a database of 35 samples, which were simulated by a platform developed in TRNSYS software environment. Actually, this value represents a major contribution regarding computation time since it is very reduced compared to the existing literature. Then, the selection of the appropriate algorithm, which perfectly meets the requirements of this study, was initiated after comparing the performance of three commonly used multi-objective optimization algorithms, namely NSGA-II, MOPSO and MOGA, using the criteria mentioned in section 6.1.2. The results indicate that the MOPSO achieved the greatest desired performance, followed by the NSGA-II and finally the MOGA.

The final optimization results of the studied building design showed that there is a very significant improvement potential, representing 74.52% and 4.32% respectively for ATED and ADH, compared to the base design. These results show that the BPO technique is highly suitable for difficult building design optimization problems, where no more efficient classical method is available, especially in the case of introducing artificial intelligence. In this context, the proposed methodology presented in this paper, which is based on several modeling, automatic learning and optimization tools, has been carried out successfully by responding quite sufficiently to the gap in knowledge on this issue. However, some other tools may be introduced in further work to improve this approach, especially more powerful tools for machine learning, deep learning and new generation algorithms.
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 5 Figure 5. Computation platform in TRNSYS environment 3.3.1. Composition of the building envelope Table2presents the composition of the opaque and glazed walls of the studied building. The collected thermophysical properties are taken from the BINAYAT perspective library of AMEE[START_REF]Bibliothèque BINAYAT perspective[END_REF], according to the technical description of the building envelope composition.
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  impact on ATED compared to the others are the Transmission coefficient of the exterior walls with 18.77%, the Transmission coefficient of the Roof with 11.80% and the air change per hour with 10.13%. On the other hand, for ADH, the air change per hour ranks first with 11.99%, then the transmission coefficient of the floor with 11.25% and the glazing with 10.97%.
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 142115 Figure 14. Pareto frontiers evolution in 4 tests for NSGA-II

  

Table 1 .

 1 Recent Scientific Literature on Building Performance Optimization (BPO)

	Authors	Optimization tools	Simulation tools	Objective functions	Scope	Bg	Ba UM,e αM UT	αT	Up	Pt UM,i	P-type	W-size	Ug SHGC	ε	T-s	R-s	T-v	W-sh	W-o	W-o,c	Uf	αf WWR	Air-m,f	ACH
	Bre et al. (2020)	NSGA-II	EnergyPlus + Python	Energy demand + Thermal comfort	Residential Buildings		VD	VD	VC VD		VD	VD		VC	VD	VD	VD	VD	VD	VD	VC	VC			VC
	Zhai et al. (2019)	NSGA-II	EnergyPlus	Energy demand + Thermal comfort + Visual comfort	Office buildings		VD								VD	VD	VD	VD	VD	VD					VC
	Shi et al. (2018)	Sampling	DeST	Energy demand	Office buildings			VC	VC															
		Machine learning																						
	Papadopoulos et al. (2018)	(Gradient Boosted Regression Trees) +	Ecotect	Energy demand	Buildings		VC	VC	VC																VC
		GA																						
	Yao et al. (2018)	Unknown	EnergyPlus + Miscrosoft Visual Basic	Energy demand + Thermal comfort	Residential Buildings		VC	VD	VD		VD										VC				VC	VC
	Bamdad et al. (2018)	ACOMV-M + PSOHJ	EnergyPlus + GenOpt	Energy demand	Office buildings			VC							VD	VD				VD	VC			
	Gou et al. (2018)	ANN + NSGA-II + Monte Carlo method	EnergyPlus + MATLAB® + SIMLAB	Energy demand + Thermal comfort	Residential Buildings		VC	VC	VC VC VC			VD		VC	VC					VC	VC	VD		VC	VC
	Li et al. (2017)	ANN + NSGA-II + MOPSO + MOGA + MODE	TRNSYS + GenOp EnergyPlus + DOE-2 + MATLAB® +	Energy Demand + Life Comfort Cycle Cost + CO2 Emissions + Thermal	Residential Buildings		VC	VD	VD		VD	VD			VC			VC							VC

Mostavi et al. (2017)

  

					Table 1. (Continued)															
	Authors	Optimization tools	Simulation tools	Objective functions	Scope	Bg	Ba UM,e αM UT αT	Up	Pt UM,i	P-type	W-size	Ug SHGC	ε	T-s	R-s	T-v	W-sh	W-o	W-o,c	Uf	αf WWR	Air-m,f	ACH
	Harmathy et al. (2016)	Multi-criterion building envelope optimization	EnergyPlus + Open Studio Radiance + Autodesk Revit +	Energy demand + Visual comfort	Office buildings									VD	VD					VD				VC
	Bre et al. (2016)	GA + Morris screening method for sensitivity analysis	EnergyPlus • Python	Energy demand + Thermal comfort	Residential Buildings		VC	VC	VC VC VC VC	VC			VD	VD		VD	VD	VD	VD	VC	VC		VC
	Delgarm et al. (2016)	MOPSO	EnergyPlus + MATLAB® + jEPlus	Energy demand	Office buildings		VC	VC	VD					VC				VD		VD	VC			VC
	Delgarm et al. (2016)	NSGA-II	EnergyPlus + MATLAB® + jEPlus	Energy demand	Office buildings		VC							VC							VC			VC
	Azari et al. (2016)	ANN + MOGA	eQuest	Life Cycle Environmental Impacts	Office buildings			VC						VD	VD		VD	VD	VD	VD				VD	VC
	Brown et al. (2016)	NSGA-II	Archsim + EnergyPlus	Energy demand	High-rise buildings	VC																	
	Echenagucia et al. (2015)	NSGA-II	EnergyPlus + Python	Energy demand	Office buildings									VD	VD					VD			
	Romani et al. (2015)	Design of Experiments (D-optimal) + Metamodels	TRNSYS	Energy demand	Residential Buildings			VC	VC VC VC VC VC			VD	VD			VD	VD	VD	VC			VC
	Yu et al. (2015)	ANN + NSGA-II	EnergyPlus + MATLAB®	Life Cycle Cost + Life Energy demand + Thermal comfort	Residential Buildings		VC	VC						VC										VC
	Yang et al. (2014)	Harmony search algorithm NSGA-II	EnergyPlus + C++ EnergyPlus	Cycle Greenhouse Gas Emissions + Thermal Energy demand	Office buildings Residential Buildings			VC	VC		VC			VC	VD						VC			VC
				Comfort																			
	Zhang et al. (2017)	GA (SPEA-2)	Rhinoceros + EnergyPlus + Radiance + Octopus	Energy Demand + Daylighting + Thermal Comfort	School buildings		VC	VC	VC		VC				VD	VD				VD	VD			VC
	Bre et al. (2017)	NSGA-II	EnergyPlus + Python	Energy demand + Thermal comfort																			

Table 2 .

 2 Opaque and glazed walls composition and thermos-physical properties.

	Construction element	Material	Thickness [cm]	λ	C	ρ	αt	Et	Tps
		Ciment	1.50	1.80	1.00	2500	7.20.10 -7	2121.32	0.41
		Raw earth	10.00	1.04	1.00	2350	4.43.10 -7	1563.33	3.46
	Exterior wall	Layer of air	5.00			R = 0.18 m 2 K.W -1		
		Raw earth	10.00	1.04	1.00	2350	4.43.10 -7	1563.33	3.46
		Ciment	1.50	1.80	1.00	2500	7.20.10 -7	2121.32	0.41
		Plaster	2.00	0.56	1.00	1350	4.15.10 -7	869.48	0.71
		Hourdis	20.00	1.32	1.00	1327	9.91.10 -7	1321.64	4.62
	Roof	Concrete	5.00	2.00	1.00	2450	8.16.10 -7	2213.59	1.27
		Ciment	1.50	1.80	1.00	2500	7.20.10 -7	2121.32	0.41
		Floor tile	1.50	1.30	0.84	2300	6.73.10 -7	1584.80	0.42
		Ciment	1.50	1.80	1.00	2500	7.20.10 -7	2121.32	0.41
	Ground floor	Hourdis Concrete	16.00 4.00	1.18 2.00	1.00 1.00	1372 2450	8.57.10 -7 8.16.10 -7	1270.32 2213.59	3.98 1.02
		Ciment	1.50	1.80	1.00	2500	7.20.10 -7	2121.32	0.41
		Plaster	1.50	0.56	1.00	1350	4.15.10 -7	869.48	0.54
	Intermediate	Hourdis	16.00	1.18	1.00	1372	8.57.10 -7	1270.32	3.98
	floor	Concrete	4.00	2.00	1.00	2450	8.16.10 -7	2213.59	1.02
		Ciment	1.50	1.80	1.00	2500	7.20.10 -7	2121.32	0.41
		Ciment	1.50	1.80	1.00	2500	7.20.10 -7	2121.32	0.41
	Internal wall	Concrete agglo 6 holes	12.00	0.56	0.83	768	8.77.10 -7	596.93	2.95
		Ciment	1.50	1.80	1.00	2500	7.20.10 -7	2121.32	0.41
	Glazing	FLOAT_19			Ug = 5.16 W.m -2 K -1 , SHGC = 0.68 and WWR = 24%		

Table 3 .

 3 Internal heat gains

	Level	Zone	Designation	Conditioning	Gain type	Number	Daily schedule	Heat gains
					Lighting		19-22h	5W.m -2
					TV	1	12-14h and 18-20h	100W
		1	Living room	Controlled	Air conditioning	1	19-22h	120W
					People	4	07-8 h. 12-14 h and 18-20 h (Sitting at rest)	60W.Pers -1
					Lighting		19-22h	5W.m -2
	Ground floor	2 3	Indwelling 1 European living room	Controlled Controlled	Air conditioning People Lighting TV Air conditioning People	1 4 1 1 4	19-22h 07-8 h. 12-14 h and 18-20 h (Sitting at rest) 19-22h 12-14h and 18-20h 19-22h 07-8 h. 12-14 h and 18-20 h (Sitting at rest)	120W 60W.Pers -1 5W.m -2 100W 120W 60W.Pers -1
					Lighting		18-22h	5W.m -2
		4	Kitchen	Uncontrolled	Refrigerator Built-in oven	1 1	24h 18-19h (One time per week)	300W 2500W
					Washing machine	1	18-19h (Two times per week)	1500W
		5	WC	Uncontrolled	Lighting		18-22h	5W.m -2
					Lighting		20-22h	5W.m -2
	First floor	6	Parental suite	Controlled	Laptop Air conditioning People	2 1 2	20-22h 20-22h 20-22h (Rest)	50W.PC -1 120W 60W.Pers -1
		7	WC	Uncontrolled	Lighting		18-22h	5W.m -2

Table 4 .

 4 Air conditioning conditions

	Natural ventilation in all	Natural ventilation in the	Infiltration	Summer setpoint	Winter setpoint
	zones [v.h -1 ]	kitchen [v.h -1 ]	[v.h -1 ]	temperature [°C]	temperature [°C]
	1	5	0.1	26	20

Table 5 .

 5 Location and meteorological data

	Location	Latitude Longitude	Elevation	ΘH	ΘL	HDD	CDD	Rs,g	Classification
				[m]						climatique « Köppen »
	Marrakech (Morocco)	31.6°N	-8.0°E	466	28.8 (July)	11.9 (January)	754.24	1041.74	2.087	Bsh (Hot semi-arid climate)

Table 6 .

 6 External window models considered for x11 variable

	Designation	Symbol	Thickness [mm]	Ug	SHGC	T-s	R-s	T-v
	FLOAT_19	Glz1		5.160	0.682	0.600	0.070	0.830
	Insulating. 2.8	Glz2	4/16/4	2.830	0.755	0.693	0.126	0.817
	Luxguard SUNGUARD CLEAR PLUS Argon. 2.6	Glz3	6/16/4	2.300	0.295	0.214	0.195	0.292
	Pilk. 3-ple INFRASTOP Brilliant5025+OPTITHERM S #5	Glz4	6/12/4/12/4	0.700	0.222	0.177	0.329	0.436
	Insulating. 0.4. Xenon	Glz5	4/8/4/8/4	0.400	0.408	0.268	0.231	0.625

Table 7 .

 7 Different levels of selected design variables

	Designation	Symbol	Corresponding variable	Unit	Type	Lower limit	Upper Limit	Step	Level
	Transmission coefficient of the exterior walls	UM	x1	W.m -2 .K -1 Continuous	0.1	1.9	0.18	11
	Transmission coefficient of the Roof	UT	x2	W.m -2 .K -1 Continuous	0.1	2.5	0.24	11
	Transmission coefficient of the Floor	Up	x3	W.m -2 .K -1 Continuous	0.1	2.9	0.28	11
	Absorption coefficient of the exterior walls	αM	x4	-	Continuous	0.1	0.9	0.08	11
	Absorption coefficient of the Roof	αT	x5	-	Continuous	0.1	0.9	0.08	11
	Linear coefficient of thermal bridges	Pt	x6	W.m -1 .K -1 Continuous	0.01	1	0.099	11
	Air change per hour	ACH	x7	v.h -1	Continuous	0.1	1.1	0.1	11
	Shading coefficient for north-facing windows	Scw-n	x8	-	Continuous	0	1	0.1	11
	Shading coefficient for south-facing windows	Scw-s	x9	-	Continuous	0	1	0.1	11
	Shading coefficient for east-facing windows	Scw-e	x10	-	Continuous	0	1	0.1	11
	Glazing	Glz	x11	-	Continuous	Glz1	Glz5	-	5

Table 8 .

 8 Setting of the applied optimization algorithms

	Algorithms	Settings

Table 9 .

 9 Setting the iteration number and population size for the four tests

	Settings	Test 1	Test 2	Test 3	Test 4
	Iteration number	100	75	50	25
	Population Size	25	50	75	100
	6.1.2. Selection of the appropriate algorithm			

Table 10 .

 10 The Top three Pareto-optimal solutions obtained by each algorithm across the four tests.

	Algorithm	Test	Top 3 POS	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	ATED	ADH
			1	0.45	0.41	2.17	0.48	0.10 0.50 0.54 0.46 0.55 0.54	Glz4	36.40	45.30
		1	2	0.27	0.70	2.14	0.49	0.10 0.50 0.53 0.46 0.55 0.53	Glz4	36.42	45.27
			3	0.34	0.62	2.13	0.49	0.10 0.49 0.52 0.46 0.54 0.53	Glz4	36.47	45.27
			1	0.18	0.16	2.82	0.37	0.11 0.26 0.30 0.41 0.38 0.72 Glz4 -Glz5	34.51	45.44
		2	2	0.18	0.16	2.82	0.43	0.11 0.26 0.30 0.41 0.38 0.72 Glz4 -Glz5	34.59	45.40
	NSGA-II		3 1	0.23 0.40	0.37 0.28	2.55 2.46	0.36 0.37	0.10 0.26 0.30 0.39 0.58 0.75 Glz4 -Glz5 0.10 0.51 0.11 0.39 0.45 0.54 Glz5	34.89 34.69	45.27 45.38
		3	2	0.40	0.28	2.46	0.37	0.10 0.51 0.29 0.39 0.45 0.54	Glz5	34.72	45.32
			3	0.40	0.28	2.46	0.37	0.10 0.51 0.29 0.40 0.45 0.54	Glz5	34.73	45.32
			1	0.12	0.37	2.27	0.41	0.11 0.24 0.52 0.72 0.37 0.76 Glz4 -Glz5	34.95	45.31
		4	2	0.13	0.42	2.38	0.34	0.11 0.22 0.51 0.75 0.41 0.75	Glz4	35.09	45.28
			3	0.11	0.51	2.19	0.40	0.10 0.17 0.59 0.75 0.44 0.76 Glz3 -Glz4	35.48	45.25
			1	0.51	0.34	2.73	0.10	0.10 0.09 0.44 0.77 0.64 0.97 Glz4 -Glz5	35.58	45.22
		1	2	0.56	0.21	2.90	0.10	0.10 0.11 0.50 0.82 0.64 0.95	Glz4	35.63	45.22
			3	0.53	0.24	2.68	0.10	0.10 0.13 0.53 0.77 0.65 1.00	Glz4	35.72	45.22
			1	0.14	0.10	2.81	0.10	0.10 0.04 0.41 0.55 0.65 1.00	Glz4	34.53	45.27
		2	2	0.18	0.19	2.90	0.11	0.10 0.06 0.28 0.52 0.76 0.95	Glz4	34.55	45.23
	MOPSO		3 1	0.12 0.36	0.22 0.59	2.83 2.44	0.10 0.29	0.10 0.05 0.40 0.57 0.78 0.97 Glz4 -Glz5 0.10 0.37 0.56 0.53 0.50 0.50 Glz4	34.56 35.93	45.23 45.33
		3	2	0.24	0.85	2.25	0.40	0.10 0.42 0.55 0.50 0.47 0.52 Glz4 -Glz5	36.17	45.28
			3	0.36	0.52	1.96	0.35	0.10 0.41 0.42 0.54 0.53 0.52	Glz4	36.20	45.32
			1	0.23	0.25	2.25	0.50	0.10 0.44 0.58 0.51 0.57 0.58	Glz4	35.40	45.36
		4	2	0.41	0.22	2.37	0.46	0.10 0.43 0.44 0.59 0.40 0.71	Glz4	35.58	45.29
			3	0.32	0.31	2.51	0.40	0.10 0.37 0.53 0.61 0.54 0.72 Glz3 -Glz4	35.71	45.26
			1	1.20	0.76	1.99	0.34	0.16 0.37 0.65 0.62 0.57 0.73 Glz3 -Glz4	61.09	45.22
		1	2	1.20	1.04	1.99	0.32	0.16 0.37 0.62 0.62 0.58 0.73 Glz3 -Glz4	68.32	45.21
			3	1.30	1.20	1.99	0.27	0.16 0.37 0.67 0.63 0.59 0.73 Glz3 -Glz4	79.27	45.21
			1	0.45	0.63	2.57	0.51	0.31 0.41 0.22 0.24 0.35 0.54	Glz4	35.98	46.19
		2	2	0.43	0.57	2.36	0.51	0.22 0.39 0.28 0.30 0.46 0.61	Glz4	36.16	45.40
	MOGA		3 1	0.42 0.18	0.78 0.51	2.55 2.55	0.51 0.39	0.14 0.42 0.58 0.58 0.35 0.64 Glz3 -Glz4 0.18 0.38 0.63 0.56 0.58 0.64 Glz4	38.56 36.15	45.28 45.34
		3	2	0.13	0.50	2.71	0.42	0.23 0.38 0.60 0.56 0.59 0.57	Glz4	35.83	45.84
			3	0.30	0.60	2.44	0.41	0.19 0.38 0.64 0.56 0.59 0.61	Glz4	36.71	45.33
			1	0.32	0.51	2.39	0.27	0.22 0.26 0.42 0.69 0.36 0.65 Glz4 -Glz5	35.28	45.40
		4	2	0.46	0.51	2.40	0.21	0.22 0.38 0.49 0.69 0.48 0.57 Glz4 -Glz5	35.86	45.33
			3	0.51	0.51	2.40	0.24	0.22 0.34 0.49 0.75 0.58 0.62	Glz4	36.75	45.28

Table 11 .

 11 Computation time features of the proposed algorithms in the four tests.

	Features		NSGA-II			MOPSO			MOGA	
	Tests	1	2	3	4	1	2	3	4	1	2	3	4
	Calculation time (s)	58	98	107	66	38	62	64	42	41	60	68	49
	Convergence time (s)	7	32	79	54	29	40	10	26	5	20	50	40
	Efficiency (%)	99.99	99.99	99.95	99.99	99.93	99.96	99.99	99.98	98.18	99.14	99.06	98.54

Table 12 .

 12 Design variables of several solutions

	Design variable	Unit	Solution 1	Solution 2	Solution 3	Solution 4
	Transmission coefficient of the exterior walls	W.m -2 .K -1	0,51	0,14	0,36	0,23
	Transmission coefficient of the Roof	W.m -2 .K -1	0,34	0,10	0,59	0,25
	Transmission coefficient of the Floor	W.m -2 .K -1	2,73	2,81	2,44	2,25
	Absorption coefficient of the exterior walls	-	0,10	0,10	0,29	0,50
	Absorption coefficient of the Roof	-	0,10	0,10	0,10	0,10
	Linear coefficient of thermal bridges	W.m -1 .K -1	0,09	0,04	0,37	0,44
	Air change per hour	v.h -1	0,44	0,41	0,56	0,58
	Shading coefficient for north-facing windows	-	0,77	0,55	0,53	0,51
	Shading coefficient for south-facing windows	-	0,64	0,65	0,50	0,57
	Shading coefficient for east-facing windows	-	0,97	1,00	0,50	0,58
	Glazing	-	Glz4 -Glz5	Glz4	Glz4	Glz4

Table 13 .

 13 Improvement potential of several solutions compared to the base design

	Building design	Optimization objective	Value	Improvement potential (%)
	Base	ATED ADH	135.50 47.32	--
	Solution 1	ATED ADH	35,58 45,22	73,74 4,44
	Solution 2	ATED ADH	34,53 45,27	74,52 4,32
	Solution 3	ATED ADH	35,93 45,33	73,48 4,22
	Solution 4	ATED ADH	35,40 45,36	73,87 4,15
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