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Abstract:  

During the last few years, multi-objective optimization processes have become one of the main challenges for 

energy efficiency in buildings. In this work, a new efficient multi-objective optimization method, based on the 

Building Performance Optimization (BPO) technique, has been developed to improve the indoor thermal comfort 

and energy performance of residential buildings, i.e. a Moroccan ground floor + first floor (GFFF) house located 

in Marrakech region (5th climatic zone according to the Thermal Building Code in Morocco). The most influential 

design variables have been well explored in order to find the optimal trade-off between these two objectives. 

Indeed, this technique is based on the integration of Artificial Neural Networks (ANNs), in particular Multilayer 

Feedforward Neural Networks (MFNN), coupled with the most commonly used metaheuristic algorithms, i.e. 

Non-dominated Sorting Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) 

and Multi-Objective Genetic Algorithm (MOGA), in order to minimize computation time as much as possible. 

The TRNSYS software was used to establish the various dynamic thermal simulations required to create the 

database, from which the ANNs were able to set up their learning. The results show that this methodology is being 

used successfully, leading to different proposed solutions in terms of building envelope design. However, only the 

solutions using MOPSO are finally retained, as they have shown the greatest desired performance compared to the 

others. Thus, the thermal needs, particularly those for heating and cooling, have been significantly reduced to 

74.52% of the total, while improving the indoor thermal comfort by 4.32% compared to the base design. Finally, 

we strongly recommend this methodology to the different actors in this field, including designers, engineers, 

architects, engineering offices, etc., when several objectives need to be contrasted while simultaneously 

considering several design variables. 
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Nomenclature : 

ACH : Air Change Rate in [v.hour-1] 

ADH : Annual weighted average discomfort degree-hours in [°C.hour.year-1] 

ATED : Annual thermal energy demand in [kWh.m-2.year-1] 

Ac : Total surface of conditioned zones in [m2]  

Al : Automatic learning coefficient [-] 

A-m,f : Air mass flow coefficient in [kg.s-1.m-1] 

Ba : Building azimuth in [°] 

Bg : Building Geometry [-] 

bi : ANN Bias [-] 

C : Thermal capacity in [kJ.kg-1.K-1] 

CDD : Cooling Degree-Day in [°C.day] 

DH : Discomfort degree-hours in [°C.hour.year-1] 

Ed : Daily electricity consumption in [Wh.day-1] 

Et : Thermal effusivity in [J.K-1.m-2.s-1/2] 

fBD : Value of one of the two objectives for base design [-] 

fOD : Value of one of the two objectives for optimized design [-] 

I : Set of variables [-] 

IN : Number of inputs [-] 

IP : Improvement potential in [%] 

J : Set of variables' levels [-] 

k : Index of conditioned zones [-] 

l : Equipment number [-] 

n : Total number of conditioned zones [-] 

ni : Total incoming ANN connections [-] 

nk : Number of observations [-] 

ns : Continuous variable coefficient [-] 

NS : Number of simulations [-] 

Net1 : ANN of ATED in [kWh.m-2.year-1] 

Net2 : ANN of ADH in [°C.hour.year-1] 

Nnum : Total electrical equipment [-] 

Pt : Linear coefficient of thermal bridges in [W.m-1.K-1] 

Pi : Electrical power consumption in [W] 

P-type : Wall type [-] 

Qc : Total heat demand for cooling in [kWh.year-1] 

Qh : Total heat demand for heating in [kWh.year-1] 

R : Correlation coefficient [-] 

R-s : Solar reflectance [-] 

Rs,g : Annual average horizontal global solar radiation in [kWh.m-2.day-1] 

Scw-n : Shading coefficient of north-facing windows [-] 



Scw-s : Shading coefficient of south-facing windows [-] 

Scw-e : Shading coefficient of east-facing windows [-] 

SHGC : Solar Heat Gain Coefficient [-] 

ti : Operating time in [heure] 

Tps : Thermal phase shift in [heure] 

T-s : Solar transmission [-] 

T-v : Visual transmission [-] 

Uf : Transmission coefficient of the frames in [W.m-².K-1] 

Ug : Transmission coefficient of the Glazing in [W.m-².K-1] 

UM : Transmission coefficient of the external walls in [W.m-².K-1] 

UM,i : Transmission coefficient of the internal walls in [W.m-².K-1] 

UT : Transmission coefficient of the Roof in [W.m-².K-1] 

UP : Transmission coefficient of the Floor in [W.m-².K-1] 

wi,j : ANN Weight [-] 

W-o : Window opening factor [%] 

W-o,c : Type of window opening control [-] 

W-sh : Window shading [-] 

W-size : Window size in [m²] ou [m] 

WWR : Windows-to-Wall Ratio [%] 

y : Simulated value 

y' : Predicted value 

Z : Sample set [-] 

zi,j : ANN input [-] 

ΘL : Lowest average monthly temperature in [°C] 

ΘH : Highest average monthly temperature in [°C] 

Φi : ANN activation function [-] 

ε : Emissivity [-] 

αM : Solar radiation absorption coefficient of the exterior walls [-] 

αT : Solar radiation absorption coefficient of the Roof [-] 

αt : Thermal Diffusivity in [m2.s-1] 

αf : Solar radiation absorption coefficient  of the frames [-] 

λ : Thermal conductivity in [W.m-1.K-1] 

ρ : Density in [kg.m-3] 

β : Discrete variable coefficient [-] 

 

Acronyms : 

AMEE : Moroccan Agency for Energy Efficiency 

ANN : Artificial Neural Network 

BPO : Building Performance Optimisation 

BPS : Building Performance Simulation 

CSTB : Scientific and Technical Building Center 

DTS : Dynamic Thermal Simulation 

Glz : Glazing 

GFFF : Ground Floor + First Floor 



HVAC : Heating, Ventilation and Air-Conditioning 

It : Number of iterations 

MAE : Mean Absolute Error 

MFNN : Multilayer Feedforward Neural Networks 

MOPSO : Multi-Objective Particle Swarm Optimization 

MOGA : Multi-Objective Genetic Algorithm 

MSE : Mean Square Error 

MLP : MultiLayer Perceptron 

NSGA-II : Non-dominated Sorting Genetic Algorithm 

Pop : Population size 

POS : Pareto-Optimal Solution 

RMSE: Root Mean Square Error 

TFEC : Total Final Energy Consumption 

VD : Discrete variable 

VC : Continuous variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Today, the transition to a more sustainable model is necessary to live in a more equitable world and to preserve 

the planet's natural resources, which will enable human and living beings to benefit from an appropriate quality of 

life. In Morocco, energy efficiency is a priority action path, aiming to mobilize all operators and stakeholders in 

favour of limiting global warming and controlling energy demand, in order to achieve energy savings of 12% by 

2020 and 15% by 2030 [1]. Indeed, buildings are mainly responsible for energy consumption, energy waste and 

local and global warming, as well as urban pollution. Therefore, in one way or another, controlling energy demand 

represents a key factor in minimising CO2 emissions. 

The building sector constitutes a major energy consumer in Morocco, accounting for about 33.6% of the country's 

total final energy consumption, of which 25.4% for the residential sector and 8,2% for the tertiary sector [2]. 

Therefore, this sector must undergo a very important mutation since it represents the 2nd highest energy consumer 

in Morocco. In this respect and in order to initiate the construction of energy-efficient buildings, an energy 

regulation (RTCM) [3] has been introduced to reduce energy consumption while improving indoor thermal 

comfort. The passive building strategy depends on different design parameters, through which the various 

indicators related to energy consumption, thermal comfort, visual comfort, acoustic comfort, environmental 

impact, economic impact, etc., could be determined. In this regard, building performance optimization (BPO) has 

a crucial role in promoting sustainability, while at the same time responding strongly to the needs of designers in 

cases of contrasting objectives that simultaneously consider several design variables [4]. The following lines 

present, on the same wavelength of this paper, some recent and noteworthy studies on this technique to enhance 

passive building design. 

To address the challenges of multi-objective optimization of building performance using a new meta-model-based 

approach, Bre et al. [5] presented an efficient method, using the NSGA-II algorithm and artificial neural networks. 

To optimize glazing design, Zhai et al. [6] proposed a multi-objective optimization method that combines NSGA-

II with EnergyPlus software. The method provides architects with rich and valuable information about the effects 

of parameters on different building design objectives. It can assist designers in achieving an optimal window design 

solution to minimize the building's energy consumption while improving indoor thermal environment and visual 

performance. Shi et al. [7] studied the influence of building envelope on the annual energy demand of an 

underground building using DeST software. The results show that the U-values of the building envelope 

components have a crucial role in assessing the annual energy demand of the building envelope. Therefore, it is 

fundamental to optimize them in order to improve the energy performance of the building. Papadopoulos et al. [8] 

applied the Gradient Boosted Regression Trees (GBRT) as a Machine Learning technique to approximate a 

Building Performance Simulation (BPS) model and identify, using a GA optimization process, the optimal building 

design in terms of heating and cooling loads. Yao et al. [9] demonstrated how the use of passive climate-sensitive 

design solutions can contribute towards improving indoor thermal conditions while reducing energy demand and 

carbon emissions. Bamdad et al. [10] developed scenario-based optimization to manage the uncertainty of 

construction parameters, for example, due to internal loads and infiltration rate. A modified version of the ant 

colony optimization algorithm for mixed variables (ACOMV-M) is proposed and compared to a reference 

algorithm, showing that ACOMV-M achieves convergence with approximately 50% fewer simulations. Gou et al. 

[11] proposed a new optimization approach to reduce the energy demand of buildings and maximize the thermal 

comfort of occupants. The optimization technique has three steps: (1) Definition of objective functions and 



decision variables; (2) Definition of the spectrum of variables through a sensitivity analysis; (3) Multi-objective 

optimization by combining NSGA-II with ANN. Li et al. [12] developed an optimization process based on the 

interactive use of MATLAB® to improve the energy performance of residential buildings. The single-objective 

optimization is proposed by comparing three algorithms. However, for multiobjective optimization, four popular 

algorithms are compared, NSGA-II, MOPSO, MOGA, and Multi-Objective Differential Evolution (MODE). The 

results indicate that the MODE algorithm provides near-optimal solutions with the best diversity and execution 

time. In contrast, MOPSO achieves a non-competitive result in this case study. Mostavi et al. [13] developed a 

new multi-objective optimization model, which is an algorithm based on the harmony search, at the level of the 

building envelope parameters in order to minimize life cycle cost and greenhouse gas emissions, while ensuring a 

more satisfactory level of thermal comfort for its occupants. Zhang et al. [14] applied an optimization method, 

which combines a genetic algorithm with thermal and light simulations, to select optimal values for school building 

design parameters in order to minimize energy consumption while maximizing thermal and visual comfort. 

Harmathy et al. [15] proposed a methodology to improve the energy performance of office buildings worldwide. 

The objective consists in defining appropriate window/wall ratios and window geometry according to visual 

comfort criteria and electrical energy demand. Delgarm et al. [16] studied a single room model in four major 

climatic regions in Iran. This study was carried out using Single and Multi-Objective Optimization (MOPSO), 

combined with the EnergyPlus software, to find optimal solutions for building envelope design. The annual 

electrical energy demands for cooling, heating and lighting are examined as objective functions. Azari et al. [17] 

proposed an optimization method, combining MOGA with eQuest software, to explore the optimal building 

envelope design regarding energy consumption and life cycle contribution to environmental impacts.  Brown et 

al. [18] demonstrated how multi-objective optimization, using NSGA-II, can be applied to geometrically and 

architecturally important design problems. This allows to obtain diverse and powerful results, which are difficult 

to generate by other methods. Echenagucia et al. [19] proposed an integrative approach for the early steps of 

building design to obtain detailed information on energy-efficient envelope configurations. This approach uses 

genetic algorithms to perform a multi-objective optimization to minimize the energy demand for heating, cooling 

and lighting of the studied building. Romani et al. [20] developed and validated heating and cooling energy demand 

meta-models for single-family houses. The results show that this methodology is successfully applied to achieve 

rapid operational optimization of the building envelope, thus improving the implementation of low-energy 

buildings. Yu et al. [21] proposed a multi-objective optimization model to determine the optimal or near-optimal 

design of buildings under given conditions. This model describes the role of combining ANN with NSGA-II in 

reducing energy demand and thermal discomfort. Yang et al. [22] presented an optimization approach, web-based 

parallel GA using a high-speed distributed computing environment, to reduce the computational time of complex 

building energy optimization applications. This approach has been used to optimize the energy consumption of 

large-scale buildings. The obtained optimization results for a pilot building, showed a significant deduction of the 

calculation time while obtaining acceptable optimal results. 

Finally, the approaches presented in the state of the art above as well as in Table 1 aim to meet the requirements 

of energy-efficient buildings, either absolutely or partially, through a significant fit between the different design 

variables. Indeed, some researchers have incorporated artificial intelligence into their approach, while others have 

not. As for optimization, some have applied it to the building envelope and HVAC set-point temperatures [23]–

[25], while others have applied it only to the building envelope. This diversity of approaches leads to a set of 



findings related to relevant criteria in this field, such as performance, reliability and calculation time. Although the 

objective remains the same, i.e., the optimization of the different energy expectations across the building envelope, 

these findings vary from one approach to another. Thus, some research studies have shown better performance 

results with a significant degree of reliability, but the calculation time is too high, while others have shown the 

opposite. This means that the present issue still has shortcomings with regard to the adequacy between the various 

criteria mentioned above. In other words, a methodology that can lead to an optimal design of the building envelope 

regarding energy savings, thermal comfort, etc., by ensuring a very high reliability of the calculated performances 

and a very short calculation time, represents an existing knowledge gap. 

For this reason, this article represents a significant contribution that provides a scientific add-value to the existing 

body of knowledge, since a new and robust method, in terms of performance, reliability and calculation time, is 

provided to overcome the existing knowledge gap. To this end, a well-defined and detailed plan is presented, which 

includes 4 steps, the first of which is related to the modeling, the second step defines the optimization problem, 

the third is dedicated to the development of the ANN model and the last to the selection of the appropriate multi-

objective optimization algorithm. As part of this plan, the document is organized as follows, starting with an 

overview of recent works on this issue, in order to emphasize the usefulness of this contribution in section 2, which 

will be devoted to the background, by referring to the the state of art presented in Table 1. The technical part of 

the contribution will then be discussed in the other sections, based on the methodology presented in section 2.2, 

which provides in-depth details on the modeling of the considered systems, then on the optimization and finally 

on the results. 

 

 

 

 

 

 



Table 1. Recent Scientific Literature on Building Performance Optimization (BPO) 

Authors Optimization tools Simulation tools Objective functions Scope Bg Ba UM,e αM UT αT Up Pt UM,i 
P-

type 

W-

size 
Ug SHGC ε T-s R-s T-v W-sh 

W-

o 

W-

o,c 
Uf αf WWR 

Air-

m,f 
ACH 

Bre et al. 

(2020) 
NSGA-II EnergyPlus + Python 

Energy demand + 
Thermal comfort 

Residential 
Buildings 

 VD VD VC VD  VD  VD  VC VD VD VD VD VD VD VC VC     VC  

Zhai et al. 

(2019) 
NSGA-II EnergyPlus 

Energy demand + 
Thermal comfort + 

Visual comfort 

Office 
buildings 

 VD          VD VD VD VD VD VD      VC   

Shi et al. 

(2018) 
Sampling DeST Energy demand 

Office 
buildings 

  VC  VC                     

Papadopoulos 

et al. (2018) 

Machine learning 
(Gradient Boosted 

Regression Trees) + 
GA 

Ecotect Energy demand Buildings  VC VC  VC                  VC   

Yao et al. 

(2018) 
Unknown 

EnergyPlus + 
Miscrosoft Visual 

Basic 

Energy demand + 
Thermal comfort 

Residential 
Buildings 

 VC VD  VD  VD           VC     VC  VC 

Bamdad et al. 

(2018) 

ACOMV-M + 
PSOHJ 

EnergyPlus + GenOpt Energy demand 
Office 

buildings 
  VC         VD VD    VD VC        

Gou et al. 

(2018) 

ANN + NSGA-II + 
Monte Carlo method 

EnergyPlus + 
MATLAB® + 

SIMLAB 

Energy demand + 
Thermal comfort 

Residential 
Buildings 

 VC VC VC VC VC    VD  VC VC     VC VC VD   VC VC  

Li et al. 

(2017) 

ANN + NSGA-II + 
MOPSO + MOGA + 

MODE 

TRNSYS + 
EnergyPlus + DOE-2 

+ MATLAB® + 
GenOp 

Energy Demand + Life 
Cycle Cost + CO2 

Emissions + Thermal 
Comfort 

Residential 
Buildings 

 VC VD  VD  VD  VD   VC   VC        VC   

Mostavi et al. 

(2017) 

Harmony search 
algorithm 

EnergyPlus + C++ 

Life Cycle Cost + Life 
Cycle Greenhouse Gas 
Emissions + Thermal 

Comfort 

Office 
buildings 

  VC  VC  VC     VD              

Zhang et al. 

(2017) 
GA (SPEA-2) 

Rhinoceros + 
EnergyPlus + 

Radiance + Octopus 

Energy Demand + 
Daylighting + Thermal 

Comfort 

School 
buildings 

 VC VC  VC  VC     VD VD    VD VD     VC   

Bre et al. 

(2017) 
NSGA-II EnergyPlus + Python 

Energy demand + 
Thermal comfort 

Residential 
Buildings 

 VC VD VC VD  VD  VD  VC VD VD VD VD VD VD VC VC     VC  

 

 

 



Table 1. (Continued) 

Authors Optimization tools Simulation tools Objective functions Scope Bg Ba UM,e αM UT αT Up Pt UM,i 
P-

type 

W-

size 
Ug SHGC ε T-s R-s T-v W-sh 

W-

o 

W-

o,c 
Uf αf WWR 

Air-

m,f 
ACH 

Harmathy et 

al. (2016) 

Multi-criterion 
building 

envelope optimization 

EnergyPlus + 
Radiance + 

Autodesk Revit + 
Open Studio 

Energy demand + 
Visual comfort 

Office 
buildings 

           VD VD    VD      VC   

Bre et al. 

(2016) 

GA + Morris screening 
method for 

sensitivity analysis 

EnergyPlus • 
Python 

Energy demand + 
Thermal comfort 

Residential 
Buildings 

 VC VC VC VC VC VC  VC   VD VD VD VD VD VD VC VC     VC  

Delgarm et al. 

(2016) 
MOPSO 

EnergyPlus + 
MATLAB® + 

jEPlus 
Energy demand 

Office 
buildings 

 VC VC VD        VC   VD  VD VC     VC   

Delgarm et al. 

(2016) 
NSGA-II 

EnergyPlus + 
MATLAB® + 

jEPlus 
Energy demand 

Office 
buildings 

 VC          VC      VC     VC   

Azari et al. 

(2016) 
ANN + MOGA eQuest 

Life Cycle 
Environmental 

Impacts 

Office 
buildings 

  VC         VD VD VD VD VD VD    VD  VC   

Brown et al. 

(2016) 
NSGA-II 

Archsim + 
EnergyPlus 

Energy demand 
High-rise 
buildings 

VC                         

Echenagucia et 

al. (2015) 
NSGA-II 

EnergyPlus + 
Python 

Energy demand 
Office 

buildings 
           VD VD    VD         

Romani et al. 

(2015) 

Design of Experiments 
(D-optimal) + 
Metamodels 

TRNSYS Energy demand 
Residential 
Buildings 

  VC VC VC VC VC VC    VD VD  VD VD VD VC       VC 

Yu et al. (2015) ANN + NSGA-II 
EnergyPlus + 
MATLAB® 

Energy demand + 
Thermal comfort 

Residential 
Buildings 

 VC VC         VC           VC   

Yang et al. 

(2014) 
NSGA-II EnergyPlus Energy demand 

Residential 
Buildings 

           VC      VC       VC 

 

 

 

 

 

 



2. Background 

2.1. Objective and originality 

The issue considered in this study concerns the building performance optimization technique (BPO). This is a very 

complex process involving a large number of potential objective functions and design variables. The objective 

functions can refer to energy, environmental, economic and/or comfort indicators. The design variables can be 

related to the building geometry, envelope and energy systems. In this respect, the objective of this study is to 

discover a new and robust method, in terms of performance, reliability and calculation time, to meet the 

requirements of energy-efficient buildings. This method consists in finding the optimal building envelope design, 

considering its opaque and glazed walls, shading devices, thermal bridges and ventilation, in order to minimize 

the thermal energy demand, in particular that of heating and cooling, as well as the thermal discomfort of the 

occupants. 

According to the existing literature, there are several approaches available to remedy the same issue using different 

techniques, in terms of methods, simulations, evaluation criteria, etc. In the present study, several criteria have 

been exposed, mainly that of computation time, which should be minimized as much as possible by introducing 

artificial neural networks. These could be well learned thanks to a rather small database in terms of the number of 

samples simulated by TRNSYS software, i.e. 35 samples for about 11 variables. This software remains a very 

efficient tool regarding a certain number of criteria (see section 3.3), especially accuracy [26], [27], although it has 

not been used frequently for this kind of case. Indeed, the number of simulations has been in the majority of recent 

studies, for a number of variables that varies around 11, about 2000. This number is very high in terms of 

simulation time compared to the proposed path, although this is done automatically, using many DTS software 

packages, unlike TRNSYS. For this reason, researchers such as Romani et al. [28] and Jeremy Bois [29], for 

example, have carried out studies in this sense in order to achieve the same desired objective by performing a 

minimum of simulation, using meta-models based on design of experiments where the DTS tool was TRNSYS. 

However, for high precision, i.e. the complete quadratic polynomial case, at least 100 simulations are required. In 

this regard, the approach proposed in this paper represents an original contribution allowing to enrich considerably 

the current state of scientific research on the concerned issue. 

2.2. Methodology 

Very low energy buildings do not behave like traditional buildings. A detailed modelling of their behaviour is 

necessary to optimise their design regarding thermal needs, in particular those of heating and cooling, and indoor 

thermal comfort. Thus, the use of BPS technique is important in designing highly energy-efficient buildings, both 

for new buildings as well as for those undergoing major renovations. This technique involves reproducing certain 

aspects of building performance using a computerized mathematical model created according to fundamental 

physical principles and good engineering practice. The objective is to quantify the different aspects of building 

performance that are relevant to their design, construction, operation and control [30]. 

Currently, one of the main challenges for building performance simulation technology worldwide is the high 

computational time involved [31]. The approach presented in Fig. 1 is designed to address this challenge, while 

meeting the requirements of energy-efficient buildings. 



 

Figure 1. Flowchart of the optimization approach 

3. Modeling 

3.1. Description of the reference building 

The studied building corresponds to a typical GFFF house, often built in Marrakech region of Morocco, with three 

facades. Fig. 2, Fig. 3 and Fig. 4 show the 3D and 2D architectural plans of the house as well as their designed and 

modelled dimensions with AutoCAD [32] and SketchUp [33]. Each level has a floor area of 140m2 and a height 

of 3m. The ground floor includes two living rooms, an indwelling, a kitchen and a WC. As for the first floor, it 

includes two rooms, two dressing, two WC, a parental suite and an indwelling. In addition, each level is occupied 

by four people (two adults and two children).  

It should be noted that other studies related to the evaluation of building performance are carried out on the same 

building [34]–[37]. 



 

Figure 2. Axonometric view of the reference building 

3.2. Thermal zoning 

The studied building is divided into 13 thermal zones. The two WCs on the first floor are considered as a single 

zone (11) due to their similar geometries and internal heat gains. As for the stairwell, it is modelled as part of the 

dwelling since there is no thermal separation. Fig. 3 and Fig. 4 show the thermal zoning of this house. 

 

Figure 3. Ground floor 2D plan and thermal zoning. 

 

Figure 4. First floor 2D plan and thermal zoning. 



3.3. Modelling of the calculation process in TRNSYS environment 

Achieving the objective of this study requires the use of a tool that allows the modeling of the reference building, 

as well as its dynamic thermal simulation. The DTS consists in studying over a defined period of at least a few 

days, at an hourly time step or less, the thermal behaviour of a building, either of its envelope or of its technical 

systems. This calculation takes into account all the parameters influencing the energy balance, namely internal and 

external gains, thermal inertia, transmission through the walls, etc.  

In this study, the simulations were performed using TRNSYS software [38], the worldwide reference in the field 

of dynamic simulation of buildings and systems, combined with the TRNBuild [39] platform. It is a complete 

simulation package, proposed by the CSTB [40] and recognized by ASHRAE [41], containing several tools, 

simulation engine programs, a graphic connection with plotters and spreadsheets, etc. It is an integrated and smart 

tool that can be used from project design to simulation. It offers high accuracy, flexibility and infinite 

customization, high granularity of reported data and the ability of working with many programs. Thanks to this 

package, a platform has been designed and developed (see Fig. 1) to calculate the required number of simulations 

in order to create the database, which constitutes a fundamental element for developing the ANNs models. 

Before starting the simulation, it is necessary to provide the characteristics of the studied building, such as 

geometry, orientation, thermo-physical parameters of the opaque and glazed walls, internal heat gains, air 

conditioning conditions and meteorological data. 

 

Figure 5. Computation platform in TRNSYS environment 

3.3.1. Composition of the building envelope 

Table 2 presents the composition of the opaque and glazed walls of the studied building. The collected thermo-

physical properties are taken from the BINAYAT perspective library of AMEE [42], according to the technical 

description of the building envelope composition. 

 



Table 2. Opaque and glazed walls composition and thermos-physical properties. 

Construction 

element 
Material 

Thickness 

[cm] 
λ C ρ αt Et Tps 

Exterior wall 

Ciment 1.50 1.80 1.00 2500 7.20.10-7 2121.32 0.41 

Raw earth 10.00 1.04 1.00 2350 4.43.10-7 1563.33 3.46 

Layer of air 5.00 R = 0.18 m2K.W-1 

Raw earth 10.00 1.04 1.00 2350 4.43.10-7 1563.33 3.46 

Ciment 1.50 1.80 1.00 2500 7.20.10-7 2121.32 0.41 

Roof 

Plaster 2.00 0.56 1.00 1350 4.15.10-7 869.48 0.71 

Hourdis 20.00 1.32 1.00 1327 9.91.10-7 1321.64 4.62 

Concrete 5.00 2.00 1.00 2450 8.16.10-7 2213.59 1.27 

Ciment 1.50 1.80 1.00 2500 7.20.10-7 2121.32 0.41 

Floor tile 1.50 1.30 0.84 2300 6.73.10-7 1584.80 0.42 

Ground floor 

Ciment 1.50 1.80 1.00 2500 7.20.10-7 2121.32 0.41 

Hourdis 16.00 1.18 1.00 1372 8.57.10-7 1270.32 3.98 

Concrete 4.00 2.00 1.00 2450 8.16.10-7 2213.59 1.02 

Ciment 1.50 1.80 1.00 2500 7.20.10-7 2121.32 0.41 

Intermediate 

floor 

Plaster 1.50 0.56 1.00 1350 4.15.10-7 869.48 0.54 

Hourdis 16.00 1.18 1.00 1372 8.57.10-7 1270.32 3.98 

Concrete 4.00 2.00 1.00 2450 8.16.10-7 2213.59 1.02 

Ciment 1.50 1.80 1.00 2500 7.20.10-7 2121.32 0.41 

Internal wall 

Ciment 1.50 1.80 1.00 2500 7.20.10-7 2121.32 0.41 

Concrete agglo 
6 holes 

12.00 0.56 0.83 768 8.77.10-7 596.93 2.95 

Ciment 1.50 1.80 1.00 2500 7.20.10-7 2121.32 0.41 

Glazing FLOAT_19 Ug = 5.16 W.m-2K-1, SHGC = 0.68 and WWR = 24% 

 
3.3.2. Internal heat gains 

Table 3 shows the internal loads of the building [43], which represent a source of heat gain in winter and a charge 

in summer. In addition, the daily energy consumption can be estimated using the Eq. (1) at 24 kWh.day-1. 
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d num num
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∈ ∈∑                                    (1) 

Table 3. Internal heat gains 

Level Zone Designation Conditioning Gain type Number Daily schedule Heat gains 

Ground 

floor 

1 Living room Controlled 

Lighting  19-22h 5W.m-2 

TV 1 12-14h and 18-20h 100W 

Air conditioning 1 19-22h 120W 

People 4 
07–8 h. 12–14 h and 18–20 h 

(Sitting at rest) 
60W.Pers-1 

2 Indwelling 1 Controlled 

Lighting  19-22h 5W.m-2 

Air conditioning 1 19-22h 120W 

People 4 
07–8 h. 12–14 h and 18–20 h 

(Sitting at rest) 
60W.Pers-1 

3 
European 

living room 
Controlled 

Lighting  19-22h 5W.m-2 

TV 1 12-14h and 18-20h 100W 
Air conditioning 1 19-22h 120W 

People 4 
07–8 h. 12–14 h and 18–20 h 

(Sitting at rest) 
60W.Pers-1 

4 Kitchen Uncontrolled 

Lighting  18-22h 5W.m-2 
Refrigerator 1 24h 300W 

Built-in oven 1 18-19h (One time per week) 2500W 

Washing machine 1 18-19h (Two times per week) 1500W 

5 WC Uncontrolled Lighting  18-22h 5W.m-2 

First 

floor 

6 
Parental 

suite 
Controlled 

Lighting  20-22h 5W.m-2 

Laptop 2 20-22h 50W.PC-1 

Air conditioning 1 20-22h 120W 

People 2 20-22h (Rest) 60W.Pers-1 
7 WC Uncontrolled Lighting  18-22h 5W.m-2 



8 Dressing Uncontrolled Lighting  19-22h 5W.m-2 

9 Indwelling 2 Controlled 

Lighting  19-22h 5W.m-2 

Air conditioning 1 19-22h 120W 

People 4 
07–8 h. 12–14 h and 18–20 h 

(Sitting at rest) 
60W.Pers-1 

10 Room 1 Controlled 

Lighting  20-22h 5W.m-2 

Laptop 1 20-22h 50W.PC-1 

Air conditioning 1 20-22h 120W 

People 1 20-22h (Rest) 60W.Pers-1 
11 WC Uncontrolled Lighting  18-22h 5W.m-2 

12 Dressing Uncontrolled Lighting  19-22h 5W.m-2 

13 Room 2 Controlled 

Lighting  20-22h 5W.m-2 

Laptop 1 20-22h 50W.PC-1 
Air conditioning 1 20-22h 120W 

People 1 20-22h (Rest) 60W.Pers-1 

 
3.3.3. Air conditioning conditions 

The calculation assumptions for air conditioning taken into account during the simulation are shown in Table 4: 

Table 4. Air conditioning conditions 

Natural ventilation in all 

zones [v.h-1] 

Natural ventilation in the 

kitchen  [v.h-1] 

Infiltration 

[v.h-1] 

Summer setpoint 

temperature [°C] 

Winter setpoint 

temperature [°C] 

1 5 0.1 26 20 

 
3.3.4. Location and meteorological data 

The TMY2 file generated using Meteonorm software [44] was used in this case study to describe the climatic 

characteristics of the studied region, some of which are summarized in Table 5. 

Table 5. Location and meteorological data 

Location Latitude Longitude Elevation 

[m] 

ΘH ΘL HDD CDD Rs,g Classification 

climatique « Köppen » 

Marrakech 

(Morocco) 
31.6°N -8.0°E 466 

28.8 
(July) 

11.9 
(January) 

754.24 1041.74 2.087 
Bsh (Hot semi-arid 

climate) 

4. Definition of the optimization problem 

The increasing energy consumption of buildings in Morocco has attracted the government's attention. Thus, a 

thermal code has been implemented to apply an energy efficiency approach in the building sector, whether 

residential or tertiary. This was introduced by the publication of Decree No. 2-13-874 of October 15, 2014 in 

Official Gazette No. 6306 of November 6, 2014 [45], entitled «Règlement Thermique de Construction au Maroc» 

(RTCM). This decree approves the general construction code, which defines the energy performance standards for 

buildings as well as establishing the National Committee for the Energy Efficiency in Buildings. The main 

objective of the RTCM, which is developed by the AMEE, is to improve the thermal performance of new and 

existing buildings, while ensuring a better thermal environment for the occupants [3]. 

The assessment of the building envelope design regarding the energy efficiency plan can be established under 

various indicators, which can be referred to the energy demand, thermal comfort, visual comfort, acoustic comfort, 

indoor air quality and the economic and environmental impact, etc. In this study, two evaluation indicators were 

retained, namely energy demand and occupant thermal comfort, since they account for a very significant degree 

of impact compared to the others [46]–[48], as well as being the most widely used in the literature presented in 

Table 1. 

4.1. Objective Functions 



With the purpose of identifying the interactions between energy consumption and indoor thermal comfort in hot 

and semi-arid climatic zone of Morocco, the two objective functions, namely the annual thermal energy demand, 

in particular that of heating and cooling, and the discomfort degree-hours, were simultaneously minimized. 

4.1.1. Annual thermal energy demand 

The ATED is defined as an indicator, representing the sum of heating and cooling loads over the total conditioned 

area of the studied building. In this study, the energy demand for artificial lighting, domestic hot water and 

electronic equipment was not taken into account, as they represent less than 40% of the total energy needs. 

Therefore, the objective function ATED can be calculated according to Eq. (2) [34]: 

h c

c

1
ATED = ×(Q + Q )

A
                                                                 (2) 

4.1.2. Annual weighted average of discomfort degree-hours 

The thermal comfort assessment can be carried out using several methods, such as calculating the number of hours 

during which occupants feel uncomfortable; the ASHRAE adaptive thermal comfort model; the Fanger thermal 

comfort model and the EN adaptive thermal comfort model. An approach, based on these methods, has been 

developed by Chegari et al. [35], [36] to assess thermal comfort through the calculation of DH values. 

The ADH is defined as an indicator, representing the annual weighted average of the degree-hours, during which 

the occupant feels uncomfortable, in areas where he/she should feel more comfortable. Therefore, the objective 

function ADH can be calculated according to Eq. (3): 

n

k
k=1

1
ADH = DH

n
∑                                                                       (3) 

4.2. Design variables 

In Morocco, the RTCM addresses the issue of energy efficiency in buildings through two approaches, the first of 

which is called perspective and the second, performance.  According to the perspective approach, which is related 

to the building design, certain thermo-physical parameters of the building envelope are well recommended, notably 

the thermal transmission coefficient of the external walls, roof, windows, the thermal resistance of the floor and 

the solar factor of the glazing. Thus, this indicates that there are shortcomings in terms of variable design, which 

constitutes an anomaly for successfully addressing the main issue. 

With the objective of optimizing the two objective functions defined above, this study has introduced certain design 

variables (see Table 6 and Table 7), that present a major interest for architects, engineers and all stakeholders in 

this field, given that they have a significant impact on these two objective functions. The selection of these design 

variables was not made randomly, but rather through a whole bibliographical study that brings together recent 

research work that deconstructs the same problem, while taking into account the anomaly presented in the RTCM. 

4.2.1. Opaque walls 

The heat flow through the building envelope represents the main heat gain or loss of a building. Therefore, 

optimizing heat transfer through opaque walls is important for designing high performance buildings. In this 

respect, UM, UT, UP, αM, αT and Pt are selected as design variables. The upper limit of the heat transfer coefficients 

is defined according to those of the reference building, since this building belongs to the energy-consuming 

buildings, while the lower limit is defined in accordance with existing best practices. The limits for solar absorption 

coefficients of opaque wall claddings, particularly those of the exterior walls and roof, are defined according to 



the absorption characteristics of existing claddings on the market. Finally, the limits for thermal bridges are defined 

as follows: lower limit according to the recommendation of the Passivhaus label, while the upper limit is defined 

according to the reference building situation. 

4.2.2. Glass walls 

Glass walls generally require special attention, since they represent the weakest part of the building envelope 

insulation.  In this respect, Glz is selected as a design variable consisting of 5 levels, each of which is composed 

of several parameters, namely Ug, SHGC, T-s, R-s and T-v (see Table 6). The latter is defined as a discrete variable 

due to the different typologies available on the market (single glazing, double glazing, triple glazing, etc.). 

4.2.3. Shading 

Shading devices are an effective way to reduce the amount of heat that penetrates the building through light-

exposed windows. This is done in order to keep the freshness inside the building. In this respect, Scw-n, Scw-s 

and Scw-e are selected as design variables related to the ratio of the non-transparent surface of the shading device 

to the total glazed area. The lower limit indicates that there is no solar shading, while the upper limit indicates that 

the windows are 100% shaded from solar radiation. 

4.2.4. Air change 

Air change is one of the major features of the building, especially for its occupants. However, it can become an 

extremely critical factor, in terms of energy consumption, if it is not well controlled. In this respect, the overall air 

change rate (ACH) is selected as a design variable for air infiltration and ventilation. The lower limit is defined in 

accordance with the fact that there is no purely airtight building, while the upper limit is defined according to the 

reference building situation. 

Table 6. External window models considered for x11 variable 

Designation Symbol 
Thickness 

[mm] 
Ug SHGC T-s R-s T-v 

FLOAT_19 Glz1 19 5.160 0.682 0.600 0.070 0.830 

Insulating. 2.8 Glz2 4/16/4 2.830 0.755 0.693 0.126 0.817 

Luxguard SUNGUARD CLEAR PLUS Argon. 2.6 Glz3 6/16/4 2.300 0.295 0.214 0.195 0.292 

Pilk. 3-ple INFRASTOP Brilliant5025+OPTITHERM S #5 Glz4 6/12/4/12/4 0.700 0.222 0.177 0.329 0.436 
Insulating. 0.4. Xenon Glz5 4/8/4/8/4 0.400 0.408 0.268 0.231 0.625 

Table 7. Different levels of selected design variables 

Designation Symbol 
Corresponding 

variable 
Unit Type 

Lower 

limit 

Upper 

Limit 
Step Level 

Transmission coefficient of the 

exterior walls 
UM x1 W.m-2.K-1 Continuous 0.1 1.9 0.18 11 

Transmission coefficient of the 

Roof 
UT x2 W.m-2.K-1 Continuous 0.1 2.5 0.24 11 

Transmission coefficient of the 

Floor 
Up x3 W.m-2.K-1 Continuous 0.1 2.9 0.28 11 

Absorption coefficient of the 

exterior walls 
αM x4 - Continuous 0.1 0.9 0.08 11 

Absorption coefficient of the 

Roof 
αT x5 - Continuous 0.1 0.9 0.08 11 

Linear coefficient of thermal 

bridges 
Pt x6 W.m-1.K-1 Continuous 0.01 1 0.099 11 

Air change per hour ACH x7 v.h-1 Continuous 0.1 1.1 0.1 11 

Shading coefficient for north-

facing windows 
Scw-n x8 - Continuous 0 1 0.1 11 

Shading coefficient for south-

facing windows 
Scw-s x9 - Continuous 0 1 0.1 11 

Shading coefficient for east-

facing windows 
Scw-e x10 - Continuous 0 1 0.1 11 

Glazing Glz x11 - Continuous Glz1 Glz5 - 5 



5. Development of the ANN model 

The introduction of ANNs in energy efficiency improvement approaches for buildings is an important step in 

achieving the desired performances, as they offer a greater degree of accuracy and timeliness than other 

conventional methods. Thus, their application in building energy efficiency improvement approaches remains a 

central idea and a future development for researchers [49], [50].  

In this study, the predictions obtained by the ANNs are used to define the envisaged objective functions. Indeed, 

prediction is a kind of dynamic filtering, in which past values of one or more time series are used to predict future 

values. This has been used in several research works to predict a possible need in the building sector [51]–[53]. 

To this end, a database consisting of 35 samples was created, in accordance with the philosophy described in 

Section 5.1. This represents an important preliminary step for the different ANNs modelling.   

5.1. Creation of the database 

In this study, the objective functions are defined through the learning of artificial neural networks. Therefore, the 

availability of a database is indispensable to define them. Indeed, a number of databases have been set up, whose 

principle and number of simulations differ from a database to another.The objective is to identify the database that 

has been the subject of a minimum number of simulations while allowing very precise learning. For this reason, a 

mathematical approach has been well developed according to the envisaged criteria, whose modeling is presented 

in Eq. (4) and Eq. (5): 

1f ( ) = ATED( )X X                                                                     (4) 

2f ( ) = ADH( )X X                                                                       (5) 

f1 and f2 are defined as functions that represent, in a certain way, the calculation mechanism related to the designed 

platform in TRNSYS software environment (see Fig. 5), aiming to obtain the ATED and the ADH as a function 

of xi,j variable (Eq. (6)). 

, ,z i j i jX x x
+= ∀ ∈ �                                                                  (6) 

With (Eq. (7)): 
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                                                                   (7) 

Note ((Eq. 8)): 
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The Xz set is a size data matrix (35x11) that characterizes the database designed for automatic learning, of which 

it contains 35 samples. Indeed, this number of samples was not randomly selected, but rather after several trial-

and-error-based evaluation simulations. This database is based on a particular philosophy, as expressed in the 

following lines: 

This philosophy is based on two fundamental principles that are used to achieve high quality learning, the first of 

which is called level samples, while the second is called weight samples. 

- Level samples: this means that in each simulation of a sample, only one level must be taken for all 

variables. 

- Weight samples: this means that in each simulation of a sample, only one variable must be isolated, i.e. 

its level is different from the other variables whose level, called pivot, is constant. Note that level 6 is the 

reproduction pivot, since it represents the middle of the levels. 

The vectors X1, X2, ..., X11 represent the so-called level samples, i.e. in each sample simulation, only one level 

must be taken for all variables, with the exception of x11 since it has 5 levels instead of 11. Thus, the levels of x11 

are distributed in such a way as to comply with the principle of the others by simulating each one twice, or even 

three times in the case of X9, X10, X11 vectors. 

The vectors X12, X13, ..., X35 represent the so-called weight samples, i.e. in each sample simulation, only one xi 

variable must be isolated from the others, whose level varies in this case between the pivot level -1 and +1. The 



only exception is x11 since it is a discrete variable that has only 5 levels, which does not prevent the addition of its 

two other levels (X32, X35) in order to improve its weight learning. It should be noted that the X34 and X35 

correspond to the complements coefficient β introduced by discrete variables (Fig. 6). 

Finally, the different simulations necessary for creating the database, through which the ANN learning will be 

carried out, are performed as presented in Eq. (9): 

1 2 1 1

1 2 2 2

1 2 35 35

[f , f ]( ) [ATED,ADH]( )

[f , f ]( ) [ATED,ADH]( )

[f , f ]( ) [ATED,ADH]( )

X X

X X

X X

=
=
=
=
=

M M

M M

                                                        (9) 

 

Figure 6. Approval process of the number of simulations adopted for creating the database 

5.2. Training and validation of the ANN model 

For the purpose of training and validating the artificial neural networks under consideration, the 35 samples were 

randomly divided into a training set (70%), a validation set (15%) and a test set (15%), as suggested by Shahin et 

al. [54]. Indeed, the Multilayer Feed Forward Neural Network (MFNN) is used as a type of these ANNs, given 

that it represents the most recommended type in the literature [55]. MFNNs are computational models composed 

of many neurons (nodes), which are connected by connective links (weights) and are arranged layer by layer. Thus, 

the fi output is calculated mathematically according to Eq. (10): 

in

i i i, j i, j i
j=1

f = w z + bφ
 
 
 
∑                                                                     (10) 



The architecture of both ANNs is shown in Fig. 7, where each ANNs has an input layer that contains 11 neurons 

corresponding to the 11 optimization variables, then a hidden layer composed of 4 neurons, and finally an output 

layer, either f1 or f2. The number of neurons in the hidden layer is essential to ensure the performance of the ANN 

model. An excessive number of hidden neurons will lead to over-fitting, while an insufficient number of hidden 

neurons will hinder the robustness and reliability of the learning process. In fact, there is no general rule but rather 

empirical rules. According to the literature, the size of the hidden layer must be either equal to that of the input 

layer [56], or equal to 75% of it [57], [58] or equal to the square root of the product of the number of neurons in 

the input and output layer [59]. In this study, the number of hidden neurons was determined using the trial-and-

error method based on the mean relative error of the ANN predictions for each output. Thus, the best fit was 4 

neurons in the hidden layer for each of the networks, which does not correspond to any of the aforementioned 

empirical rules (Fig. 7). 

The networks were trained using Le-venberg-Marquardt back-propagation algorithm. A sigmoidal function for the 

hidden layer and a linear function for the output layer were used as transfer functions. This training is not based 

on the conventional principle, i.e. it stops automatically when the MSE of the validation samples has stabilized, 

but rather on a special combination with the PSO as suggested by Keshtkarbanaeemoghadam et al. [60]. Indeed, 

when ANNs start training, specifically when the process reaches the classical MSE, the PSO is invited to find the 

most MSE-optimized weights (wi,j) and biases (bi) of the neural networks. Then, after a set of well-defined 

iterations, which are 50 in this case, the coupling process compares each time the two MSEs in order to finally 

achieve the best training at a very low MSE. Thus, the best performance of the ANN-MLP model is obtained as 

illustrated in Fig. 8. It should be noted that the implementation of the two ANNs, each one assigned to a single 

objective function, consists in defining each function separately from the other. Thus, the optimization can be 

carried out in a suitable way. 

 

Figure 7. Three-layer feedforward ANN architecture for f1 and f2 



 

Figure 8. Implementation of the PSO algorithm in neural network training. 

5.3. Assessment of the ANN model accuracy 

For any approach, leading to build a surrogate model should undergo an accuracy evaluation, in order to have a 

visibility on its reliability. So, before proceeding to the optimization step, the reliability of the developed ANNs 

must be evaluated. 

The most commonly used error functions to measure the accuracy during the training of ANNs were the mean 

square error (MSE) and the root mean square error (RMSE). On the other hand, the preferred parameters to quantify 

the performance of ANN metamodels were RMSE, the coefficient of determination (R2), and the correlation 

coefficient (R) [55]. In this paper, the accuracy of the developed surrogate models has been assessed using the 

most important and frequently used indicators of forecast reliability in the literature, which are RMSE and R. Quite 

naturally, the root mean square error provides a complete view of the error distribution for any kind of predictive 

evaluation similar to the present one. 

Indeed, the evaluation of ANN-MLP models through these indicators has no rule in terms of reference value since 

this depends absolutely on the number of observations as many authors have confirmed. In other words, an RMSE 

that varies around 2 for a prediction evaluation of such an observation size similar to the one presented in this 

paper seems very satisfactory. 

In order to select a surrogate model that has a significant reliability, 10 simulations were established as indicated 

in Fig. 6, each of which was subject to an RMSE calculation according to Eq. (11). 

k

1
n 2

-1 ' 2
k i i

i=1

RMSE = n | y - y |
 
 
 
∑                                                                (11) 

Following the establishment of the 10 simulations planned during the development of the database creation 

algorithm, it turns out that the distribution of errors evolves in a scalable way. However, for each of the 

performance indicators, namely ATED and ADH, it shows RMSE values below 2.5, which is small enough to 
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provide a good prediction as illustrated in Fig. 9 and Fig. 10. In this case, the selected ANN-MLP models are those 

with the smallest RMSE, i.e. RMSE = 1.12 and RMSE = 2.22 for ATED and ADH respectively. This ensures a 

high predictive reliability since the correlation, measured by the selected models, between ANN predictions and 

TRNSYS simulations is close to 1, which corresponds to a very high correlation, as shown in Fig. 11 and Fig. 12. 

 

Figure 9. Accuracy of ANN prediction for ATED 

 

Figure 10. Accuracy of ANN prediction for ADH 

 

Figure 11. Regression between ANN predictions and TRNSYS simulations for ATED 
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Figure 12. Regression between ANN predictions and TRNSYS simulations for ADH 

5.4. Sensibility analysis 

In this section, a sensitivity analysis of the learning process was discussed. In particular, the effect of each input 

parameter on ATED and ADH was examined using the well-known Garson 1991 algorithm [61]. The purpose of 

using this algorithm is to evaluate the relative importance of each input parameter on the deserted output(s). The 

algorithm procedure is presented in Appendix-A in the Supplementary Data section.  

Some researchers such as Calleja Rodríguez et al. [62] and Laine et al. [63] have performed a sensitivity analysis 

using different metaheuristic methods to determine the most important impact of input parameters on the energy 

performance of buildings. In this research, the sensitivity analysis of the ANN-PSO model is presented in Fig. 13. 

This analysis was performed based on the algorithm of Garson as suggested by Keshtkarbanaeemoghadam et al. 

[60]. The results show that the different input parameters have an important impact on ATED and ADH, which is 

already expected from the choice of envelope design parameters. Thus, the three parameters that have a greater 

impact on ATED compared to the others are the Transmission coefficient of the exterior walls with 18.77%, the 

Transmission coefficient of the Roof with 11.80% and the air change per hour with 10.13%. On the other hand, 

for ADH, the air change per hour ranks first with 11.99%, then the transmission coefficient of the floor with 

11.25% and the glazing with 10.97%. 

 

Figure 13. Relative importance of each input variable for estimating ATED and ADH 
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6. Discussion and results 

In this section, we will discuss possible recommendations for designing a building envelope that perfectly meets 

the requirements of energy-efficient buildings. This will be addressed once the appropriate multi-objective 

algorithm has been selected. 

6.1. Appropriate metaheuristic algorithm 

The optimization is generally defined by the selection of the best candidate from a set of available alternatives 

according to certain criteria. In the simplest case, an optimization problem aims to find the minimum or maximum 

value of a function by choosing a number of variables subjected to a number of constraints according to specific 

problems. The optimization function is also called a fitness or objective function, which is often calculated by 

scientific simulation tools. In this study, the optimization problem consists of minimizing the two functions defined 

by Eq. (2) and Eq. (3) as mathematically described by Eq. (12): 
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6.1.1. Application of metaheuristic algorithms 

It appears from the literature, particularly that presented in Table 1, that a number of metaheuristic optimization 

algorithms have been used in different cases, involving different parameters and obviously different approaches, 

although some of them are frequently reproduced, namely evolutionary algorithms and those based on particle 

swarms. These have been compared with each other in numerous research works [64]–[66]. Furthermore, Nguyen 

et al. [67] showed in a very detailed review of simulation-based optimization methods applied to building 

performance analysis that, according to 200 published papers in this field, genetic algorithms ranked first in terms 

of use, followed by PSO algorithms and then hybrid algorithms. In this respect, considering the rank of use of 

genetic and PSO algorithms, three population-based stochastic multi-objective optimization algorithms, namely 

NSGA-II [68], MOGA [69] and MOPSO [70], were selected for application to the proposed optimization problem. 

All these algorithms were implemented on Matlab R2016a according to their operating principle referenced above. 

It is well known that the performance of optimization algorithms does not only depend on the optimization problem 

but also on the control parameters. In this study, the parameters of each optimization algorithm were taken 

according to the default parameters chosen by Li et al. [12] (Table 8). With the exception of population size and 

iteration number, since these parameters have an important impact on the optimization algorithms convergence. 

Indeed, several tests have been carried out to define the interval in which the desired optimums are frequently 



found, taking into account as priorities population size, iteration number and simulation time. These tests show 

that this interval ranges between 25 and 100, both for population size and iteration number, as long as their product 

is the same throughout the interval. Thus, the greatest convergence leading to a better solution was evaluated 

according to 4 tests as shown in Table 9, within the same interval, in order to select the appropriate algorithm. 

Table 8. Setting of the applied optimization algorithms 

Algorithms Settings Values 

NSGA-II 

Iteration number 25-100 

Population Size 25-100 

Crossover probability 0.9 

Mutation probability 0.5 

MOPSO 

Iteration number 25-100 

Population Size 25-100 

Acceleration coefficient c1 2 

Acceleration coefficient c2 2 

Intertia Weight 0.4 

Intertia Weight Damping Rate 0.9 

MOGA 

Iteration number 25-100 

Population Size 25-100 

Crossover probability 0.9 

Mutation probability 0.5 

Table 9. Setting the iteration number and population size for the four tests 

Settings Test 1 Test 2 Test 3 Test 4 

Iteration number 100 75 50 25 

Population Size 25 50 75 100 

6.1.2. Selection of the appropriate algorithm 

The selection of the appropriate multi-objective algorithm is based on the performance evaluation of the set of 

implemented algorithms, according to several criteria that depend mainly on the expected objective. An important 

concept of multi-objective optimization is called the Pareto front, which is a set of solutions that are not dominated 

by each other [71] (i.e. no design objective can be improved without first judging the others). Indeed, the 

performance evaluation of a multi-objective algorithm depends on the evaluation of the optimal Pareto set 

properties, estimated by this algorithm, as well as the computational resources required to generate this set. These 

properties are diverse, including diversity, generational distance, normalized inverted generational distance, etc 

[72], [73]. In this study, the implementation of an optimization algorithm aims, in general, towards responding to 

the present issue while guaranteeing a minimum calculation time, which is partially taken into account when 

defining the range of tests presented in Table 9.  In addition, three criteria have been highlighted in order to select 

the appropriate algorithm, i.e. calculation time, optimality and diversity of solutions. 

Fig. 14, Fig. 15 and Fig. 16 show the Pareto-optimal spectrum of the different applied optimization algorithms, 

respectively NSGA-II, MOPSO and MOGA. It should be noted that this Pareto-optimal spectrum, derived from 

the multi-objective algorithm performance, represents the optimums with respect to the objective space rather than 

the decision space, since the most important reason for using multi-objective algorithms is to examine the balance 

between conflicting objectives. These figures can be better understood by looking at Table 10, which shows the 

three best Pareto-optimal solutions obtained by each algorithm in the four proposed tests. Thus, the performance 

of the applied optimization algorithms can be assessed with respect to the three considered criteria: 



- Firstly, computation time constitutes the main criterion of this study. The MOPSO was therefore able to 

show that it could beat the other algorithms regarding the moment at which convergence is perfectly 

achieved. However, this outperformance could only be useful if the other evaluation criteria are the same 

for all algorithms, since this latter does not represent a very significant response time (See Table 11). 

- As for optimality, which is a basic criterion for all studies aimed at optimizing any kind of need, it turns 

out that each of NSGA-II and MOPSO have succeeded, at the end of their convergence, in providing 

well-optimized pareto-optimal solutions compared to MOGA (i.e., the best achievable pareto-optimal 

solutions in the objective plan). These solutions are virtually identical in all the tests proposed. Moreover, 

their particular property in terms of proximity between their Pareto-optimal solutions becomes more 

important as the number of iterations increases. 

- Finally, the third criterion, which is diversity, serves to offer decision-makers a multiple option in terms 

of Pareto-optimal solutions, in order to provide sufficient flexibility in case where there are constraints 

regarding certain factors, i.e. feasibility, availability, cost, etc. Indeed, all of the implemented algorithms, 

i.e. NSGA-II, MOPSO and MOGA have shown in each of the 4 tests that they can generate distinct 

Pareto-optimal solutions, but in a rather limited way. 

Finally, the comparative analysis can show that NSGA-II and MOPSO present the most efficient multi-objective 

algorithms compared to MOGA, in terms of balance between the considered criteria. However, the MOPSO is the 

one that will be selected because it offers a slight advantage in computation time compared to NSGA-II. It should 

be noted that, in this study, only the spectrum that meets the objective plan is concerned. 

 

Figure 14. Pareto frontiers evolution in 4 tests for NSGA-II 
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Table 10. The Top three Pareto-optimal solutions obtained by each algorithm across the four tests. 

Algorithm Test 
Top 3 

POS 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ATED ADH 

NSGA-II 

1 

1 0.45 0.41 2.17 0.48 0.10 0.50 0.54 0.46 0.55 0.54 Glz4 36.40 45.30 

2 0.27 0.70 2.14 0.49 0.10 0.50 0.53 0.46 0.55 0.53 Glz4 36.42 45.27 

3 0.34 0.62 2.13 0.49 0.10 0.49 0.52 0.46 0.54 0.53 Glz4 36.47 45.27 

2 

1 0.18 0.16 2.82 0.37 0.11 0.26 0.30 0.41 0.38 0.72 Glz4 - Glz5 34.51 45.44 

2 0.18 0.16 2.82 0.43 0.11 0.26 0.30 0.41 0.38 0.72 Glz4 - Glz5 34.59 45.40 

3 0.23 0.37 2.55 0.36 0.10 0.26 0.30 0.39 0.58 0.75 Glz4 - Glz5 34.89 45.27 

3 

1 0.40 0.28 2.46 0.37 0.10 0.51 0.11 0.39 0.45 0.54 Glz5 34.69 45.38 

2 0.40 0.28 2.46 0.37 0.10 0.51 0.29 0.39 0.45 0.54 Glz5 34.72 45.32 

3 0.40 0.28 2.46 0.37 0.10 0.51 0.29 0.40 0.45 0.54 Glz5 34.73 45.32 

4 

1 0.12 0.37 2.27 0.41 0.11 0.24 0.52 0.72 0.37 0.76 Glz4 - Glz5 34.95 45.31 

2 0.13 0.42 2.38 0.34 0.11 0.22 0.51 0.75 0.41 0.75 Glz4 35.09 45.28 

3 0.11 0.51 2.19 0.40 0.10 0.17 0.59 0.75 0.44 0.76 Glz3 - Glz4 35.48 45.25 

MOPSO 

1 

1 0.51 0.34 2.73 0.10 0.10 0.09 0.44 0.77 0.64 0.97 Glz4 - Glz5 35.58 45.22 

2 0.56 0.21 2.90 0.10 0.10 0.11 0.50 0.82 0.64 0.95 Glz4 35.63 45.22 

3 0.53 0.24 2.68 0.10 0.10 0.13 0.53 0.77 0.65 1.00 Glz4 35.72 45.22 

2 

1 0.14 0.10 2.81 0.10 0.10 0.04 0.41 0.55 0.65 1.00 Glz4 34.53 45.27 

2 0.18 0.19 2.90 0.11 0.10 0.06 0.28 0.52 0.76 0.95 Glz4 34.55 45.23 

3 0.12 0.22 2.83 0.10 0.10 0.05 0.40 0.57 0.78 0.97 Glz4 - Glz5 34.56 45.23 

3 

1 0.36 0.59 2.44 0.29 0.10 0.37 0.56 0.53 0.50 0.50 Glz4 35.93 45.33 

2 0.24 0.85 2.25 0.40 0.10 0.42 0.55 0.50 0.47 0.52 Glz4 - Glz5 36.17 45.28 

3 0.36 0.52 1.96 0.35 0.10 0.41 0.42 0.54 0.53 0.52 Glz4 36.20 45.32 

4 

1 0.23 0.25 2.25 0.50 0.10 0.44 0.58 0.51 0.57 0.58 Glz4 35.40 45.36 

2 0.41 0.22 2.37 0.46 0.10 0.43 0.44 0.59 0.40 0.71 Glz4 35.58 45.29 

3 0.32 0.31 2.51 0.40 0.10 0.37 0.53 0.61 0.54 0.72 Glz3 - Glz4 35.71 45.26 

MOGA 

1 

1 1.20 0.76 1.99 0.34 0.16 0.37 0.65 0.62 0.57 0.73 Glz3 - Glz4 61.09 45.22 

2 1.20 1.04 1.99 0.32 0.16 0.37 0.62 0.62 0.58 0.73 Glz3 - Glz4 68.32 45.21 

3 1.30 1.20 1.99 0.27 0.16 0.37 0.67 0.63 0.59 0.73 Glz3 - Glz4 79.27 45.21 

2 

1 0.45 0.63 2.57 0.51 0.31 0.41 0.22 0.24 0.35 0.54 Glz4 35.98 46.19 

2 0.43 0.57 2.36 0.51 0.22 0.39 0.28 0.30 0.46 0.61 Glz4 36.16 45.40 

3 0.42 0.78 2.55 0.51 0.14 0.42 0.58 0.58 0.35 0.64 Glz3 - Glz4 38.56 45.28 

3 

1 0.18 0.51 2.55 0.39 0.18 0.38 0.63 0.56 0.58 0.64 Glz4 36.15 45.34 

2 0.13 0.50 2.71 0.42 0.23 0.38 0.60 0.56 0.59 0.57 Glz4 35.83 45.84 

3 0.30 0.60 2.44 0.41 0.19 0.38 0.64 0.56 0.59 0.61 Glz4 36.71 45.33 

4 

1 0.32 0.51 2.39 0.27 0.22 0.26 0.42 0.69 0.36 0.65 Glz4 - Glz5 35.28 45.40 

2 0.46 0.51 2.40 0.21 0.22 0.38 0.49 0.69 0.48 0.57 Glz4 - Glz5 35.86 45.33 

3 0.51 0.51 2.40 0.24 0.22 0.34 0.49 0.75 0.58 0.62 Glz4 36.75 45.28 

Note that the composition [Glzj - Glzj] means that this variable corresponds to the middle of the two boundaries. 

Table 11. Computation time features of the proposed algorithms in the four tests. 

Features NSGA-II MOPSO MOGA 

Tests 1 2 3 4 1 2 3 4 1 2 3 4 

Calculation time (s) 58 98 107 66 38 62 64 42 41 60 68 49 

Convergence time (s) 7 32 79 54 29 40 10 26 5 20 50 40 

Efficiency (%) 99.99 99.99 99.95 99.99 99.93 99.96 99.99 99.98 98.18 99.14 99.06 98.54 

6.2. Building envelope recommendations 

It is well-known that the BPO technique brings gains at the end of its application. In this study, it led to a significant 

improvement in the energy performance, in particular that related to heating and cooling, as well as indoor thermal 

comfort, of a residential building located in Marrakech region. Indeed, this reference building is based on 

assumptions concerning the same characteristics as a building constructed before 2014 in the same region, when 



the RTCM was not yet mandatory. As a result, it is not a monitored building, i.e., it does not have an energy and 

data management system. In this respect, its optimised performance can only be compared to the RTCM 

recommendations, as it represents the thermal building code in Morocco as described in section 4. In fact, the 

RTCM doesn't have any specific recommendations regarding thermal comfort, except for the set temperatures, 

which implies that the optimised ADH in this study can only be compared to that of the base building. In contrast, 

a thermal performance indicator, particularly for heating and cooling, is well recommended for the same region, 

i.e. 130 kWh.m-2.yr-1 as an upper limit that should not be exceeded. 

6.2.1. Optimal building design 

The application of the different multi-objective optimization algorithms used in this study showed that the NSGA-

II and MOPSO are the most appropriate for addressing the present issue. In this respect, as the MOPSO is the one 

selected in section 6.1.2, four solutions have been selected among the different alternatives proposed by this latter, 

i.e. one solution from each of the four tests, in order to construct the most efficient solutions as presented in Table 

11. This Table shows that each solution presents some diversity with respect to the others in terms of design 

variables, with the exception of the variable x5, which is constant in all of the proposed solutions. The reason for 

this is that the roof constitutes a critical component that must be taken with some caution compared to other opaque 

walls, in order to limit heat loss as much as possible. In addition, it should be noted that the variable x11 is also 

important, since it represents the glazed part of the building envelope. This is why it varies between the most 

efficient glazings proposed in this study. 

Table 12. Design variables of several solutions 

Design variable Unit Solution 1 Solution 2 Solution 3 Solution 4 

Transmission coefficient of the 

exterior walls 

W.m-2.K-1 
0,51 0,14 0,36 0,23 

Transmission coefficient of the 

Roof 

W.m-2.K-1 
0,34 0,10 0,59 0,25 

Transmission coefficient of the 

Floor 

W.m-2.K-1 
2,73 2,81 2,44 2,25 

Absorption coefficient of the 

exterior walls 

- 
0,10 0,10 0,29 0,50 

Absorption coefficient of the 

Roof 

- 
0,10 0,10 0,10 0,10 

Linear coefficient of thermal 

bridges 

W.m-1.K-1 
0,09 0,04 0,37 0,44 

Air change per hour v.h-1 0,44 0,41 0,56 0,58 
Shading coefficient for north-

facing windows 

- 
0,77 0,55 0,53 0,51 

Shading coefficient for south-

facing windows 

- 
0,64 0,65 0,50 0,57 

Shading coefficient for east-

facing windows 

- 
0,97 1,00 0,50 0,58 

Glazing - Glz4 - Glz5 Glz4 Glz4 Glz4 

6.2.2. Improvement potential 

Following the selection of the four building design solutions, it appears from Table 12 that they represent suitable 

solutions for this study, due to the successful performance of both ATED and ADH. Thus, in case only one solution 

should be selected, it will be solution 2, although it presents only a slight difference in advantage, which seems 

negligible compared to the others. Consequently, the studied building will have to be in full compliance with the 

RTCM since the ATED varies around 35 kWh.m-2.yr-1, which represents about 4 times less than the regulatory 

upper limit. Furthermore, the ADH has practically improved through a reduction of about 2 °C.h.yr-1 with respect 

to the reference building, which remains a simultaneous improvement of its thermal performance. 



In this study, the solution 2, using Eq. (14), provided a very significant potential of improvement in the building's 

energy performance, particularly in terms of thermal needs (Table 13). This solution averaged 74.52%, which 

means that the achieved savings on the energy consumption of the air-conditioning systems represent more than 

half of the total. In addition, a further improvement of 4.32% has been made for the occupants in terms of thermal 

comfort. 

OD BD
p

BD

f - f
I (%)

f
=

                                                                     (14) 

Note that the Ip can only be calculated if the fOD and the fBD have the same unit. 

Table 13. Improvement potential of several solutions compared to the base design 

Building design Optimization objective Value Improvement potential (%) 

Base 
ATED 135.50 - 

ADH 47.32 - 

Solution 1 
ATED 35,58 73,74 

ADH 45,22 4,44 

Solution 2 
ATED 34,53 74,52 

ADH 45,27 4,32 

Solution 3 
ATED 35,93 73,48 

ADH 45,33 4,22 

Solution 4 
ATED 35,40 73,87 

ADH 45,36 4,15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. Conclusion 

In this study, the BPO technique was well applied in order to design energy-efficient buildings, i.e. a GFFF 

residential building located in Marrakech region of Morocco (5th climatic zone according to the RTCM). The 

purpose is minimizing its energy demand, especially for heating and cooling, as well as maximizing indoor thermal 

comfort, which are the two most important targets for building designers. The design variables considered in this 

optimization include the thermo-physical parameters of all opaque and glazed walls, shading devices, thermal 

bridges and ventilation. 

Indeed, a surrogate model with good predictive accuracy has been developed by the ANN in order to target the 

overall research space of the two expected objectives. This was accomplished by using a database of 35 samples, 

which were simulated by a platform developed in TRNSYS software environment. Actually, this value represents 

a major contribution regarding computation time since it is very reduced compared to the existing literature. Then, 

the selection of the appropriate algorithm, which perfectly meets the requirements of this study, was initiated after 

comparing the performance of three commonly used multi-objective optimization algorithms, namely NSGA-II, 

MOPSO and MOGA, using the criteria mentioned in section 6.1.2. The results indicate that the MOPSO achieved 

the greatest desired performance, followed by the NSGA-II and finally the MOGA. 

The final optimization results of the studied building design showed that there is a very significant improvement 

potential, representing 74.52% and 4.32% respectively for ATED and ADH, compared to the base design. These 

results show that the BPO technique is highly suitable for difficult building design optimization problems, where 

no more efficient classical method is available, especially in the case of introducing artificial intelligence. In this 

context, the proposed methodology presented in this paper, which is based on several modeling, automatic learning 

and optimization tools, has been carried out successfully by responding quite sufficiently to the gap in knowledge 

on this issue. However, some other tools may be introduced in further work to improve this approach, especially 

more powerful tools for machine learning, deep learning and new generation algorithms. 
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