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This paper deals with error bound characterizations of Guignard's qualification condition for a convex inequality system in a Banach space X. We establish necessary and sufficient conditions for a closed convex set S defined by a convex function g to have Guignard's condition. These conditions are expressed in terms of the notion of error bound. Our results show that these characterizations hold in the following special cases: 1. g is the maximum of a finite number of differentiable convex functions.

2. S is closed convex and polyhedral.

3. The dimension of the subspace lin(S) is less than 2 and g is positively homogeneous.

We construct technical examples showing that these characterizations are limited to the three situations above. We introduce a new condition in terms of the gauge function which allows us to give an error bound characterization of convex nondifferentiable systems and to obtain as a direct consequence different characterizations of the concept of strong conical hull intersection property (CHIP) for a finite collection of convex sets.

Introduction

Necessary optimality conditions are known to be very important in optimization in the computation of (possible) local or global minima. To be more concrete, consider the following optimization problem

ß min f (x) g(x) ≤ 0 (1.1)
Here f, g : X → R ∪ {+∞} are extended lower semicontinous convex functions and X is a Banach space. We denote by S := {x ∈ X : g(x) ≤ 0} the feasible set of problem (1.1), ∂f (x) the Fenchel subdifferential of f at x and N (S, x) the normal cone in the sense of convex analysis to S at x. We know that for a feasible point x of problem (1.1), the following assertions are equivalent :

2. 0 ∈ ∂f (x) + N (S, x) provided that f is Lipschitz continous around x. The problem is How to compute N (S, x) in terms of the data g?

Without additional constraint qualification, there is no way to obtain this computation (take g(x) = x 2 ). So we are looking for conditions which allow us to obtain this computation. One of them is known to be Abadie's constraint qualification expressed as follows :

T (S, x) = {h ∈ X : g (x, h) ≤ 0} (1.2)
where T (S, x) denotes the tangent cone of S at x, that is, the negative polar of the normal cone N (S, x), and where g (x, h) is the directional derivative of g at x in the direction h, that is, g (x, h) = lim

s→0 + g(x + th) -g(x) t .
Using a separation theorem, we may easily obtain the equivalence between the two following assertions:

1. Abadie's constraint qualification holds at x, with g(x) = 0, 2. The following property holds at x, with g(x) = 0,

N (S, x) = cl * [R + ∂g(x)]. (1.3) 
So that one of these conditions, guarantees the following characterization for a feasible point x for (1.1):

1. x is a solution of (1.1), 2. 0 ∈ ∂f (x) + cl * [R + ∂g(x)],

provided that f is lipschitz continuous arroud x. Unfortunately, these two conditions are not sufficient to establish the existence of Karush-Kuhn-Tucker (KKT) multipliers, that there exists λ ≥ 0, such that 0 ∈ ∂f (x) + λ∂g(x)

provided that f is Lipschitz continuous around x (see Example 1). The real number λ is a KKT-Lagrange multiplier for problem (1.1).

Example 1 [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms I: Fundamentals[END_REF] Endow R 2 with the usual scalar product •, • and the associated euclidean norm • . Consider the convex functions f and g defined on R 2 by f (x, y) = x, g(x, y) = (x, y) -y.

Thus we have T (S, (0, 0)) = {0} × R + and N (S, (0, 0)) = R × R - while ∂g(0, 0) = B((0, -1), 1) and R + ∂g(0, 0) = R×] -∞, 0[∪{(0, 0)}.

The feasible point x = (0, 0) is a solution of (1.1) but

0 / ∈ ∂f (x) + R + ∂g(x).
The situation is quite different when g is the maximum of finite number of convex differentiable functions. Indeed, Abadie's constraint qualification can be expressed at x as T (S, x) = {h ∈ X : ∇g i (x), h ≤ 0 i ∈ I(x)} (1.4) where g 1 , • • • , g m are convex real-valued functions on X which are differentiable at x ∈ S, I(x) = {i : g i (x) = 0} and g(x) = max i=1,••• ,m g i (x). Using the Farkas lemma, we obtain that condition (1.4) is equivalent to

N (S, x) = R + co{∇g i (x) : i ∈ I(x)} (1.5)
where "co" stands for the convex hull. As ∂g(x) = co{∇g i (x) : i ∈ I(x)}, then condition (1.5) can be expressed as N (S, x) = R + ∂g(x). (1.6) This one is called the Guignard constraint qualification and ensures the existence of KKT-Lagrange multipliers. Example 1 is very instructive because it shows that Guignard's and Abadie's constraint qualifications are clearly distinct, even though (with only the affirmation that) Guignard's condition leads to that of Abadie.

Using the subdifferential calculus ∂g + (x) = co{0, ∂g(x)}, with g(x) = 0, where a + = max(0, a), we easily show that condition (1.6) is equivalent to

N (S, x) = R + ∂g + (x). (1.7)
Note that all classical constraint qualifications (Slater condition, Mangasarian-Fromovitz condition, ...) imply Guignard's constraint qualification (1.6). One of them is the so-called error bound.

Definition 1.1 (Local error bound) We say that the following system g(x) ≤ 0 (1.8)

satisfies error bound at x, with g(x) = 0, if there exist two real numbers α > 0 and r > 0 such that d(x, S) ≤ αg + (x) ∀x ∈ B(x, r).

(1.9)

Where d(x, S) = inf u∈S u -x
is the distance function of S to x. If the error bound property holds at every x, with g(x) = 0, we say that the system satisfies error bound.

This concept is equivalent to saying that the set-valued mapping M : R ⇒ X defined by

M (t) = {x ∈ X : g(x) ≤ t}
is calm at (0, x). Note that the calmness property should not be confused with the concept of metric regularity. We recall that following [START_REF] Rockafellar | Variational Analysis[END_REF], M is calm at (0, x) of its graph if there exist neighborhoods V and W of 0 and x respectively, and some L > 0 such that the corresponding distance functions satisfy

d(x, M (0)) ≤ L|t| ∀x ∈ M (t) ∩ W, ∀t ∈ V.
Obviously, calmness is also weaker than the well-known Aubin property of multifunctions

d(x, M (t)) ≤ Ld(t, M -1 (x)) ∀t ∈ V, ∀x ∈ W.
The last one is equivalent to saying that M -1 is metrically regular at (x, 0) as defined by Robinson [START_REF] Robinson | Regularity and stability for convex multivalued functions[END_REF] (see [START_REF] Jourani | Verifiable conditions for openness and metric regularity of multivalued mappings in Banach spaces[END_REF][START_REF] Jourani | Coderivatives of multivalued mappings, locally compact cones and metric regularity[END_REF][START_REF] Robinson | Regularity and stability for convex multivalued functions[END_REF][START_REF] Rockafellar | Variational Analysis[END_REF] and the references therein for more studies on these concepts including necessary and sufficient conditions).

The study of error bounds has received a lot of attention in the mathematical programming literature in the last decades (see [START_REF] Abassi | Strongly regular points of mappings[END_REF][START_REF] Burke | Weak sharp minima in mathematical programming[END_REF][START_REF] Burke | A unified analysis of Hoffman's bound via Fenchel duality[END_REF][START_REF] Cornejo | Conditioning and upper-Lipschitz inverse suddifferentials in nonsmooth optimization problems[END_REF][START_REF] Cuong | Error bounds revisited[END_REF][START_REF] Jourani | Hoffman's error bound, local controllability and sensitivity analysis[END_REF][START_REF] Jourani | Error Bounds for Eigenvalue and Semidefinite Matrix Inequality Systems[END_REF][START_REF] Klatte | Hoffman's error bound for systems of convex inequalities[END_REF][START_REF] Kung Fu Ng | Regularities and their relations to error bounds[END_REF][START_REF] Li | Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities[END_REF][START_REF] Lewis | Error bounds for convex inequality systems[END_REF][START_REF] Luo | Extension of Hoffman's error bound to polynomial systems[END_REF][START_REF] Luo | Error bounds for analytic systems and their applications[END_REF][START_REF] Mangasarian | Error bounds for nondegenerate monotone linear complementarity problems[END_REF][START_REF] Ngai | Error bounds for systems of lower semicontinuous functions in Asplund spaces[END_REF] and references therein).

Note that a simple condition ensuring error bound for the system (1.8) is Slater's condition, i.e., there exists u ∈ X such that g(u) < 0. Indeed, for all x ∈ S and all x / ∈ S, the convexity of S ensures that v := x + g(x) g(x)-g(u) (u -x) ∈ S and

d(x, S) ≤ x -v = g(x) g(x) -g(u)
x -u (1.10) which implies that the local error bound holds for the system (1.8).

In this paper, we are also concerned with the following concepts of error bound which give characterization of Guignard's qualification condition in some special situations. The aim of the present work is to characterize Guignard's condition in terms of these error bound concepts. More precisely, we will show that this characterization holds in the following situations:

1. g is the maximum of a finite number of differentiable convex functions.

2. S is closed convex and polyhedral.

3. The dimension of the subspace lin(S) is less than 2 and g is positively homogeneous.

The first item has been studied in the paper [START_REF] Li | Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities[END_REF] in finite dimensional spaces by using an euclidean approach. Note that the third item is included in the second one and contains the situations where S is a singleton, a ray or an affine subspace. A similar result has been establish in [ [START_REF] Azé | Characterization for existence of multipliers in mathematical programming in Banach spaces[END_REF], Theorem 3.2] in Banach spaces, but around a reference point.

We will show that there is no way to obtain a characterization outside of the three situations above. We will give examples showing the limit of the cited cases. The first example shows that the third item is no longer true if g is not assumed positively homogeneous.

The second example shows the loss of the characterization in spaces when the dimension greater than 3 even if g is positively homogeneous. We will show that we need more to characterize error bounds. Indeed, we have to introduce a new condition in term of the gauge function. The last one allows us to obtain, as a direct concequence of our results, different characterizations of the concept of strong conical hull intersection property (SCHIP) for a finite collection of convex sets in Banach spaces, which has been extensively studied in the literature( see for example [START_REF] Heinz | Bounded Linear Regularity, Strong CHIP, and CHIP are Distinct Properties[END_REF][START_REF] Heinz | Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization[END_REF][START_REF] Ernst | Boundary half-strip and the strong CHIP[END_REF][START_REF] Mordukhovich | Variational Analysis and Applications[END_REF] and the references therein).

The paper is organized as follows: Section 2 presents the basic notation and concepts used in this paper, namely tools from convex analysis. 

Preliminaries

Unless otherwise stated, space X will be a Banach space equipped with a norm 

(x) = {x * ∈ X * : x * , u -x ≤ f (u) -f (x) ∀u ∈ X} if f (x) < +∞ and ∅ if f (x) = +∞.
The directional derivative of f at x, with f (x) < +∞, is given by

f (x, h) = lim t→0 + f (x + th) -f (x) t and so ∂f (x) = {x * ∈ X * : x * , h ≤ f (x, h) ∀h ∈ X}.
When f is locally Lipschitz continuous around x, then

f (x, h) = max x * ∈∂f (x)
x * , h ∀h ∈ X.

The tangent cone T (C, x) to a closed convex set C ⊂ X at x ∈ C is defined by

T (C, x) = cl(R + (C -x))
or equivalently

T (C, x) = {h ∈ X : d (•, C)(x, h) = 0}.
The normal cone N (C, x) to C at x ∈ C is given by

N (C, x) = {x * ∈ X * : x * , h ≤ 0 ∀h ∈ T (C, x)}.
We also have the following characterization of the normal cone

N (C, x) = R + ∂d(x, C). Lemma 2.1 Let C ⊂ X be a closed convex set and let x / ∈ C. Then for all ε > 0 there exist u ε ∈ C, x * ε ∈ X * and b * ε ∈ B * such that 1. u ε -x ≤ d(x, C) + ε 2 , 2. x * ε + εb * ε ∈ (1 + ε)∂d(u ε , C), 3. x * ε , x -u ε = u ε -x .
Moreover, if either S is included in a finite dimensional subspace of X or if X is a Hilbert space, then there exist u ∈ S and x * ∈ X * such that

1. d(x, C) = x -u , 2. x * ∈ ∂d(u, C), 3. x * , x -u = u -x . Proof. Let v ε ∈ C such that x -v ε ≤ d(x, C) + ε 2 . Define the function f on X by f (u) = u -x . Then f (v ε ) ≤ inf u∈C f (u) + ε 2 .
By Ekeland's variational principle [START_REF] Ekeland | On the variational principle[END_REF], there exists u ε ∈ C such that

f (u ε ) ≤ f (v ε ), u ε -v ε ≤ ε, f (u ε ) ≤ f (u) + ε u -u ε ∀u ∈ C.
This last inequality is equivalent to saying that u ε minimizes the function

u → f (u) + ε u -u ε + (1 + ε)d(u, C) or equivalently 0 ∈ ∂f (u ε ) + εB * + (1 + ε)∂d(u ε , C).
So that there exist

-x * ε ∈ ∂f (u ε ) and b * ε ∈ B * such that x * ε + εb * ε ∈ (1 + ε)∂d(u ε , C). To conclude, it only remains to see that ∂f (u ε ) = {x * ∈ X * : x * , u ε -x = u ε -x }. Lemma 2.2 Let C ⊂ X be a closed convex set and let x ∈ C. Then ∂d(x, C) = N (C, x) ∩ B * = ∂d(0, T (C, x)). Lemma 2.3 Let K ⊂ X be a closed convex cone with negative polar K 0 (:= {x * ∈ X * : x * , h ≤ 0 ∀h ∈ K}). Then d(x, K) = sup x * ∈K 0 ∩B * x * , x ∀x ∈ X.
The following lemma establishes a subdifferential formula of homogeneous and supremum functions.

Lemma 2.4 (Subdifferential of the supremum of homogeneous functions) Let h : R m → R and h k : R m → R, k ∈ N, be homogeneous convex functions. Then 1. For all x ∈ R m , we have

x * ∈ ∂h(x) ⇐⇒ x * , x = h(x), x * ∈ ∂h(0). 2. If h = sup k∈N h k , then ∂h(0) = clco k∈N ∂h k (0) .
Proof.

Item 1 is obvious. Let us establish the second one. Using the definition of h, we obtain that for all k ∈ N, ∂h k (0) ⊂ ∂h(0) and hence clco

k∈N ∂h k (0) ⊂ ∂h(0).
Proposition 5.2 in [START_REF] Hantoute | Characterizations of the subdifferential of the supremum of Convex Functions[END_REF] asserts that

∂h(0) ⊂ ∩ ε>0 clco k∈N ∂ ε h k (0)
where

∂ ε h k (0) = {x * ∈ R m : x * , x ≤ h k (x) + ε ∀x ∈ R m } is the ε-subdifferential of h k at 0. Since h k is homogeneous, we have ∂ ε h k (0) ⊂ ∂h k (0) + εB * R m . So that ∂h(0) ⊂ ∩ ε>0 clco k∈N (∂h k (0) + εB * R m ) ⊂ clco k∈N ∂h k (0) .
The last inclusion results from the following equality

k∈N (∂h k (0) + εB * R m ) = k∈N ∂h k (0) + εB * R m and clco k∈N ∂h k (0) + εB * R m = clco k∈N ∂h k (0) + εB * R m ⊂ clco k∈N ∂h k (0) + εB * R m
as well as the equality

∩ ε>0 clco k∈N ∂h k (0) + εB * R m = clco k∈N ∂h k (0) .
3 Some elementary characterizations of Guignard's constraint qualification for nondifferentiable convex systems

In this section, we give two elementary characterisations of Guignard's condition. The first one concerns its equivalence with that of Abadie and the second one with the concept of calmness in the Clarke's sense of the value function. We state them without proof.

As we saw in the introduction, (see Example 1)Guignard's and Abadie's constraint qualifications are not equivalent for nondifferentiable convex systems. The following result shows that both Guignard's and Abadie's constraint qualifications for nondifferentiable convex systems are equivalent under an aditional closedeness hypothesis.

Proposition 3.1 The following assertions are equivalent for x ∈ S, with g(x) = 0:

1. Guignard's constraint qualification (1.6) holds at x;

2. Abadie's constraint qualification (1.2) holds at x and the set R + ∂g(x) is weak-star closed.

For the second characterization, consider convex continuous functions f, g i :

X → R, i = 1, • • • , m and the optimization problem (P f ) ß min f (x) g i (x) ≤ 0 i = 1, • • • , m
To this problem, we associate the following perturbed one

(P y ) ß min f (x) g i (x) ≤ y i i = 1, • • • , m where y = (y 1 , • • • , y m ) ∈ R m
is the perturbation parameter. The value function associated to (P ) is given by

v f (y) = inf{f (x) : g i (x) ≤ y i i = 1, • • • , m}.
It is easy to see that v f is convex. Following Clarke [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], v f is calm at 0, where

v f (0) ∈ R, if lim inf y→0 v f (y) -v f (0) y > -∞.
In the convex setting, this definition is equivalent to saying that

∂v f (0) = ∅.
Then, we have:

Proposition 3.2 Suppose that the solution set S f of the problem P f is nonempty. Then 1. -λ ∈ ∂v f (0) IFF λ is a KKT multiplier for P f associated to all x ∈ S f .
2. Guignard's condition holds for the system (1.8), with g = max

i=1,••• ,m g i , IFF for any convex continuous function f : X → R for which S f = ∅, v f is calm at 0.

Error bound characterization of Guignard's constraint qualification for differentiable convex inequality systems

Recall that a constraint {x ∈ X : g(x) ≤ 0}, or simply g, satisfies Slater's condition if there exists u ∈ X such that g(u) < 0 and that g

(x) = max i=1,••• ,p g i (x).
Consider the set I := {J ⊂ I : g J := max i∈J g i satisfies Slater's condition}.

The following result states error bound characterizations of Guignard's constraint qualification under the differentialbility of the data, especialy the equivalence between the last one and the bounded and local error bounds in Banach spaces.

Theorem 4.1 Suppose that the function g is a maximum of finite number p of convex differentiable functions g i : X → R. Then the following assertions are equivalent:

i) Guignard's constraint qualification holds for system (1.8), that is, for all x ∈ S,

N (S, x) = R + co{∇g i (x) i ∈ I(x)} where I(x) := {i ∈ {1, • • • , p} : g i (x) = 0}
is the index set of active constraints at x.

ii) The system (1.8) satisfies error bound. More precisely, I = ∅ and there exists

(x J ) J∈I ⊂ X such that g J (x J ) < 0 and d(x, S) ≤ g + (x) max J∈I Å x -x J g J+ (x) -g J (x J ) ã ∀x ∈ X.
iii) The system (1.8) satisfies bounded error bound. More precisely, there exists c > 0 such that for all r > 0

d(x, S) ≤ c(r + 1)g + (x) ∀x ∈ X, with x ≤ r.
iv) The system (1.8) satisfies local error bound.

Proof. iv) =⇒ i) : This implication is obvious and is based on the formula ∂d(x, S) = N (S, x) ∩ B * , and the subdifferential calculus of the maximum of convex functions.

ii

) =⇒ iii) : It is enough to take c = max J∈I 1 -g J (x J ) max(1, x J ).
i) =⇒ ii) : This implication will be established in three steeps.

Step 1: We start by the following lemma whose proof can be deduced from that of Theorem 4.1 in [START_REF] Jourani | Hoffman's error bound, local controllability and sensitivity analysis[END_REF]. We give a proof to make the paper self-contained.

Lemma 4.1 Let x * , x * 1 , • • • , x * m ∈ X * \{0}. Suppose there exist µ 1 , • • • , µ m ∈ R + such that x * = m i=1 µ i x * i .
Then there exist J ⊂ {1, • • • , m} and (β i ) i∈J , with β i ≥ 0 for all i ∈ J and not all equal to zero, such that (x * i ) i∈J are linearly independent and

x * = i∈J µ i x * i .
Proof. It is included for completeness. Set I 0 = {1, • • • , m}. If (x * i ) i∈I 0 are not linearly independent, then there is nothing to prove. To suppose the contrary would mean there exist γ i ∈ R, i ∈ I 0 , not all equal to zero such that

i∈I 0 γ i x * i = 0.
Without loss of generality, we can assume that there is at least i ∈ I 0 such that γ i < 0. Hence for all t ∈ R x * = i∈I 0

(µ i + tγ i )x * i .
Set t max = max{t :

µ i + tγ i ≥ 0, ∀i ∈ I 0 }. Then t max = min i∈I 0 {- µ i γ i : γ i < 0}. Let then i 0 ∈ I 0 be such that - µ i0 γ i0 = t max , that is, µ i0 + t max γ i0 = 0. Hence setting I 1 = I 0 \{i 0 } and µ (1) i 
= µ i + t max γ, ∀i ∈ I 1 , we have

x * = i∈I 1 µ (1) i x * i , with µ (1) i ≥ 0, ∀i ∈ I 1
By induction we show that there exist I ⊂ {1, • • • , m} and (β i ≥ 0) i∈I such that (x * i ) i∈I is linearly independent and

x * = i∈I β i x * i .
Step 2: Suppose first that I = ∅. Then for all J ∈ I there exists x J ∈ X such that

g J (x J ) < 0 and (by (1.10)) d(x, S J ) ≤ g J+ (x) g J + (x) -g J (x J ) x -x J ∀x ∈ X (4.1)
where

S J := {x ∈ X : g J (x) ≤ 0}. Hence d(x, S J ) ≤ g + (x) g J+ (x) -g J (x J ) x -x J ∀x ∈ X. (4.2)
We will prove that the set I is in fact not empty. Lemma 4.2 Suppose i) holds. Let x / ∈ S and x * ∈ ∂d(x, S). Then x * = 1 and there exist sequences

(v n ) n∈N ⊂ S, v * n ∈ N (S, v n ), for all n ∈ N, (u n ) n∈N ⊂ X and (J n ) n∈N ⊂ I such that 1. x * -v * n → 0, 2. u n -x → 0, 3. g Jn := max i∈Jn g i satisfies Slater's condition and 4. d(u n , S) ≤ 1 + 1 n 1 -1 n d(u n , S Jn ).
Proof. Fix x / ∈ S and x * ∈ ∂d(x, S). It is easy to see that x * = 1. For each integer n > 0, there exists w n ∈ S such that

x -w n ≤ d(x, S) + 1 n 2 . Therefore x * , u -x ≤ d(u, S) -d(x, S) ≤ u -v -x -w n + 1 n 2 ∀u ∈ X, ∀v ∈ S.
Thus the Lipschitz function g : X × X → R defined by

g(u, v) = u -v -x * , u satisfies g(x, w n ) ≤ inf (u,v)∈X×S g(u, v) + 1 n 2 .
So, endowing X × X with the norm (x, y) = x + y , Ekeland's variational principle [START_REF] Ekeland | On the variational principle[END_REF] ensures the existence of u n ∈ X and v n ∈ S such that

x-u n + w n -v n ≤ 1 n , g(u n , v n ) ≤ g(u, v)+ 1 n [ u-u n + v -v n ] ∀u ∈ X, ∀v ∈ S or equivalently (x * , 0) ∈ ∂ • -• (u n , v n ) + {0} × N (S, v n ) + 1 n B X * × B X * .
Due to the fact that x / ∈ S, u n = v n for n large enough, there exist

u * n ∈ ∂ • (u n -v n ), with u * n = 1, and b * n ∈ 1 n B X * such that x * -u * n ≤ 1 n , v * n := u * n + b * n ∈ N (S, v n ).
By our hypothesis i) there are

µ n 1 , • • • , µ n m ∈ R + , not all equal to zero such that v * n = m i=1 µ n i ∇g i (v n ).
Lemma 4.2 ensures the existence of J n ⊂ {1, • • • , p} such that (∇g i ) i∈Jn are linearly independent and

v * n = i∈Jn µ n i ∇g i (v n ).
So that J n ∈ I and affirms that

I = ∅ and v * n ∈ (1 + 1 n )∂d(v n , S Jn ) (because v * n ≤ 1 + 1 n and ∂d(v n , S Jn ) = N (S Jn ) ∩ B X * ). Since u * n ∈ ∂ • (u n -v n ), we have d(u n , S) ≤ u n -v n = u * n , u n -v n = v * n , u n -v n - 1 n b * n , u n -v n ≤ v * n , u n -v n + 1 n u n -v n Then (1 - 1 n ) u n -v n ≤ v * n , u n -v n ≤ (1 + 1 n )d(u n , S Jn )
and the result follows.

Step 3: Now, using the previous steeps and relation (4.2), we get

d(u n , S) ≤ 1 + 1 n 1 -1 n d(u n , S Jn ) ≤ 1 + 1 n 1 -1 n g Jn+ (u n ) g Jn+ (u n ) -g Jn (x Jn ) u n -x Jn ≤ 1 + 1 n 1 -1 n g + (u n ) max J∈I Å u n -x J g J+ (u n ) -g J (x J )
ã .

Now passing to the limit on n, we obtain

d(x, S) ≤ g + (x) max J∈I Å x -x J g + (x) -g J (x J ) ã .
5 Error bound characterization of Guignard's constraint qualification for nondifferentiable convex systems : Special cases

The situation of nondifferentiable systems is quite different and involves an additionnal hypothesis except in the following special situations:

1. g is a polyhedral function and X is a Banach space. In this case both Guignard's condition and error bound are satisfied.

2. S is a closed convex polyhedral set and X is a Banach space.

3. The dimension of the subspace lin(S) is less than 2 and g is positively homogeneous.

Remark 5.1 Unfortunately, when "g is not positively homogeneous and dim lin(S) ≥ 2" or "g is positively homogeneous but dim lin(S) ≥ 3", the condition of Guignard is not sufficient to guarantee the existence of an error bound concept. In this respect, we shall give counterexamples in Section 6 showing the limit of this characterization.

Theorem 5.1 (S is a closed polyhedron) Suppose that S is a closed polyhedral set of a Banach space X. Then the following assertions are equivalent:

1. Guignard's constraint qualification holds at all x ∈ S, with g(x) = 0, 2. The system (1.8) satisfies global error bound.

Proof. It is enough to establish the implication 1. =⇒ 2.. Write S as

S := {x ∈ X : a i , x ≤ b i ∀i = 1, • • • , m}
where a i ∈ X, with a i = 1, and

b i ∈ R, i = 1, • • • , m. For each x ∈ S, set I(x) = {i ∈ {1, • • • , m} : a i , x = b i } and J := {I(x) : x ∈ S}. Since J is a finite set, there exist x 1 , • • • , x p ∈ S such that J = {I(x i ) : i = 1, • • • , p}. For all i = 1, • • • , p, set S i = {x ∈ X : a j , x ≤ b j ∀j ∈ I(x i )}.
Then, we have the following lemma which is interresting in its self. 

( a j , x -b j ) + ∀x ∈ X. Proof. Let x / ∈ S and ε ∈]0, 1[. Lemma 2.1 there exist u ε ∈ S, x * ε ∈ X * and b * ε ∈ B * such that (a) u ε -x ≤ d(x, S) + ε 2 , (b) x * ε + εb * ε ∈ (1 + ε)∂d(u ε , S), (c) x * ε , x -u ε = u ε -x . Assertion (b) is equivalent to saying that x * ε + εb * ε 1 + ε ∈ ∂d(u ε , S I(uε) ). Since I(u ε ) ∈ J ,
there exists i ∈ {1, • • • , p} such that I(u ε ) = I(x i ) and hence

x * ε + εb * ε 1 + ε ∈ ∂d(u ε , S i ).
(5.1)

Using relation (5.1) and (c), one obtains

1 -ε 1 + ε x -u ε ≤ d(x, S i ). Hence 1 -ε 1 + ε d(x, S) ≤ d(x, S i ) ≤ max j=1,••• ,p d(x, S j ).
As ε is arbitrary and for all j = 1, • • • , p, S ⊂ S i , one gets the desired equality

d(x, S) = max j=1,••• ,p d(x, S j ).
The last inequality results from the well-known Hoffmann error bound which asserts that for all j = 1, • • • , p, there exists α j > 0 such that

d(x, S j ) ≤ α j max i∈I(xj ) ( a i , x -b i ) + ∀x ∈ X.
To complete the proof, it suffices to set α = max

j=1,••• ,p α j .
Proof of Theorem 5.1 (continued). Note that for all i = 1, • • • , p, N (S, x i ) = R + co{a j : j ∈ I(x i )}. By Guignard's constraint qualification condition, we have for

all i = 1, • • • , p, R + co{a j : j ∈ I(x i )} = R + ∂g(x i
). This asserts that for all i = 1, • • • , p and all j ∈ I(x i ), there exists α ij > 0 such that

α ij a j ∈ ∂g(x i ). Therefore α ij a j , x -x i ≤ g(x)
or equivalently

α ij ( a j , x -b j ) ≤ g(x), that is, α ij ( a j , x -b j ) + ≤ g(x)
.

Set β = min i=1,••• ,p j∈I(x i ) α ij . Then β max i=1,••• ,p j∈I(x i ) ( a j , x -b j ) + ≤ g(x).
The proof is then terminated by using Lemma 5.1.

Corollary 5.1 (S is a singleton) Suppose that S = {w} and X is a Banach space.

Then the following assertions are equivalent:

1. Guignard's constraint qualification holds at w, 2. 0 ∈ int(∂g(w)),

The system (1.8) satisfies global error bound.

Proof. Since S is polyhedral, the equivalence 1. ⇐⇒ 3. is a direct consequence of Theorem 5.1. We establish only the implication 1. =⇒ 2. because the implication 2. =⇒ 3. is easy to obtain by using the convexity of g and the definition of the Fenchel subdifferential. But this implication is a direct consequence of Baire's theorem. Indeed, since S = {w}, Guignard's constraint qualification is equivalent to say that

X * = N (S, w) = R + ∂g(w) = n∈N n∂g(w). (5.2)
Since the set ∂g(w) is norm-closed in X * and, because of relation (5.2), Baire's theorem asserts that int(∂g(w)) = ∅. Now, it remains to show that 0 ∈ int(∂g(w)). Let us suppose the contrary, then by the Hahn-Banach separation theorem there exists h ∈ X, with h = 1, such that u * , h ≤ 0 ∀u * ∈ ∂g(w).

Thus, using relation (5.2), we obtain h = 0 and this contradiction completes the proof.

Corollary 5.2 (dim lin(S) ≤ 2) Assume that the function g is positively homogeneous and dim lin(S) ≤ 2. If the Guignard condition holds for the system (1.8) then system (1.8) satisfies global error bound.

Proof. It is enough to prove that S is in fact a closed convex polyhedron and to apply Theorem 5.1. This is based on the following lemma. If αβ < 0. Without loss of generality we can assume for example that α < 0 and β > 0.

We have

γ β z z = α β x + ȳ ∈ S. It follows that x, ȳ ≤ ≠ γ β z z , x∑ = α β x 2 + x, ȳ
and hence α ≥ 0 which is absurd. So S = R + x + R + ȳ. If α < 0 and β < 0. Then (-αx, -β ȳ) ∈ S 2 and then -γ z z ∈ S. It follows that

-γ 2 = ≠ γ z z , -γ z z ∑ ≥ x, ȳ > -γ 2 ,
which is impossible. Thus S = R + x + R + ȳ.

Corollary 5.3 Let K 1 and K 2 be closed convex cones in X. Suppose that dim(X) = 3.

Then the following assertions are equivalent: Proof.

1. N (K 1 ∩ K 2 , 0) = N (K 1 , 0) + N (K 2 , 0).
If int(K 1 ∩ K 2 ) = ∅, then there exists u ∈ K 1 ∩ K 2 , such that 0 ∈ int(K 1 ∩ (u + B) -K 2 )
and this condition ensures both items (see for example Lemma 4.1 in [START_REF] Jourani | Tangency conditions for multivalued mappings[END_REF]). The case int(K 1 ∩ K 2 ) = ∅ follows from Lemma 5.2 and Theorem 5.1.

Counterexamples

In the previous sections, we have established the equivalence of Guignard's condition and error bound in the situation where dim(lin(S)) ≤ 2 and g is positively homogeneous. Our aim in the first counterexample is to show that if int(S) = ∅, g is not positively homogeneous and the dimension of X is equal to 2, then Guignard's condition is satisfied but not error bound. In the second Counterexample, we provide in R 3 an homogeneous function g such that the corresponding set S has an interior for which Guignard's condition holds but is not error bound. Relying on the second example, the last counterexample is given in R n for n ≥ 4.

Example 2 (dimX = 2 and g is not positively homogeneous but int(S) = ∅) Set X = R 2 and let {e 1 , e 2 } be its canonical basis. Let (A n ) n∈N * the sequence defined by

A 1 = e 2 and A n = n i=2 cos π 2 i cos π 2 n e 1 + sin π 2 n e 2 , for n ≥ 2. ( 6 

.1)

So A n+1 appears as the orthogonal projection of A n onto R cos π 2 n+1 e 1 + sin π 2 n+1 e 2 as shown in the following figure

It follows that

A n -A n+1 , A n+1 = 0, ∀n ∈ N * (6.2)
and

A 1 = 1 and A n = n i=2 cos π 2 i , for n ≥ 2 (6.3)
Thus ( A j ) j∈N * is decreasing, its limit is

λ = i≥2 cos π 2 i (6.4)
and the limit of (A j ) j∈N * denoted by Ā, is λe 1 . Furtheremore we have

A n , A k = cos π 2 n - π 2 k A n A k , for all (n, k) ∈ N * 2 (6.5)
Let us consider now the function g defined as follow

g(x) = sup k≥1 1 4 k x -A k , A k + + x -Ā, e 1 + + -e 1 , x + + -e 2 , x + , ∀x ∈ R 2 . (6.6)
It is easy to see that g is convex and continuous on R 2 , and that

S = {x ∈ R 2 : g(x) ≤ 0} = {x ∈ R 2 : g(x) = 0} = k≥1 {x ∈ R 2 : x -A k , A k ≤ 0} ∩ R 2 + .
Then we have the following result whose proof is very technical.

Proposition 6.1 With the function g, the Guignard condition holds for the system (1.8) whereas all error bound concepts are violated.

Proof. N.B. :

The proof is very technical and to simplify we have deliberately omitted the proofs of some statements.

Let (δ k n ) (n,k)∈N * 2 and ( k ) k∈N * respectively defined by

δ k n =                cos π 2 n - π 2 k - k i=n+1 cos π 2 i if k > n, n i=k+1 cos π 2 i cos π 2 n - π 2 k -1 if k < n 0 if k = n.
(6.7)

and k = - 1 2 δ k+2 k (6.8)
The following relations hold:

1. δ n n = δ n+1 n = 0, ∀n ∈ N * and δ k n < 0 whenever k < n or k > n + 1. Futhermore δ k+1 n < δ k n ≤ 0, whenever k > n > 1. 2. 1 > λ > 1 2 and λ sin π 2 n ≥ -δ n+2 n = 2 n , ∀n ∈ N * .
3. For every (n, k) ∈ N * 2 we have

     A n -A k , A k = 0 if n = k or k = n + 1 A n -A k , A k ≤ cos π 2 n -1 < 0 if k ≤ n -1, A n -A k , A k ≤ δ n+2 n < 0 if k ≥ n + 2.
(6.9)

4. For every n ∈ N \ {0, 1} we have

A n -λe 1 , e 1 ≤ δ n+2 n < 0, (6.10) 
A n , e 1 ≥ -δ n+2 n = 2 n (6.11) and A n , e 2 ≥ -δ n+2 n = 2 n . (6.12)

int(S)

= n≥2 {x : x-A n , A n < 0}∩{x : λ > e 1 , x > 0}∩{x : 1 > e 2 , x > 0} = ∅. 6. bdS = n≥1 [A n , A n+1 ] ∪ [0, λ]e 1 ∪ [0, 1]e 2 and S = co{0, A k , k ∈ N * }.
Computing g: Using the previous relations, we may now compute g around elements of the bd(S). So let n ∈ N * , then

1. g(x) =      max Å 1 4 n x -A n , A n + , 1 4 n+1 x -A n+1 , A n+1 + ã if n ≥ 2, max Å 1 4 x -A 1 , A 1 + , 1 4 2 x -A 2 , A 2 + ã + -e 1 , x + if n = 1, ∀x ∈ B(A n , n ),
where n is given by (6.8).

g(

x) = 1 4 n+1 x-A n+1 , A n+1 + , ∀x ∈ B(A t n , ˜ n ), where ˜ t n = 1 2 min (1 -t) n , t 2 n+1 , A t n = A n + t(A n+1 -A n ) and t ∈ (0, 1). 3. For t ∈ (0, λ), we set t 1 = min Å t 2 , ( λ -t) λ 4 ã . Then g(x) = -e 2 , x + ∀x ∈ B (te 1 , t 1 ). 4. g(x) = -e 1 , x + + -e 2 , x + , ∀x ∈ B Å 0, λ2 2 ã .
5. For t ∈ (0, 1), we set t 2 = 1 4 min t, 1 -t, -δ 3 1 . Then g(x) = -e 1 , x + , ∀x ∈ B (te 2 , t 2 ). Computing the subdifferential of g and the normal cone to S: Let x ∈ S, with x = Ā. Then the following items hold:

1. If x ∈ int(S) then ∂g(x) = {0} and N (S, x) = {0}.

2. ∂g(0) = [0, 1](-e 2 ) + [0, 1](-e 1 ) and N (S, 0) = R + (-e 1 ) + R + (-e 2 ).

∂g(

A 1 ) = 0, 1 4 e 2 + 0, 1 16 A 2 + [0, 1](-e 1 ) and N (S, A 1 ) = R + A 1 + R + A 2 + R + (-e 1 ).

∂g(

A n+1 ) = 0, 1 4 n+1 A n+1 + 0, 1 4 n+2 A n+2 and N (S, A n+1 ) = R + A n+1 + R + A n+2 . 5. ∂g(A t n+1 ) = 0, 1 4 n+2 A n+2 and N (S, A t n+1 ) = R + A n+2
, for every n ∈ N * and t ∈ (0, 1).

Guignard's condition holds at x.

Computing the normal cone to S at Ā: By using the definition of g and the following formula

lim n→∞ µ n Ñ cos π 2 n - i≥n+1 cos π 2 i é = 0
where µ ∈ [0, 4[, we obtain the following relations:

1. [0, λ]e 1 + [0, 1](-e 2 ) ⊂ ∂g( Ā). 2. R + ∂g( Ā) = N (S, Ā) = R + e 1 + R + (-e 2 ).
So, we have established that Guignard's constraint qualification holds at each element of the boundary of S.

Violation of error bound: Consider the sequence (x n ) defined by

x n = (1 + n )A n .
According to the previous relations, we have

g(x n ) = max Å 1 4 n x n -A n , A n , 1 4 n+1 x n -A n+1 , A n+1 ã . Now x n -A n , A n = n A n 2 and x n+1 -A n+1 , A n+1 = n A n , A n+1 + A n - A n+1 , A n+1 . But A n -A n+1 , A n+1 = 0 and A n , A n+1 ≤ A n A n+1 < A n 2 . Hence g(x n ) = n 4 n A n 2 . Since A n ∈ N (S, A n ), it follows that the projection of x n over S is A n . Then d(x n , S) = n A n > 4 n g(x n ). (6.13) 
The last one shows that the local error bound does not hold at Ā. Otherwise, there exist α > 0 and r > 0 such that

d(x, S) ≤ αg + (x) ∀x ∈ Ā + rB.
Since lim n→+∞

x n = Ā, then, for n sufficiently large, we should obtain

d(x n , S) ≤ αg(x n )
which combined with the inequality (6.13) gives 4 n < α, with n large enough, and this contradiction completes the proof.

The following counterexample shows that Guignard's condition still holds whereas error bound is violated, provided that int(S) = ∅, g is positively homogeneous and the dimension of X is equal to 3. Note that the case where S = ∅ and g is positively homogeneous is considered in Corollary 5.2.

Example 3 (dimX = 3 and g positively homogeneous but intS) = ∅) Let X = R 3 and {e 1 , e 2 , e 3 } be its canonical basis. With (A n ) n∈N * as a sequence of lin{e 1 , e 2 }, given by (6.1), we set Ãn = A n + e 3 and à = Ā + e 3 (6.14)

and we define the function g by

g(x) = sup k≥1 1 4 n Ä x -x 3 Ãk , Ãk + ä + x -x 3 Ā, Ā + + -e 1 , x + + -e 2 , x + + -e 3 , x + , ∀x ∈ R 3 (6.15)
where x 3 = e 3 , x the third component of x. By construction of g,

S = k≥1 {x ∈ R 3 : x -x 3 Ãk , Ãk ≤ 0} ∩ {x ∈ R 3 : x -x 3 Ã, Ã ≤ 0} ∩ R 3 + .
Geometrically, S can thus be viewed as

S = R + co(({0} ∪ {A k : k ∈ N * }) + e 3 ) = R + co({e 3 }, { Ãk : k ∈ N * }),
as shown in the following figure

Set B k = A k -A k 2 e 3 , k ∈ N * (6.16)
and B = λe 1 -λ2 e 3 = Ā -Ā 2 e 3 . (6.17)

Then g can be written as

g(x) = sup k≥1 1 4 n B k , x + + B, x + + -e 1 , x + + -e 2 , x + + -e 3 , x + , ∀x ∈ R 3 (6.18)
It follows that g is positively homogeneous, convex and continuous on R 3 , and thus

S = k≥1 {x ∈ R 3 : B k , x ≤ 0} ∩ {x ∈ R 3 : B, x ≤ 0} ∩ R 3 + . (6.19) 
Proposition 6.2 With this function g, the Guignard condition holds for the system (1.8) whereas all error bound concepts are violated.

Proof. The proof is based on the following lemmas.

Lemma 6.1 (Normal cone of S at 0) We have

N (S, 0) = R + co {0} ∪ {B k : k ∈ N * } ∪ { B} + R 3 - Proof. Set A 1 = R + co {0} ∪ {B k : k ∈ N * } ∪ { B} . By (6.19), {0} ∪ {B k : k ∈ N * } ∪ { B} ⊂ N (S, 0) and then A 1 ⊂ N (S, 0).
The second inclusion is established in four steps.

Step 1 : Let us first prove that the set

A 1 := R + co {0} ∪ {B k : k ∈ N * } ∪ { B} is closed. Let (x n ) n∈N * be a sequence of A 1 converging to some x. Let us show that x ∈ A 1 . Set then x n = λ n u n , n ∈ N * , where u n ∈ co {0} ∪ {B k : k ∈ N * } ∪ { B} and λ n ≥ 0.
Using Caratheodory theorem, u n can be written as

u n = 4 i=1 α kn i h kn i , with, α kn i ≥ 0, 4 i=1 α kn i ≤ 1 and h kn i ∈ {B k , B, k ∈ N * }. Recall that (B k ) 3 = -A k 2 ≤ -λ2 , ∀k ∈ N * . It follows that (x n ) 3 = -λ n 4 i=1 α kn i A kn i 2 ≤ -λ n λ2 and thus (λ n ) n∈N * is bounded. The result follows since {B k , B, k ∈ N * } is compact and (α kn i ) kn i ∈N * , i = 1, • • • , 4, are bounded.
Step 2 : Let us prove that

A 1 ∩R 3 + = {0}. It is enough to prove that co ({0} ∪ {B k : k ∈ N * })∩ R 3 + = {0}. Let x ∈ co ({0} ∪ {B k : k ∈ N * }) ∩ R 3 + . Write then x = 4 i=1
α ki h ki , with,

α ki ≥ 0, 4 i=1 α ki ≤ 1 and h ki ∈ co ({B k : k ∈ N * }). Then 0 ≤ x 3 = - 4 i=1 α ki A ki 2 ≤ -λ2 4 i=1 α ki ≤ 0. Hence 4 i=1
α ki = 0 and thus x = 0.

Step 3 Let us prove now that

A = A 1 + R 3 -is closed. Let (x n ) n∈N ⊂ A be a convergent sequence to some x. Let then (u n ) n∈N ⊂ A 1 and (v n ) n∈N ⊂ R 3 -such that x n = u n + v n . Claims : (u n ) n∈N and (v n ) n∈N are bounded.
Suppose the contrairy. Without loss of generality we can assume that lim n→+∞ u n = +∞.

Then lim n→+∞ x n u n = lim n→+∞ u n u n + v n u n = 0 (6.20)
Let then u * = 0 be a limit of a convergent subsequence of

Å u n u n ã n∈N . By step 1, u * ∈ A 1 .
By (6.20), -u * is a limit of a convergent subsequence of

Å v n u n ã n∈N ⊂ R 3 -. It follows that u * ∈ A 1 ∩ R 3 + \ {0}
, which contradicts the step 2's result.

Step 4 : We will establish the inclusion N (S, 0) ⊂ A. So let us suppose, by contradiction, that there exists x * ∈ N (S, 0) \ A. We said (step 3) that A is closed. According to the separation theorem, there exist h ∈ R 3 , h = 1 and α ∈ R such that

x * , h < α ≤ u * , h , ∀u * ∈ A 1 .
We use the last example to build homogeneous functions for which Guignard's condition holds but not error bound whenever dim(X) ≥ 4. Let us recall that a Counterexample has been given in [START_REF] Heinz | Bounded Linear Regularity, Strong CHIP, and CHIP are Distinct Properties[END_REF] in R 4 with g positively homogeneous and int(S) = ∅.

Example 4 (dimX ≥ 4 and g positively homogeneous) Let g be the function considered in Example 3 and the corresponding set S := {x ∈ R 3 : g(x) ≤ 0}.

For all n ∈ N, with n ≥ 4, consider the two functions g n and gn defined on R n by g n (x) = g(x 1 , x 2 , x 3 ) and gn (x) = g(x 1 , x 2 , x 3 ) + n i=4

|x i | ∀x = (x 1 , • • • , x n ) ∈ R n .
Let S n := {x ∈ R n : g n (x) ≤ 0} and Sn := {x ∈ R n : gn (x) ≤ 0}. Then g n and gn are positively homogeneous and

S n = S × R n-3 and Sn = S × {0 n-3 }.
This shows int(S n ) = ∅ and int( Sn ) = ∅. With the help of Example 3, it is not difficult to see that in both situation Guignard's condition holds but is not error bound. Remark 6.1 Note that in Example 2 (resp. Example 3), we may also consider the function

g 2 (x) = sup k≥1 1 4 k x -A k , A k + + x -Ā, e 1 + , ∀x ∈ R 2 Ç resp. g 3 (x) = sup k≥1 1 4 k B k , x + + B, x + , ∀x ∈ R 3 å .
With this choice, the set S in the two Examples is unbounded.

7 Error bound characterization of Guignard's constraint qualification for nondifferentiable convex systems : X is a Banach space

As we saw in the previous sections, Guignard's constraint qualification for nondifferentiable convex systems is not sufficient to characterize error bound. In this section, we will introduce the following new condition: For r > 0 there exists α r > 0 such that γ(x * /∂g(x)) ≤ α r x * ∀x ∈ B(0, r) ∩ S, ∀x * ∈ N (S, x).

Here γ(•/D) is the gauge function of the convex set D, that is,

γ(v/D) = inf{λ ≥ 0 : v ∈ λD}.
We have the following proposition which is based on this condition. Each one of the three conditions ensures that Guignard's constraint qualification holds at x.

Proof.

1. ⇔ 2. This equivalence follows from Lemma 2.2 and the definition of the Fenchel subdifferential.

2. ⇒ 3.: By 2. and Proposition 7.1, we have ∂d(x, S) ⊂ α r ∂g + (x). Let x * ∈ N (S, x), with x * = 0, then x *

x * ∈ ∂d(x, S) and hence x * x * ∈ α r ∂g + (x). Thus γ(x * /∂g + (x)) ≤ α r x * .

3. ⇒ 2.: Suppose that there exists u ∈ X such that d(u, T (S, x)) > α r g + (x, u). Lemma 2.3 ensures the existence of x * ∈ N (S, x) ∩ B * such that d(u, T (S, x))) = x * , u > α r g + (x, u).

Note that g + (x, u) > 0, otherwise u ∈ T (S, x)) and one obtains a contradiction with the last inequality. Then for all ε ∈]0,

x * ,u -αrg + (x,u) αrg + (x,u)
[ there exists λ > 0 satisfying γ(x * /∂g + (x)) > λ -α r ε and x * ∈ λ∂g + (x). So that

x * , u > εα r g + (x, u) + α r g + (x, u) ≥ α r (1 + ε) λ x * , u
which implies that λ > α r (1 + ε) and hence γ(x * /∂g + (x)) > λ -α r ε > α r . But item 3. guarantees the inequality

γ(x * /∂g + (x)) ≤ α r u * ≤ α r .
This contradiction completes the proof.

Remark 7.1 This equivalence 1. ⇔ 2. has been observed first by Burke and Ferris [START_REF] Burke | Weak sharp minima in mathematical programming[END_REF] in finite dimension.

Now we may state and prove our characterization for nondifferentiable convex inequality systems.

Theorem 7.1 The following assertions are equivalent:

1. For all r > 0 there exists α r > 0 such that for all x ∈ rB, with g(x) = 0, relation (7.4) holds.

2. For all r > 0 there exists α r > 0 such that

d(x, S) ≤ α r g + (x) ∀x ∈ rB. (7.5) Proof. 1. =⇒ 2.: Let r > 0, x ∈ rB\S and x ∈ S. By Lemma 2.1, for all ε ∈ ]0, min 1 2 , √ r [ there exists u ε ∈ S, x * ε ∈ X * and b * ε ∈ B * such that (a) u ε -x ≤ d(x, S) + ε 2 , (b) x * ε + εb * ε ∈ (1 + ε)∂d(u ε , S), (c) x * ε , x -u ε = u ε -x .
Items (b) and (c) ensure that g(u ε ) = 0 while item (a) implies that u ε ∈ (3r + x )B. Let s ≥ 3r + x . Assertion 1. ensures the existence of α s > 0 (depending only on r and x) such that γ(x * /∂g(u ε )) ≤ α s x * ∀x * ∈ N (S, u ε ) or equivalently via Proposition 7.1,

∂d(u ε , S) ⊂ α s ∂g + (u ε ).
Using assertion (b), we get x * ε + εb * ε ∈ (1 + ε)α s ∂g + (u ε ), which ensures the inequality

x * ε + εb * ε , x -u ε ≤ (1 + ε)α s g(x).
Using (c), we obtain

x -u ε (1 -ε) ≤ (1 + ε)α s g(x)
and hence

(1 -ε) d(x, S) ≤ (1 + ε)α s g(x).
As ε is arbitrary, we get d(x, S) ≤ α s g(x) whence 2.. 2. =⇒ 1.: It is obvious that 2. ensures that for all r > 0 there exists α r > 0 such that for all x ∈ rB d(x, S) ≤ α r g + (x) ∀x ∈ rB. Now, let x ∈ X be such that x < r, with g(x) = 0, and x * ∈ ∂d(x, S). Then

x * , u -x ≤ d(u, S) ∀u ∈ X and hence x * , u -x ≤ α r g + (u) ∀u ∈ rB.

As x < r, the later inequality is equivalent to

x * , u -x ≤ α r g + (u) ∀u ∈ X and hence x * ∈ α r ∂g(x). Consequently,

∂d(x, S) ⊂ α r ∂g + (x)
which is equivalent to relation (7.4).

As a consequence of this theorem, we obtain the following characterization for global error bound.

Corollary 7.1 Let α > 0. Then the following assertions are equivalent:

1. For all x ∈ S, with g(x) = 0, γ(x * /∂g(x)) ≤ α x * ∀x * ∈ N (S, x).

2.

d(x, S) ≤ αg + (x) ∀x ∈ X. (7.6)

Guignard's constraint qualification and SCHIP property

The aim of this section is to give a relationship between Guignard's constraint qualification and SCHIP property. Before giving this connexion, we recall that the collection C 1 , • • • , C m of closed convex subset of X satisfies the conical hull intersection property (CHIP) if

T (C, x) = ∩ m i=1 T (C i , x) ∀x ∈ C (8.1)
where C := ∩ m i=1 C i = ∅. This collection satisfies the strong conical hull intersection property (SCHIP) if

N (C, x) = m i=1 N (C i , x) ∀x ∈ C. (8.2)
Let 1 ≤ p, q ≤ +∞, with 1 p + 1 q = 1. Define the function g on X by

g(x) = m i=1 d(x, C i ) p 1 p ∀x ∈ X.
Before computing the subdifferential of g, we rewrite it in the following form

g(x) = (h • w)(x) ∀x ∈ X
where the mappings h : R m → R and w : X → R m are defined by

h(u) = u + p := m i=1 (u + i ) p 1 p and w(x) = (d(x, C 1 ), • • • , d(x, C m ))
and a + = max(a, 0). Let

B * q = {u * = (u * 1 , • • • , u * m ) ∈ R m : u * q := m i=1 |u * i | q 1 q ≤ 1}. Proposition 8.1 Let x ∈ C, that is, w(x) = 0. Then 1. h is a convex function and ∂h(0) = B * q ∩ R m + . 2. ∂g(x) = u * ∈B * q ∩R m + m i=1 u * i ∂d(x, C i ) .
Proof. 1. Taking into account that the functions t → t + and u → u p are convex, we conclude that h is also convex. Let u * ∈ ∂h(0), that is,

u * , u ≤ m i=1 (u + i ) p 1 p ∀u ∈ R m . (8.3)
Now, take all the compenents of u equal to zero except the ith one u i < 0. Then u * i ≥ 0 and this shows that u * ∈ R m + . This fact and relation (8.3) ensure that

u * , u ≤ m i=1 u * i |u i | ≤ m i=1 |u i | p 1 p ∀u ∈ R m and hence u * q ≤ 1. So that ∂h(0) ⊂ B * q ∩ R m + . Let u * ∈ B * q ∩ R m + . Then, for all u ∈ R m , u * , u + ≤ u + p . As u * ∈ R m + , we have u * , u ≤ u * , u + ≤ u + p = h(u) ∀u ∈ R m
and hence u * ∈ ∂h(0). Consequently, B * q ∩ R m + ⊂ ∂h(0). Using this proposition, we obtain the following rewriting of the CHIP properties as well as a computation of the gauge function of ∂g(x). By combining the previous result, we obtain the following characterization of the SCHIP property.

Theorem 8.1 The following assertions are equivalent:

1. For all r > 0 there exists α r > 0 such that for all x ∈ rint(B) ∩ C min{ m i=1

x * i q We may obtain the following result by [START_REF] Kung Fu Ng | Regularities and their relations to error bounds[END_REF] as a corollary of results. 

1 q : x * = m i=1 x * i , x * i ∈ N (C i , x), i = 1, • • • , m} ≤ α r x * ∀x * ∈ N (C, x).

Lemma 5 . 1

 51 For all x / ∈ S and all ε ∈]0,1[ there exists i ∈ {1, • • • , p} such that d(x, S) ≤ 1 + ε 1 -ε d(x, S i) and hence d(x, S) = max i=1,••• ,p d(x, S i ). Consequently, there exists α > 0 such that d(x, S) ≤ α max i=1,••• ,p max j∈I(xi)

Lemma 5 . 2 2 . 1 :Case 2 :

 52212 Let S ⊂ X be a closed convex cone with dim lin(S) ≤ 2. Then S is a polyhedron.Proof. Suppose that S = {0}. Let (x, ȳ) ∈ arg min{ x, y : (x, y) ∈ S 2 , x = y = γ}, where γ = max x∈S∩B x . Three cases can arise, namely, x, ȳ = γ 2 , x, ȳ = -γ 2 and -γ 2 < x, ȳ < γ Case If x, ȳ = γ 2 = x ȳ , then necessarily x = ȳ. Let us show that S = R + x. Let z ∈ S \ {0}. Then γ 2 = x, ȳ ≤ x, γ z z ≤ γ 2 . Hence x, Thus z ∈ R + x and S = R + x. If x, ȳ = -γ 2 = -x ȳ , then ȳ = -x. It follows that S contains Rx. Then either S = Rx or S = Rx + R + ū, for some u ∈ {x} ⊥ ∩ lin(S), or S = lin(S).

Case 3 :

 3 If -γ 2 < x, ȳ < γ 2 . Then x and ȳ are linearly independent and then lin(S) = Rx+Rȳ necessarily. Let us show that in fact S = R + x+R + ȳ. The inclusion R + x+R + ȳ ⊂ S holds, since S is a cone and (x, ȳ) ∈ S 2 . Assume for contradiction that S ⊂ R + x + R + ȳ. Let then z ∈ S \ (R + x + R + ȳ). We said that lin(S) = Rx + Rȳ. Let then α ∈ R and β ∈ R such that γ z z = αx + β ȳ. Then either, αβ < 0 or (α < 0 and β < 0).

2 .

 2 The system (1.8) satisfies global error bound with the function g(x) = d(x, K 1 ) + d(x, K 2 ).

Proposition 7 . 1 1 .. 2 ) 2 .

 71122 Let α r > 0 and x ∈ S, with g(x) = 0. Then the following assertions are equivalent ∂d(x, S) ⊂ α r ∂g + (x).(7For all u ∈ X, d(u, T (S, x)) ≤ α r g + (x, u).(7.3) 3.γ(x * /∂g + (x)) ≤ α r x * ∀x * ∈ N (S, x).(7.4) 

2 .

 2 Since h and w are locally Lipschitz, the subdifferential calculus ensures that∂g(x) ⊂ u * ∈∂h(0) ∂(u * • w)(x) = u * ∈B * q ∩R m ∂d(x, C i ) . Now, let u * ∈ B * q ∩ R m + and x * ∈ m i=1 u * i ∂d(x, C i ) = ∂( m i=1 u * i d(•, C))(x). Then for all y ∈ X x * , y -x ≤ Thus x * ∈ ∂g(x). Consequently, u * ∈B * q ∩R m + m i=1u * i ∂d(x, C i ) ⊂ ∂g(x).

Proposition 8 . 2 3 .. 5 . 1 q.

 82351 Let x ∈ C. Then 1. C = {x ∈ X : g(x) ≤ 0}. 2. g (x, h) = m i=1 ((d(•, C i )) (x, h)) Relation (8.1) holds at x IFF T (C, x) = {u ∈ X : g (x, u) ≤ 0}. 4. Relation (8.2) holds at x IFF N (C, x) = R + ∂g(x).5. For all x* ∈ X * γ(x * /∂g(x)) = min{ i , x * i ∈ N (C i , x), i = 1, • • • , m}.(8.4)Proof. 2.. By Lemmas 2.3 and 2.2, we obtaind(h, T (C i , x)) = sup x * ∈∂d(x,Ci) x * , h = (d(•, C i )) (x, h). Let x * ∈ X * . Then the set {λ ≥ 0 : x * ∈ λ∂g(x)} is empty IFF the set {(x * 1 , • • • , x * m ) ∈ N (C 1 , x) × • • • × N (C m , x) : x * = m i=1 x *i } is also empty. So that both quantities γ(x * /∂g(x)) and min{( :x * = m i=1 x * i , x * i ∈ N (C i , x), i = 1, • • • , m} are equal to +∞. Now let x * i ∈ N (C i , x), i = 1, • • • , m be such that x * = m i=1 x * i .Without loss of generality, we may assume that allx * i = For i = 1, • • • , m, put u * i = i y * i , u * := (u * 1 , • • • , u * m ) ∈ B * q ∩ R m + and y * i ∈ ∂d(x, C i ). Consequently, * i ∈ N (C i , x), i = 1, • • • , m}.Now, let ε > 0 and β ≥ 0 be such that x * ∈ β∂g(x) andβ ≤ γ(x * /∂g(x)) + ε. By Proposition 8.1, there exist u * ∈ B * q ∩ R m + and z * i ∈ ∂d(x, C i ), i = 1, • • • , m, such that x * = β m i=1 u * i z * i . Since z * i ≤ 1, i = 1, • • • , m,andConsequently, because βu * i z * i ∈ N (C i , x), i = 1, • • • , m, i , x * i ∈ N (C i , x), i = 1, • • • , m} ≤ γ(x * /∂g(x)) + εand as ε > 0 is arbitrary we get the desired inequality.

2 .

 2 For all r > 0 there exists α r > 0 such thatd(x, S) ≤ α r m i=1 d(x, C i ) p 1 p ∀x ∈ rB.(8.5)

Corollary 8 . 1

 81 Let α > 0. Then the following assertions are equivalent:1. For all x ∈ C and x * ∈ N (C, x) * i ∈ N (C i , x), i = 1, • • • , m} ≤ α x * .

  

  

  Definition 1.2 (Bounded error bound) We say that the system (1.8) satisfies bounded error bound if for all r > 0 there exists α r > 0 such that d(x, S) ≤ α r g + (x) ∀x ∈ rB.

(1.11) 

Definition 1.3 (Global error bound) We say that the system (1.8) satisfies global error bound if there exists α > 0 such that d(x, S) ≤ αg + (x) ∀x ∈ X.

(1.12)

It is easy to see that Global error bound =⇒ Bounded error bound =⇒ Local error bound =⇒ Guignard condition.

  • , X * is its topological dual with a pairing •, • . The closed and the open unit ball of X (resp. X * ) are identified by B and int(B) (resp. B * and int(B * )), respectively. The closure (resp. w * -closure) and the convex hull of a set A ⊂ X (resp. A * ⊂ X * ) are denoted by clA and coA (resp. cl * A * ), respectively. Let int(C) be the interior of a set C ⊂ X and lin(C) be the smallest subspace of X containing C. For an extended-real valued function f : X → X ∪ {+∞}, the Fenchel subdifferential is defined by ∂f

is a solution of (* This work was partially supported by the EIPHI Graduate School (contract ANR-17-EURE-0002).

Then necessarily

x * , h < 0 and u * , h ≥ 0, ∀u * ∈ A.

But u

Thus we have a contradiction with the fact that x * , -h > 0 and x * ∈ N (S, 0). Using Lemma 2.4, we obtain the following estimation of the subdifferential of g. Lemma 6.2 (Subdifferential of g)

Proof. Define the functions h

It remains to compute the subdifferential of h at 0. By Lemma 2.4, we obtain

Whence the first item.

The second item follows from the first part of Lemma 2.4.

The following result shows that Guignard's condition holds.

Lemma 6.3 (Guignard's condition) For all x ∈ bd(S),

Proof. Since x ∈ S then g(x) = 0. Using Lemma 6.2, ∂g(x) = {x} ⊥ ∩ ∂g(0), where {x} ⊥ = {x * ∈ R 3 : x * , x = 0}. Invoking Lemmas 6.1 and 6.2 we obtain N (S, 0) = R + ∂g(0). As N (S, x) = {x} ⊥ ∩ N (S, 0) then

Violation of error bound: Consider the sequence (x n ) defined by