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in convex programming*
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Abstract. This paper deals with error bound characterizations of Guignard’s qualification condition for a
convex inequality system in a Banach space X. We establish necessary and sufficient conditions for a closed
convex set S defined by a convex function g to have Guignard’s condition. These conditions are expressed in
terms of the notion of error bound. Our results show that these characterizations hlod in the following special
cases:

1. g is the maximum of a finite number of differentiable convex functions.
2. S is closed convex and polyhedral.
3. The dimension of the subspace lin(.S) is less than 2 and g is positively homogeneous.

We construct technical examples showing that these characterizations are limited to the three situations above.
We introduce a new condition in terms of the gauge function which allows us to give an error bound character-
ization of convex nondifferentiable systems and to obtain as a direct consequence different characterizations of
the concept of strong conical hull intersection property (CHIP) for a finite collection of convex sets.
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1 Introduction

Necessary optimality conditions are known to be very important in optimization in the computation of (possible)
local or global minima. To be more concrete, consider the following optimization problem

{ min f(z) Q)

g(x) <0

Here f,g : X — RU {400} are exented lower semicontinous convex functions and X is a Banach space. We
know that for a feasible point for problem (14), that is g(Z) < 0, then the following assertions are equivalent :

1. Z is a solution of (14),
2. 0€9f(Z) + N(S,7)
provided that f is Lipschitz continous around z. Where
Si={ze X glx) <0}

Of (%) is the Fenchel subdifferential of f at & and N (S, %) is the normal cone in the sense of convex analysis to
S at . The problem is
How to compute N(S,Z) in terms of the data g7

Without additional constraint qualification, there is no way to obtain this computation (take g(z) = 2?). So
we are looking for conditions which allow us to get this computation. One of them is known to be Abadie’s
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constraint qualification expressed as follows :
T(S,z) ={h € X: ¢g'(z,h) <0} (2)

where T'(S, Z) denotes the tangent cone of S at Z, that is, the negative polar of the normal cone N(S,Z), and

. . . . . . . . _ . T +th) —g(x
where ¢'(Z, h) is the directional derivative of g at T in the direction h, that is, ¢'(Z, h) = hm+ w
s—0
Using a separation theorem, we may easily obtain the equivalence between the two following assertions:

1. Abadie’s constraint qualification holds at Z, with g(Z) = 0,

2. The following property holds at Z, with g(Z) = 0,
N(8,7) = dI"[R+ dg(x)]. 3)

So that one of these conditions, guarantees the following characterization for a feasible point z for (14):
1. Z is a solution of (14),
2. 0 € 9f(Z) + cI"[R4+0g(z)].

Unfortunately, these two conditions are not sufficient to get the existence of Karush-Kuhn-Tucker (KKT)
multipliers, that there exists A > 0, such that

0€df(z)+ Adg(x)

provided that f is Lipschitz continuous around Z (see Example 1.1). The real number X is a KKT-lagrange
multiplier for problem (14).

Example 1.1 [10] Endow R? with the usual scalar product {-,-) and the associated eulidean norm ||-||. Consider
the convex functions f and g defined on R? by

f(xay) =, g(m,y) = H(*T7y)” - Y.

Then we have
T(S,(0,0)) = {0} x Ry and N(S,(0,0)) =R x R~

while
0g(0,0) = B((0,—-1),1) and R19g(0,0) = Rx] — oo, 0[U{(0,0)}.

The feasible point T = (0,0) is a solution of (14) but
0¢9f(z)+Ry0g(T).

The situation is quite different when ¢ is the maximum of finite number of convex differentiable functions.
Indeed, the Abadie’s constraint qualification can be expressed at T as

T(S,z) = {he X : (Vg;(z),h) <0i € I(z)} (4)

where g1, - - , gm are convex real-valued functions on X which are differentiable at € S, I(z) = {i : ¢;(Z) = 0}
and g(z) = max gi(x). Using Farkas lemma, we obtain that condition (4) is equivalent to
i=1,---,m

N(S,z) =Ryco{Vyg;i(z) : i € I(Z)} (5)

where “co” stands for the convex hull. As 9¢(Z) = co{Vg;(Z) : i € I(Z)}, then condition (5) can be expressed
as

N(S,z) = R10g(Z). (6)

This last one is called Guignard constraint qualification and ensures the existence of KKT-Lagrange multiplier.
Example 1.1 is very instructive because it allows to say that Guignard’s and Abadie’s constraint qualifications
are clearly distinct, with only the affirmation that Guignard’s condition leads to that of Abadie.

Using the subdifferential calculus dg (Z) = co{0,dg(Z)}, where ay = max(0, a), we easily show that condition
(6) is equivalent to

N(S,z) = Ry 094 (2). (7)



Note that all classical constraint qualifications (Slater condition, Mangasarian-Fromovitz condition, ...) imply
the Guignard’s constraint qualification (6). One of them is the so-called error bound.

Definition 1.1 (Local error bound) We say that the following system
g9(z) <0 (8)
satisfies error bound at T, with g(Z) = 0, if there exist two real numbers a > 0 and r > 0 such that
d(z,S) < ag+(z) Va € B(Z,r). 9)

Where
d(z,S) = inf ||lu — ||
uesS

is the distance function of S to x. If error bound holds at every &, with g(T) = 0, we say that the system satisfies
error bound.

This concept is equivalent to say that the set-valued mapping M : R = X defined by
M(t) ={z e X: g(x) <t}

is calm at (0,Z) not to be confused with the concept of metric regularity.
We recall that following [26], M is calm at (0, %) of its graph if there exist neighborhoods V and W of 0 and Z
respectively, and some L > 0 such that the corresponding distance functions satisfy

d(z, M(0)) < Lit|Vz € M(t) "W, Vt € V.
Obviously, calmness is also weaker than the well-known Aubin property of multifunctions
d(z, M(t)) < Ld(t, M ' (x))Vt € V, Yz € W.

This last one is equivalent to saying that M ~! is metrically regular at (#,0) in the Robinson’s sense [25] (see
[26, 25, 14, 15] and references therein for more studies on these concepts including necessary and sufficient
conditions).

The study of error bounds has received a lot of attention in the mathematical programming literature during
the last decades (see [4, 17, 18, 20, 21, 5, 22, 23, 19, 16] and references therein). Note that a simple condition

ensuring error bound for the system (8) is Slater condition, that is there exists u € X such that g(u) < 0.
Indeed, for all Z € S and all z ¢ S, the convexity of S ensures that v := z + %(u —z) € S and

g(z)

d(z,5) < |lz— vl = 9@) — glw)

[ — ull (10)

which implies that the local error bound holds for the system (8).
In this paper, we are also concerned with the following concepts of error bound which give characterization of
Guignard’s qualification condition in some special situations.

Definition 1.2 (Bounded error bound) We say that the system (8) satisfies bounded error bound if for all
r > 0 there exists o, > 0 such that

d(z,S) < argy(x) VrerB. (11)

Definition 1.3 (Global error bound) We say that the system (8) satisfies global error bound if there exists
a > 0 such that

d(z,S) < agy(z) VeeX. (12)

It is easy to see that
Global error bound = Bounded error bound = Local error bound = Guignard condition.

The aim of the present work is to characterize Guignard’s condition in terms of these error bound concepts.
More precisely, we will show that this characterization holds in the following situations:

1. g is the maximum of a finite number of differentiable convex functions.



2. S is closed convex and polyhedral.
3. The dimension of the subspace lin(.S) is less than 2 and g is positively homogeneous.

The first item has been studied in the paper [19] in finite dimensional spaces by using an euclidean approach.
Note that the third item is included in the second one and contains the situations where S is a singleton, a ray
or affine subspace.

We will show that there is no way to get a characterization outside of the three situations above. We will give
examples showing the limit of the cited cases. The first example shows that the thirth item is no longer true if
g is not assumed positively homogeneous. The second example shows the loss of the characterization in spaces
of dimension greater than 3 even if g is positively homogeneous.

We will show that we need more to charaterize error bounds by introducing a new condition in terms of the
gauge function. This last one allows us to obtain as a direct concequence of our results different characteriza-
tions of the concept of strong conical hull intersection property (SCHIP) for a finite collection of convex sets in
Banach spaces.

The paper is organized as follows: Section 2 presents the basic notation and concepts used in this paper, namely
tools from convex analysis. Section 3 is devoted to the equivalence of Guignard’s and Abadie’s conditions under
a closedness assumption as well as to an elementary characterization of Guignard’s condition by mean of the
concept of calmness in the Clarke’s sense of the value function.

Different error bound characterization of the Guignard’s condition are established in Section 4 for differentiable
convex inequality systems, namely the equivalence between this condition as well as the bounded and local
error bounds. Section 5 contains different characterizations of Guignard’s condition in special cases for nondif-
ferentiable convex systems. Section 6 is devoted to three technichal examples showing that the equivalence of
Guignard’s condition and error bound is limited to the situations above. This allows us to introduce in Section
7 a new condition in terms of the gauge function implying Guignard’s condition in order to characterize error
bounds. Finally, Section 8 provides an illustration of this new condition in the characterization of the SCHIP

property.

2 Preliminaries

Otherwise stated, the space X will be a Banach space equipped with a norm || - ||, X* is its topological dual
with a pairing (-,-). The closed and the open unit ball of X (resp. X*) are identified by B and B (resp. B*
and BB*), respectively. The closure (resp. w*-closure) and the convex hull of a set A C X (resp. A* C X*) are
denoted by clA and coA (resp. cl*A*), respectively. Let C be the interior of a set C C X and lin(C) be the
smallest subspace of X containing C.

For an extended-real valued function f: X — X U {+oo}, the Fenchel subdifferential is defined by

Of(x) ={z" € X" : (", u—2) < f(u) — f(x)Vu € X}

if f(z) < +oo and 0 if f(z) = +oc.
The directional derivative of f at x, with f(z) < 400, is given by

o) — i T ) = f)

t—0+ t

So that
Of(x) ={a* € X*: (a*,h) < f'(x,h)Vh € X}.

When f is locally Lipschitz continuous around z, then

"(x,h) = max (z* h)Vh € X.
Pla) = ms (@,h)

The tangent cone T'(C,x) to a closed set C C X at x € C' is defined by
T(C,z) = cl(RL(C —1x))

or equivalently
T(C,x)={he X : d(-,C)(z,h) = 0}.



The normal cone N(C,z) to C at x € C' is given by
N(C,z)={z* e X*: (", h) <O0Vh e T(C,x)}.
We have also the following characterization of the normal cone
N(C,z) =Ry0d(z,C).

Lemma 2.1 Let C C X be a closed convex set and let x ¢ C. Then for all € > 0 there exist u. € C, xX € X*
and bZ € B* such that

1 lue — z|| < d(z,C) + €%,
2.zt +ebl e (1+¢)0d(u.,C),
3. (zrx —ue) = ||ue — x|

Moreover, if either S is included in a finite dimensional subspace of X or X is a Hilbert space, then there exist
u €S and x* € X* such that

1. d(z,C) = |z — ul,
2. z* € dd(u, C),
3. (z*,x —u) = ||lu—z|.
Proof. Let v. € C such that ||z — v.|| < d(x,C) + 2. Define the function f on X by f(u) = ||u — z||. Then
floe) < inf fw)+
By Ekeland’s variational principle [8], there exists u. € C' such that
flue) < flve),  lue —vell <&, flue) < flu) +ellu —uc|[Vu € C.

This last inequality is equivalent to saying that u. minimizes the function u — f(u) +&||u —uc|| + (14 ¢)d(u, C)
or equivalently
0 € 0f(ue) +eB* + (1 +¢)0d(ue, C).

So that there exist —x* € Jf(u.) and bf € B* such that z* + eb* € (1 + £)dd(ue, C). To conclude, it remains
to see that Of (us) = {z* € X* : (z*,u. — ) = |Ju. — z||}.
X
Lemma 2.2 Let C C X be a closed convex set and let x € C'. Then
dd(z,C) = N(C,z) NB* = 9d(0,T(C, x)).

Lemma 2.3 Let K C X be a closed convex cone with negative polar K°(:= {z* € X*: (z*,h) < 0Vh € K}).
Then
dlz,K)= sup (z",2) VrelX.
z* e KONB*

The following lemma establishes a subdifferential formula of homogeneous and supremum functions.

Lemma 2.4 (Subdifferential of the supremum of homogeneous functions) Let h : R™ — R and hy, :
R™ — R, k € N, be homogeneous convex functions. Then

1. For all x € R™, we have
x* € Oh(z) <= (z",x)=0, 2" € 0h(0).

2. If h = sup hg, then
keN

Oh(0) = cleo (U Bhk(0)> .

keN



Proof. TItem 1 is obvious. Let us establish the second one. Using the definition of h, we obtain that for all

k € N, 0h(0) C 0h(0) and hence clco (U Bhk(0)> C 0h(0). Proposition 5.2 in [9] asserts that
keN

Oh(0) = Nesoclco (U 6Ehk(0)>
keN

where 0:hi(0) = {z* € R™ : (z*,x) < hi(z) + eVax € R™} is the e—subdifferential of hy at 0. Since hy is
homogeneous, we have 0:hy(0) = Ohi(0) + Bk . So that

Oh(0) = Ngsoclco (U (Ohi(0) + 61833@)) C cleo <U 8hk(0)> .

keN keN

X

3 Some elementary characterizations of Guignard’s constraint qual-
ification for nondifferentiable convex systems

In this section, we give two elementary characterisations of Guignard’s condition. The first one concerns its
equivalence with that of Abadie and the second one with the concept of calmness in the Clarke’s sense of the
value function. We state them without proof.

As we saw in the introduction (see Example 1.1) that Guignard’s and Abadie’s constraint qualification are not
equivalent for nondifferentiable convex systems. The following result shows that both Guignard’s and Abadie’s
constraint qualifications for nondifferentiable convex systems are equivalent under an aditional closedeness
hypothesis.

Proposition 3.1 The following assertions are equivalent for x € S, with g(z) = 0:
1. Guignard’s constraint qualification (6) holds at x;
2. Abadie’s constraint qualification (2) holds at x and the set Ry 0g(Z) is weak-star closed.

For the second characterization, consider convex continuous functions f,g; : X — R, i = 1,--- ;m and the
optimization problem

() {0 (13)

)
gi(z) <0i=1,--- ,m

To this problem, we associate the following perturbed one

(B { mmI) (14)

gi(x) <yii=1,---,m
where y = (y1,- -+ ,Ym) € R™ is the perturbation parameter. The value function associated to (P) is given by
vp(y) =inf{f(z): gi(z) <wyii=1,--- ,m}.
It is easy to see that vy is convex. Following Clarke [6], vy is calm at 0, where v (0) € R, if

lim inf 71@(3/) — vf(O)

> —00.
y—0 lyll

In the convex setting, this definition is equivalent to say that
0us(0) # 0.
Then, we have:

Proposition 3.2 Suppose that the solution set Sy of the problem Py is nonempty. Then
1. =X € 0vs(0) IFF X is a KKT multiplier for P; associated to all T € Sy.



2. Guignard’s condition holds for the system (8), with g = _max g;, IFF for any locally Lipschitz function
f: X =R for which Sy # 0, vy is calm at 0. o

4 FError bound characterization of Guignard’s constraint qualifica-
tion for differentiable convex inequality systems

Recall that a constraint {x € X : g(x) < 0}, or simply g, satisfies Slater condition if there exists u € X such
that
g(u) <0

and that g(x) = max gi(x).
=1, p

Consider the set Z:={J C I: g;:= max g; satisfies Slater condition}.
1€

The following result states error bound characterizations of Guignard’s constraint qualification under the differ-
entialbility of the data, especialy the equivalence between this last one and the bounded and local error bounds
in Banach spaces.

Theorem 4.1 Suppose that the function g is a maximum of finite number p of convex differentiable functions
gi + X = R. Then the following assertions are equivalent:

i) Guignard’s constraint qualification holds for system (8), that is, , for all T € S,
N(S,z) =Ryco{Vyg;(z)i € I(x)}
where I(Z) .= {i € {1, -+ ,p} : ¢:(T) = 0} is the index set of active constraints at T.

i1) The system (8) satisfies error bound. More precisely, T # () and there exists (x5)jer C X such that

|z — 2] )
<0 and d(z, 5) < a (— vreX.
91(xy) and d(z, S) g+(x)1.1116%< gi+(x) —gs(xy) !

iii) The system (8) satisfies bounded error bound. More precisely, there exists ¢ > 0 such that for allr > 0

d(z,S) <eclr+1)g(x)Va € X, with ||z] < 7.

iv) The system (8) satisfies local error bound.

Proof. iv) = i) : This implication is obvious and is based on the formula dd(z,S) = N(S,x) NB*, and the
subdifferential calculus of the maximum of convex functions.

1) = 4ii) : It is enough to take ¢ = max max(1, ||z s|]).

JeT —gy(xy)

i) = i) : This implication will be established in three steeps.

Steep 1: We start by the following lemma whose proof can be deduced from that of Theorem 4.1 in [13]. We
give a proof to make the paper self-contained.

Lemma 4.1 Let z*, 27, -+ , x5, € X*\{0}. Suppose there exist 1, , m € Ry such that

m
* *
"= g iy
i=1

Then there exist J C {1,---,m} and (8;)ics, with B; > 0 for all i € J and not all equal to zero, such that
(x3)ics are linearly independent and
zt = Z,uix;k.

icJ

Proof. 1t is included for completeness. Set I° = {1,--- ,m}. If (x});c0 are not linearly independent, then
there is non thing to prove. Suppose the contrary and so there exist 7; € R, i € I°, not all equal to zero such

that
Z viz; = 0.
i€I®



Without loss of generality, we can assume that there is at least 4 € I° such that vy; < 0. Hence for all t € R

2= 3 (s )t

i€10

Set timar = max{t : yu; +ty; >0, Vi € I°}. Then t,,4, = mi]rol{—& i < 0}. Let then ig € I° be such that
i€ Yi
(1)

—Ho =t 0, that is, i, + tmasvi, = 0. Hence setting I' = 1°\{io} and p;

> = Wi + tmaz?, Vi € I', we have
io

o =" pVar, with uY > 0,vie I!

7

ielt
By induction we show that there exist I C {1,---,m} and (8; > 0);¢s such that (z});cs is linearly independent
and
iel
X
Steep 2: Suppose first that Z # (). Then for all J € Z there exists z; € X such that
gs(zs) < 0 and (by (10)) d(z, S;) < 90+(2) o ivre X (15)
g5+ (x) —gs(xs)
where Sy :={z € X : gs(z) < 0}. Hence
dz,5) < — 9@ e X (16)

= gs+(@) — gs(zg)
We will prove that the set Z is in fact not empty.

Lemma 4.2 Suppose i) holds. Let x ¢ S and x* € 9d(x,S). Then ||z*|| = 1 and there exist sequences
(Un)nen C S, v € N(S,v,,), for alln € N, (up)nen C X and (Jp)nen C Z such that

1. Jjlz* = k|| — 0,
2. ||lup — || — 0,

3. 95, = max g; satisfies Slater condition and
1€y

_|_

3=

d(un, Sjn).

,_.
|

Si=

Proof. Fix z ¢ S and z* € 9d(x,S). It is easy to see that ||z*|| = 1. For each integer n > 0, there exists
wy € S such that

1
|z —w,|| < d(z,S)+ 3

So
1
(x*u—1z) <d(u,S) —d(z,S) <|lu—v| — ||z —w,| + EVU € X, YeSs.

So that the Lipschitz function g : X x X +— R defined by

g(u,v) = |lu —v|| — (*, u)
satisfies 1
97 wn) < jehes 1) T
So, endowing X x X with the norm ||(z,y)|| = ||z||+||y||, Ekeland’s variational principle [8] ensures the existence

of u, € X and v,, € S such that

1
s g(un,vn) < g(u,v) + ﬁ[Hu—unH +lv—wv,]]] VueX,YoesS

S

|2 — wnl| + |wn — val| <

or equivalently
1
(*,0) € 9| - — - |(tn, vp) + {0} x N(S,v,) + EBX* X Bxx.



Due to the fact that = ¢ S, u,, # v, for n large enough, there exist u} € 9| - ||(up, — vy), with ||u|| = 1, and
b}, € %Bx* such that

n

1
" =l < = o=+ by, € N(S,om).

By our hypothesis ¢) there are uf,--- , ur, € Ry, not all equal to zero such that
m
v =Y HrVgi(vn).
i=1

Lemma 4.2 ensures the existence of J,, C {1,---,p} such that (Vg;);c, are linearly independent and

vh =Y 1pVgi(vn).

i€Jp

So that J,, € Z and affirms that Z # () and v}, € (1 + )0d(vy,,S;,) (because |[v;| <1+ L and 8d(vy,S,,) =
N(Sy,) N Bx=«). Since u € 9|| - ||(uy, — vy,), we have

1 *
d(un, 8) < Jlun = vnll = {up, tn = vn) = (v, tn = vn) = — (b, Un — vn)
1
<Ay Un — V) + =ty — vy

Then ) )
(1= am = vl < (05 = v0) < (14 = (1w, S1,)

and the result follows.

X
Steep 3: Now, using the previous steeps and relation (16), we get
1+ 1
d(up, S) < = Zd(un, Si.)
n
1+ 1 u
< 711 an+( n) ||Un _ ‘rJﬂ”
-5 91+ un) — g1, (2,,)
1+2 ( [[un — 2] )
< gy (u,)max .
= 10 ) G ) — 0 )
Now passing to the limit on n, we obtain
[z — 2] )
d(zx,S) < ) max <— .
(2. 5) < g+(z) J€L \ g4 (x) — gs(z7)
X

5 Error bound characterization of Guignard’s constraint qualifica-
tion for nondifferentiable convex systems : Special cases

The situation of nondifferentiable systems is quitte different and involves additionnal hypothesis execpt in the
following special situations:

1. g is a polyhedral function and X is a Banach space. In this case both Guignard’s condition and error
bound are satisfied.

2. S is a closed convex polyhedral set and X is a Banach space.

3. The dimension of the subspace lin(.S) is less than 2 and g is positively homogeneous.

Remark 5.1 Unfortunately, when ”g is not positively homogeneous and dim lin(S) > 2” or ”g is positively
homogeneous but dim lin(S) > 37, the condition of Guignard is not sufficient to guarantee the existence of
an error bound concept. In this respect, we shall give counterexamples in Section 6 showing the limit of this
characterization.



Theorem 5.1 (S is a closed polyhedron) Suppose that S is a closed polyhedral set of a Banach space X.
Then the following assertions are equivalent:

1. Guignard’s constraint qualification holds at some point T € S, with g(z) =0,
2. The system (8) satisfies global error bound.
Proof. It is enough to establish the implication 1. = 2.. Write S as
S={xeX:{(ax)<bVi=1---,m}

where a; € X, with ||a;]| =1, and b; e R, i =1,--- ,m. For each x € S, set I(z) = {i € {1,--- ,m}: {a;,z) =
b;} and J = {I(z) : « € S}. Since J is a finite set, there exist z1,--- ,xp, € S such that J = {I(x;) : ¢
1,---,p}. Foralli=1,---,p, set

Sl' = {I’ e X: (aj,z> S b]V] S I(I’l)}
Then, we have the following lemma which may have its own interest.
Lemma 5.1 For allx ¢ S and all € €]0, 1] there exists i € {1,--- ,p} such that

1
d(gc,S)§1+€

d(.’L‘, Sz)

and hence d(x,S) = max d(x,S;). Consequently, there exists a > 0 such that
=1, p

+
d(x, S) ga(‘max max ((aj,x>—bj)) Vo e X.
Z:L""PjEI(J)i)

Proof. Let x ¢ S and € €]0,1[. Lemma 2.1 there exist u. € S, X € X* and b} € B* such that
(@) flue — z|| < d(x,S) + %,
(b) xf+ebk € (1 +¢)dd(ue, S),

(c) (zZ,2—ue) = [lue — ||
. . . xr 4 b} . L
Assertion (b) is equivalent to say that Tre € Od(uc, St(u.y). Since I(u.) € J, there exists i € {1,--- ,p}
such that I(u.) = I(x;) and hence
xk + eb?
£ ¢ € 9d(u., S;). 17
e, ) (17)

Using relation (17) and (c¢), one obtains

1—
1+

lle = el < d(. 5,).

Hence

1—¢
< i) < i).
Hé_d(x,S) <d(z,S;) < max (z,55)

As ¢ is arbitrary and for all j =1,--- ,p, S C S;, one gets the desired equality

d(z,S) = max d(z,S;).

Jj=1,.p

The last inequality results from the well-known Hoffmann error bound which asserts that for all j = 1,--- | p,
there exists a; > 0 such that

+
d(z,S;) < a; <é11128};)(<ai,x> - bl)> Vo e X.
K J

To complete the proof, it suffices to set a« = max o X
j=1,.p

Proof of Theorem 5.1 (continued). Note that for all i = 1,---,p, N(S,2;) = Ryco{a; : j € I(x;)}. By
Guignard’s constraint qualification condition, we have for all ¢ = 1,--- ,p, Ryco{a; : j € I(x;)} = Rydg(x;).
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This asserts that for all i =1,--- ,p and all j € I(x;), there exists a;; > 0 such that
agja; € Og(xi).
So that
a;ia;, z —z;) < g(x)
or equivalently
aij((aj, ) —bj) < g(x), that is, ay;({a;, ) — bj)" < g(x).

Set 8 = ;qlin aj;. Then
el
B max ({(aj,7) —b;)" < g().

JEI(z;)

The proof is then terminated by using Lemma 5.1.

X

Remark 5.2 We can ask if the assumptions in this theorem ensures automatically that the Guignard’s condition
1s satisfied or at least one of the error bound concepts holds. Unfornunately, this is not the case. To see this
it is enough to take two closed subspaces L and M in an infinite dimensional space and the mapping g defined
by g(x) = d(x, L) + d(x, M). In this situation, it is known that error bound holds for system (8) IFF L+ M is
closed. So that, it is enough to take such subspaces in order to avoid the closedness of their sum. Such subspaces
exist in separable Banach spaces (see for example the paper [3]) and moreover these spaces L and M are such
that the subspace L+ 4+ M~ is w*—dense in the dual space and not w*—closed.

Corollary 5.1 (S is a singleton) Suppose that S = {w} and X is a Banach space. Then the following
assertions are equivalent:

1. Guignard’s constraint qualification holds at w,

o

—

2. 0 € 0g(w),
3. The system (8) satisfies global error bound.

Proof. Since S is polyhedral, the equivalence 1. <= 3. is a direct consequence of Theorem 5.1. We establish
only the implication 1. = 2. because the implication 2. = 3. is easy to obtain by using the convexity of g
and the definition of the Fenchel subdifferential. But this implication is a direct consequence of Baire theorem.
Indeed, since S = {w}, the Guignard’s constraint qualification is equivalent to say that

X" =N(S,w) =R;9g(w) = U ndg(w). (18)
neN

o
—

Since the set dg(w) is norm-closed in X* and, because of relation (18), Baire theorem asserts that dg(w) # 0.

Now, it remains to show that 0 € dg(w). Suppose the contrary, then by the Hahn-Banach separation theorem
there exists h € X, with ||h|| = 1, such that

(u*, hy < 0Vu* € dg(w).
Thus, using relation (18), we obtain h = 0 and this contradiction completes the proof.

X

Corollary 5.2 (dimlin(S) < 2) Assume that the function g is positively homogeneous and dim lin(S) < 2. If
the Guignard condition holds for the system (8) then system (8) satisfies global error bound.

Proof. It is enough to prove that S is in fact a closed convex polyhedron and to apply Theorem 5.1. This is
based on the following lemma.

Lemma 5.2 Let S C X be a closed convex cone with dim lin(S) < 2. Then S is a polyhedron.

Proof. Suppose that S # {0}. Let

(z,9) € argmin{(z,y) : (z,y) € $%, |lz]| = [ly| =},

11



where v = Jnax, |z||. Three cases can arise, namely, (Z,9) =72, (Z,7) = —7? and —2 < (z,7) < 72

Case 1: If (z,9) = v* = ||Z||||y||, then necessarily Z = j. Let us show that S = Ryz. Let z € S\ {0}.

Then % = (z,9) < (af,’yﬁ) < ~42. Hence <i,7ﬁ> = ||z|| H7|Z” and then ’y”Z—” = Z. Thus z € R.Z and
z z z z

S = R_;’_.f

Case 2: If (z,3) = —v* = —||Z||||7||, then § = —z. Tt follows that S contains Rz. Then either S = RZ or

S =Rz + R4, for some u € {z}+ Nlin(S), or S = lin(S).

Case 3: If —y? < (Z,9) < 7. Then & and ¥ are linearly independent and then lin(S) = RZ + Ry necessarily.
Let us show that in fact S = R, Z+R, 4. The inclusion R, Z+R, 4 C S holds, since S is a cone and (z, ) € S2.
Assume for contradiction that S ¢ RyZ+R.gy. Let then z € S\ (R1Z+R1g). We said that lin(S) = Rz +Rg.

Let then @ € R and 8 € R such that vﬁ = aZ + By. Then either, a8 < 0 or (aw < 0 and 8 < 0).
z

If af < 0. Without loss of generality we can assume for example that & < 0 and 5 > 0. We have %ﬁ =
z
%i + 1y € S. It follows that

o v oz o,

@ < (35ne) = Sl + @)
Bzl B

and hence o > 0 which is absurd. So S =R;Z +R4.

If « <0and B < 0. Then (—az, —A3%) € S? and then f’yﬁ € S. It follows that
z

2 o z — 2
-y = <777_77> >(z,9) > =77,
(] (Kl

which is impossible. Thus S =R,z + R 3.
X

Corollary 5.3 K; and Ky be closed convex cones in X. Suppose that dim(X) = 3. Then the following
assertions are equivalent:

1. N(Kl ﬂKQ,O) = N(Kl,O) -‘rN(KQ,O)
2. The system (8) satisfies global error bound with the function g(z) = d(z, K1) + d(z, Ks).

//O\ /o\\
Proof. If (K7 NK>) # 0, then there exists u € K7 N Ko, such that 0 € (K1 N (u+B) — K») and this condition

o

—
ensures both items (see for example Lemma 4.1 in [11]). The case (K1 N K2) = () follows from Lemma 5.2 and
Theorem 5.1.
X

6 Counterexamples

In the previous sections, we have established the equivalence of the Guignard’s condition and error bound in
the situation where dim(lin(S)) < 2 and g is positively homogeneous. Our aim in the first counterexample is
to show that if S # (), g is not positively homogeneous and the dimension of X is equal to 2, then Guignard’s
condition is satisfied but not error bound. In the second Counterexample, we provide in R?® an homogeneous
function g such that the corresponding set S has an interior for which the Guignard’s condition holds but not
error bound. Relying on the second example, the last counterexample is given in R™ for n > 4.

Example 6.1 (dimX = 2 and g is not positively homogeneous but S 0) Set X =R? and let {e1, e}
be its canonical basis. Let (An)nen the sequence defined by

n
Al =ey and A,, = Hcos% (cos (21”) e1 + sin (2%) 62) , forn > 2. (19)
i=2
So A1 appears as the orthogonal projection of A, onto R (cos (2;11) ey + sin (%) 62) as shown in the

following figure

12



It follows that
<An - An+1a An+1> =0, Vn € N*

and

ALl =1 and ||An| = HCOS%, forn >2

=2

S\ZHCOS%

i>2

Thus (||A;]))jen+ is decreasing, its limit is

and the limit of (A;)jen~ denoted by A, is Xey. Furtheremore we have

™

(An, Ag) = cos <2n

U *
— 25) 1AallAwll, for all (n,k) € N*2

Let us consider now the function g defined as follow

1
g(z) = sup 7 ((z — A, Ap)T) +(z — A )T + (—eq,2) T + (—eo,2) T, V2 € R

E>1
It is easy to see that g is convex and continuous on R?, and that

S={zeR?:g(x) <0} ={zeR?:g(x)=0}
= ({z €R®: (x — Ay, A) <O}NRE.
k>1

Then we have the following result whose proof is very technical.

(20)

(21)

(22)

(23)

Proposition 6.1 With the function g, the Guignard condition holds for the system (8) whereas all error bound

concepts are violated.

Proof. N.B. : The proof is very technical and to simplify we have deliberately omitted the proofs of some

statements.
Let (55‘;)(”7@61\;*2 and (e )ken= respectively defined by

COS(%—%)— ﬁ cos(%) if k> mn,

i=n—+1

5712: - m ™ ™
H cos(E)cos(?L—?J—l ifk<n
i=k+1
0 if k=mn.

13
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and

€ — —%5£+2 (26)
The following relations hold:

1. 6n =6 =0, Vn € N* and 6% < 0 whenever k <n or k > n+ 1. Futhermore 6¥+1 < 68 <0, whenever
k>n>1.

_ 1 _
2.1>X> 3 and )\sin% > g2 = 9¢, Wn € N*.

3. For every (n,k) € N** we have

(Ap, — A, Ag) =0 ifn=kork=n+1
(A — A, Ay) <cos 0= —1<0 ifk<n—1, (27)
(A, — Ag, A) <62 <0 ifk>n+ 2.
4. For everyn € N\ {0,1} we have -
(An — e, eq) <6m2 <0, (28)
(Ap,e1) > —0"12 = 2¢, (29)
and
(Ap,ep) > =62 = 2¢,,. (30)

5 8= ﬂ{x:<1:7An,An><O}ﬁ{x:5\><61,x>>O}ﬁ{x:1><eg,x>>O}7é®.
n>2

D

. bdS = U [A, Ani1] U0, ey U0, 1]es and S = co{0, Ag, k € N*}.

n>1

Computing g: Using the previous relations, we may now compute g around elements of the bd(S). So let
n € N*, then

max (4%<517*AnaAn>+,4n%<$*An+1’An+l>+> an22’
max (Z<x - A17A1>+, E

Vx € B(Ay,€,), where €, is given by (26).

(x — A27A2>+) + (—e, )t ifn=1,

1 - _ 1 .
(z) = W(fon+1,An+1>+7 Vz € B(AL,€,), where €, = 3 min ((1 — t)en,tei_i_l), Al = A, +t(Ans1—

Ap) and t € (0,1).

2.

<

< t (A=A
3. Fort € (0,)), we set €, = min (2,( ) ) Then

Vz € B (tey, €!).
32
4. g(z) = (—e, )T + (—e2,2)T, VT € B (0, ?)

1 ]
5. Fort € (0,1), we set € = 1 min (¢,1 —t,—6}). Then g(z) = (—e1,x)T, Vo € B (tes, ).

Computing the subdifferential of ¢ and the normal cone to S: Let & € S, with ¥ # A. Then the
following items hold:

1. Ifi € S then dg(&) = {0} and N(S,z) = {0}.
2. 09(0) = [0,1](—e2) +[0,1](—e1) and N(S,0) =Ry (—e1) + Ry(—e2).
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3. 0g(A1) = [0, 3] e2 + [0, 15] A2 4 [0,1](—e1) and N(S, A1) = Ry A1 + Ry Ay + Ry (—ey).
4. 09(Apy1) = [O, 4%] Ant1 + [O, ﬁ} Apyo and N(S, Apt1) =Ry A1 + R A0,
5. 0g(AL L) = [0, 5z | Ang and N(S, AL 1) =Ry Anyo, for every n € N* and t € (0,1).
6. The Guignard’s condition holds at Z.
Computing the normal cone to S at A: By using the definition of g and the following formula

lim p" cos — — H cos— | =0

n—o00 on

where p € (0,4, we obtain the following relations:
1. [0, Ner +[0,1](—ez) C dg(A).
2. R+8g(fl) = N(S, A) = R+61 + R+(762).

So, we have established that Guignard’s constraint qualification holds at each element of the boundary of S.

Violation of error bound: Consider the sequence (x,) defined by
Tn = (14 €,)An.

According to the previous relations, we have

1

1
g(fﬂn) = max (47<.’£n — An,An>7 W<Zn — An+1,An+1>) .

Now <xn - An7An> = 6’rL||An||2 and <xn+1 - An+1aAn+1> = €n<An7An+1> + <An - An+17An+1>- But <An -

€n . .

Api1, Ani1) =0 and (A, Api1) < | AnllllAnsill < [|Anl|?. Hence g(x,) = 4—n||An||2 Since A, € N(S,A,,), it
follows that the projection of x, over S is A,,. Then

d(zn, §) = en| Anll > 4"g(xn). (31)

This last one shows that the local error bound does not hold at A. Otherwise, there exist o > 0 and r > 0 such
that -
d(z,S) < agy(z) Vee A+rB.

Since lim x, = A, then, for n sufficiently large, we should obtain
n—-+o00

d(zn,S) < ag(zy)

which combined with the inequality (81) gives 4™ < «, with n large enough, and this contradiction completes the
proof.

X

The following counterexample shows that Guignard’s condition still hold whereas error bound is violated,
provided that S # (0, g is positively homogeneous and the dimension of X is equal to 3. Note that the case
where S = () and g is positively homogeneous is considered in Corollary 5.2.

Example 6.2 (dimX = 3 and g positively homogeneous but S #0) Let X = R® and {ey,ea,e3} be its
canonical basis. With (Ap)nen~ as a sequence of lin{ey, ex}, given by (19), we set

Ay =A, +e3and A=A+ e (32)
and we define the function g by
1 . o
9(@) = sup 1 ((@ — 23, A)¥) + (@ — 234, A)F

k>1

+{—e1, )T + (—e2,2) T + (—e3,2)F, Vo € R3 (33)
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where x3 = (es, x) the third component of x. By construction of g,

S = ﬂ{xeR3 (x — 23 Ay, Ay) <0}N{z €R®: (z — 234, A) <0} NRY.
k>1

Geometrically, S can thus be viewed as
S =Rico(({0} U{Ag: k € N*}) +e3) = Ryco({es}, {Ax : k € N*}),

as shown in the following figure

Set
B, = A, — HA]CHQG;),, k € N* (34)
and o B B B
B= )\61 - )\263 =A- ||A||2€3. (35)
Then g can be written as
1 _
g(z) = sup 7 ((Br, ) ") 4+ (B, 2)" + (—er, 2)" + (—ea,2) + (—es,x)T, Vo € R3 (36)
E>1

It follows that g is positively homogeneous, convex and continuous on R3, and thus

S=(V{z €eR?: (By,x) <0}N{x € R®: (B,z) <0} NR}. (37)
E>1

Proposition 6.2 With this function g, the Guignard condition holds for the system (8) whereas all error bound
concepts are violated.

Proof. The proof is based on the following lemmas.

Lemma 6.1 (Normal cone of S at 0) We have
N(S,0) =Ryco ({0} U{By,: ke N} U{B}) + R

Proof. Set Ay = Ryco ({0} U{By: ke N} U{B}). By (37), {0} U{By : k € N*} U{B} C N(S,0) and then
Ay C N(S,0). The second inclusion is established in four steps.

Step 1 : Let us first prove that the set Ay := Ryco ({0} U{By : k € N*} U{B}) is closed. Let (zn)nen- be
a sequence of Ay converging to some T. Let us show that T € A;. Set then x, = Aun,, n € N* where

un € co ({0} U{By: k€ N*}U{B}) and A\, > 0. Using Caratheodory theorem, u, can be written as u, =
4 4

Zaknihknﬂ with, o, >0, Za’% < 1 and hg,, € {By, B,k € N*}. Recall that (By)s = —|Ax|* <
i=1 i=1
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4
—\2, Vk € N*. It follows that (Tn)g = —An Zakni HAkni 1> < =AnA? and thus (A, )nen- is bounded. The result
i=1
follows since { By, B,k € N*} is compact and (Qk,,, ki, ene, @ =1,-++ 4, are bounded.
Step 2 : Let us prove that Ay NRY = {0}. It is enough to prove that co ({0} U{By, : k € N*}) nR3 = {0}.
4 4

Let x € co({0}U{By : k€ N*}) N R3. Write then z = Zakihk“ with, ag, > 0, Zaki <1 and hy, €
i=1 i=1
co({By : k € N*}). Then
4 4
0<z3= _Zaki A < —5\22041% <0.

i=1 i=1

4
Hence Zaki =0 and thus x = 0.
i=1
Step 3 Let us prove now that A = A; +R? is closed. Let (x,)nen C A be a convergent sequence to some .
Let then (un)nen C A1 and (v,)nen C R such that x, = Uy, + vy,
Claims : (up)nen and (Vn)nen are bounded.

Suppose the contrairy. Without loss of generality we can assume that liIJIrl llun|| = +o0. Then
n——+0oo
im — = lim u7"+U7”: (38)
n=too [lupll  nodtoo flunl  Jun|

U
Let then u* # 0 be a limit of a convergent subsequence of ( n”

) . By step 1, u* € Ay. By (38), —u* is a
neN

[|tn,
Un

[[unl

limit of a convergent subsequence of ( ) C R2. It follows that u* € Ay NR3 \ {0}, which contradicts
neN

the step 2’s result.
Step 4 : We will establish the inclusion N(S,0) C A. So suppose, by contradiction, there exists x* € N(S,0)\.A.
We said (step 3) that A is closed. According to the separation theorem, there exist h € R?, ||h|| =1 and a € R
such that

(x*,hy < a < (u*, h), Yu" € A;.

Then necessarily
(x*,h) <0 and (u*,h) >0, Vu* € A.
But
(u*,h) >0, Yu* € A & (u*,h) >0, Vu* € A and (v*,h) >0, Yo* € R®
< h <0 and (u*,h) >0, Vu* € A4
& —h € S( by definition of S).

Thus we have a contradiction with the fact that (x*, —h) > 0 and z* € N(S,0).

Using Lemma 2.4, we obtain the following estimation of the subdifferential of g.

Lemma 6.2 (Subdifferential of g)

1. 99(0) = cleo U[O,%}Bk +1[0,1]B +[0,1](—e1) + [0, 1](—e2) + [0, 1](—e3).
k>1

2. 9g(x) = {x}*+ N 9g(0), where {x}+ = {z* € R3: (z*,z) = 0}.
Proof. Define the functions hy and h on R3 by hy(z) = 4%<Bk,x>+ and h := sup hg.. Then
g=nh+ <B7 '>+ + (—e1, '>+ + (—ea, '>+ + (—es, '>+'

Thus
dg(0) = Oh(0) 4 [0,1)B + [0,1](—e1) + [0, 1](—e2) + [0, 1](—e3).

It remains to compute the subdifferential of h at 0. By Lemma 2.4, we obtain

Oh(0) = cleco U Ohi(0) | = cleo U [0, i]Bk

4k
k>1 E>1
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and the result follows for the first item.

The following result shows that Guignard’s condition holds.

Lemma 6.3 (Guignard’s condition) For all x € bd(S5),
N(S,z) =R 0g(x).
Proof. Due to relations
N(S,z) = {z}* N N(S,0) and dg(z) = {x}*+ N dg(0),

it is enough to prove that Guignard’s condition is satisfied at 0. But this immediately follows from Lemmas 6.1
and 6.2.

X
Violation of error bound: Consider the sequence (x,) defined by
Ty =14~1n—|—ean, n>2
1 : ™ n+2
where €, = — min (1 —cos —, —9,, ) Then
2 27L
1 9 ~
g(zn) = ZJTnEnHBn” and d(zy,, ) = ||z — Anl| = €| By
which show the violation of the local error bound.
X

We use the last example to build homogeneous functions for which the Guignard condition hlods but not error
bound whenever dim(X) > 4. Let us recall that a Counterexample has been given in [1] in R* with g positively
homogeneous and S = 0.

Example 6.3 (dimX > 4 and ¢ positively homogeneous) Let g be the function considered in Ezample 6.2
and the corresponding set S := {x € R3: g(x) < 0}.

For all n € N, with n > 4, consider the two functions g, and g, defined on R™ by
9n(x) = g(@1, 22, 23) and gn(z) = g(z1, 22, 23) + Z |zi| Vo= (z1, - ,2,) ER™
i=4
Let S, :={z € R" : g,(x) <0} and S, := {z € R" : §,(z) < 0}. Then g, and §, are positively homogeneous
and

S, =S8 xR" 3 and S, = S x {0,_3}.

This shows Sy, £ 0 and S, = 0. With the help of Example 6.2, it is not difficult to see that in both situation
Guignard condition holds but not error bound.

Remark 6.1 Note that in Example 6.1 (resp. Example 6.2), we may also consider the function

1
ga2(x) = sup e ((m — Ak,Ak)Jr) +(x—Ae)T, Vo € R?
k>1 47

(resp. g3(z) = sup% ((Br,z)*) + (B, z)", Va € R3> .
k>1

With this choice, the set S in the two Examples is unbounded.

7 Error bound characterization of Guignard’s constraint qualifica-
tion for nondifferentiable convex systems : X is a Banach space

As we saw in the previous sections, Guignard’s constraint qualification for nondifferentiable convex systems is
not sufficient to characterize error bound. In this section, we will introduce the following new condition: For
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r > 0 there exists a, > 0 such that
v(x*/0g(x)) < ap.||x*||Vax € B(0,7) N S, Va* € N(S,x). (39)
Here 7(-/D) is the gauge function of the convex set D, that is,
v(v/D) =1inf{\ > 0: v € AD}.
We have the following proposition which is based on this condition.

Proposition 7.1 Let . > 0 and x € S, with g(x) = 0. Then the following assertions are equivalent

1.
dd(z, S) C a,dg. (z). (40)
2. Forallue X,
d(u, T(S, 7)) < apg (z,u). (41)
3.
V(2" /0g4(x)) < ar|z™]| Va* € N(S, ). (42)

Each one of the three conditions ensures that Guignard’s constraint qualification holds at x.

Proof. 1.« 2. This equivalence follows from Lemma 2.2 and the definition of the Fenchel subdifferential.

2. = 3.: By 2. and Proposition 7.1, we have
ad(z,S) C a,0g4(x).
Let x* € N(S,x), with z* # 0, then ﬁ € 0d(z, S) and hence H;—H € a,0g4(x). Thus y(z* /g4 (z)) < a|lx*].

3. = 2.: Suppose that there exists u € X such that d(u, T'(S,x)) > g (x,u). Lemma 2.3 ensures the existence
of z* € N(S,z) NB* such that

A, T(S,))) = (", 0) >y (z,u).
Note that ¢/, (z,u) > 0, otherwise u € T'(S,z)) and one obtains a contradiction with the last inequality. Then

(2" u)—argy (,u)
argly (z,u)

for all e €]0, [ there exists A > 0 satisfying v(z*/0g+(z)) > A — o and z* € Adg(x). So that

(1
(x*,u) > earg’ (z,u) + argly (x,u) > %(wﬁu}

which implies that A > a,.(1+¢) and hence y(z*/9g+(x)) > A—a,e > a,. But item 3. guarantees the inequality

V(@ /094 (2)) < ar[u’]| < ar.

This contradiction completes the proof.

X
Remark 7.1 This equivalence 1. < 2. has been observed first by Burke and Ferris [4] in finite dimension.
Now we may state and prove our characterization for nondifferentiable convex inequality systems.
Theorem 7.1 The following assertions are equivalent:
1. For all r > 0 there exists o, > 0 such that for all x € rB, with g(x) = 0, relation (42) holds.
2. For all r > 0 there exists o, > 0 such that
d(z,S) < argy(x) Vo erB. (43)

Proof. 1. = 2: Letr >0, 2 € rB\S and Z € S. By Lemma 2.1, for all ¢ €]0, min (4,/r) [ there exists
ue € 9, 7 € X* and b € B* such that
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((L) HUE - (L‘” < d(:c,S) + 627
(b) zf +ebl e (1+¢)0d(ue,S),

(0) (2,2 —uc) = [lue —z|.

Ttems (b) and (¢) ensure that g(u.) = O while item (a) implies that u. € (3r + ||Z||)B. Let s > 3r + ||Z|.

Assertion 1. ensures the existence of as > 0 (depending only on r and Z) such that
V(2" /0g(ue)) < aslz™(| Vo™ € N(S, ue)

or equivalently via Proposition 7.1,
0d(ue, S) C as0g4(ue).

Using assertion (b), we get ¥ + ebf € (1 4 €)a;094+ (ue), which ensures the inequality
(xX +ebl,x—u) < (14 e)asg(z).

Using (c), we obtain
[ = uell (1 = &) < (1 +e)asg(x)

and hence
(1 - 5) d(.T, S) S (1 + E)O‘sg(z)'

As € is arbitrary, we get
d(z,S) < asg(x)

whence 2..
2. = 1.: It is obvious that 2. ensures that for all » > 0 there exists «, > 0 such that for all x € rB

d(z,S) < argy(x) Yo €rB.
Now, let € X be such that ||z| < r, with g(x) = 0, and z* € dd(x, S). Then
(", u—x) <d(u,S)Vu € X

and hence
(", u— ) < apg4(u) Yu € rB.

As ||z|| < r, the later inequality is equivalent to
(" u—z) < apgs(u)Vu € X

and hence z* € a,dg(x). Consequently,
dd(z, S) C a,0g4(x)

which is equivalent to relation (42).

As a consequence of this theorem, we obtain the following characterization for global error bound.
Corollary 7.1 Let a > 0. Then the following assertions are equivalent:

1. For allx € S, with g(x) =0,
V(2" /9g(x)) < allz™|| Ve € N(S, x).

d(z,S) < agi(z) Vre X.

8 Guignard’s constraint qualification and SCHIP property

(44)

The aim of this section is to give a relationship between Guignard’s constraint qualification and SCHIP property.
Before giving this connexion, we recall that the collection Cq,--- , (), of closed convex subset of X satisfies the

conical hull intersection property (CHIP) if

T(C,z) =N T(Cy,z)Vz € C
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where C' := N, C; # (. This collection satisfies the strong conical hull intersection property (SCHIP) if

N(C,z) = zm:N(Ci,:c) Vo e C. (46)

i=1

Let 1 < p,q < 400, with % + % = 1. Define the function g on X by

1
g(x) = (i d(m,C’i)p> : Vo e X.
i=1
Before computing the subdifferential of g, we rewrite it in the following form
g(x) = (how)(x)Vx € X

where the mappings h : R™ — R and w : X — R™ are defined by

m B

h(w) = u® ||, = <Z(UT)”> and w(z) = (d(z,Cy), -, d(z, Cp))
i=1

and at = max(a,0). Let

|=

m q
By ={u” = (ul, - up,) €R™: flulg = (ZIUE‘IQ> <1}

i=1
Proposition 8.1 Let x € C, that is, w(x) = 0. Then
1. h is a conver function and Oh(0) =By NR’.
2. 09(x)= | <Z u;‘ad(x,ci))
w€B;MRT \i=1

Proof. 1. Taking into account that the functions ¢ — ¢+ and u — ||u||, are convex, we conclude that h is also
convex. Let u* € Oh(0), that is,

(u*,u)y < <§:(uj')p> ' Yu € R™. (47)

i=1

Now, take all the compenents of u equal to zero except the ith one u; < 0. Then u] > 0 and this shows that
u* € R, This fact and relation (47) ensure that

1
* - * . ¢ P ! m
() <Y uglu| < (D |wl?) VueR
i=1 =1

and hence
||U*||q <L

So that 0h(0) C B NR.
Let u* € By NR}. Then, for all u € R™, (u*,u®) < [Jut|,. As u* € RY, we have

(W, u) < (u',ut) < [lut|l, = h(u) Vu € R™
and hence u* € 9h(0). Consequently, B; N R C 9h(0).

2. Since h and w are locally Lipschitz, the subdifferential calculus ensures that
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e U oeeum

u*€0h(0

0 (iu d(- > x)
w* eB*mRm i=1
= U (i ulod(x,C;) )
u*€BENRT \i=1

Now, let u* € B} "R and z* € Y 1" | ufdd(x,C;) = (31~ uid(-,C))(x). Then for all y € X

i=1 "

72/ - l‘ Zu d y7
< lu*llq (Z d(%@)”)
i=1

<g(y).

P

Thus z* € dg(x). Consequently, U (Z u;od(z, C’Z)> C 0g(x).
u*€B;MRT \i=1

X

Using this proposition, we obtain the following rewriting of the CHIP properties as well as a computation of
the gauge function of dg(x).

Proposition 8.2 Let x € C. Then
1.C={zreX: g(z)<o0}.

2. ¢/ (. h) = (P (A0, C)Y (. 1)) 7 = (S, (d(h, T(Ch2))).
3. Relation (45) holds at © IFF

'6\'-‘

T(Ciz)={ue X : ¢ (z,u) <0}

4. Relation (46) holds at x IFF
N(C,z) =Ri0g(x).

5. For all x* € X*

V(" /0g(x)) = min{ (i |$3||q> E Pat = zm:% z; € N(Ci,x),i=1,--- ,m}. (48)
i=1 i=1
Proof. 2.. By Lemmas 2.3 and 2.2, we obtain
d(h,T(Cs,xz)) = sup {(x*,h) = (d(-,C;)) (z, h).
z*€dd(z,C;)
So that . .
o) = (Z <<d<-7ci>>'<x7h>>p> = (Z (d(hﬂ(@w))”) §
i=1 =1

5. Let 2* € X*. Then the set {\ > 0: z* € Adg(z)} is empty IFF the set {(x7, - - ,2%,) € N(Cy,z) x -+ x

N(Cyp,x) s z* =" x}} is also empty. So that both quantities y(z*/dg(z)) and min{(}_/", ||z} )1 Dat =
S, af € N(Ci,x),i=1,--- ,m} are equal to +oo.

Now let af € N(Cj,x),i = 1, -+ ,m be such that 2* = > xf. Without loss of generality, we may assume
that all x:‘ # 0. Then

1
q m

- . [ | ]

* * * 3 1
T :in = ZHxin Z m s Nzt
i=1 i=1 =1 iz [l 19
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- — llzZ 1 _ = — 7 —
For i = 1,---,m, put uf = m and yf = II%‘H' Then 2* = (3212, [l27]19) 7 3200, wiyf, u* =
(ui,---,uy,) € By NRT and y; € dd(z, C;). Consequently,

a” e <Z IIz’fllq> > uidd(x, C;) (Z IIx*IIq> dy(z)

i=1

and hence

V(z*/Og(x (Z wzllq>

Thus

~(@* /dg(x)) < min{ (Z ||xr||q> ot = af, o} € N(Ciyx),i=1,-- ,m}.
1=1 i=1

Now, let € > 0 and 8 > 0 be such that z* € 8dg(z) and

B <n(z*/0g(x)) +¢

By Proposition 8.1, there exist u* € By NRY and 2} € dd(x,C;), i = 1,--- ,m, such that z* =B urzr.

Since ||z <1,i=1,--- ,m, and
1 1
m q m q
(Snsr) = (3] <
i=1 i=1

s (Z IIUIZE‘II‘J> <p.
i=1

Consequently, because fufz} € N(Cj,z), i =1,---,m,

then

Q=

min{ (Z ||xz||q> ot =Y af, 2] € N(Ciya)i=1,--- ,m} < y(a"/dg(x)) + ¢
=1

i=1

and as € > 0 is arbitrary we get the desired inequality.

By combining the previous result, we obtain the following characterization of the SCHIP property.
Theorem 8.1 The following assertions are equivalent:

1. For all r > 0 there exists cv, > 0 such that for all x € rBNC

1
m q m

min{ (Z |xf||q> cat = Zx;‘, xz; € N(Cj,x),i=1,--- ,m} < a,||z”||Va* € N(C, x).
i=1

i=1

2. For all r > 0 there exists a,. > 0 such that
1
P

d(z,S) < ay (i d(x,Ci)p> ’ Vo € rB. (49)

i=1

We may obtain the following result by [18] as a corollary of results.
Corollary 8.1 Let a > 0. Then the following assertions are equivalent:

1. For allz € C and x* € N(C, )

1
m q m
i=1

i=1
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d(z,S) <« (i d(x,Ci)p> ’ Vo e X. (50)
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