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Abstract

This paper addresses the problem of outlier detection and trimmed-average state estimation in an LTI network system.
We consider that only some states are measured and there exists an outlier among the unmeasured states, which is so
different from the remaining states that it affects the average value significantly. The goal of this paper is both to detect
the outlier and to estimate the average state excluding the outlier (trimmed-average). Moreover, we also investigate the
case where the system matrices are partially unknown since the outlier results from an unknown localized fault in the
system. Finally, we illustrate the method on a thermal diffusion system.

Keywords: Linear time-invariant systems, Network systems, Average estimation, Reduced-order observers, Outlier
detection, Trimmed average

1. Introduction

In recent years, there has been a lot of interest in the
problem of estimation in network control systems due to its
vast area of application such as power networks, commu-
nication networks, and traffic networks to name a few. In
particular, in some networks, instead of reconstructing the
entire states, some aggregation of the unmeasured states
are estimated using a few available measurements obtained
from the dedicated sensors placed at some positions. For
instance, [1] investigates the problem of average state esti-
mation of the unmeasured nodes in a network system and
[2] and [3] propose design of some average state observers.
This approach is very beneficial in terms of reducing com-
plexity. However, if the unmeasured part has an outlier,
which could be a result of an error or anomaly, the aver-
age value so estimated may not lead to the true average
value. Instead, one might look for an average value that
excludes the outlier. For example, in a power distribution
network, one might be interested in estimating the average
household consumption of an area using dedicated sensors
deployed in some households. In case, there is a major con-
sumer (an outlier) in the area, whose consumption is not
measured directly, one might not obtain the desired value
through average estimation since its high power consump-
tion can affect the average significantly. Therefore, it is
natural to ask some questions: what if there is an outlier
in the unmeasured section of the network? How to apply
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Figure 1: Scenario considered in the paper: An LTI system with
dedicated sensors at some positions and an outlier in the unmeasured
part.

an estimation technique such that it filters the outlier and
detects it simultaneously?

Outlier detection and analysis is a very well studied
problem in statistics and data mining. Some of the clas-
sical works are [4, 5]. The former gives a formal accepted
definition of the outlier and the latter proposes different
regression-based detection methods. Since then, work in
this field has flourished. A survey of the state-of-the-art
is given in the book [6]. In particular, some of the meth-
ods include depth-based methods [7], distance-based meth-
ods [8] and k-nearest neighbour methods [9]. However,
these techniques apply to available static data points only.
In this work, we consider a network system with dynam-
ics and moreover the aim is to detect the outlier present
among the unavailable measurements.

In network systems also, there has been focus on out-
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lier detection in sensor networks with outliers in the sensed
data. The paper [10] is a survey on different techniques
used for outlier detection in wireless sensor networks. For
example, [11] addresses unsupervised detection in wireless
sensor networks which accommodates different unsuper-
vised techniques, [12] focuses on neighbor based detection
methods and [13] proposes a robust Kalman filter to de-
tect and exclude the outlier from the sensor measurements
which is somehow similar to our goal. However, the main
difference is that in this literature, outliers are among sen-
sor measurements, arising due to noise, error, sensor lim-
itations, disturbances etc., while in our case the outlier is
in the system itself, and is an unmeasured state which is
so different from the other states that it affects the average
value significantly.

The scenario in this paper considers a continuous LTI
system with dedicated sensors at some positions. There
exists an outlier in the set of unmeasured nodes. We
propose a centralised method to detect the outlier and
estimate the average, excluding it simultaneously. Our
approach is to run a bank of observers and compare the
estimates so obtained in order to detect the outlier as il-
lustrated in Figure 1. For this, at first, we provide a neces-
sary and sufficient condition under which a bank of scalar
and tunable observers can be designed to estimate the av-
erage of the unmeasured nodes excluding an element at
every possible position. Then, we define a distance-based
dissimilarity criterion to differentiate between the average
estimates so obtained. Using a simple optimization, we ob-
tain an estimate of the outlier position and of the average
excluding it.

A preliminary version of this work was presented in
[14]. The current paper significantly extends the results
in [14], with two new sections. First, we investigate the
case where the system matrices are only partially known,
since the outlier results from a fault, and the only available
knowledge is the system without the fault. We consider a
class of localized faults that result in a single outlier, for
which we can extend our method. Then, we illustrate the
method on a thermal diffusion system.

2. Problem formulation

Consider a network represented by a weighted directed
graph (G) = (V, E), where V = {1, 2, 3 . . . n} denotes the
set of the nodes and E ⊆ V×V denotes the set of edges. We
follow the convention that the edge (i, j) ∈ E is represented
as i ← j, since this edge will correspond to the influence
of state xj on the dynamics of state xi. Let A = [aij ] be
the associated weighted adjacency matrix, where aij is the
weight of the edge (i, j) ∈ E .

The dynamics of the network is described by

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) ,
(1)
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Figure 2: A network system with an outlier at node 7. The nodes
in green circles are the measured nodes and the nodes in red squares
are the unmeasured nodes with the outlier in a darker red shade.

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rn1 are the state
vector, the input vector and the output vector respectively.
We assume that the input is bounded and the system
is BIBS stable. Therefore, we have bounded input and
bounded state trajectories.

We assume to have dedicated sensor measurements at
n1 nodes, i.e., the output y contains the values of n1 states.
Without loss of generality, we order the states starting
with the measured ones, so that we have the state partition
x(t) = [xT1 (t), xT2 (t)]T , where the vector y = x1(t) ∈ Rn1

contains the measured states and x2(t) ∈ Rn2 contains the
unmeasured states. We assume that n2 > 1. Denoting by
Is ∈ Rs×s the identity matrix of size s, and by 0s,r ∈ Rs×r
the zero matrix of size s × r, the block structure of the
matrices corresponding to the above-mentioned partition
is

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
and C =

[
In1

0n1,n2

]
.

(2)
With this partition, the system can be rewritten as





ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t)

ẋ2(t) = A21x1(t) +A22x2(t) +B2u(t)

y(t) = x1(t).

(3)

Having given the system description, we define the out-
lier in consideration as follows.

Definition 1. A state is called an outlier if its value dif-
fers from all the other states by such a large value that the
average value changes significantly.

In the next subsection we present an example to moti-
vate the reader towards the problem. The example shows
how an outlier may affect the average value. Then we use
the same example in subsequent sections to illustrate the
results and the method for outlier detection proposed in
the paper.

2.1. Motivating Example

Example 1. Consider the network depicted in Figure 2.
The dynamics of the network is described as in (1). The
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Figure 3: State trajectories of the network in Figure 1 in response
to u(t) = 0.2 ∗ sin(0.1t). Here, it can be seen that the outlier state
(in red) is behaving very differently than the other states.

input is given by u(t) = 0.2 ∗ sin(0.1t), x(0) = 110, where
1s ∈ Rs denotes the vector of all ones. The corresponding
system matrices A,B,C according to the partition in (2)
are

A11 =



−3.25 0.98 0.84 0 0 0
0.61 −5.33 0 0 0 0

0 0 −3.53 0.48 0 0
0 0 0.25 −3.05 0 0
0 0 0 0.13 −1.69 0
0 0.54 0 0 0.85 −2.18




A12 =




0.35 0.35 0.35 0
0 0 0.76 0.76
0 0.22 0 0

0.23 0 0 0.23
0.16 0.16 0 0

0 0.35 0 0



,

A21 =




0 0 0 0 0 0.02
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 ,

A22 =




−0.03 0 0 0
0.02 −1.4 0 0

0 0.64 −1.16 0
0 0 0.4 −2.0


 ,

B =
[
1 1 1 1 1 1 1 1 1 1

]T
and

C =
[
I6 06,4

]
.

Here, in this example, we have a network of n = 10 nodes
depicted in Figure 2. The sensor measurements are ob-
tained from the nodes {1, . . . , 6} denoted by the circle nodes
and the nodes {7, . . . , 10} are the unmeasured nodes de-
noted by the square nodes. Here, n1 = 6 and n2 = 4. We
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Figure 4: Trajectories of the average of the unmeasured states with
and without the outlier, demonstrating the effect of an outlier on the
average.

have an outlier at node 7 pointed as the shaded node. It can
be seen in Figure 4, where the averages of the unmeasured
states with and without the outlier have been depicted, that
there is a significant difference in the average value because
of the outlier. Hence, we must find ways to estimate the
average in such a way that it excludes the outlier.

2.2. Problem statement

Consider a network with the dynamics as (1) with the
assumption that there exists an outlier in the unmeasured
part of the system. Using only the dedicated sensor mea-
surements y(t) = x1(t), how is it possible to reconstruct
the average of the unmeasured nodes x2(t) without the
outlier? In addition, is it possible to design a scalar ob-
server to estimate such an average with an arbitrary rate
of convergence? Moreover, if the position of the outlier is
unknown, how is it possible to detect it and compute the
average excluding it simultaneously? Finally, can the same
result be achieved in the case where the system matrices
are only partially known, since the outlier results from a
fault, and the only available knowledge is the system with-
out the fault?

3. Outlier at a known position

In this section, we consider the case when the position
of the existing outlier is known. Let us define jo as the true
position of the outlier in the set of unmeasured nodes. The
position jo means that the outlier is the node n1 + jo.

At first, we recall the necessary and sufficient condition
to design a scalar and tunable observer to estimate the
average of all but one element j in the set of unmeasured
nodes. Then, we provide an explicit construction of the
observer. In the end, we illustrate the estimation using
Example 1.

Let cj ∈ Rn2 be a vector of all ones but zero at the jth
position. Let us define qj = 1

n2−1 cj , so that the average

3



state of the unmeasured nodes excluding the element at
the jth position be denoted as

xav2,j(t) = qTj x2(t), (4)

where x2(t) is defined in (2).
To reconstruct the average xav2,j(t), we consider a scalar

observer, namely a system of the form
{
ẇj(t) = −αwj(t) + hTj y(t) + gTj u(t)

x̂av2,j(t) = wj(t) + `Tj y(t),
(5)

where wj(t) ∈ R is the state of the observer, while α ∈ R,
`j , hj ∈ Rn1 and gj ∈ Rm will be suitably designed.

Let ξj(t) = xav2,j(t)−x̂av2,j(t) be the estimation error. We
say that (5) is an observer if the parameters α, hj , gj and `j
can be chosen such that ξj(t)→ 0 as t→ ∞. Moreover,
we are interested in designing an observer such that the
error ξj(t) → 0 as t → ∞ with a desired rate of conver-
gence. The condition under which this is possible has been
studied in [3].

Theorem 1. [3, Theorem IV.1] A scalar and tunable ob-
server of the form (5) to estimate xav2,j(t) for a given j
exists if and only if

rank



A12

qTj A22

qTj


 = rank[A12]. (6)

Proof. For proof see [3].

Now, assuming that the condition (6) holds, we give
the explicit design of the observer:

Choose an arbitrary α > 0 ∈ R and compute the pa-
rameters `Tj , gTj and hTj as

`Tj = qTj (A22 + αIn2)A†12, (7a)

hTj = − `Tj (αIn1 +A11) + qTj A21, (7b)

gTj = qTj B2 − `Tj B1, (7c)

where A†12 is the Moore-Penrose pseudo-inverse of A12.
In what follows, we show that with the above choice

of parameters, the observer (5) has the error dynamics
ξ̇j(t) = −αξj(t). For that, let us consider the error dy-

namics ξ̇j(t). From (3), (4) and (5) we have

ξ̇j(t) = −αξj(t)+(−α`Tj + qTj A21 − `Tj A11 − hTj )x1(t)

+(qTj A22 − `Tj A12 + αqTj )x2(t)

+(qTj B2 − gTj − `Tj B1)u(t).

(8)

Assuming that condition (6) holds, and with `j , hj and gj
as in (7), here, we will show that the following conditions
are satisfied:

qTj A21 − α`Tj − `Tj A11 − hTj = 0, (9a)

αqTj + qTj A22 − `Tj A12 = 0, and (9b)

qTj B2 − gTj − `Tj B1 = 0 (9c)

0 5 10 15 20

−0.5

0

0.5

xav
2,1(t)

x̂av
2,1(t)

time (s)

a
v
e
ra

g
e
v
a
lu
e

Figure 5: For the network system in Example 1, where the outlier
is node 7 (i.e., jo = 1): estimated (x̂av

2,1(t)) and original (xav
2,1(t))

average of all unmeasured states except the outlier’s.

and hence the estimation error ξj has stable dynamics

ξ̇j(t) = −αξj(t). (10)

It can be seen that if the condition (6) holds, then the row
vectors cj and cTj A22 lie in the row space of A12. Then,

the vector αqTj + qTj A22 also lies in the row space of A12

for any α ∈ R. Therefore, it holds that

(αqTj + qTj A22)(I −A†12A12) = 0.

Hence,

αqTj + qTj A22 = (αqTj + qTj A22)A†12A12. (11)

It can be seen that with the choice of `Tj in (7a), (11) is
equivalent to (9b). Further, it can also be seen that with
the choice of gj and hj in (7b) and (7c), the conditions
(9a) and (9c) are satisfied.

We have shown that, under condition (6), the observer
(5) with gains as in (7) has error dynamics (10), which is
stable for arbitrary α > 0. However, the rate of conver-
gence α should be tuned taking into account the discretiza-
tion scheme. For example, with forward Euler method
with fixed time-step δt, α must satisfy α < 2/δt in or-
der to ensure stability of the discretized error dynamics
ξj(t+ δt) = (1− α δt)ξj(t). Moreover, the rate of conver-
gence should be adapted to the system properties, with
a rule of thumb that suggests α around twice as fast as
the system. In the examples of this paper, we will take a
smaller α for illustrative purposes, to make the transient
behaviours more visible.

For initialization of the observer, in the absence of in-
formation on the initial state, it is natural to set x̂av2,j(0) =

0, which can be obtained by choosing w(0) = −`T y(0).
The choice w(0) = 0, instead, corresponds to x̂av2,j(0) =

`T y(0), which grows with α (see the definition of ` in (7a))
and might be used only with small values of α.

Now, we illustrate the estimation using Example 1.

4
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Obs 2
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argmax
j
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k=1
k 6=j

Djk

x̂av2,n2

D

x̂av2,d

x̂av2,1

x̂av2,2
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...

Figure 6: Structure of the estimation and detection algorithm pre-
sented in Section 4 for the detection of the outlier and trimmed
average estimation. Here, obs stands for the observer and D is the
dissimilarity matrix. ̂o and x̂av

2,̂o
are the detected position of the

outlier and the average estimate excluding the outlier respectively.

Example 1 (continued). Here, we have the knowledge
that the outlier is at node 7, which is the first node in
the set of unmeasured nodes, i.e., jo = 1. We want to
estimate xav2,jo(t), i.e., xav2,1(t). Note that the condition (6)

with j = 1 is satisfied, as rank



A12

qT1 A22

qT1


 = 4 = rank[A12],

where qT1 =
[
0, 13 ,

1
3 ,

1
3

]
. Therefore, we can design an ob-

server of the form (5) to estimate xav2,1(t) with an arbitrary
rate. Let us fix α = 3 and use observer (5) with `1, g1
and h1 computed with (7). We initialize the observer with
w1(0) = −`T1 y(0) so as to obtain x̂av2,1(0) = 0.

It can be seen in Figure 5 that our observer is able to
estimate the average xav2,1(t), i.e., the average of unmea-
sured states excluding the outlier at node n1 + 1 = 7.

In the next section, we investigate the possibility of
estimating the average using an observer of the type (5)
in presence of an outlier at an arbitrary position, and we
also give a method to detect the outlier.

4. Outlier at an unknown position

In this section, we consider the case when the position
of the outlier i.e., jo is unknown. We propose a centralised
method to estimate the average of the unmeasured nodes
excluding the outlier and detecting it simultaneously. Our
approach is to estimate the averages xav2,j(t) for all possi-
ble j ∈ {1, . . . , n2} using a bank of scalar observers and
then compare the estimates in order to detect the outlier.
For the comparison, we propose a dissimilarity criterion
inspired by the distance-based dissimilarity used in signal
processing. Figure 6 illustrates the process we use for the
detection of the outlier which also gives us the required av-
erage. Therefore, at first, we provide a necessary and suf-
ficient condition for the design of observers of the form (5)

for every possible j ∈ {1, . . . , n2}. Then we define a dis-
similarity criterion to differentiate between the estimates.
After that, we define a very general optimization problem
to detect the outlier. In the end, we illustrate the method
with the help of Example 1.

4.1. Existence condition for the bank of observers

In order to design observers of the form (5) to recon-
struct xav2,j(t) for all j ∈ {1, . . . , n2}, the condition (6) must
be satisfied for all j ∈ {1, . . . , n2}. The resulting condition
has been stated in the following theorem.

Theorem 2. A tunable and scalar observer for xav2,j(t)
exists for all j ∈ {1, . . . , n2} if and only if

rank(A12) = n2. (12)

Proof. From Theorem 1, to estimate xav2,j(t) for all j, a
tunable, scalar observer exists if and only if (6) holds for
all j.
This is equivalent to

rank




A12

qT1 A22

...
qTn2

A22

qT1
...
qTn2




= rank[A12]. (13)

Now define P = (In2 − 1n21
T
n2

), and Q = − 1

n2 − 1
P =



qT1
...
qTn2


, so that the left-hand side of (13) is equal to



A12

QA22

Q


.

We can see that rank(Q) = n2 by showing that rank(P ) =
n2 and we show rank(P ) = n2 by showing that detP 6= 0.
For this, notice that

[
In2

0n2,1

1Tn2
1

] [
P −1n2

01,n2 1

] [
In2

0n2,1

−1Tn2
1

]

=

[
In2

−1n2

01,n2 1− 1Tn2
1n2

]
.

Taking determinant of matrices on both the sides, we have
det(P ) = 1− n2 6= 0.
Therefore, rank(P ) = n2 and hence, rank(Q) = n2.

Finally, since rank(Q) = n2, we have rank



A12

QA22

Q


 = n2.

Therefore, (13) holds if and only if rank(A12) = n2.

Now we present some remarks on how restrictive the
conditions in Theorem 2 are.

Remark 1: It can be seen from (2), that A12 ∈
Rn1×n2 and the condition (12) is rank(A12) = n2. It im-
plies n1 ≥ n2, that is the number of measured nodes must
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Figure 7: Estimated trajectories of the averages of unmea-
sured nodes in Example 1 excluding one node at a time i.e.
x̂av
2,j(t) ∀j ∈ {1, . . . , n2}, the output of the bank of observers. The

dash-starred line is x̂av
2,̂o

(t), the estimated average without the de-

tected outlier at time t. It can be seen that x̂av
2,̂o

(t) converges to

x̂av
2,1(t) very quickly as the outlier is at jo = 1.

be greater than or equal to the number of unmeasured
nodes.

Remark 2: From the condition (12), A12 is full col-
umn rank so it cannot have an all zero column. Therefore,
Theorem 2 requires that for every unmeasured node, there
exists an edge pointing to some measured node, i.e., for
every unmeasured node j there is an edge (i, j) with i a
measured node (recall that the edge (i, j) is depicted as an
arrow j → i, representing an influence of state xj on the
dynamics of state xi).

Now, we proceed towards the problem of detection of
the outlier in the next section. For this, we propose to run
a bank of observers and then compare the estimates we
obtain.

4.2. Outlier detection

In this subsection, we define a dissimilarity matrix and
an optimization problem in order to detect the outlier.

4.2.1. Dissimilarity criterion

Here, we define a dissimilarity criterion in order to dif-
ferentiate between the estimates obtained in the previous
section with a goal in mind to pick the one which is with-
out the outlier. Dissimilarity criteria of this kind are used
in signal processing. For instance, [15] defines dissimilarity
as pairwise Euclidean distance between two signals.

Consider the estimates x̂av2,j(t) ∀j ∈ {1, . . . , n2} ob-
tained in the previous section, we define their dissimilarity
at time t as

Djk(t) =

∫ t

0

e−β(t−τ) | x̂av2,j(τ)− x̂av2,k(τ) | dτ for β > 0,

(14)
where x̂av2,j(τ) is the average estimate of the unmeasured
nodes except the node j at time τ .

This definition seems to require all the average esti-
mates from τ = 0 to the current time τ = t, but this
integral can be computed recursively as

Djk(t) = e−βδtDjk(t−δt)+
∫ t

t−δt
e−β(t−τ) | x̂av2,j(τ)−x̂av2,k(τ)|dτ,

which might be simplified with a suitable approximation,
e.g.,

Djk(t) ' e−βδtDjk(t− δt) + δt | x̂av2,j(t)− x̂av2,k(t) | .

The matrix D = [Djk] so obtained is called the Dissim-
ilarity matrix. Note that D is a non-negative, symmetric
matrix with zero diagonal elements. Here, the idea is to
measure how far are the estimates from each other.

Rather than instantaneous comparisons, we consider
an integral, so as to consider only differences that hold
over non-trivial windows of time. The forgetting factor β
tunes the weight given to past values, and should be chosen
avoiding the two extremes: β near to zero gives too much
weight to the initial transient, where the estimates might
have large errors, while too large β gives vanishing weight
to all past values.

The system is assumed to have an outlier at jo, i.e.,
there is a significant difference between the average xav2,jo(t)
excluding jo and the average xav2,k(t) excluding any other
node k. Moreover, the outlier is unique. Hence, for any j
and k different from jo, |xav2,jo(t) − xav2,k(t)| is large and
|xav2,j(t) − xav2,k(t)| is small (at least as an integral over
time, as in the dissimilarity matrix). Since each esti-
mate x̂av2,j(t) converges to the corresponding correct av-
erage xav2,j(t), we also have that |x̂av2,jo(t)− x̂av2,k(t)| is large
and |x̂av2,j(t) − x̂av2,k(t)| is small, except possibly for an ini-
tial transient. For this reason, we can say that ̂o(t) is the
detected position of the outlier at time t if ̂o(t)th row sum
of the dissimilarity matrix at time t is the largest:

̂o(t) = argmax
j

n∑

k=1
k 6=j

Djk(t). (15)

The above processes as depicted in Figure 6 can be put
altogether as follows:

1. Using a bank of n2 observers of the form (5), com-
pute x̂av2,j(t) for all j from 1 to n2.

2. Compute Djk(t) defined in (14).

3. From the dissimilarity matrix, detect the outlier ̂o(t)
at time t given by (15). Then choose the correspond-
ing average estimate x̂av2,̂o(t) obtained from the bank
of observers, which excludes xn1+̂o(t).

Now, we illustrate the method with Example 1. We will
see that indeed ̂o(t) converges to jo, the actual position
of the outlier.

Example 1 (continued). The position of the outlier in Ex-
ample 1 is jo = 1 but here we assume that this information

6
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Figure 8: Detected position of the outlier in the set of the unmea-
sured nodes at time t i.e. ̂o(t) in Example 1. jo = 1 is the actual
position of the outlier. At first, the method identifies unmeasured
node 3 as the outlier but it converges very quickly to jo.

is unknown. We want to detect the outlier position and ob-
tain the average estimate excluding the outlier. Note that
the condition (12) is satisfied with rank(A12) = 4 = n2.
Therefore, we can design a bank of n2 observers of the
form (5) each of which estimates the average of all but
one unmeasured node at a time. Here, each observer is
designed with α = 3, and the parameters `Tj , g

T
j , h

T
j com-

puted with (7) and initialization wj(0) = −`Tj y(0). The
estimates obtained by this bank of observers are depicted
in Figure 7. We compute the dissimilarity matrix with
β = 10 in (14) and then follow the process described above
to detect the outlier using (15). Figure 8 shows that indeed
the proposed method detects the outlier position jo = 1,
i.e., node n1 + jo = 7 in the network depicted in Figure 2.
In Figure 8, it can be seen that at first, the method iden-
tifies unmeasured node 3 (node 9 in the network) as the
outlier but it converges very quickly to the actual position,
i.e., jo = 1 (node n1 + jo = 7 in the network). One possi-
ble reason for this delay in detection could be the delay in
convergence of the observed value to the original value.

Note that we already have the average estimates x̂av2,j(t)
for all j ∈ {1, . . . , n2}, obtained from the bank of observers.
From them, we obtain x̂av2,̂o(t), which is initially equal to
x̂av2,3(t) and then equal to x̂av2,1(t), as illustrated by the dash-
starred black line in Figure 7. This is consistent with the
quantity we aim at reconstructing: the average estimate of
the unmeasured nodes excluding the outlier, i.e., x̂av2,1(t).

5. System matrices are partially unknown

In this section, we consider the case when there exists
an outlier in the system but the system matrices in (1) are
partially unknown. Assuming that this outlier is caused
by a fault, we call the initial system which is without the
fault, the nominal system. We aim to detect the outlier
and to compute the average without the outlier using the
detection method proposed in Section 4 even when the

system with the fault is unknown, and only the nominal
system is known. Recall that, in the proposed detection
method, we deploy a bank of observers of the form (5),
designed with the faulty system matrices. However, in this
section, since the faulty system is unknown, we propose to
design the observers with the nominal system.

Let us define the nominal system as

{
ẋ(t) = Ãx(t) + B̃u(t)

y(t) = Cx(t),
(16)

which describes the same physical system as system (1)
but without the fault causing the outlier. The system (1)
and the system (16) are related in such a way that

A = Ã+ ∆ and B = B̃ + Ψ, (17)

where ∆ ∈ Rn×n and Ψ ∈ Rn×m are the matrices which
describe the fault responsible for the outlier.

The block structure of the matrices corresponding to
the state partition x(t) = [xT1 (t), xT2 (t)]T as in Section 2 is

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, ∆ =

[
∆11 ∆12

∆21 ∆22

]
,

B̃ =

[
B̃1

B̃2

]
, Ψ =

[
Ψ1

Ψ2

]
, C =

[
In1

0n1,n2

]
.

(18)

Let us consider the following fault model:

Fault model:

{
∆ = en1+jor

T + ρÃen1+joe
T
n1+jo

,

Ψ = en1+joψ
T .

(19)

where ei ∈ Rn is the standard ith basis vector, ρ ∈ R
is a scalar, rT ∈ Rn and ψT ∈ Rm are row vectors, that
can be arbitrary, n1 is the number of measured nodes and
jo is the true position of the outlier. This means that ∆ is
a matrix which is non-zero only in its (n1 + jo)th row and
column. Moreover, its (n1 + jo)th column is proportional
to the corresponding column of Ã, while no such restriction
is assumed on its (n1 + jo)th row, which can be arbitrary.
The matrix Ψ is a matrix with non-zero entries only in its
(n1 + jo)th row which is equal to the row vector ψT .

In terms of the network system, this corresponds to
altering only the neighborhood of node n1 + jo. More
precisely, the row vector rT represents the change in the
influence of the in-neighbors of the node (n1 + jo) on it. It
allows for arbitrary changes in the incoming edges and in
their weights. The term ρÃen1+joe

T
n1+jo

in (19) represents
the change in the influence of node (n1 + jo) on its out-
neighbors. Due to this term, all entries of the (n1 + jo)th
column of A, other than the one on the diagonal, are equal
to the corresponding entry of Ã, multiplied by (1+ρ). This
means that the outgoing edges from n1+jo are unchanged,
and their weights are all multiplied by a same scalar fac-
tor (1 + ρ), which describes a change in the strength of
the influence of node n1 + jo on its out-neighbors. The

7
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Figure 9: State trajectories of the nominal system described in Ex-
ample 2.

row vector ψT changes the effect of the input, again in a
localized way, only on the node n1 + j0.

Now, we illustrate the nominal system and the fault
model with an example.

Example 2. Consider the network depicted in Figure 2.
The input is given by u(t) = 0.2∗sin(0.1t) and x(0) = 110.
Here, we give a nominal system with no outlier, and a fault
as in (19), such that the resulting faulty system is the sys-
tem with an outlier that was presented in Example 1. The
nominal system matrix Ã has the following blocks (accord-
ing to the partition in (18)):

Ã11 =




−3.25 0.98 0.84 0 0 0
0.61 −5.33 0 0 0 0

0 0 −3.53 0.48 0 0
0 0 0.25 −3.05 0 0
0 0 0 0.13 −1.69 0
0 0.54 0 0 0.85 −2.18




,

Ã12 =




17.15 0.35 0.35 0
0 0 0.76 0.76
0 0.22 0 0

11.27 0 0 0.23
7.84 0.16 0 0

0 0.35 0 0




,

Ã21 =




0 0.89 0 0 0 0.16
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

Ã22 =




−11.76 0 0 0
0.98 −1.4 0 0

0 0.64 −1.16 0
0 0 0.4 −2.0


.

Matrices B and C are the same as in Example 1, i.e.,

B =
[
1 1 1 1 1 1 1 1 1 1

]T
and C =

[
I6 06,4

]
.

It can be seen in Figure 9 that there is no outlier in the
nominal system. Then we consider a faulty system matrix
A = Ã+ ∆ and B = B̃ + Ψ, where ∆ and Ψ are given by
(19), with jo = 1, rT = [0,−0.89, 0, 0, 0,−0.14,−11.55, 0, 0, 0],

ρ = − 48
49 and Ψ = 0n,1. This faulty system is the system

considered in Example 1, where the state n1 + jo = 7 is an
outlier as shown in Figure 3.

Now, we proceed towards the problem of detecting the
outlier while designing the observers with the known nom-
inal system instead of the faulty system. Recall that, to
estimate xav2,j(t), the average of the unmeasured nodes ex-
cluding the element at the jth position, we use observers of
the form (5) with observer gains obtained by fixing α > 0
and computing:

`Tj = qTj (Ã22 + αIn2
)Ã†12, (20a)

hTj = − `Tj (αIn1
+ Ã11) + qTj Ã21, (20b)

gTj = qTj B̃2 − `Tj B̃1, (20c)

where Ã†12 is the Moore-Penrose pseudo-inverse of Ã12,
Now, we present a lemma to describe an interesting

property of the error dynamics when the observer gains
are computed as in (20).

Lemma 1. With the fault model given by (19) and rank(Ã12) =
n2, given that the bank of observers are of the form (5) and
the observers gains computed as in (20), then the estima-
tion error ξj(t) = x̂av2,j(t)−xav2,j(t) is such that its dynamics
is as follows:

ξ̇j(t) = −αξj(t)

+

{
0 j = jo

1
n2−1

(
rT1 x1(t) + (rT2 − ραeTjo)x2(t) + ψTu(t)

)
j 6= jo.

(21)

Proof. Let us consider the estimation error ξj(t).

ξ̇j(t) = −αξj(t)
+(qTj (Ã21 + ∆21)− α`Tj − `Tj (Ã11 + ∆11)− hTj )x1(t)

+(qTj (Ã22 + ∆22)− `Tj (Ã12 + ∆12) + αqTj )x2(t)

+(qTj (B̃2 + Ψ2)− gTj − `Tj (B̃1 + Ψ1))u(t).

Rearranging the equation by separating the terms with
∆11,∆12,∆21, ∆22, Ψ1 and Ψ2, we have

ξ̇j(t) = −αξj(t)+(qTj Ã21 − α`Tj − `Tj Ã11 − hTj )x1(t)

+(qTj Ã22 − `Tj Ã12 + αqTj )x2(t)

+(qTj B̃2 − gTj − `Tj B̃1)u(t)

+(qTj ∆21 − `Tj ∆11)x1(t)

+(qTj ∆22 − `Tj ∆12)x2(t)

+(qTj Ψ2 − gTj − `Tj Ψ1)u(t).

(22)

As shown in Section 3, the rank condition rank(Ã12) = n2
ensures that computing `j , gj and hj as in (20), we have

−α`Tj + qTj Ã21 − `Tj Ã11 − hTj =0, (23a)

+αqTj + qTj Ã22 − `Tj Ã12 =0, and (23b)

qTj B̃2 − gTj − `Tj B̃1 =0. (23c)

8



Therefore, from (22) and (23), we have

ξ̇j(t) = −αξj(t)+(qTj ∆21 − `Tj ∆11)x1(t)

+(qTj ∆22 − `Tj ∆12)x2(t)

+(qTj Ψ2 − gTj − `Tj Ψ1)u(t).

(24)

From (19), using the notation rT = [rT1 , r
T
2 ], we have

∆11 =0n1,n1 , Ψ1 =0n1,1,

∆12 =ρÃ12ejoe
T
jo ,

∆21 =ejor
T
1 , Ψ2 =ejoψ

T ,

∆22 =ejor
T
2 + ρÃ22ejoe

T
jo .

Substituting these values in (24), we have

ξ̇j(t) = −αξj(t)+(qTj ejor
T
1 )x1(t) + (qTj ejor

T
2 )x2(t)

+ρ
(
qTj Ã22 − `Tj Ã12

)
ejoe

T
jox2(t)

+(qTj ejoψ
T )u(t).

(25)

Now, let us consider the second last term of (25). From
(23b), it can be written as

ρ(qTj Ã22 − `Tj Ã12)ejoe
T
jo = −ραqTj ejoeTjo .

Notice that, if j = jo, we have qTj ejo = 0, while for all

j 6= jo we have qTj ejo = 1
n2−1 . Therefore, we conclude that

the coefficient of x1(t) in (25) is

qTj ejor
T
1 =

{
01,n1 if j = jo

1
n2−1r

T
1 if j 6= jo,

(26)

the coefficient of x2(t) in (25) is

qTj ejor
T
2 − ραqTj ejoeTjo =

{
01,n2

if j = jo
1

n2−1 (rT2 − ραeTjo) if j 6= jo.

(27)
and the coefficient of u(t) in (25) is

qTj ejoψ
T =

{
01,m if j = jo

1
n2−1ψ

T if j 6= jo,
(28)

which ends the proof of the lemma.

Now, we comment on the average estimates in the fol-
lowing theorem.

Theorem 3. With the fault model given by (19) and rank(Ã12) =
n2, given that the bank of observers are of the form (5) and
the observer gains are computed as (20), then

i.) for j = jo, x̂
av
2,jo

(t)→ xav2,jo(t) as t→∞.

ii.) for all j, k 6= jo, (x̂av2,j(t) − x̂av2,k(t)) → (xav2,j(t) −
xav2,k(t)) as t→∞.
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Figure 10: Estimated average trajectories x̂av
2,j(t) ∀j ∈ {1, . . . , n2},

in Example 2. The observer gains were computed using nominal ma-
trices instead of the faulty matrices. The dashed-star line represents
x̂av
2,̂o

(t).

Proof. i.) It follows immediately from Lemma 1, since
ξjo(t) = xav2,jo(t) − x̂av2,jo(t) has a stable dynamics

ξ̇jo(t) = −αξjo(t).

ii.) We study the difference (xav2,j(t)−xav2,k(t))−(x̂av2,j(t)−
x̂av2,k(t)) = ξj(t)−ξk(t). From (21), for j, k 6= jo, such
difference has stable dynamics

ξ̇j(t)− ξ̇k(t) = −α(ξj(t)− ξk(t)).

In Section 4, the observers were designed using the
knowledge of the matrices A and B, and hence it was pos-
sible to ensure convergence of the estimates x̂av2,j(t) to the
true averages xav2,j(t). Here, the observers are designed

with the nominal matrices Ã and B̃, while the true aver-
ages are from the faulty system with matrices A and B, so
in general convergence of the estimates cannot be ensured.
However, Theorem 3 gives two important convergence re-
sults.

First, for the estimate of the average without the out-
lier (x̂av2,jo(t)), convergence to the true average xav2,jo(t) is

still ensured, despite the use of matrix Ã instead of the
unknown matrix A. Hence, in case the outlier position jo
is known or can be correctly detected, then the trimmed-
average xav2,jo(t) can be correctly estimated.

Second, for j and k different from jo, although the
estimates x̂av2,j(t) and x̂av2,k(t) can be wrong with respect to
the true averages xav2,j(t) and xav2,k(t), Theorem 3 ensures
that their difference (x̂av2,j(t)−x̂av2,k(t)) converges to the true
difference (xav2,j(t)− xav2,k(t)).

Moreover, since u(t) and x(t) are assumed to remain
bounded, we can see from (21) that the estimates x̂av2,j(t)
and x̂av2,k(t) remain bounded, which avoids overflow issues
in numerical computation.

To see the importance of these two convergence re-
sults for our detection method, recall that we use a bank
of scalar observers and the dissimilarity matrix defined
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Figure 11: Detected position of the outlier in the set of the unmea-
sured nodes at time t i.e. ̂o(t) in Example 2. jo = 1 is the actual
position of the outlier. At first, the method identifies node 3 as the
outlier but it converges quickly to jo.

in (14), which involves pairwise differences of estimates
|x̂av2,j(t) − x̂av2,k(t)|. In this paper, we restrict our atten-
tion to systems where a localized fault at an unmeasured
node results in the appearence of a single outlier state
trajectory, corresponding to such node. As discussed in
Sect. 4.2.1, this implies that, for any j and k different
from jo, |xav2,jo(t)−xav2,k(t)| is large and |xav2,j(t)−xav2,k(t)| is
small (at least as an integral over time). Then, our detec-
tion method is capable of reconstructing the correct outlier
position jo if these two properties of the true averages are
preserved for the estimated averages.

For j and k different from jo, the second part of The-
orem 3 ensures that the difference (x̂av2,j(t) − x̂av2,k(t)) con-
verges to the true difference (xav2,j(t)−xav2,k(t)). Hence, the
property that the true difference |xav2,j(t)−xav2,k(t)| is small
implies that also the estimated difference |x̂av2,j(t)− x̂av2,k(t)|
is small.

The case of the differences |x̂av2,jo(t)− x̂av2,k(t)| involving
the outlier is more delicate. The first part of Theorem 3 en-
sures that x̂av2,jo(t) converges to the true xav2,jo(t), but gives
no information about x̂av2,k(t). In most cases, as illustrated
in our examples, x̂av2,k(t) is a wrong estimate of xav2,k(t), but
the difference |x̂av2,jo(t) − x̂av2,j(t)| remains large, thus lead-
ing to a correct detection of the outlier position. When
this happens, also the correct reconstruction of xav2,jo(t) is
ensured, since x̂av2,jo(t) converges to xav2,jo(t). In some par-
ticular cases, the wrong estimate x̂av2,k(t) might happen to
be very near to x̂av2,jo(t). As discussed above, we also know
that all estimates x̂av2,j(t) with j 6= jo are near to each
other, and hence in this case they are all near to x̂av2,jo(t).
This might lead to a wrong detection of the outlier posi-
tion jo but nevertheless ensures that the trimmed average
xav2,jo(t) is reconstructed with only a very small error. Now
we illustrate this with the help of Example 2.

Example 2 (continued). Consider the nominal and the
faulty systems described in Example 2. The position of
the outlier is jo = 1 but this information is assumed to be
unknown and moreover, the system is also partially known:
only the nominal matrix Ã is known, not the fault. Our

goal is to detect the outlier position and obtain the average
estimate excluding the outlier. Note that the condition (12)
is satisfied as rank(Ã12) = 4 = n2. Therefore, a bank of
n2 observers of the form (5) can be designed. Here, for
all j ∈ {1, . . . , n2}, we take α = 3, wj(0) = −`Tj y(0) and

the parameters `Tj , g
T
j , h

T
j are computed as in (20). The

estimates obtained by this bank of observers are depicted
in Figure 10. We compute the dissimilarity matrix with
β = 10 in (14) and then follow the proposed method to
detect the outlier using (15). Figure 11 shows that indeed
the proposed method detects the outlier position jo = 1. In
Figure 11, it can be seen that at first the method identifies
unmeasured node 3 as the outlier but it converges quickly
to the true position, i.e., jo = 1 (node n1 + jo = 7 in the
network).

Remark 3: As a possible variation of our method,
the bank of scalar observers for reconstruction of xav2,j(t)
for all j might be replaced by a full-order state observer
x̂(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)), followed by com-

putation of averages x̂av,full2,j (t) := [01,n1 , q
T
j ]x̂(t) for all j.

Then, estimates x̂av,full2,j (t) can be used instead of x̂av2,j(t)
to compute the dissimilarity matrix (14) and to find the
outlier position (15) and the trimmed average without the
outlier.

Notice that the rank condition (12) that ensures the
existence of the bank of tunable scalar observers implies
observability of the system (1). Hence, in the case where
matrices A and B are known (as in Section 3), the full-
order observer can be designed to have stable error dynam-
ics with any desired rate of convergence.

However, when the observer is designed using nominal
matrices, different from the faulty ones of the system (as in
the current section), the estimates obtained from the full-
order observer do not share the useful convergence prop-
erties of the bank of scalar observers. Theorem 3 ensures
that ξjo(t) = xav2,j0(t)−x̂av2,j0(t) tends to zero, and the differ-
ences ξj(t)− ξk(t) = (xav2,j(t)−xav2,k(t))− (x̂av2,j(t)− x̂av2,k(t))
also tend to zero.

The full-order observer designed with nominal matrices
is x̂ = Ãx̂(t) + B̃u(t) + L(y(t) − Cx̂(t)), and has error
dynamics ė(t) = (Ã − LC)e(t) + ∆x(t) + Ψu(t). Because
of the terms ∆x(t)+Ψu(t), the error e(t) does not tend to
zero, and also when considering [01,n1

, qTj0 ]e(t) = xav2,j0(t)−
x̂av,full2,j0

(t) and [01,n1 , q
T
j ]e(t) − [01,n1 , q

T
k ]e(t) = (xav2,j(t) −

xav2,k(t))− (x̂av,full2,j (t)− x̂av,full2,k (t)) there is no guarantee that
they tend to zero. Therefore, the outlier position and the
trimmed average without the outlier might not be obtained
correctly.

6. Outlier detection in a faulty metal plate

In this section, we illustrate the outlier detection method
using the nominal system on a faulty thermal diffusion sys-
tem. This system is inspired by [2, Section IV]. Here, we
deal with a network given by spatial discretization of a
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Figure 12: A metal plate with a heater attached on one side and
surrounded by air on the other sides.

thermal diffusion system consisting of a rectangular metal
plate attached to a heater on one side and surrounded by
air on the other sides as shown in Figure 12. Here, we
detect the faulty region with only the knowledge of the
diffusion properties of the metal plate and the diffusion
equations governing the heat diffusion.

6.1. Thermal diffusion system

Consider a rectangular metal plate as shown in Fig-
ure 12. Let (X,Y ) ∈ D := [0, Xf ] × [0, Yf ] correspond to
a point on the metal plate. Let T (X,Y, t) be the temper-
ature of the metal plate at the position (X,Y ) at time t.
The heat transfer in the metal plate is described by the
two-dimensional heat conduction equation

∂T

∂t
= λ

∂2T

∂X2
+ γ

∂2T

∂Y 2
, (X,Y ) ∈ int(D). (29)

where int(D) denote the interior region of the plate. The
constants λ and γ denote the diffusion coefficient along
the X-axis and Y-axis respectively. Moreover, there is an
exchange of heat between the plate, the heater and the air
which is described by the following boundary conditions.
The heat exchange with the air is described with the Robin
boundary condition [16]

∂T

∂ν
= −ηa(T − Ta), (X,Y ) ∈ Sa. (30)

where Sa is the set of contact points with the air, ν is the
outward unit vector normal to Sa, and Ta is the tempera-
ture of the air, and ηa is the ratio of coefficient of thermal
conductivity and the coefficient of heat transfer between
air and the metal plate. For simplicity, we suppose Ta = 0
for any t,X and Y. The heat exchange with the heater is
described by another Robin boundary condition

∂T

∂Y
= ηh(T − u), X ∈ [0, Xf ], Y = 0. (31)

where u is the temperature of the heater and ηh is the
ratio of coefficient of thermal conductivity and the coeffi-
cient of heat transfer between heater and the metal plate.
The heater is assumed to have a uniform temperature dis-
tribution, that is, u is independent of X and Y.

We discretize (29) and (31) with step size δ = ∆X =
∆Y using central difference quotients. In discretization,
let the number of the cells along each axis be nc so that
the total number of cells will be n2c . We obtain a network

with grid structure with dynamics (16), where x ∈ Rn2
c is

a vector of spatially discretized temperature T. The num-
bering of the nodes starts from the bottom left, and follows
columns, each from bottom to top as in Figure 14. To de-
scribe the entries ãij of Ã, we need to distinguish different
cases, depending on the position of the cell corresponding
to vertex i. The non-zero entries of matrix Ã = [ãij ] are
given as follows. If i is not a boundary node then

ãij =





−2(λ+ γ) if j = i

γ if j = i+ 1, i− 1

λ if j = i+ nc, i− nc.

If i is a boundary node attached to the heater but not a
corner node then, from the discretization of (29) and (31),
we have

ãij =





−2(λ+ γ + δηhλ) if j = i

2γ if j = i+ 1

λ if j = i+ nc, i− nc.

For the boundaries with air, the discretization of (29) and
(30) is used. If i is on the upper, left or right boundary,
except for the corner nodes, we have ãij = −2(λ + γ +
δηaλ) if j = i. If i is on the upper boundary, the non-
zero non-diagonal entries are ãij = 2γ for j = i − 1 and
ãij = λ for j = i + nc, i − nc. Similarly, if i is on the left
border, we have ãij = γ for j = i − 1, i + 1 and ãij = 2λ
for j = i + nc, and then on the right, we have ãij = γ
for j = i − 1, i + 1 and ãij = 2λ for j = i − nc. Finally,
if i is an upper-left or upper-right corner node, we have
ãij = −2(λ + γ + δηaλ + δηaγ) for j = i. If i is on the
upper-left corner, we have ãij = 2γ for j = i − 1 and
ãij = 2λ for j = i+nc. Similarly, if i is on the upper-right
corner, we have ãij = 2γ for j = i − 1 and ãij = 2λ for
j = i− nc.

For a corner node in the bottom, the discretization of
(29), (30) and (31) is used. If i is either a bottom-left or
bottom-right corner node, we have ãij = −2(λ+γ+δηaλ+
δηhγ) for j = i. For non-zero non-diagonal entries, we have
ãij = 2γ for j = i + 1 and ãij = 2λ for j = i + nc if i is
on the bottom-left corner. Similarly, if i is on the bottom-
right corner, we have ãij = 2γ for j = i + 1 and ãij = 2λ

for j = i−nc. The entries of the matrix B = [bij ] ∈ Rn2
c×1

are

bi1 =

{
2ηhδγ if i = 1 mod nc

0 otherwise.

11
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Figure 13: State trajectories of the spatially disctretized equations
describing the faulty metal plate.

and the matrix C depends on the choice of the measured
nodes.

6.2. Illustration of the detection method

In this subsection, we show the effectiveness of the
proposed detection method for spatially discretized ther-
mal diffusion network with δ = 1, and nc = 5, λ = γ =
29.1, ηh = 1.3 × 104, ηa = 103 and input u(t) = 10 + 10 ∗
sin(t). Initially the plate is kept at 0°C. On discretization,
we get a network with grid structure as shown in Figure 14.
The nodes {1, 6, 11, 16, 21} are attached to the heater.

We assume that there is a defect in a region correspond-
ing to the discretization cell number 6. The metal plate
corresponding to this region is defective and has different
coefficients of diffusion than the rest part of the plate. This
defect can be the result of the formation of brown stains,
the formation of oxides on the metal plate, casting defects,
welding defects, or rolling defects to name a few. In our
example, the fault scales the local coefficients of diffusion
λ and γ by one-third. This fault is represented as faulty
matrices given by A = Ã + ∆ and B = B̃ + Ψ with ∆
satisfying (19) with rT = − 2

3 (eT6 Ã− (eT6 Ãe6)eT6 ), ρ = − 2
3

and Ψ = 0n,1. It can be seen in Figure 13 that node 6 is
an outlier.

We choose {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 22, 24} as the
set of measured nodes, and hence the set of unmeasured
nodes is {2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 23, 25}.Now, we can
apply a suitable permutation to rearrange the nodes such
that the first n1 = 13 nodes are measured and the rest
n2 are unmeasured so as to obtain a block structure as in
(18). Note that, node 6 in the network is the third node in
the set of unmeasured nodes, so we have jo = 3. Now, we
assume that we neither know the fault nor the position of
the outlier. Therefore, for estimation, we use the system
matrices obtained by the discretization of the thermal dif-
fusion equation described in the previous subsection. Re-
call from Theorem 2 that in order to design a bank of
scalar observers, the sub-matrix Ã12 needs to be of full
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Figure 14: Graphical representation of the discretized metal plate.
In this graph, the nodes correspond to the cells obtained after dis-
cretization and edges show the heat transfer between them. The
circle nodes in green are the measured nodes and the red square
nodes are the unmeasured nodes. The nodes {1, 6, 11, 16, 21} receive
input directly and the node 6 in dark red is the outlier.

column rank. We find that indeed rank(Ã12) = 12 = n2.
Therefore, a bank of scalar observers of the form (5) can
be designed. Here, we take α = 3 and wj(0) = −`Tj y(0)
for all j ∈ {1, . . . 12}.

Figure 15 shows the different average estimates exclud-
ing one node at a time x̂av2,j(t) and the corresponding true
averages xav2,j(t), depicted by solid and dotted lines respec-
tively. The true averages xav2,j(t) clearly show that jo is an
outlier: for all j except jo, the averages xav2,j(t) are near
to each other, while xav2,jo(t) is more distant. As predicted
by Theorem 3, the estimate x̂av2,jo(t) quickly converges to
the true trimmed-average xav2,jo(t). For j 6= jo, it can be
seen that all the estimates x̂av2,j(t) for j 6= jo, have a sig-
nificant error ξj from the corresponding true averages, but
such errors tend to be the same for all j, consistently with
Lemma 1. Hence, the fact that the true averages are near
to each other results in the estimates also being near to
each other, despite their error.

Using β = 10 in (14) and then computing (15), we
detect the position of the outlier as shown in Figure 16.

It can be seen in Figure 16 that the detected position
of the outlier is ̂ = jo. The process identifies the out-
lier from the beginning as it is evident in Figure 15 that
the difference between the average estimates x̂av2,jo(t) and
x̂av2,j(t) is very large since the beginning.

7. Concluding remarks

Average state reconstruction with the help of some sen-
sor measurements can give unexpected results if there are
some outliers among the unmeasured states. A method to
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Figure 15: In solid lines, estimated average trajectories of the un-
measured nodes excluding one at a time, x̂av

2,j . The red trajectory

corresponds to the average estimate without the outlier, i.e., x̂av
2,jo

(t).

Moreover, in this case x̂av
2,jo

(t) = x̂av
2,̂o

(t). The dotted trajectories

correspond to the true averages xav
2,j(t).

estimate the average excluding the outlier has been pro-
posed. For that, a design of a scalar and tunable observer
has been given along with the condition under which a
bank of these observers can be designed to estimate the
average of the unmeasured nodes while excluding an ele-
ment at every possible position. Moreover, the problem
of detection of the existing outlier when the system ma-
trices might be known or partially unknown has also been
addressed by proposing a dissimilarity based matrix in-
spired from the euclidean distance-based dissimilarity ma-
trix used in signal processing.

Future works will be focused on cases of multiple out-
liers and sequential methods such as group testing for de-
tection. The sequential methods can be useful in reducing
the number of observers required.
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