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GIPSA-Lab, Université Grenoble Alpes, CNRS, INRIA
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Abstract. This works deals with the Traffic State Estimation (TSE)
problem for urban networks, using heterogeneous sources of data such as
stationary flow sensors, Floating Car Data (FCD), and Automatic Vehi-
cle Identifiers (AVI). A data-based flow and density estimation method
is presented and tested using real traffic data. This work presents a study
case applied to the downtown of the city of Grenoble in France, using
the Grenoble Traffic Lab for urban networks (GTL-Ville) which is an ex-
perimental platform for real-time collection and analysis of traffic data.
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1 Introduction

Traffic state estimation (TSE) is an important stage in the development of Intel-
ligent Transportation Systems (ITS), as the knowledge of the evolution of traffic
state variables such as flow and density for each road can be used to implement
control strategies, or help in the decision taking stages for network design for
better smart cities. TSE refers to the use of partially observed and noisy traffic
data to infer the value of traffic indicators such as flow, density, velocity, trav-
eling time, and others [1]. This information can be used to calculate the mean
traveling times for users, fuel consumption and vehicle emissions (important for
air quality assessment), estimate the life of pavement, and many other appli-
cations. Because of this, accurate TSE is an active field in the transportation
research literature [2].

Classical TSE methods were initially proposed for the case of highways [3].
Generally, these methods are based on the Lighthill-Whitham [4] and Richards
[5] (LWR) model, and its discrete counterpart, the Cell Transmission Model
(CTM) [6], which use the empirical flow-density relation known as the Funda-
mental Diagram. In [7], the authors propose the use of an Extended Kalman
Filter (EKF) by linearizing the CTM around a current state to estimate the
density of road sections. In [8], the CTM is used to identify observable modes,
where a graph-constrained density observer is applied. In [9], semi-analytical
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solutions to the LWR are coupled with a mixed integer problem to estimate
highway density.

The case of networks has received less attention [2], but the need to study
this scenario is increasing in the last years for TSE issues. This relative lack of
attention is due to the additional modeling tools required to describe vehicle
interactions in intersections, [10]. The extended version of the CTM developed
in [11] brings a solution to this problem via a flow maximization formulation un-
der constraints provided by the fundamental diagram. This approach is widely
used as can be seen in [12] and [13]. However, the use of the fundamental dia-
gram, specially in urban networks, is challenging as it requires the calibration of
many parameters. Furthermore, recent studies have found that the fundamental
diagram does not effectively describe vehicle deceleration at intersections [14].
To solve this issue, [15] proposed a data-based method that collects data from
connected vehicles to estimate the exiting flow of each road. Nevertheless, such
rich data is not always available, and other methods are required.

Our contribution in this paper is the proposal of a data-based TSE method for
general urban networks. We make use of three different data sources: stationary
flow sensors, AVI using Bluetooth devices, and FCD. Data provided by these
sources is used to estimate the external inflows to a traffic network, the turning
ratios for a selection of intersections, and the space mean speed of the road
sections of the network. Additionally, the method is tested using real traffic data
collected from a sensor network in the city of Grenoble, France.

This paper is organized as follows. Section 2 presents the traffic dynamics
model used to estimate the flow and density for the road sections of an urban
traffic network. Section 3 describes the experimental platform GTL-Ville, and
the available data used to deploy and validate the proposed model. Section 4
describes a method used to estimate some of the parameters of the model that
are not measured directly. Section 5 presents the results of the estimation ap-
proach and compares them to real data. Finally, Section 6 ends the paper with
a conclusion.

2 Density estimation model

We consider urban traffic networks which are modeled as a directed graph G =
{N,E} where the nodes N correspond to intersections, and the edges E ⊂ N×N

correspond to road sections. Additionally, let Ein ⊂ E denote the boundary
incoming roads which have no upstream neighbors, and Eout ⊂ E denote the
boundary outgoing roads which have no downstream neighbors.

For all roads, we consider as state variables the density ρ (veh/km), incoming
flow ϕin (veh/h), outgoing flow ϕout (veh/h), and space-mean velocity v (km/h),
which are all time dependent and have dimension equal to the number of roads
|E|.



Flow and density estimation in Grenoble using real data 3

Road 1

Road 2

Road 3

Road 4

ϕout
1

ϕin
1

ϕout
2

ϕin
2

ϕin
3

ϕout
3

ϕin
4

ϕout
4

Fig. 1. Flow exchange at an intersection.

To model the traffic dynamics, consider the following conservation law for
the traffic density [16],

d

dt
ρ(t) = L−1(ϕin(t)−ϕout(t)) (1)

where L is a diagonal matrix containing the road lengths. Furthermore, the
inflows and outflows of adjacent roads are dependent of each other through
intersections as shown in Fig. 1. Intersections are modeled as 0 dimensional
points that do not store vehicles. To model the exchange of inflows and outflows
of the different roads at the intersections we use the parameters called turning
ratios. Let I(n) be the set of incoming roads to some intersection n ∈ N and
O(n) be the set of outgoing roads from n. A turning ratio ri,j for i ∈ I(n) and
j ∈ O(n) defines the proportion of vehicles exiting i that enters j.

As intersections do not store vehicles, then the conservation of density implies
that ∑

j∈O(n)

ri,j = 1 , ∀n ∈ N ∀i ∈ E \ Eout. (2)

Let R ∈ R|E|×|E| be the turning ratio matrix with elements ri,j . If there is no
connection between roads i, j, then Ri,j = 0. The input flows of each section
can be expressed as a linear combination of the output flows of the preceding
sections.

ϕin(t) = R>ϕout(t) +Bu(t) (3)

where u(t) is the vector of input demands at the boundaries of the network, and
B is a selection matrix which identifies the elements of Ein. Combining eqs. (1)
and (3), we have

d

dt
ρ(t) = L−1(R> − I)ϕout(t) + L−1Bu(t) (4)

Using the hydrodynamic relation, we can approximate the outflows of each
road from the values of density and the space-mean speed as,

ϕout(t) ≈ V (t)ρ(t) (5)
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where V (t) = diag(v(t)). This relation applies accurately when considering very
short distances, or when the spatial variations in vehicle speed and density is
negligible. We make the following assumption,

Assumption 1 The speed and density throughout a road section do not vary
significantly in the spatial domain.

In urban settings, this assumption can be justified as road lengths between
intersections are generally in the order of 100m. Therefore, we rewrite (4) as

d

dt
ρ(t) = L−1(R> − I)V (t)ρ(t) + L−1Bu(t) (6)

In this work, we consider the use of (6) as an open-loop estimator for the
state of the network. To achieve this goal, we require as input data the values
of the turning ratios for all intersections, the space-mean road speeds, and the
input demands. Denote by R̂, V̂ and û the estimated or measured values for
these variables. Thus, the proposed density estimator is

d

dt
ρ̂(t) = L−1(R̂> − I)V̂ (t)ρ̂(t) + L−1û(t) (7)

In the next section we describe how the estimated quantities for the input data
are obtained.

3 Experimental platform

In this work,nwe make use of the Grenoble Traffic Lab for Urban Networks, GTL-
Ville1. This is an experimental platform for real-time collection of traffic data
coming from a network of sensors installed in the city of Grenoble, France. This
platform also provides real-time traffic indicators and analysis oriented towards
the users of the city, traffic operators, and researchers. The collected data and
computed indicators are available for download at the website.

In this work, we consider a section of Grenoble’s downtown of an area of ap-
proximately 1.4km by 1km (see Fig. 2). In this Section, we describe the available
data for the intersections and roads contained in this section.

3.1 Stationary counting sensors

Stationary sensors are placed in a fixed position in a road section, and collect
information of the vehicles passing through that point. The collected data varies
according to the technology, but generally variables such as length, speed, and
time of passage are recorded. Two sensor technologies are available:

– Induction loop sensors, installed under the pavement, detect changes in the
inductance due to the passage of vehicles. It provides information about flow,
and occupancy.

1 http://gtlville.inrialpes.fr
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– Microwave radars, located above the ground, emit pulses of radiation and
then measures the properties of the reflected beam. It provides information
about flow, vehicle speeds and length.

Fig. 2. Stationary flow sensors located in Grenoble downtown. Text refers to sensor
identifiers. Sensors in blue, correspond to boundary inflows; in red to boundary out-
flows; and in green to validation flows.

The sensor locations are shown in Fig. 2. Induction loop sensors have an
identifier starting with “L”, whereas microwave radars start with “R”. Each
dot corresponds to the location of a single sensor. As radars are able to mea-
sure in multiple lanes and directions, some locations present two identifiers that
correspond to each direction.

Furthermore, according to their locations, sensor data is classified as

– Boundary inflows (blue dots in the figure), providing the values of û(t) in
(7).

– Boundary outflows (red dots in the figure). Data from these locations are
denoted by y(t).

– Validation flows (green dots in the figure). Data from these locations will be
used to validate estimation results.
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3.2 Floating car data

Floating Car Data (FCD) are trajectories of individual vehicles collected via
devices such as GPS navigators. Due to privacy policies, data from multiple
users is aggregated.

Define by Vi(t) the set of vehicles indexes that provide FCD that are inside
road i at time t. Let να be the speed of a vehicle indexed by α. We define the
aggregated speed for road section i from FCD data by

v̂i(t) =
1

|Vi(τ)|
∑

α∈Vi(t)

να(t) (8)

which provides the estimates of the space-mean speeds for all roads, V̂ (t) in
(7). However, this information is not available for roads that have few vehicles
during the day, resulting in low precision estimates. For this cases, we use the
value of the free-flow velocity, as roads with few vehicles are often under the
critical density.

3.3 Turning ratio measurements

To measure the values of the turning ratio parameters, Bluetooth vehicle identi-
fiers were used. For a given intersection, these devices are located at the adjacent
incoming and outgoing roads. During a time interval, each device is able to de-
tect vehicles that are equipped with another Bluetooth device, and records a
unique identifier and its time of passage. By comparing the information across
the installed devices, it is possible to assigned the origin and destination road of
individual vehicles.

As the rate of vehicles equipped with Bluetooth devices is unknown, these
measurements cannot provide the total flow. However, this information can be
used to compute the relative use of each turn, so the turning ratios can be
estimated. Due to economical constraints, only 12 intersections were monitored
during a measurement campaign lasting 1 week. Denote by B ⊂ N the set of
intersection monitored by these devices, whose locations are shown in Fig. 3.
The corresponding turning ratios are computed as

rBT
i,j =

Counts(i, j)∑
k Counts(i, k)

(9)

where Counts(i, j) is the total number of detected vehicles going from road i
to j during the campaign duration. To provide turning ratio estimates for the
remaining intersections, a method is described in Section 4 which uses the data
presented in Section 3.4

3.4 Functional Road Classification

The Functional Road Classification (FRC) is used to classify roads into homo-
geneous classes depending on their role in a transportation network [17]. This
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Fig. 3. a) Grey dots: intersections equipped with Bluetooth identifier devices. b) Col-
ored lines: Functional Road Classification of the network.

classification determines the type of use of each road, for instance, as it dif-
ferentiates between major roads that experience heavy traffic from a variety of
O/D pairs, and minor roads which are inside of a residential area and experience
light traffic only. Figure 3 shows the FRC of each road of the considered zone of
Grenoble, and Table 1 shows each class description2. Roads that are not colored
in the figure have class 7.

4 Parameter estimation

To estimate the values of the turning ratio parameters for the intersections that
have no direct measurement (see Section 3.3), we propose the use of the FRC
information. The reasoning for this, is that roads with a higher importance
are more commonly used than smaller roads, and will therefore present higher
turning ratios.

For each FRC class in the set {1, 2, . . . , 7}, we define a weight θ ∈ (0, 1]. Let
θ ∈ (0, 1]7 be the vector of class weights. Suppose that the turning ratios at
each intersection are distributed proportionally to the class weights of each of

2 Source: https://developer.tomtom.com/traffic-stats/support/faq/what-are-
functional-road-classes-frc
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Table 1. Description of the road classes provided by TomTom.

Class Short description Long description

1 Major roads of high
importance

Roads of high importance that are used for international
and national traffic.

2 Other major roads Roads used to travel between neighboring country re-
gions.

3 Secondary roads Roads used to travel between parts of the same region.
4 Local connecting roads Roads making settlements accessible or making parts of

a settlement accessible.
5 Local roads of high im-

portance
Local roads that are the main connections in a settle-
ment.

6 Local roads Roads used to travel within a part of a settlement.
7 Local roads of minor

importance
Roads that only have a destination function.

its outgoing roads. Thus, these parameters are computed as

rFRC
i,j =

θFRC(j)∑
k∈O(ni)

θFRC(k)

(10)

where FRC(i) is the FRC class of road i, ni is the intersection connected to i,
and O(ni) is the set of outgoing roads from intersection ni.

To compute the value of θ, we consider the following optimization problem

min
θ
||ȳ − C(I− R̂>(θ))−1Bū||

subject to θ ∈ (0, 1]7,
θ1 = 1,

R̂i,j(θ) =


rBT
i,j if ni ∈ B

rFRC
i,j if ni /∈ B

(11)

where C is a selection matrix which identifies the outgoing roads Eout, and

ū =
1

T

∫ T

0

u(t) , ȳ =
1

T

∫ T

0

y(t). (12)

are the average flows from the input and output sets, respectively. This opti-
mization problem tries to match the observed outflows of the network with the
outflows computed from the measured inflows and the turning ratio estimates,

ŷ = C(I− R̂>)−1Bū. (13)

The condition θ1 = 1 is set arbitrarily without loss of generality, as only the
relative differences between the weights are important.
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Due to the limited number of parameters, this problem can be solved with
common optimization solvers. We obtained the values shown in Table 23. Note
that as the importance of the road decreases, so does the corresponding class
weight as is to be expected.

Table 2. Value of FRC weights for the estimation of TR parameters.

Class index 1 2 3 4 5 6 7
Class weight θ 1.00 N/A 1.00 0.50 0.23 0.13 0.03

5 Experimental results

For evaluation purposes, we considered the data collected for January 8, 2021.
Figure 4 shows the time series for the real and estimated flows for a selection of
validation sensors. Note that for most cases, the estimated and real values have
a very similar trajectory. The mismatches obtained for some of the sensors can
be attributed to several factors. The main source of error is due to deviations be-
tween the real and estimated turning ratios. As these parameters were computed
using a simplifying hypothesis using the FRC, there are intersections for which
the obtained values present error. However, this method provides a simple to use
manner to compute these parameters for large networks with easily obtainable
information, and provides good initial results for a large number of locations
which can be improved with time. Another possible error source, is the presence
of internal sources and sinks of traffic flow which are not taken into account.

To quantify the error in time for each location, we use as error metrics the
Relative Mean Error (RME) and the Relative Absolute Error (RAE), defined as

RMEi =

∣∣∣∣∣∣∣
∫ T

0

ϕout
i (t)− ϕ̂out

i (t)dt

∣∣∣∣∣∣∣∫ T

0

ϕout
i (t)dt

, RAEi =

∫ T

0

∣∣ϕout
i (t)− ϕ̂out

i (t)
∣∣dt∫ T

0

ϕout
i (t)dt

. (14)

Figure 5 shows the obtained error metrics for all the available validation sen-
sors. The RME shows that the proposed estimator provides close estimates to
the real values, as half of the validation locations present an error under 20%,
and all cases presented an error under 50%. When considering the RAE, the er-
ror increases as this metric considers not only the differences between the mean
trajectories, but also takes into account the dispersion of the real data. Never-
theless, for half of the locations the RAE lies between 20% and 30% showing a
good agreement of the estimation with the real data. Similarly to the RME, all
locations have a RAE under 50%.

3 The considered network has no road with FRC 2. Thus, its weight does not affect
the calculations.
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Fig. 4. Ground truth flows obtained from cross-validation sensors, and the correspond-
ing estimated flows.

Fig. 5. RME and RAE obtained for the available validation and output sensors.
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6 Conclusions

In this paper, we proposed a data-based flow and density estimator that uses
heterogeneous data sources such as stationary counting sensors, FCD and Blue-
tooth devices. The estimator was tested using real data from the city of Grenoble,
France, using the sensing infrastructure developed in the project GTL-Ville.

Although the problem of TSE in large networks is challenging, the obtained
results are encouraging as the estimated flow for individual roads are very close
to the ground truth data provided by sensors. When considering all the available
validation locations, more than half of the mean trajectories presented an error
below 20%. For some locations, there is a mismatch between the predicted flow
and the real one. Nevertheless, even in this case the obtained errors were below
45%. We identify as the main error source the uncertainty in the values of the
turning ratios, as only a few locations are computed using real data. However,
this can be improved in the future by performing more measuring campaigns,
so the estimation results in the real application are expected to improve signifi-
cantly.
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