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Abstract

We present a topology optimization framework to design periodic composites com-

prised of piezoelectric constituents that exhibit large flexoelectric constants. The nov-

elty of the approach is that it leverages a representative volume element (RVE)-based

computational homogenization approach that enables the analysis of periodic compos-

ites where the characteristic dimensions of the microstructure are significantly smaller

than those of the structure, and as such requires only the optimization of a single RVE

rather than that of the entire structure. We utilize this approach to analyze the enhance-

ment in flexoelectric constants that can be achieved in different types of PZT-based

composites, including hard-hard (PZT-PZT), and hard-soft (PZT-polymer composite,

and porous PZT) structures. In all cases, significant enhancements are observed, with

improvements between 2 and 15 times those of a naive guess, with some designs reach-

ing a factor of one order of magnitude larger than BTO. We identify different mech-

anisms governing the enhanced electromechanical couplings, which can arise either

from an enhancement of effective piezoelectricity in the RVE for PZT-PZT compos-

ites, or from a more subtle interplay involving the enhancement of effective piezoelec-

tric and dielectric properties coupled with a reduction in mechanical compliance for

PZT-polymer and porous PZT RVEs.
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multi scale methods

1. Introduction

Flexoelectricity is the property of an insulating material to polarize when subjected

to strain gradient (inhomogeneous deformation). Even though flexoelectric effects are

much larger in ferroelectric materials [1] and complex oxide ceramics [2, 3, 4, 5], the

flexoelectricity of several polymers has recently been investigated in [6, 7] as well

as in biological membranes in [8]. Kogan [9] formulated the first phenomenological

theory of flexelectricity and estimated the range of values for flexoelectric coefficients.

Tagantsev [10, 11] developed a microscopic theory for the bulk contributions, using the

rigid-ion approximation as well as a phenomenological description.

The flexoelectric effect has been widely studied in recent years due to potential

applications in soft robotics, energy harvesters, stretchable electronics, sensors and ac-

tuators as additional apparent piezoelectric effects can be induced. The fourth-order

partial differential equations of flexoelectric coupling systems have been approached

with analytical solutions on simplifying assumptions and simple structural geometries

[12, 13, 14, 15, 16, 17]. Recently, a computational framework to calculate the flexo-

electric effect in dielectric solids using a meshfree approach was proposed [18, 19, 20].

A B-spline approach has been proposed in [21].

Reviews and discussions on flexoelectricity can be found e.g. in [22, 7, 23, 24, 25,

26, 27].

An ongoing challenge for exploiting flexoelectricity is that the effect is usually

quite low in homogeneous (bulk) materials. The flexoelectric constants can be rel-

atively high in stiff ceramics such as BaTiO3 (BTO), while it is typically negligible

in soft materials such as polymers. There have been various approaches to enhanc-

ing the flexoelectric constants of solids. One approach has been to consider electrets,

i.e. by embedding fixed charges in the material [28]. Another approach has been to

use architected materials comprised of piezoelectric phases [29], where the effective

flexoelectric properties of the piezoelectric composites are obtained using homoge-

nization [30, 31, 32, 33, 34]. More recently, topology optimization [35, 36, 37, 38, 39,
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40, 41, 42], which has a lengthy and successful history of determining, using inverse

homogenization methods [43] the optimal material distribution to maximize a specific

property [44, 43, 45, 46], has been applied to increase the apparent flexoelectricity and

energy conversion in piezoelectric structures [47, 48, 49, 50].

However, to fully exploit the possibility of designing structures to maximize their

flexoelectric properties, advances beyond analytical homogenization theories or com-

putational topology optimization of macroscale structures are required. In particular,

what has not been achieved to-date is a reliable approach to tailoring the microstructure

of a composite to enhance the flexoelectric properties, particularly if the microstructure

exists at a scale that is significantly smaller than that of the structure.

One appealing tool for this task is the use of Topology Optimization (TO). Firstly

proposed by Bendsøe and Kikuchi [51], TO has since been applied to a large variety of

problems in engineering. TO methods can be broadly categorized into three families:

(a) the Solid Isotropic Material with Penalization (SIMP) method [52, 53, 54], (b)

the level set method [55, 56], and (c) the Evolutionary Structural Optimization (ESO)

method [57]. Review of these methods can be found in [58, 59, 60, 61]). A comparison

review on these techniques, with advantages and drawbacks, can be found in [40]. A

survey on the applications of TO to a broad variety of problems including mechanical

and thermal loads of structures, fluid flow, dynamics, acoustics and biomechanicscan

be found in [61]. Recently, Ganghoffer et al. [62] used TO together with the concept of

topological derivative for designing auxetic microstructures exhibiting strain gradient

behavior.

In the present work, we propose a topology optimization framework to design peri-

odic composites comprised of piezoelectric constituents that exhibit large flexoelectric

constants. The approach leverages a recently-developed computational homogeniza-

tion framework for effective flexoelectric materials [63] that enables the estimation

of the (apparent) effective flexoelectric properties of a periodic composite made of

piezoelectric phases. The different associated sensitivity expression are derived in this

context and a SIMP (Solid Isotropic Material with Penalization) topology optimiza-

tion framework is developed. A novel aspect of this approach is that it allows us to

restrict the analysis to a single representative volume element (RVE) that describes the
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microstructure, and importantly does not require the optimization of the fully detailed

structure. This presents significant advantages when there is scale separation, i.e. when

the characteristic dimensions of the heterogeneities are negligible as compared to those

of the structure. We utilize this approach to analyze the enhancement in flexoelectric

constants that can be achieved in different types of PZT-based composites, including

hard-hard (PZT-PZT), and hard-soft (PZT-polymer composite, and porous PZT) struc-

tures. In all cases, significant enhancements are observed, with improvements between

2 and 15 times those of a naive guess, with some designs reaching a factor of one or-

der of magnitude larger than BTO. We identify different mechanisms governing the

enhanced electromechanical couplings, which can arise either from an enhancement of

effective piezoelectricity in the RVE for PZT-PZT composites, or from a more subtle

interplay involving the enhancement of effective piezoelectric and dielectric properties

coupled with a reduction in mechanical compliance for PZT-polymer and porous PZT

RVEs.

The reminder of this paper is as follows. In Section 2, we introduce the homoge-

nization theory which is employed in the optimization process. The topology optimiza-

tion problem for maximizing the effective flexoelectric coefficients of the material is

provided in Section 4. Section 5 presents numerical examples to investigate the poten-

tial of the approach for several representative cases, including PZT/PZT composites,

PZT/polymer composites and voided PZT materials. Conclusion and perspectives are

provided in Section 6.

2. Homogenization framework

In this section, we review the computational homogenization framework proposed

in our previous work [63] for piezoelectric composites with effective flexoelectric be-

havior.

2.1. Micro scale problem

We consider a periodic composite (see Fig. 1(a)) assumed to be characterized by a

Representative Volume Element (RVE) (see fig.1(c)). The RVE is defined in a domain
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Figure 1: (a) Periodic heterogeneous structure; (b) Equivalent piezo-flexoelectric homogeneous structure;(c)

RVE model

Ω ∈Rd whose external boundary is denoted by ∂Ω. The characteristic size of the RVE

is `. The RVE is assumed to be subjected to three homogeneous fields: a strain ε̄, a

strain gradient ∇ε̄ and an electric field Ē. The different phases of the RVE are assumed

to be linear piezoelectric and characterized by an elastic tensor Ck, a dielectric tensor

αk and a piezoelectric tensor E k, k = 1, ...,Np, with Np the number of phases.

The energy density function (electrical enthalpy density) of a piezoelectric material

is defined by:

W =
1
2
ε(x) : C(x) : ε(x)−E(x) ·E (x) : ε(x)− 1

2
E(x) ·α(x) ·E(x) (1)

where C is the fourth-order elastic tensor, α is the second-order dielectric tensor, E is

the third-order piezoelectric tensor and x denotes coordinates. Then the Cauchy stress
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σ and the electric displacement d are defined by:

σ(x) =
∂W
∂ε

= C(x) : ε(x)−E (x) ·E(x) (2)

d(x) =−∂W
∂E

= E (x) : ε(x)+α(x) ·E(x) (3)

The effective electric field can be computed by prescribing the following boundary

conditions over the RVE:

φ(x) =−Ē ·x+ φ̃(x) on ∂Ω (4)

where φ̃(x) is either zero or a periodic fluctuation on ∂Ω. A quadratic boundary condi-

tion (QBC) has been introduced to prescribe an effective strain and strain gradient[64,

65]:

u(x) = ε̄ ·x+ 1
2
Ḡ : x⊗x+ ũ(x) on ∂Ω (5)

where

Ḡi jk = ∇ε i jk +∇ε ik j−∇ε jki (6)

and ũ(x) is either zero or periodic on ∂Ω. However, quadratic boundary conditions

alone can induce spurious gradient terms and a non-convergence of the higher order

effective coefficients with respect to RVE characteristic size. These issues can be elim-

inated by introducing body forces to enforce a constant strain gradient within the RVE

when the material is homogeneous[66].

Then, local equations are substituted by

∇ ·σ(u(x)) = f (∇ε) x ∈Ω (7)

∇ ·d(x) = r(∇ε) x ∈Ω (8)

where

fi = C0
i jkl∇εkl j (9)

r = E 0
i jk∇ε jki (10)
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are body forces added to remove spurious fluctuations in the case of homogeneous

RVEs (see [66] and [63] for more details). Above, σ and d are given by Eqs. (2), (3).

Eqs. (7)-(8) are completed with the boundary conditions (4)-(5).

Solving the linear localization problem (7)-(8)-(4)-(5) by using the superposition

principle, the local strain field ε(x) and the local electric field E(x) can be obtained as:

ε(x) = A0(x) : ε̄+B0(x) · Ē+ Ã1(x)
... ∇ε, (11)

E(x) = D0(x) : ε̄+h0(x) · Ē+ D̃1(x)
... ∇ε (12)

where

Ã1(x) = A1(x)−A0(x)⊗x (13)

D̃1(x) = D1(x)−D0(x)⊗x (14)

are corrected terms to remove local spurious fluctuations in the case of homogeneous

RVEs[66, 63].

The strain solutions are calculated by:

i) A0(x), B0(x) and A1(x) are the strain solution ε(x) obtained by solving the prob-

lems (7)-(8)-(4)-(5) with ε̄ = 1
2 (ek⊗ el + el ⊗ ek), Ē = ek, ∇ε = 1

2 (ek⊗ el + el ⊗

ek)⊗ em, respectively.

ii) D0(x), h0(x) and D1(x) are the electric field solution E(x) obtained by solving

the problems (7)-(8)-(4)-(5) with ∇ε= 1
2 (e j⊗ ek + ek⊗ e j), Ē = e j, ∇ε̄= 1

2 (e j⊗

ek + ek⊗ e j)⊗ el , respectively.

The terms ei are unitary basis vectors.

3. Finite element discretization of local RVE equation

In the following, we present the Finite Element discretization for localization prob-

lem defined in section 2.1. The 2D plane strain condition is considered.
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The weak form associated with the coupled problem (7)-(8)-(4)-(5) is to find u ∈

{u = ū∗ on ∂Ωu,u ∈H1(Ω)} and φ ∈ {φ= φ̄∗ on ∂Ωφ ,φ ∈H1(Ω)} such that [63]∫
Ω

∇(d) ·δφdΩ =−
∫

Ω

{Ē : ∇ε̄x} ·∇(δφ)dΩ (15)∫
Ω

∇(σ) : δudΩ =
∫

Ω

{C̄ : ∇ε̄x} ·ε(δu)dΩ (16)

for all δu∈ {δu= 0 on ∂Ωu,δu∈H1(Ω)} and δφ∈ {δφ= 0 on ∂Ωφ ,δφ∈H1(Ω)}.

Substituting Eq. (2) and (3) into Eq.(15) and (16) yields:∫
Ω

(E : ε(u)+α ·E(φ)) ·∇(δφ)dΩ =−
∫

Ω

{Ē : ∇εx} ·∇(δφ)dΩ (17)∫
Ω

(C : ε(u)−E T ·E(φ)) : ε(δu)dΩ =
∫

Ω

{C̄ : ∇εx} ·ε(δu)dΩ (18)

We adopt the same finite element discretization for the approximation of the dis-

placement field u and of the electric field φ. Using 8-node element, the two finite

element approximate field (uh, φh) can be expressed as:

uh(x) = Nu(x)ui; φh(x) = Nφ (x)φi (19)

δuh(x) = Nu(x)δui; δφh(x) = Nφ (x)δφi (20)

and their derivatives as,

∇uh(x) = Bu(x)ui; ∇φh(x) = Bφ (x)φi (21)

∇δuh(x) = Bu(x)δui; ∇δφh(x) = Bφ (x)δφi (22)

By substituting the above discrete approximation in Eq(17) and (18), we obtain the

linear system of coupling equations: Kφφ Kφu

−Kuφ Kuu

 φ

u

=

 Fφ

Fu

 (23)
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with

Kφφ =
∫

Ω

(Bφ )
T [α]Bφ dΩ, (24)

Kφu =−
∫

Ω

(Bφ )
T [E ]BudΩ, (25)

Kuu =
∫

Ω

(Bu)
T [C]BudΩ, (26)

Fφ =
∫

Ω

(Bφ )
T [E ][κ]dΩ, (27)

Fu =
∫

Ω

(Bu)
T [C][κ]dΩ, (28)

and

[κ] =


x∇ε111 + y∇ε112

x∇ε221 + y∇ε222

x∇ε121 + y∇ε122

 (29)

3.1. Effective piezo-flexoelectric tensors

In our previous work[63], a general energy density function for an effective piezo-

flexoelectric material was proposed, extending a Mindlin strain gradient model with

electromechanical terms as:

W̄ =
1
2
ε̄ : C̄ : ε̄− 1

2
Ē · ᾱ ·E− Ē · Ē : ε̄

+
1
2

∇ε̄
... Ḡ

... ∇ε̄+ Ē · F̄
... ∇ε̄+ ε̄ : M̄

... ∇ε (30)

where Ḡ is the sixth-order effective strain gradient elastic tensor, F̄ is the fourth-order

effective flexoelectric tensor coupling electric field and strain gradient, and M̄ is a fifth-

order effective tensor coupling strain and strain gradient. Above, (·)
... (·) denotes triple

contraction of indices. Perfect interfaces between different phases are assumed. Note

that the above model neglects terms related to electric strain gradient, e.g. associated

with the converse flexoelectric gradient (see e.g. [67, 68, 69]). Such extension could

be included in the present topology optimization framework and will be the topic of

future studies.
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The effective stress tensor σ̄, effective electric displacement d̄ and effective hyper-

stress tensor S̄ associated with energy density function (30) are defined as:

σ̄ =
∂W̄
∂ ε̄

, d̄ =−∂W̄
∂ Ē

, S̄ =
∂W̄
∂∇ε

(31)

Taking the spatial average of (1) we obtain:

W̄ =
1
2
〈ε(x) : C(x) : ε(x)〉−〈E(x) ·E (x) : ε(x)〉− 1

2
〈E(x) ·α(x) ·E(x)〉

(32)

where 〈·〉 = 1
Ω

∫
Ω
·dΩ denotes the volume average over Ω. Then substituting Eq.(11)

and (12) into Eq. (32), and comparing the different terms with Eq.(30), the effective

operators are obtained:

C̄=〈(A0(x))T : C(x) : A0(x)

−2(D0(x))T ·E (x) : A0(x)− (D0(x))T ·α(x) ·D0(x)〉 (33)

ᾱ =〈−(B0(x))T : C(x) : B0(x)

+2(h0(x))T ·E (x) : B0(x)+(h0(x))T ·α(x) ·h0(x)〉 (34)

Ē =〈−(B0(x))T : C(x) : A0(x)+(h0(x))T ·E (x) : A0(x)

+(B0(x))T : E (x) ·D0(x)+(h0(x))T ·α(x) ·D0(x)〉 (35)

F̄=〈(B0(x))T : C(x) : Ã1(x)− (h0(x))T ·E (x) : Ã1(x)

− (B0(x))T : E T (x) · D̃1(x)− (h0(x))T ·α(x) · D̃1(x)〉 (36)

Note that the expressions for M̄ and Ḡ in (30), which are not used in the present

paper, can be found in [63]. These tensors are only used if we perform structure cal-

culations using the homogenized model (30)-(31) (see e.g. [18, 19] for FEM related

formulations). The complete expressions for these tensors can be found in [63]. The
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finite element evaluations and matrix forms for the effective tensors are presented in

Appendix A. The matrix form of the flexoelectric tensor is given in 2D by:

[F̄] =

F̄1111 F̄1221 F̄1122 F̄1222 F̄1112 F̄1121

F̄2111 F̄2221 F̄2122 F̄2222 F̄2112 F̄2121

 (37)

3.2. The electromechanical coupling

A useful parameter to compare different piezoelectric and flexoelectric materials is

the electromechanical coupling coefficient denoted as K . The coupling coefficient is

a measure of the conversion efficiency between mechanical and electrical energy using

the piezoelectric material. It takes the same indices as the piezoelectric coefficient E

and is formulated as [70]

¯KiJ =
D̄iJ√
ēiiS̄JJ

(38)

with

[D̄ ] = [Ē ] : [C̄]−1, [ē] = ([Ē ] : [C̄]−1 : [Ē ]T +[ᾱ]) : [C̄]−1 [S̄] = [C̄]−1,

(39)

where D̄ , ē and S̄ denote the piezoelectric coefficient, dielectric constant and compli-

ance matrix, respectively.

4. SIMP topology optimization for flexoelectric composites

4.1. Topology optimization problem formulation

Here we formulate the topology optimization problem to maximize the absolute

values of the flexoelectric tensor components in (A.6) and (36). First, the periodic

unit cell is discretized into Ne finite elements which match the mesh used for solving

the electromechanical problem defined in the previous section. We define the inclusion

material density ρe in each element e, e = 1,2, ...,Ne such that ρe = 1 is associated with

the inclusion/void phase and ρ = 0 is associated with the matrix phase. The topology

optimization is formulated as follows:
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Maximize : |F̄i jkl(ρ)|

subject : KU = F

: ∑
Ne
e=1 ρeve/(∑

Ne
e=1 ve) = f

0≤ ρe ≤ 1, e = 1,2, ...,Ne

(40)

The discrete system KU = F is defined in Eqs. (23)-(28). Above, ve is the volume

of an element e and f is the inclusion volume fraction.

We use the SIMP method [71, 72, 73] to solve the problem. In this framework, the

local material properties are interpolated with respect to the local density in a contin-

uous manner, using penalty exponents to enforce local densities to converge to values

close to 0 or 1. Selection of exponents have been investigated in [74]. For composites

made of two phases, we use the following expression:

[Ci jkl(ρ)] = ρ
pc[C1

i jkl ]+ (1−ρ
pc)[C2

i jkl ]

[αi j(ρ)] = ρ
pa[α1

i j]+ (1−ρ
pa)[α2

i j]

[Eki j(ρ)] = ρ
pe[E 1

ki j]+ (1−ρ
pe)[E 2

ki j] (41)

where the superscript 1 and 2 are associated with phase 1 and phase 2, respectively and

pc, pa and pe are penalty exponents. In most of the numerical examples, these values

are chosen as pc = pa = pe = 3, except in a few cases where pe = 4 is sometimes used

to improve the convergence.

In the special case of porous materials, the following expression is usually preferred

[73]:

Ci jkl(ρ) =Cvoid
i jkl +ρ

pc×Cm
i jkl

αi j(ρ) = α
void
i j +ρ

pa×α
m
i j

Eki j(ρ) = E void
ki j +ρ

pe×E m
ki j

(42)

where void refers to a fictitious material with small values of the (stiffness, dielectric,

piezoelectric) properties to mimic the void.
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The above problem (40) requires evaluating the gradient of the objective function

with respect to the local densities (subsequently referred to as sensitivities). The ob-

jective function, i.e. the effective flexoelectric tensor, is written in matrix form as (see

Appendix A):

[F̄(ρ)] =〈(B0)T : C : Ã1− (h0)T ·E : Ã1− (B0)T : E T · D̃1− (h0)T ·α · D̃1〉

(43)

where we have omitted the dependence to the coordinates x and design variable ρ to

alleviate the notations. The developed expressions for the sensitivities are given the

next section. The optimization problem (40) is solved by the Conservative Convex

Separable Appro ximations (CCSA optimizer[75].

4.2. Numerical Analysis of Sensitivity

The gradient of flexoelectric tensor [F̄] with respect to ρ , is expressed as:

∂ [F̄]
∂ρ

=
∂ ((B0)

T
[C(ρ)]Ã1)

∂ρ
− ∂ ((h0)

T
[E (ρ)]Ã1)

∂ρ
− ∂ ((B0)

T
[E (ρ)]T D̃1)

∂ρ
− ∂ ((h0)

T
[α(ρ)]D̃1)

∂ρ

=
∂{(VT

u )BT
u [C(ρ)]Bu(Wu−Wu

x)}
∂ρ

+
∂{(Vφ

T )BT
φ
[E (ρ)]Bu(Wu−Wu

x)}
∂ρ

+
∂{(VT

u )BT
u [E (ρ)]T Bφ (Wφ −Wφ

x)}
∂ρ

−
∂{(Vφ

T )BT
φ
[α(ρ)]Bφ (Wφ −Wφ

x)}
∂ρ

(44)
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Expanding Eq. (44), we have

∂ [F̄]
∂ρ

={∂ (VT
u )

∂ρ
BT

u [C(ρ)]Bu(Wu−Wu
x)+(Vu)

T ∂ (BT
u [C(ρ)]Bu)

∂ρ
(Wu−Wu

x)

+(VT
u )B

T
u [C(ρ)]Bu

∂ (Wu−Wu
x)

∂ρ
}+{

∂ (Vφ
T )

∂ρ
BT

φ [E (ρ)]Bu(Wu−Wu
x)

+(Vφ )
T ∂ (BT

φ
[E (ρ)]Bu)

∂ρ
(Wu−Wu

x)+(Vφ
T )BT

φ [E (ρ)]Bu
∂ (Wu−Wu

x)

∂ρ
}

+{∂ (VT
u )

∂ρ
BT

u [E (ρ)]T Bφ (Wφ −Wφ
x)+(Vu)

T ∂ (BT
u [E (ρ)]T Bφ )

∂ρ
(Wφ −Wφ

x)

+(VT
u )B

T
u [E (ρ)]T Bφ

∂ (Wφ −Wφ
x)

∂ρ
}−{

∂ (Vφ
T )

∂ρ
BT

φ [α(ρ)]Bφ (Wφ −Wφ
x)

+(Vφ )
T ∂ (BT

φ
[α(ρ)]Bφ )

∂ρ
(Wφ −Wφ

x)+(Vφ
T )BT

φ [α(ρ)]Bφ

∂ (Wφ −Wφ
x)

∂ρ
}

(45)

After rearranging Eq. (45), we obtain

∂ [F̄]
∂ρ

=
∂ (VT

u )

∂ρ

{
BT

u [C(ρ)]Bu(Wu−Wu
x)+BT

u [E (ρ)]T Bφ (Wφ −Wφ
x)
}

+
∂ (Vφ

T )

∂ρ

{
BT

φ [E (ρ)]Bu(Wu−Wu
x)−BT

φ [α(ρ)]Bφ (Wφ −Wφ
x)
}

+
{
(VT

u )B
T
u [C(ρ)]Bu +(Vφ

T )BT
φ [E (ρ)]Bu

} ∂ (Wu−Wu
x)

∂ρ

+
{
(VT

u )B
T
u [E (ρ)]T Bφ − (Vφ

T )BT
φ [α(ρ)]Bφ

} ∂ (Wφ −Wφ
x)

∂ρ

+(Vu)
T ∂ (BT

u [C(ρ)]Bu)

∂x
(Wu−Wu

x)+(Vφ )
T ∂ (BT

φ
[E (ρ)]Bu)

∂x
(Wu−Wu

x)

+(Vu)
T ∂ (BT

u [E (ρ)]T Bφ )

∂ρ
(Wφ −Wφ

x)− (Vφ )
T ∂ (BT

φ
[α(ρ)]Bφ )

∂ρ
(Wφ −Wφ

x)

(46)

The adjoint method has been widely used for sensitivity analysis of gradient-based

optimization algorithms[76, 77], and is employed here. The corresponding Lagrangian

for the optimization problem (40) is formed by introducing an adjoint vector λ as:

L =F+λ (KU−F) (47)
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As KU−F = 0 holds, then λ = [λi,µi](i = 1,2,3) can take arbitrary values. Dif-

ferentiating the Lagrangian L with respect to the design variable ρ gives:

∂L
∂ρ

=
∂F
∂ρ

+λ
∂ (KU−F)

∂ρ
(48)

The vector KU = F is defined in Eqs. (23)-(28). Substituting these equations into

(48), then splitting the expression (46) into 4 parts, denoted by I, II, III, IV , we have:

∂ [FI
]

∂ρ
=

∂ (VT
u )

∂ρ

{
BT

u [C(ρ)]Bu(Wu−Wu
x)+BT

u [E (ρ)]T Bφ (Wφ −Wφ
x)
}

+
∂ (Vφ

T )

∂ρ

{
BT

φ [E (ρ)]Bu(Wu−Wu
x)−BT

φ [α(ρ)]Bφ (Wφ −Wφ
x)
}

+

{
∂ (Vφ

T )

∂ρ
Kφφ +(Vφ

T )
∂Kφφ

∂ρ
+

∂ (VT
u )

∂ρ
KT

φu +(VT
u )

∂KT
φu

∂ρ

}
λ1

+

{
−

∂ (Vφ
T )

∂ρ
Kφu− (Vφ

T )
∂Kφu

∂ρ
+

∂ (VT
u )

∂ρ
Kuu +(VT

u )
∂Kuu

∂ρ

}
µ1

=
∂ (VT

u )

∂ρ

{
BT

u [C(ρ)]Bu(Wu−Wu
x)+BT

u [E (ρ)]T Bφ (Wφ −Wφ
x)+KT

φuλ1 +Kuuµ1
}

+
∂ (Vφ

T )

∂ρ

{
BT

φ [E (ρ)]Bu(Wu−Wu
x)−BT

φ [α(ρ)]Bφ (Wφ −Wφ
x)+Kφφλ1−Kφuµ1

}
+

{
(Vφ

T )
∂Kφφ

∂ρ
+(VT

u )
∂KT

φu

∂ρ

}
λ1 +

{
−(Vφ

T )
∂Kφu

∂ρ
+(VT

u )
∂Kuu

∂ρ
)

}
µ1

(49)

As Eq. (49) holds for arbitrary vectors λ1 and µ1, the adjoint vectors λ1 and µ1

can be chosen as the solution of the following adjoint equation to eliminate the implicit

terms ∂ (VT
u )

∂ρ
and ∂ (Vφ

T )

∂ρ
. Then the corresponding adjoint problem is defined as,

∂ (VT
u )

∂ρ

{
BT

u [C(ρ)]Bu(Wu−Wu
x)+BT

u [E (ρ)]T Bφ (Wφ −Wφ
x)+KT

φuλ1 +Kuuµ1

}
= 0

∂ (Vφ
T )

∂ρ

{
BT

φ
[E (ρ)]Bu(Wu−Wu

x)−BT
φ
[α(ρ)]Bφ (Wφ −Wφ

x)+Kφφλ1−Kφuµ1

}
= 0

(50)
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and written in matrix form, gives

 Kφφ −Kφu

KT
φu Kuu

 λ1

µ1

=−

 BT
φ
[E (ρ)]Bu(Wu−Wu

x)−BT
φ
[α(ρ)]Bφ (Wφ −Wφ

x)

BT
u [C(ρ)]Bu(Wu−Wu

x)+BT
u [ξ (ρ)]

T Bφ (Wφ −Wφ
x)


(51)

Part II of (49) is given by

∂ [FII
]

∂ρ
=
{
(VT

u )B
T
u [C(ρ)]Bu +(Vφ

T )BT
φ [E (ρ)]Bu

} ∂Wu

∂ρ

+
{
(VT

u )B
T
u [E (ρ)]T Bφ − (Vφ

T )BT
φ [α(ρ)]Bφ

} ∂Wφ

∂ρ

+λT
2

{
∂Kφφ

∂ρ
Wφ +Kφφ

∂Wφ

∂ρ
+

∂Kφu

∂ρ
Wu +Kφu

∂Wu

∂ρ
−

∂Fφ

∂ρ

}
+µT

2

{
−

∂KT
φu

∂ρ
Wφ −KT

φu
∂Wφ

∂ρ
+

∂Kuu

∂ρ
Wu +Kuu

∂Wu

∂ρ
− ∂Fu

∂ρ

}

=
{

VT
u BT

u [C(ρ)]Bu +Vφ
T BT

φ [E (ρ)]Bu +λ
T
2 Kφu +µ

T
2 Kuu

} ∂Wu

∂ρ

+
{
(VT

u )B
T
u [E (ρ)]T Bφ − (Vφ

T )BT
φ [α(ρ)]Bφ +λ

T
2 Kφ ,φ −µT

2 KT
φu
} ∂Wφ

∂ρ

+λT
2

{
∂Kφφ

∂ρ
Wφ +

∂Kφu

∂ρ
Wu−

∂Fφ

∂ρ

}
+µT

2

{
−

∂KT
φu

∂ρ
Wφ +

∂Kuu

∂ρ
Wu−

∂Fu

∂ρ

}
(52)

The derivatives of body forces with respect to ρ must also be evaluated. Using the

same method as for Part I, after eliminating the displacement derivatives, the adjoint

problem for Eq. (52) reads: Kφφ −Kφu

KT
φu Kuu

 λ2

µ2

=−

 BT
φ
[E (ρ)]BuVu−BT

φ
[α(ρ)]Bφ Vφ

BT
u [C(ρ)]BuVu +BT

u [E (ρ)]T Bφ Vφ

 (53)
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Similarly:

∂ [FIII
]

∂ρ
=
{
(VT

u )B
T
u [C(ρ)]Bu +(Vφ

T )BT
φ [E (ρ)]Bu

}(
−∂W x

u

∂ρ

)
+
{
(VT

u )B
T
u [E (ρ)]T Bφ − (Vφ

T )BT
φ [α(ρ)]Bφ

}(
−

∂Wφ
x

∂ρ

)
+λT

3

{
∂Kφφ

∂ρ
Uφ +Kφφ

∂Uφ

∂ρ
+

∂Kφu

∂ρ
Uu +Kφu

∂Uu

∂ρ

}
+µT

3

{
−

∂KT
φu

∂ρ
Uφ −KT

φu
∂Uφ

∂ρ
+

∂Kuu

∂ρ
Uu +Kuu

∂Uu

∂ρ

}

=
{
−VT

u BT
u [C(ρ)]Bux−Vφ

T BT
φ [E (ρ)]Bux+λT

3 Kφu +µ3Kuu
} ∂Uu

∂ρ

+
{
−VT

u BT [E (ρ)]T Bφ x+(Vφ
T )BT

φ [α(ρ)]Bφ x+λT
3 Kφφ −µ

T
3 KT

φu
} ∂Uφ

∂ρ

+λT
3

{
∂Kφφ

∂ρ
Uφ +

∂Kφu

∂ρ
Uu

}
+µT

3

{
−

∂KT
φu

∂ρ
Uφ +

∂Kuu

∂ρ
Uu

}
(54)

The adjoint problem for Part III is written as:

 Kφφ −Kφu

KT
φu Kuu

 λ3

µ3

=−

 −BT
φ
[E (ρ)]BuVux+BT

φ
[α(ρ)]Bφ Vφ x

−BT
u [C(ρ)]BuVux−BT

u [E (ρ)]T Bφ Vφ x

 (55)

From Eq. (46), we can obtain Part IV , which is explicit and can be easily calculated

in terms the interpolation function Eq.(41).

∂ [FIV
]

∂ρ
=(Vu)

T BT
u

∂ ([C(ρ)])
∂x

Bu(Wu−Wu
x)+(Vφ )

T BT
φ

∂ ([E (ρ)])

∂x
Bu(Wu−Wu

x)

+(Vu)
T BT

u
∂ ([E (ρ)])

∂ρ
Bφ (Wφ −Wφ

x)− (Vφ )
T BT

φ

∂ ([α(ρ)])

∂ρ
Bφ (Wφ −Wφ

x)

(56)

After solving all the above adjoint problems, we can get the whole explicit sensi-

17



tivity of flexoelectric tensor with respect to density ρ as:

∂ [F]
∂ρ

=

{
(Vφ

T )
∂Kφφ

∂ρ
+(VT

u )
∂KT

φu

∂ρ

}
λ1 +

{
−(Vφ

T )
∂Kφu

∂ρ
+(VT

u )
∂Kuu

∂ρ

}
µ1

+λT
2

{
∂Kφφ

∂ρ
Wφ +

∂Kφu

∂ρ
Wu−

∂Fφ

∂ρ

}
+µT

2

{
−

∂KT
φu

∂ρ
Wφ +

∂Kuu

∂ρ
Wu−

∂Fu

∂ρ

}

+λT
3

{
∂Kφφ

∂ρ
Wφ

x +
∂Kφu

∂ρ
Wu

x
}
+µT

3

{
−

∂KT
φu

∂ρ
Wφ

x +
∂Kuu

∂ρ
Wu

x

}

+(Vu)
T ∂ (BT

u [C(ρ)]Bu)

∂ρ
(Wu−Wu

x)+(Vφ )
T ∂ (BT

φ
[E (ρ)]Bu)

∂x
(Wu−Wu

x)

+(Vu)
T ∂ (BT

u [ξ (ρ)]
T Bφ )

∂ρ
(Wφ −Wφ

x)− (Vφ )
T ∂ (BT

φ
[α(ρ)]Bφ )

∂ρ
(Wφ −Wφ

x)

(57)

The body forces are non-zero for the third adjoint problem. The interested readers

can also calculate the derivative of body forces with respect to design variables by the

presented adjoint method. Here we obtain 3 adjoint problems to compute the adjoint

vectors λ1 and µ1, λ2 and µ2, as well as λ3 and µ3, respectively. So we must choose 3

boundary conditions for the adjoint problems. Usually, we can define the same bound-

ary conditions as the corresponding to equivalent finite element equations. However

the numerical simulations indicate that prescribing one or two adjoint problems as zero

Dirichlet boundary conditions leads to better numerical stability and larger absolute

value of optimized components.

5. Numerical examples

In this section, the proposed computational homogenization framework is applied

to optimize the components of the effective flexoelectric tensor of a two-phase com-

posite. More specifically, we investigate the optimization of the F̄1221, F̄2221, F̄1112 and

F̄2112 coefficients, as these coefficients characterize polarization under the action of

bending. The other coefficients of the flexoelectric tensor, i.e. F̄1111, F̄2111, F̄1222, F̄2222

are not investigated here, as they correspond to polarization under more complex strain
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gradient modes. The homogenization and optimization is performed on a periodic het-

erogeneous material composed of piezoelectric phases. We consider three cases: (1)

a composite made of two stiff piezoelectric phases; (2) a composite made of a stiff

piezoelectric matrix and soft polymer inclusion; (3) a porous piezoelectric material. In

all numerical examples, the RVEs are discretized by 60× 60 8-node quadratic finite

elements.

5.1. Ceramic/ceramic Piezoelectric composite

We first consider a two-phase composite made of piezoelectric phases. Each phase

is made with PZT (lead zirconium titanate ceramics). To induce a heterogeneity, the

crystal lattice is oriented by a mismatch angle of θ = π in the inclusion phase. The

related properties of the matrix and inclusion are indicated in matrix form in (58)-(61),

in which the subscript m and i refer to the matrix and inclusion, respectively[78].

[Cm] = [Ci] =


131.39 83.237 0

83.237 154.837 0

0 0 35.8

(GPa, (58)

[αm] = [αi] =

2.079 0

0 4.065

(C ·m−2) (59)

[E m] =

−2.120582 −2.120582 0

0 0 0

(nC ·m−1 ·V−1) (60)

[E i] =

2.120582 2.120582 0

0 0 0

(nC ·m−1 ·V−1) (61)

We perform the topology optimization of the inclusion shape with respect to the

flexoelectric coefficients F̄1221 and F̄2112, and set the inclusion volume fraction to f =

0.4. As a first guess, the design variables are uniformly set to ρe = 0.4 (e = 1,..., Ne =

3600). The guess design with triangular shape which is illustrated in Fig. 2a has been
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Figure 2: Unit cells with triangular inclusions with inclusion volume fraction of f = 0.4, polarization P and

the mismatch angle θ between matrix and inclusion phases; (a) guess design used for computing F1221 and

F2112; (b) guess design used for computing F1112 and F2221.

investigated in [63] and will serve as a comparison solution with respect to optimized

topological designs.

The final optimized unit cell topologies are shown in Figs. 4a and 7a, where the

optimization process converges in about 60 iterations for F̄1221 and F̄2112. In all fig-

ures, the copper and black colors refer to the inclusion and matrix phases, respectively.

Iteration histories are shown in Fig. 3, where Normalized Flexoelectric F refers to

F i jkl/FRe f
i jkl , where FRe f

i jkl is the guess solution obtained on a unit cell with triangular

shape inclusion.

The final values for the optimized microstructures are F̄1221 = 1.365×10−4 C.m−1

and F̄2112 = 2.689× 10−4 C.m−1, which represents a significant improvement of the

values as compared to the reference triangular solutions of 79.61% and 83.55% for

F̄1221 and F̄2112, respectively. It should be noticed that the obtained values are higher

than naturally flexoelectric materials, such as BaTiO3 and PMN-PT[7] whose flexo-

electricity is reported as of the order of 10−5 C.m−1. It is worth noting that the present

SIMP framework allows initiating the topology as uniform, with densities equal to the

required volume fraction. This explains why the flexoelectric coefficients are initially

zero.

In the next example, we analyze the size effects related to varying the length ` of
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Figure 3: Topology optimization process with respect to normalized flexoelectric components and volume

fractions for the PZT/PZT: (a) F̄1221, 1×1 cells; (b) F̄2112, 1×1 cells; (c) F̄1221, 2×2 cells; (d) F̄2112, 2×2

cells.
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(a) (b)

(c) (d)

Figure 4: Optimal topology for F̄1221: (a) PZT/PZT, 1×1 cells; (b)PZT/PZT, 2×2 cells; (c) PZT/polymer,

1×1 cells; (d) PZT/void, 1×1 cells.
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(a) E2(x) (b) ∇ε112(x)

Figure 5: Electric field (E2-component) and strain gradient (∇ε112-component within the PZT-PZT-

optimized microstructure corresponding to the optimized F̄2112 in Fig. 7(a).

the unit cell. We consider the optimized RVE of Fig.4a and use the same material

parameters as in (58)-(61). Here again, the RVE is composed of 1× 1 unit cell. The

dimensions of the RVE are varied according to ε = `/`0, where `0 = 1 mm. We can see

in Fig. 6 that the present model can capture the size effects of flexoelectric effective

properties.

The electromechanical coefficients for the reference RVE with triangular inclusion

are ¯K re f
31 = 0.0929 and ¯K re f

32 = 0.0736. For the optimized F̄1221, the coupling coeffi-

cients are found as ¯K31 = 0.1141 and ¯K32 = 0.0903, increasing respectively by 22.8%

and 22.7%. Similarly, for the optimized F̄2112, the coupling coefficients are found as

¯K31 = 0.1183 and ¯K32 = 0.0937, with each increasing by 27.3%.

To gain more insight into the mechanisms driving the increase in the flexoelectric

constants, we plot in Fig. 5 the local electric field component E2 and local strain gra-

dient component ∇ε112 within the optimized F2112 unit cell shown in Fig. 7(a) for a

prescribed strain gradient ∇̄ε112 = 1 m−1. This is done as the value of the flexoelectric

constant Fa jkl depends on the polarization direction a, and the strain gradient ∇ε̄ jkl .

We can observe that both the electric field and strain gradient are localized within the

microstructure, roughly at the interface between the PZT matrix and PZT inclusion.

Furthermore, the electric field is asymmetric with respect to the polarization direction,
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Figure 6: Size-dependent effective flexoelectric properties F1221 for the RVE with topology of Fig.4a.

which is required to obtain non-zero flexoelectric constants. While the strain gradient

and electric field are both localized at the interface, the enhancements are not as large

as for later examples using a hard/soft interface, and thus the enhancement in the op-

timized F̄2112, while excellent at 83.5%, is smaller than the later optimized hard/soft

structures.

To understand the enhancement in electromechanical coupling coefficient ¯K , we

examine the different terms contributing to it in Table 2. There, we find that for the

PZT/PZT case, because the matrix and inclusion are comprised of the same material,

the compliance S̄ and dielectric matrices ē have the same values. Therefore, the in-

crease in electromechanical coupling ¯K for the hard/hard composite is entirely driven

by the enhancement in effective RVE piezoelectric constants D̄ .

Next, we investigate the influence of the volume fraction f on the obtained geome-

tries obtained by optimizing F̄1221 and F̄2112 in Figs. 8 and 9, respectively. We first note

that the volume fraction has a direct influence on the obtained geometry. When f is

around 0.5, a simple layered structure is obtained. However, more asymmetric geome-

tries with respect to the y−axis are induced for other volume fractions. In addition, the

corresponding values of the optimized coefficients do not increase monotonically with
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(a) (b)

(c) (d)

Figure 7: Optimal topology for F̄2112: (a) PZT/PZT, 1×1 cells; (b)PZT/PZT, 2×2 cells; (c) PZT/polymer,

1×1 cells; (d) PZT/void, 1×1 cells.
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the volume fraction, but reach the largest value around f = 0.5, leading to F̄1221 = 1.43

(×10−4C ·m−1) and F̄2112 = 2.767 (×10−4C ·m−1). When the unit cell is homogeneous

( f = 0 and f = 1), the flexoelectric coefficients vanish.

It has been in shown in [66, 63] that in the present computational framework, the

convergence of effective flexoelectric properties quickly converge with respect to the

number of unit cells. Next, a 2× 2 periodic repetition of unit cells is investigated to

determine the influence of using more cells within the RVE for the calculations. Each

unit cell is composed of 60× 60 elements, thus 4× 60× 60 elements are used in the

2×2 unit cells.

Figure 8: Optimal values of flexoelectric coefficient F̄1221 and corresponding topologies with respect to

volume fraction of inclusion.

The optimized structures of the 2×2 periodic unit cell are obtained in Fig. 4b and

Fig. 7b for f = 0.4. In that case, the maximum values of the flexoelectric coefficients

are F̄1221 = 1.616 (×10−4C ·m−1) and F̄2112 = 3.298 (×10−4C ·m−1). The coupling

coefficients are obtained as ¯K31 = 0.1449 and ¯K32 = 0.1147 for optimized F̄1221, and

¯K31 = 0.1169 and ¯K32 = 0.0925 for optimized F̄2112. Then, a notable change is ob-

tained as compared to the 1× 1 unit cell. However, the obtained topologies are very
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Figure 9: Optimal values of flexoelectric coefficient F̄2112 and corresponding topologies with respect to

volume fraction of inclusion.

similar, which suggest that the topology optimization can be conducted on a single unit

cell, while the effective properties can be estimated using more repeated unit cells. In

our previous work [66] focusing on the homogenization of strain gradient elastic prob-

lems, we have shown that the present formulation leads to convergent properties with

respect to the number of unit cells.

5.2. Ceramic/doped piezoelectric polymer composite

In our second example, we replace the misoriented and mechanically stiff PZT

inclusion with a soft, dielectric, polymer inclusion (polyvinylidene fluoride, PVDF).

The elastic, piezoelectric and dielectric properties for the polymer are given below. In

comparison to the PZT properties in Eqs. (58)-(61), all of the polymer properties are

1-2 orders in magnitude lower than for PZT. Despite this, we shall demonstrate in this

example that the potential of increased strain gradients that may be possible by using

hard/soft composites can lead to effective flexoelectric constants and electromechanical

coupling constants that can exceed those of the PZT/PZT composite in the previous
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(a) (b)

Figure 10: Optimal topology for F̄2221: (a) PZT/polymer; (b) PZT/void.

example. The material parameters of matrix PZT are expressed in (58)-(60), while the

material properties of PVDF are described in (62)-(64) [79].

[Ci] =


6.066 3.911 0

3.911 6.066 0

0 0 1.078

(GPa) (62)

[αi] =

0.025 0

0 0.084

(C ·m−2) (63)

[E i] =

0.1272 0.0873 0

0 0 0

(nC ·m−1 ·V−1) (64)

We perform topology optimization of the PVDF inclusion with respect to the flex-

oelectric coefficients F̄1221, F̄2221, F̄1112 and F̄2112. To ensure that these results can

be compared against the previous PZT/PZT results, we set the volume fraction of

the PVDF inclusion to be f = 0.4 for all cases. Similarly, the initial guess is set by

ρe = 0.4, e = 1,2, ...,Ne = 3600. The periodic density conditions are considered here.

The final optimal unit cells of the flexoelectric coefficients F̄1221, F̄2221, F̄1112 and F̄2112

are obtained in Figs. 4c, 10a, 11a and 7c. In these figures, the cyan and black colors
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(a) (b)

Figure 11: Optimal topology for F̄1112: (a) PZT/polymer; (b) PZT/void.

refer to the inclusion PVDF and matrix PZT, respectively. Iteration histories are shown

in Fig. 12. The reference solutions calculated by a triangular PVDF inclusion as in Fig.

2 are shown in all cases.

We obtained four different optimized unit cells, and a significant improvement can

be found compared to the reference triangular solutions. The optimal absolute values

are F̄1221 = 1.484× 10−4 C.m−1, F̄2221 = 3.49× 10−5 C.m−1, F̄1112 = 7.33× 10−5

C.m−1 and F̄2112 = 2.006× 10−4 C.m−1, which imply increases by 1462 %, 113 %,

254 % and 1431 %, respectively. Interestingly, despite being comprised of a polymer

inclusion whose (elastic, piezoelectric, and dielectric) properties are all about two or-

ders of magnitude smaller than the PZT matrix, the flexoelectric constants are quite

similar to those obtained for the optimized PZT/PZT composites discussed previously,

with significantly larger percentage enhancements.

To test the influence of the mesh, we compare the optimal topology configurations

of PZT/PVDF composites with respect to F2221 using a regular mesh and an unstruc-

tured mesh. Both meshes contain 4-node elements and similar mesh densities. We

can note from Fig. 13 that both topologies are almost identical, showing the mesh-

independence of the present formulation. The only slight differences come from the

lack of periodicity in the unstructured mesh, leading to small perturbations near the

boundaries.
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Figure 12: Topology optimization process with respect to normalized flexoelectric components and volume

fractions for the PVDF/PZT: (a) F̄1221; (b) F̄2221; (c) F̄1112; (d) F̄2112.
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We then illustrate the flexoelectric effects on the optimized microstructures in Fig.

14, where the topology was optimized with respect to F̄2112 (geometry in Fig. 7 (c). We

then apply an electric field along y and allow the nodes along the boundary to move,

except for one node that is constrained to avoid rigid-body motion. The deformations

in the figure are exaggerated by a factor of 10 for ease of viewing, which demonstrates

the bending deformation induced by the applied electric field.

(a) (b)

Figure 13: Optimal topology for F2221 on PZT/polymer: (a) with regular meshing; (b) with irregular meshing

The mechanisms for this effects can be seen in Fig. 15, where the electric field

and strain gradient of the optimized unit cell for F̄2112 previously shown in Fig. 7(c)

are shown. In comparing the magnitudes of the electric field and strain gradient for

the PZT/polymer RVE in Fig. 15 and the PZT/PZT RVE in Fig. 5, both the electric

field and strain gradient for the hard/soft PZT/polymer case are 1-2 orders of magni-

tude larger than in the PZT/PZT case, which is reasonable given the curved hard/soft

material boundary that exists within the RVE. Because the flexoelectric constants are

dependent on the product of the electric field and strain gradient, this explains how

the flexoelectric constants of the PZT/polymer case can rival and/or exceed those of

the PZT/PZT case. as summarized in Table 1, despite being comprised of constituents

with smaller physical properties.

The electromechanical coupling coefficients are also improved in the optimized

designs. We obtain ¯K31 = 0.409 and ¯K32 = 0.2694 for optimized F̄1221, ¯K31 = 0.1059
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Figure 14: Deformation and strain ε22 of optimized unit cell in Fig. 7c induced by electric filed E2

¯K32 = 0.2444 for optimized F̄2221, ¯K31 = 0.4981 and ¯K32 = 0.3226 for optimized

F̄1112, while ¯K31 = 0.0337 and ¯K32 = 0.3136 for optimized F̄2112. In contrast with

¯K31 = 0.3151 and ¯K32 = 0.067 for triangular PVDF, the values of ¯K32 for the optimal

unit cells are improved by 302.1%, 264.8%, 381.5%, 368.1%, respectively, while ¯K31

for the optimal unit cells increases by 29.8%, -66.4%, 58.1% and -89.3%. We can note

that the value of ¯K31 for optimized F̄2221 and F̄2112 decrease. However ¯K32 for all other

optimized unit cells increase. For optimized F̄1221 and F̄1112, both electromechanical

coefficients can be improved.

The mechanisms underlying the enhancement in electromechanical coupling coef-

ficients corresponding to the PZT/polymer composites that maximize F̄2112 differ from

those previously discussed for the PZT/PZT composites. In examining the contribu-

tions to the coupling coefficient ¯K in Table 2, we see that due to the multiple materi-

als that comprise the RVE, all of the effective properties, i.e. compliance S̄, dielectric

ē and piezoelectric D̄ change during the RVE optimization. For the ¯K31 constant, a

significant decrease during optimization is found, which is driven by the significant

decrease in the corresponding piezoelectric D̄31 constant.

For the ¯K32 constant, a nearly five-fold increase is observed during optimization.

Some of this is due to the doubling of the D̄32 piezoelectric constant. However, the
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(a) E2(x) (b) ∇ε112(x)

Figure 15: Electric field (E2-component) and strain gradient (∇ε112-component) within the PZT-PVDF-

optimized microstructure shown in Fig. 7(c).

optimization also leads to an increase in the dielectric properties ē, and a decrease in

the compliance S̄, as shown in Table 2. The increase in effective piezoelectric and

dielectric properties are related to the enhanced localized electric field shown in Fig.

15, while the enhanced strain gradient shown in Fig. 15 is connected to the reduction

in compliance. Thus, for the PZT/polymer RVE, it is this subtle interplay between the

electrical, mechanical, and electromechanical properties that leads to the increase in

electromechanical coupling.

5.3. Heterogeneous porous microstructure

In our final example, we consider a unit cell composed of a piezoelectric material

with properties described by Eqs. (58)-(60), while the second phase is void. The

flexoelectric coefficients F̄1221, F̄2221, F̄1112 and F̄2112 are considered. To model the

void phase, soft properties are chosen for the void as [Cvoid ] = 10−9× [Cm], [E void ] =

10−9× [E m] and [αvoid ] = 10−9× [αm].

The optimization is performed with respect to the different flexoelectric coefficients

independently. In each case, the optimization process converges in roughly 80 itera-

tions. Here, the volume fraction of the solid phase is constrained to f = 0.6, such

that the void (inclusion) volume fraction is 0.4, the same as for the PZT/PZT and
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Figure 16: Topology optimization process with respect to normalized flexoelectric components and volume

fractions for the PZT/void: (a) F̄1221; (b) F̄2112; (c) F̄1112; (d) F̄2221.

PZT/polymer composites. The initial design is a homogeneous unit cell with densi-

ties ρe = 0.6 (e = 1,..., Ne = 3600). Periodic density conditions are used here. The final

optimal design for the coefficients F̄1221, F̄2221, F̄1112 and F̄2112 are summarized in Figs.

4d, 7d, 11b and 10b, while their iteration histories are shown in Fig. 16. The reference

solutions obtained by a triangular void as in Fig. 2 are reported in each case. We can

see that four different optimized design are obtained for the different coefficients. It

is interesting to note that the obtained geometries obtained by optimizing F̄1221 and

F̄2112 have the same symmetry, as well as F̄2221 and F̄1112. In addition, we can note that

even though the materials are different, the topologies obtained for the same optimized

component can show significant similarities (see e.g. Figs. 10a and 10b)
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The obtained absolute values are F̄1221 = 7.99×10−5 C.m−1, F̄2112 = 3.85×10−5

C.m−1, F̄1112 = 2.36× 10−5 C.m−1 and F̄2221 = 1.15× 10−5 C.m−1. In contrast with

the flexoelectric properties of the unit cell with triangular void, we get a very large

gain in the optimized structures for the components of F̄1221, F̄2112 and F̄1112, which

are improved by 924 %, 293 % and 145 %, respectively. However, only an increase by

15% for F̄2221 is obtained, and it has the similar topology as the reference triangular unit

cells. We obtain ¯K31 = 0.4175 and ¯K32 = 0.2226 for optimized F̄1221, ¯K31 = 0.2086

and ¯K32 = 0.2064 for optimized F̄2221, ¯K31 = 0.3038 and ¯K32 = 0.1657 for optimized

F̄1112, while we have ¯K31 = 0.2940 and ¯K32 = 0.2833 for optimized F̄2112.

We show in Fig. 17 the electric field and strain gradient for corresponding to the

optimized PZT/void microstructure in Fig. 7 that maximizes F̄2112. Similar to the

PZT/polymer case in Fig. 15, the electric field and strain gradient are largest around the

PZT/void interface, though the magnitude of each is smaller than in the PZT/polymer

case. For that reason, the resulting flexoelectric constants for the PZT/void RVEs

are smaller than the PZT/polymer and PZT/PZT RVEs, as summarized in Table 1.

The mechanism for the changes in electromechanical coupling are also similar to the

PZT/polymer case. Specifically, localized electric field-driven increases along the

PZT/void boundary lead to enhancements in the effective piezoelectric and dielectric

properties, while the enhanced strain gradient is related to the reduction in compliance,

with the interplay resulting in an increase in ¯K31 and an increase in ¯K32.

5.4. Summary of results

We summarize in Table 1 the optimal values for flexoelectric coefficients found in

the different composites. For reference, the values are compared with the flexoelec-

tric coefficient of BaTiO3 [80]. As can be seen, the RVE-based topology optimiza-

tion approach leads to unit cells whose effective flexoelectric constants can exceed, by

significant amounts, the flexoelectric properties of BaTiO3, as driven by the different

electromechanical mechanisms discussed previously.
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(a) E2(x) (b) ∇ε112(x)

Figure 17: Electric field (E2-component) and strain gradient (∇ε112)-component within the PZT-void-

optimized microstructure in Fig. 7(d).

Table 1: Optimized flexoelectric coefficients for PZT/PZT, PZT/PVDF and porous PZT composites.

F̄1221 F̄2112 F̄2221 F̄1112

PZT/PZT 136 µC/m 268 µC/m

PZT/PVDF 148 µC/m 200 µC/m 35 µC/m 73 µC/m

Porous PZT 80 µC/m 38 µC/m 11 µC/m 23 µC/m

BaTiO3 [80] 10-50 µC/m
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6. Conclusion

In this work, a topology optimization framework has been proposed to maximize

the effective flexoelectric properties of composites made of piezoelectric phases. The

originality of the present work is the use of a homogenization method to estimate the

flexoelectric properties from the distribution of local phases in a Representative Vol-

ume Element (RVE), which precludes the necessity of optimizing the entire structure.

A SIMP method was used to solve the topology optimization problem, where the abso-

lute values of the flexoelectric tensor are maximized under the constraint of a constant

volume fraction of inclusion. Results show that on several cases (piezo-piezo, piezo-

polymer and porous piezo-composites), the present scheme allows increasing the ef-

fective flexoelectric properties between 2 and 15 times as compared to a naive "guess"

design.

We found different mechanisms to enhancing the flexoelectric properties, and the

electromechanical coupling. Specifically, piezo-piezo (hard/hard) composites gener-

ated an enhanced electromechanical response through enhancement of their effective

piezoelectric properties. In contrast, piezo-polymer (hard/soft) composites generated

an enhanced electromechanical response through an interplay of enhanced electrome-

chanical (piezoelectric) and electrical (dielectric) properties, and reduced mechanical

compliance, which result from significantly enhanced local electric fields and strain

gradients along the hard/soft interface. We believe that the present framework has the

potential to design high-performance flexoelectric components for use e.g. in energy

harvesting systems, sensors or actuators without the need for materials exhibiting in-

trinsically high flexoelectricity.
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Appendix A. Numerical calculation of the effective tensors

The 2D vector form associated with the components of strain gradient tensor ∇ε

can be defined as:

[∇ε] =



∇ε111

∇ε221

2∇ε122

∇ε222

∇ε112

2∇ε121


=



∂ 2u1
∂x2

1
∂ 2u2

∂x1∂x2
∂ 2u1
∂x2

2
+ ∂ 2u2

∂x1∂x2

∂ 2u2
∂x2

2
∂ 2u1

∂x1∂x2
∂ 2u1

∂x1∂x2
+ ∂ 2u2

∂x2
1


(A.1)

where the symmetries of effective tensors [ᾱ], [Ē ], [C̄], [F̄], [M̄] and [Ḡ] are taken into

account from

Ēi jk = Ēik j, F̄i jkl = F̄ik jl (A.2)

M̄i jklm = M̄ jiklm = M̄i jlkm (A.3)

C̄i jkl = C̄kli j = C̄ jikl = C̄i jlk (A.4)

Ḡi jklmp = Ḡlmpi jk = Ḡ jiklmp = Ḡi jkml p (A.5)

The flexoelectric tensor is written in matrix form as

[F̄] =

F̄1111 F̄1221 F̄1122 F̄1222 F̄1112 F̄1121

F̄2111 F̄2221 F̄2122 F̄2222 F̄2112 F̄2121

 (A.6)

The matrix forms for the other effective tensors can be found in [63]. After dis-

cretization, the local strain and electric fields defined respectively in Eqs. (11) and (12)

can expressed as:

[ε(x)] = A0(x) : ε̄+B0(x) · Ē+{A1(x)−A0(x)⊗x}
... ∇ε, (A.7)

E(x) = D0(x) : ε̄+h0(x) · Ē+{D1(x)−D0(x)}
... ∇ε (A.8)

We define the above displacement and electric fields matrices as:

Uu = [u1,u2,u3];Vu = [u4,u5];Wu = [u6,u6,u7,u8,u10,u11] (A.9)

Uφ = [φ1,φ2,φ3];Vφ = [φ4,φ5];Wφ = [φ6,φ7,φ8,φ9,φ10,φ11] (A.10)
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Field (ε̄11, ε̄22, ε̄12) (Ē1, Ē2) (∇ε111,∇ε221,∇ε122,∇ε222,∇ε112,∇ε121)

u1,φ1 (1,0,0) (0,0) (0,0,0,0,0,0)

u2,φ2 (0,1,0) (0,0) (0,0,0,0,0,0)

u3,φ3 (0,0, 1
2 ) (0,0) (0,0,0,0,0,0)

u4,φ4 (0,0,0) (1,0) (0,0,0,0,0,0)

u5,φ5 (0,0,0) (0,1) (0,0,0,0,0,0)

u6,φ6 (0,0,0) (0,0) (1,0,0,0,0,0)

u7,φ7 (0,0,0) (0,0) (0,1,0,0,0,0)

u8,φ8 (0,0,0) (0,0) (0,0,1,0,0,0)

u9,φ9 (0,0,0) (0,0) (0,0,0,1,0,0)

u10,φ10 (0,0,0) (0,0) (0,0,0,0,1,0)

u11,φ11 (0,0,0) (0,0) (0,0,0,0,0,1)

Table A.3: Elementary solution corresponding to the activated strain, electric potential and strain gradient

components

and

W x
u = [xu1,yu1,xu2,yu2,xu3,yu3]

Wx
φ = [xφ1,yφ1,xφ2,yφ2,xφ3,yφ3] (A.11)

The displacement fields ui and the electric fields φi are the vector columns con-

taining respectively the nodal displacement and electric potentials solution of the lo-

calization problems Eq. (7)-(8)-(4)-(5) with the boundary conditions described in Table

A.3.

In terms of the above definition and finite element discretization, we obtain:

A0(x) = Bu(x)Uu; B0(x) = Bu(x)Vu (A.12)

A1(x) = Bu(x)Wu; A0
x(x) = Bu(x)Wx

u (A.13)

and

D0(x) =−Bφ (x)Uφ ; h0(x) =−Bφ (x)Vφ (A.14)

D0(x) =−Bφ (x)Wφ ; D0
x(x) =−Bφ (x)Wx

φ (A.15)
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By introducing Eqs. (A.7) and (A.8) into Eqs. (33)-(36), we can obtain the dis-

cretization forms of the six effective tensors. In the following, only the interesting

fourth-order effective flexoelectric tensor is presented. The effective flexoelectric ten-

sor is expressed as:

[
F̄
]
=〈(B0(x))T : C(x) : Ã1(x)− (h0(x))T ·E (x) : Ã1(x)

− (B0(x))T : E T (x) · D̃1(x)− (h0(x))T ·α(x) · D̃1(x)〉 (A.16)

Appendix B. Expressions of body forces in the localization problem

One obvious issue with condition (5) arises when considering a homogeneous RVE

characterized by elastic and piezoelectric tensors C1 and E 1. In that case, and for ε= 0

and E = 0, it is expected that the local strain solutions within the RVE should be equal

to:

ε(x) = ∇ε ·x ∀x ∈Ω. (B.1)

However generally (B.1) is not a statically admissible solution for boundary condi-

tions (5) since:

∇ ·
(
C1 :

[
∇ε x

])
6= 0 (B.2)

and

∇ ·
(
E 1 :

[
∇ε x

])
6= 0. (B.3)

The inequalities (B.2)-(B.3) hold because in the present work ∇ε can be chosen

arbitrarily. Therefore, as observed in [81, 82], fluctuations remain even when the local

continuum is homogeneous, leading to persistent non-physical gradient effects. Indeed,

when the local medium is Cauchy homogeneous, there is no dependence on an internal

length and the overall medium cannot be of generalized type. To cure this problem, and

following the analysis conducted in [83, 84], we propose to prescribe body forces in
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addition to QBC (5) to enforce a constant strain-gradient within the RVE when the ma-

terial is homogeneous. The new localization problem involves solving the equilibrium

equation:

∇ ·σ(x) = f(∇ε) ∀x ∈Ω, (B.4)

and

∇ ·d(x) = r(∇ε) ∀x ∈Ω, (B.5)

where

f(∇ε) = ∇ ·
(
C0(x) : (∇ε ·x)

)
(B.6)

and

r(∇ε) = ∇ ·
(
EC0(x) : (∇ε ·x)

)
. (B.7)

In the definition of f and r, C0(x) and E 0(x) are arbitrary elastic and piezoelectric

tensor fields which have to be specified. At this point, and without loss of generality,

we assume a two-phase composite whose elastic properties are described by C1 and

C2, and where piezoelectric properties are defined by E 1 and E 2; in which the phase 1

has the highest volume fraction. The RVE is piezoelectric- homogeneous if either (a)

the volume fraction of phase 2 goes to zero, i.e. f 1→ 1, or (b) if the contrast between

phase properties goes to one, i.e. ‖C2‖ → ‖C1‖ and ‖E 2‖ → ‖E 1‖. For each of these

two conditions, the tensors C0(x) and E 0(x) should satisfy:

C0(x)→ C1 if

 f 1→ 1,

or ‖C2‖→ ‖C1‖
(B.8)

and

E 0(x)→ E 1 if

 f 1→ 1,

or ‖E 2‖→ ‖E 1‖.
(B.9)

Several choices are possible to respect conditions (B.8)-(B.9), such as (among oth-

ers): pointwise body force correction, C0(x) = C(x) and E 0(x) = E (x), effective

body force correction, C0(x) = C and E 0(x) = E , or null body force (standard QBC)
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C0(x) =O and E 0(x) =O. These different choices have been compared in the elastic

case in [84], and there is still no definitive answer to the best choice. The standard so-

lution is simple but induces the mentioned spurious strain gradient effects in the case of

homogeneous domains, as discussed in [84]. The effective body forces solution is con-

sistent with asymptotic analysis [83] and removes these spurious effects but induces

divergence of effective properties in case of infinite contrasts of properties between

phases. A more detailed discussion can be found in [84]. In spite of these remaining

issues, we adopt the effective body forces solution in the present work. Then, defining

C0 =C and E 0 = E (defined respectively by Eqs. (33) and (35)) and introducing them

in (B.6) and (B.7), we obtain Eqs. (9) and (10).
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