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Fig 1
a Minerals may modulate the phase, transformation, and turnover of organic
matter by acting as scaffolds, catalysts, redox reactants, and habitats.
Redox reactants
Reduced
carbon Scaffolds
Mineral-bound
Lon organic matter
<ot 9
. {\O“
Dissolved Desofp
organic matter
Uptake
CO;«=Depolymerization
Micobes and
other live biomass
nz%l}/sn(:ﬁjrtlacle Oxidized carbon
organic matter (aqueous, gaseous)
b Tier 1 Compartmentalization Tier 2 Physiochemical Tier 3 Molecular-level processes

constraints

Substrate localization ~ .
******************** e donation or

e Sorptive fixation acceptance
e Substrate dilution

Production
of ROS
Organic
s Mobility filter
Preferential diffusion :
and transport
pathways
Habitat definition Scaffolding

Constraining
decomposer size
composition and
metabolism

Catalysis




Nature Reviews | Earth & Environment

Fig 2

Manuscript number NREARTHENVIRON-19-253 Kleber Review 11|03|21

Sensitivity to pH: pH pH dependant
independant
. L Polarbut Ability
Functionality: Nonpolar neutral (-) charge (+) charge to unfold

Mechanism of

Hydrophobic  H-bonding Coulombic Coulombic Entropy

attachment: exclusion attraction attraction gain
Aliphatic/aromatic moiety with minor funtionalization
Napthalene
X
Hexane NN
OH
Catechol C[
OH X X
Hexanol O
(@]
Benzoic acid OH
X X
(0]
Hexanoic acid /\/\)]\OH
Inherently polar moieties with additional funtionalization
OH OH
(0}
Glucose HO™™ 2 X
OH OH
Gl ic acid AP X X
uconic aci :
HO A oH
OH OH
OH NH,
A (0}
Glucosamine HO™™Y z X X
OH OH
Compounds equipped with all major functionalities
(usually N-containing)
(0}
i X
Phenylalanine - X X
NH,
HO.
Polypeptide/ X X X X X

: H Q H ©
protein N\)LN N\)I\OH



Nature Reviews | Earth & Environment

Fig 3

Manuscript number NREARTHENVIRON-19-253 Kleber Review 11|03|21

Mineral type Crystal structure Charge Area
(o, mmolc g™ (a, m?g™)
Phyllosilicates
Sheet of ) )
2:1 layer type corner-sharing Smectite: Smectite:
$l|te;Srpect|te2 0.94nm tetrahedra -0.7 to-1.2 740 to 780
te= :
ermiculite Sheet of
edtgeh'szaf'ng Ilite: Illite:
octahedra
Plane of siloxane O atoms -0.16 t0-0.22 20 to 200
1:1 layer type . L
oI Kaolinite: Kaolinite:
0.71
Kaolinite nm 0t0-0.02 71080
Oxide surface (plane of
surface >M-OH groups) ) ) Imogolite: Imogolite:
Modulated SIEY'PS OI 'zla"ds 0.1t00.5 600 to 900
phyllosilicates ?etgvheg d‘ia
Imogolite, Allophane Allophane: Allophane:
0to-1.0 700 to 900
Metal oxides
Fe oxides ) .
Goethite > Goethite Chains of edge-sharing Goethite: Goethite:
Hematite > (FeOOH) octahedra linked by 0t00.15 40 to 90
Ferrihydrite > corner-sharing
Hematite Pairs of face-sharing Hematite: Hematite:
(Fe,0,) octahedra linked by 01t00.02 10t035

Ferrihydrite

corner and edge-sharing

Tetrahedra and clusters of
edge-sharing octahedra

Ferrihydrite:

Ferrihydrite:

(Fe,,0,,(OH,) linked by corner-sharing 0to13 200 t0 800
Mn oxides Birnessite Sheet of edge- Birnessite: Birnessite:
Birnessite > (MnO,) sharing octahedra -1.3t0-2.8 1200
Todorokite >
Todorokite
(MnO,) Chains of edge-sharing Todorokite: Todorokite:
octahedra linked by -0.15 ~1200
corner-sharing
Al oxides Gibbsite Sheet of edge- Gibbsite: Gibbsite:
Gibbsite > (A(OH),) sharing octahedra 0t0 0.02 1to 100
Boehmite,
Al oxide gel
oxide gets Al-hydroxide Amorphous AI(OH)ggel: AI(OH)agel:
gel 0to 0.4 >200
VSiOAtetrahedron V MO4tetrahedron (M = Al Fe) g Moﬁoctrohedron (M = Al Fe, Mg, Mn)




Nature Reviews | Earth & Environment

Manuscript number NREARTHENVIRON-19-253 Kleber Review 11|03]21

Fig 4
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Fig 5
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Fig 6
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Fig 7

a Mineral-induced oxidation
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Fig 8
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