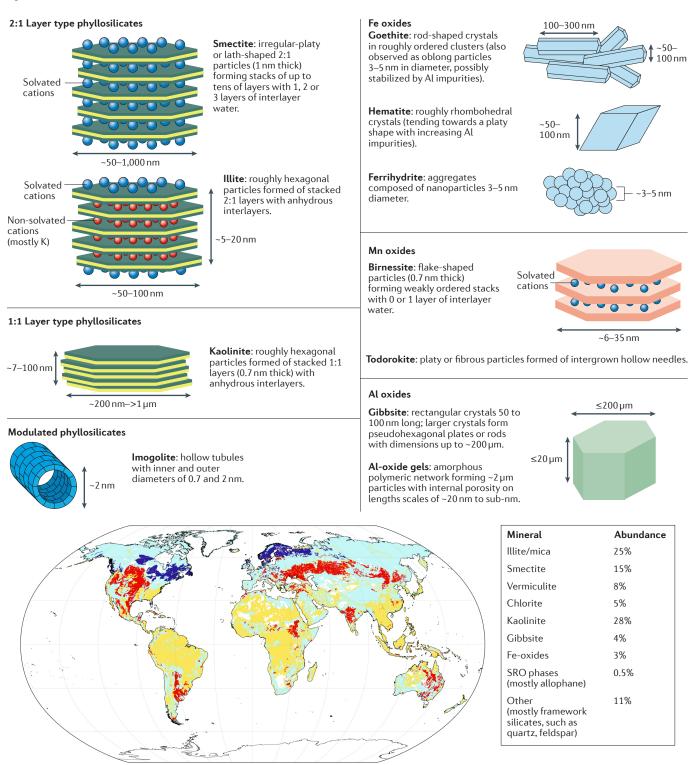


Fig 1

b


a Minerals may modulate the phase, transformation, and turnover of organic matter by acting as scaffolds, catalysts, redox reactants, and habitats.

	Sensitivity to pH:	pH independant	pH dependant			
	Functionality:	Nonpolar	Polar but neutral	(–) charge	(+) charge	Ability to unfold
	Mechanism of attachment:	Hydrophobic exclusion	H-bonding	Coulombic attraction	Coulombic attraction	Entropy gain
Aliphatic/aromatic moiet	y with minor funtionalization					
Napthalene	$\bigcirc\bigcirc$	×				
Hexane	\sim					
Catechol	СССОН	×	×			
Hexanol	·∕∕· ^{OH}					
Benzoic acid	ОН	×		×		
Hexanoic acid	ОН					
Inherently polar moieties	with additional funtionalization					
Glucose			×			
Gluconic acid	он он он но бн он он		×	×		
Glucosamine	HO OH NH2 OH OH		×		×	
Compounds equipped wir (usually N-containing)	th all major functionalities					
Phenylalanine	NH ₂	×		×	×	
Polypeptide/ protein	HO H	×	×	×	×	×

Mineral type	Crystal structure		Charge (σ, mmol _c g ⁻¹)	Area (a _s , m ² g ⁻¹)
Phyllosilicates				
2:1 layer type llite≥Smectite≥ Vermiculite≥	0.94 nm	Sheet of corner-sharing tetrahedra Sheet of	Smectite: -0.7 to -1.2	Smectite: 740 to 780
	↓ Plane of siloxane C	edge-sharing	Illite: −0.16 to −0.22	Illite: 20 to 200
1:1 layer type Kaolinite	0.71 nm		Kaolinite: 0 to –0.02	Kaolinite: 7 to 80
Modulated phyllosilicates	Oxide surface (pla surface >M–OH gr		Imogolite: 0.1 to 0.5	Imogolite: 600 to 900
Imogolite, Alloph	ane ///////		Allophane: 0 to –1.0	Allophane: 700 to 900
Metal oxides				
Fe oxides Goethite > Hematite ≥ Ferrihydrite > 	Goethite (FeOOH)	Chains of edge-sharing octahedra linked by corner-sharing	Goethite: 0 to 0.15	Goethite: 40 to 90
	Hematite (Fe ₂ O ₃)	Pairs of face-sharing octahedra linked by corner and edge-sharing	Hematite: 0 to 0.02	Hematite: 10 to 35
	Ferrihydrite ($Fe_{10}O_{14}(OH_2)$)	Tetrahedra and clusters of edge-sharing octahedra linked by corner-sharing	Ferrihydrite: 0 to 1.3	Ferrihydrite 200 to 800
Mn oxides Birnessite > Todorokite >	Birnessite (MnO ₂)	Sheet of edge- sharing octahedra	Birnessite: -1.3 to -2.8	Birnessite: 1200
	Todorokite (MnO ₂)	Chains of edge-sharing octahedra linked by corner-sharing	Todorokite: –0.15	Todorokite ~1200
Al oxides Gibbsite > Boehmite, Al oxide gels	Gibbsite (Al(OH) ₃)	Sheet of edge- sharing octahedra	Gibbsite: 0 to 0.02	Gibbsite: 1 to 100
	Al-hydroxide gel	Amorphous	Al(OH) ₃ gel: 0 to 0.4	Al(OH) ₃ gel >200
Si	O₄tetrahedron	(M = Al, Fe) MO_6 octrohed	ron (M = Al, Fe, Mg, M	in)

Fig 4

Illite/mica

Kaolinite

Smectite

Vermiculite

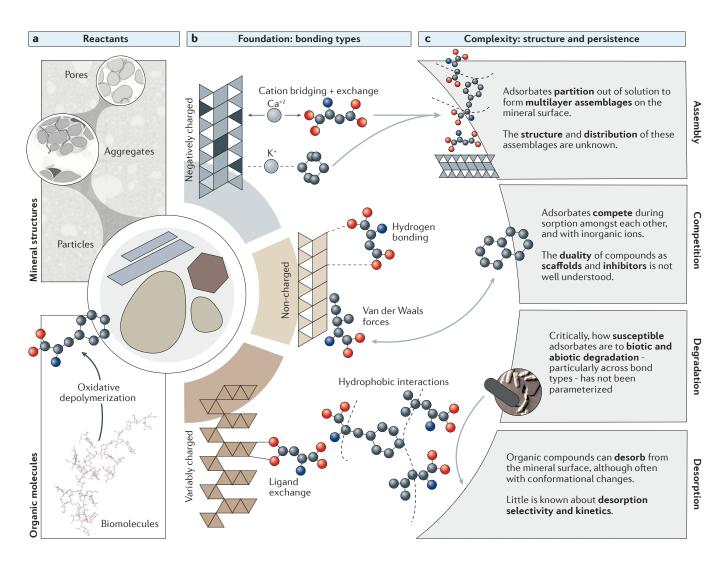
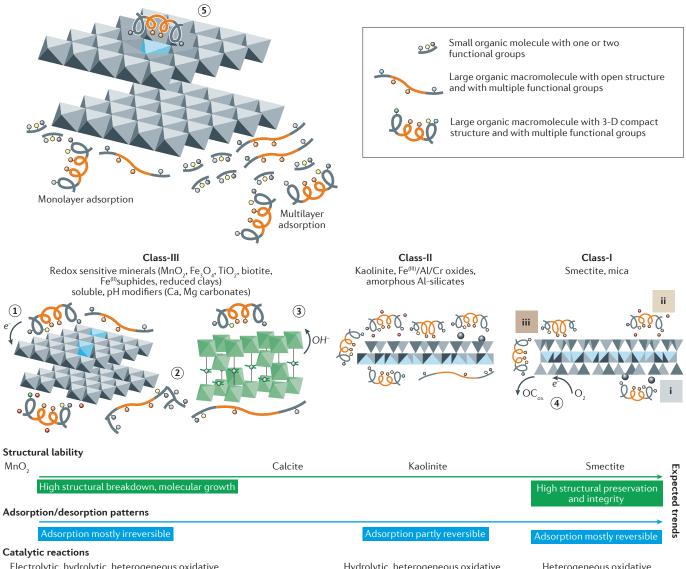
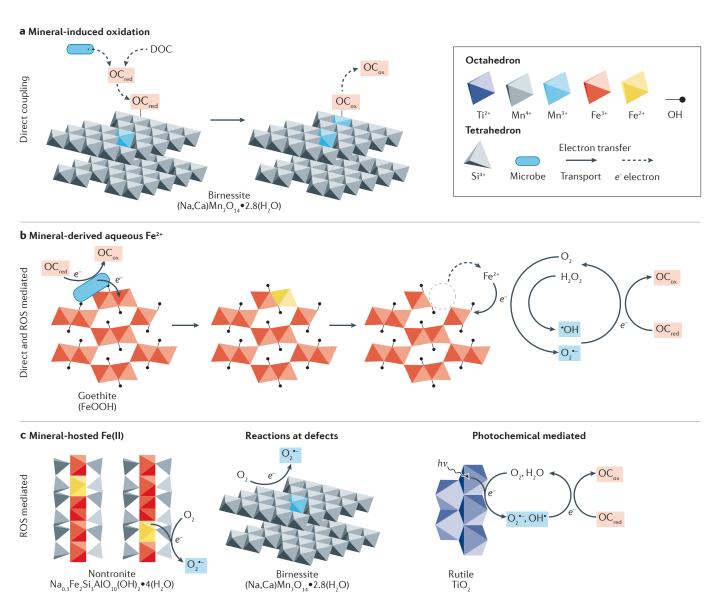
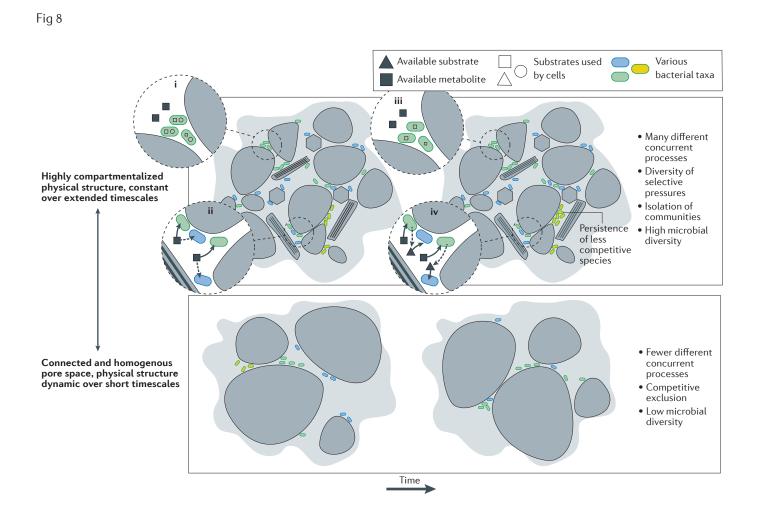





Fig 6

Electrolytic, hydrolytic, heterogeneous oxidative breakdown, nucleophilic addition, radical mediated polymerization Hydrolytic, heterogeneous oxidative breakdown, nucleophilic addition, radical mediated polymerization Heterogeneous oxidative breakdown

