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Abstract 43 

Minerals are widely assumed to protect organic matter (OM) from degradation in the 44 

environment, promoting the persistence of carbon in soil and sediments. In this Review, we 45 

describe the mechanisms and processes operating at the mineral-organic interface as they relate 46 

to OM transformation dynamics. A broad set of interactions occur, with minerals adsorbing 47 

organic compounds to their surfaces and/or acting as catalysts for organic reactions. Minerals can 48 

serve as redox partners for OM through direct electron transfer or by generating reactive oxygen 49 

species, which then oxidize OM. Finally, the compartmentalization of soil and sediment by 50 

minerals creates unique microsites that host diverse microbial communities. Acknowledgement 51 

of this multiplicity of interactions suggests the general assumption that the mineral matrix 52 

provides a protective function for organic matter is overly simplistic. Future work must 53 

recognize adsorption as a condition for further reactions instead of as a final destination for 54 

organic adsorbates, and should consider the spatial and functional complexity that is 55 

characteristic of the environments where mineral-OM interactions are observed. 56 

  57 
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[H1] Introduction 58 

 59 

The vast majority of organic carbon in the biosphere (5410 - 6545 PgC; including vegetation, 60 

permafrost, soils, coastal systems, and marine sediments1) occurs at solid earth interfaces in close 61 

spatial proximity to some form of mineral matter. For this reason, carbon flowing through the 62 

biosphere will at some point almost inevitably come into contact with mineral surfaces as it 63 

undergoes the many transformations inherent in the carbon cycle. Consequently, the interactions 64 

between organic and mineral phases have long been the subject of scientific inquiry. For 65 

example, most soil organic carbon is associated with colloidal [G] -sized minerals 2,3, prompting 66 

early suggestions that this association is critical for soil fertility and, by extension, is "vital to 67 

life" 4. When toxic organic chemicals were found to be accumulating in the biosphere 5, mineral 68 

phases were investigated for their ability to break down organic contaminants in the environment 69 
6-8. More recently, interest has turned towards using soils and sediments as repositories for excess 70 

atmospheric carbon 9,10, resulting in intensive research into the mechanisms determining the 71 

formation, strength, and durability of mineral-OM associations 10-13. These latter research efforts 72 

have confirmed that minerals can protect OM from degradation. However, observed correlations 73 

between individual predictor values such as clay content 14 or abundance of poorly crystalline 74 

[G] minerals 15 tend to be specific to certain situations and soil types. To date, no carbon cycle 75 

model has succeeded in predicting carbon turnover dynamics based on a generalised, broadly 76 

applicable set of mineral phase parameters.  77 

Several principles are critical to understanding mineral-OM interactions. First, soils and 78 

sediments originate from a combination of destructive and constructive processes. Weathering 79 

processes and organic matter decomposition disassemble rocks and organic debris into basic 80 

molecular units, which combine to create micron-sized agglomerations 16. Biotic and abiotic 81 

processes organise the resulting microfabric into a porous, internally-structured medium 17. 82 

Second, minerals generally dominate over OM in soils and sediments in terms of mass 83 

proportions, with organic materials (including living organisms) rarely contributing more than 84 

single-digit percentages to total mass 18-20 (although exceptions are found in organic soils and 85 

organic surface horizons). Owing to the quantitative dominance of the mineral phase, particle 86 

size distribution serves as a major constraint on the physical shape of the pore system as it 87 

evolves over time 21. Third, liquid water is the most abundant phase in pore systems22, enabling 88 

geochemical and biological processes23,24. Therefore, it is useful to consider even unsaturated 89 

soils [G] and sediments as fundamentally aqueous systems. Finally, the mineral phase, the 90 

organic phase, and the pore system are habitats for biota, which constantly modify both physical 91 

shape of pores and biogeochemical activities within the system 25  92 

In this Review, we undertake a broad appraisal of the complexity of the mineral organic 93 

interface and derive a perspective for future research efforts. The diverse roles of minerals in the 94 

environment are described (Fig. 1a), including OM adsorption [G] , catalysis, chemical reactions 95 

participation, and reactive oxygen species [G] (ROS) generation. The role of the mineral matrix 96 

in creating distinct reaction spaces, and its importance of this compartmentalization [G] in the 97 
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fate of OM, are examined. Finally, we urge the field to move towards considering mineral-OM 98 

interactions as multidimensional and multifaceted, and to reconsider the current notion of 99 

mineral protection of OM.  100 

 101 

 102 

[H1] Fundamental properties  103 

Mineral-organic interactions depend on several characteristic properties of the individual 104 

mineral and organic phases, which are briefly described below. 105 

 106 

[H2] Organic phase  107 

Organic molecules can be produced by abiotic processes 26,27 and by chemotrophic 108 

microorganisms 28, but phototrophic [G] algae in the oceans and vascular plants on land are 109 

responsible for the bulk of modern biomass production, in roughly equal proportions 29. Primary 110 

production in the oceans creates mostly lipids, proteinaceous materials, and carbohydrates other 111 

than cellulose 30, whereas lignin and cellulose together account for around half of primary 112 

production on land 18.  113 

Heterotrophic [G] organisms use the resulting biomass as a combined source of carbon, 114 

energy, and nutrients. Because cell wall passage is restricted to molecules with relatively small 115 

molecular masses (< 600-1000 Da) 30, the size of biomacromolecules must be reduced before 116 

assimilation into the cell is possible. Depolymerization [G] and oxidation reactions inherent to 117 

extracellular molecular disassembly add ionizable oxygen-containing functional groups to 118 

decomposition products 3. The resulting increasing abundances of polar functional groups (Fig. 119 

2) enhance the aqueous solubility of the products, as well as their chemical reactivity towards 120 

metal cations and mineral surfaces, particularly when these functional groups are ionized. 121 

Moreover, the smaller molecular size facilitates diffusion 31 of solubilized, reactive organic 122 

fragments towards mineral microstructures where they can become entrapped and adsorbed. 123 

Once an organic molecule comes close to a mineral surface, the abundance and type of organic 124 

functional groups constrain options for further reactions between matrix surfaces and mobile 125 

organic adsorbates.  126 

 127 

[H2] Mineral phase  128 

A diverse suite of minerals occur in soils and sediments, including phyllosilicates and 129 

aluminosilicates (collectively referred to as silicates); metal oxides, hydroxides, and 130 

oxyhydroxides (collectively referred to as oxides); and metal carbonates and sulfides (Figs. 3 & 131 

4). In most soils and sediments, phyllosilicates are the predominant component of the fine-132 

grained fraction [G] 32,33. Metal oxides are an order of magnitude less abundant than 133 

phyllosilicates except in highly weathered systems and metal-dominated marine benthic habitats 134 

(such as hydrothermal vent deposits and ferromanganese crusts), but they contribute distinct 135 

reactivity 22,34 (Fig. 4).  136 
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Minerals possess both permanent (structural) and variable (pH-dependent) surface charge 137 

distributions. Subsequent coulombic interactions [G] dictate many physical and chemical 138 

properties, such as dispersion [G] behavior, coagulation [G] , colloidal stability, solubility, and 139 

adsorptive bonding mechanisms 35-37. Mineral surface reactivity is also driven by surface 140 

topography 38, which results from deviations in atomic crystal structure (such as steps or 141 

vacancies), in tandem with particle shape and size. In altering the configuration and number of 142 

reactive surface groups per unit mass, topographic surface drivers (steps, edges, and kinks, for 143 

example) can thus influence the composition, abundance, and bond strength of compounds at the 144 

mineral surface. Surface defects can facilitate the formation of stronger surface complexes or 145 

reveal edges that offer unsaturated atoms available for direct complexation 39-42, and particle size 146 

modulates the relative number of reactive surface groups per unit mass of mineral. Finally, the 147 

presence and size distribution of pores within mineral grain assemblages also affects the 148 

available surface area for organic ligands, as well as exposure kinetics through steric constraints 149 

[G] and diffusion limitation 43-46. 150 

Beyond surface charge and topography, the key properties of fine-grained minerals that 151 

determine their interactions with OM (that is, mineral size, shape, charge, and covalent 152 

reactivity) are fundamentally derived from their crystal structures (Fig. 3). Notably, interfacial 153 

energies [G] of the different crystal facets [G] have a strong influence on particle size and shape 154 
47-49. For layer-type minerals (phyllosilicates, gibbsite, and layered manganese (Mn) oxides such 155 

as birnessite), one facet carries only surface O atoms or OH groups that are fully saturated 50,51. 156 

The low interfacial energy of this crystal facet explains the tendency of the associated minerals 157 

to adopt a lamellar shape. In turn, this lamellar shape minimizes the tendency towards crystal 158 

growth [G] and hence favors the persistence of small particles 52. 159 

The iron (Fe) oxides and framework Mn oxides are exceptions to the condition presented 160 

above, in that all their crystal facets carry under- or over-coordinated surface O atoms 53. One 161 

consequence of this imperfect surface O coordination state is that these minerals are primed for 162 

covalent reactions with appropriate organic functional groups. Another consequence is that these 163 

minerals tend to grow and dissolve readily, and form particles in a variety of shapes depending 164 

on the aqueous chemistry 34. Finally, the relatively high interfacial energy of these minerals 165 

enables the coexistence of multiple Fe oxides in most soils, as differences in surface and bulk 166 

energies cause reversals in the order of thermodynamic stability as a function of particle size and 167 

aqueous chemistry 47. For example, poorly-crystalline ferrihydrite is often the initial product of 168 

FeIII crystallization owing to its favorable surface energy. However, at sizes greater than ~5 nm 169 

ferrihydrite becomes unstable relative to more crystalline goethite and hematite owing to its less 170 

favorable bulk energy 48 171 

 172 

[H1] Adsorption 173 

Adsorption has long stood as an explanation for the spatiotemporal preservation of 174 

organic matter in soils and sediments 54. However, mounting recognition of the dynamism 175 

occurring at the mineral-organic interface, buoyed by diversifying intersectionality in expertise 176 
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and analytical techniques14,55-58, has emerged in the last decade of biogeochemical research. 177 

Rather than a static and irreversible binding mechanism, it is increasingly clear that adsorption 178 

itself encapsulates a series of fundamentally kinetic processes: diffusion, competition, and 179 

exchange reactions are concurrent and continuous as organic matter accumulates at the mineral 180 

surface. The dynamic mineral-OM interface evolves continuously with changes in the chemistry 181 

of aqueous phases, OM, and mineralogy, and influences both magnitude and rate of OM 182 

adsorption.  183 

Observed complexity in OM adsorptive processes is rooted in the inherent diversity of 184 

the reactants. Organic matter encompasses a complex, heterogeneous continuum of structure, 185 

processing, and functional diversity 59-61. Even among small organic compounds, this variety 186 

enables adsorption through a combination of multiple anchoring points and mechanisms 62,63 187 

(Fig. 2). In tandem, a diverse suite of mineral phases occurs in soils and sediments, varying in 188 

surface charge and distribution, topography, and particle size (Fig. 4). OM adsorption almost 189 

invariably involves a combination of several mechanisms. However, mechanisms of 190 

organomineral adsorption can be grouped by the surface chemistry of the mineral (Fig. 5), as it 191 

affects surface-ligand bond types, coordination state, and spatial organization. These surface 192 

chemistries fall into three general groups: variably-charged, non-charged, and negatively 193 

charged.  194 

Variably-charged surfaces of metal oxides and phyllosilicate crystallite edges carry 195 

hydroxyl groups that are increasingly protonated with decreasing pH, thereby acquiring positive 196 

charge. This protonation, in turn, enables the retention of organic ligands through rapid ligand-197 

exchange 64,65. In many phyllosilicates, substitution of octahedral aluminum (Al) and tetrahedral 198 

silicon (Si) with cations of lesser charge will generate permanently charged surfaces. The 199 

prevailing negative charge of these surfaces allows for electrostatic attraction of metal cations 66. 200 

When isomorphic substitution is absent, as in some 2:1 phyllosilicates and kaolin-group 201 

minerals, the resulting surfaces are electrostatically neutral and thus allow nonpolar organic 202 

molecules to accumulate via entropy-driven hydrophobic exclusion phenomena in combination 203 

with Lifshitz - van der Waals forces and H-bond formation 3,67 (Fig. 5).  204 

As organic ligands partition from solution [G] to mineral surfaces, monolayer coverage 205 

of the mineral surface converges into a multilayer molecular architecture 68,69,70 (Fig. 5). Organic 206 

ligands tend to have a variety of functional groups (Fig. 2), thus there can be multiple bonding 207 

mechanisms between the mineral and OM. This diversity of bonding reactions, paired with the 208 

competition of organic compounds for sorptive sites both between themselves and with inorganic 209 

ions 71, results in complex multidimensional structures at the mineral surface (Fig. 5). Ion 210 

concentrations are well known to modulate adsorption rates and extents, with variations amongst 211 

bonding mechanisms and ion composition 72,73. However, the importance of competition between 212 

organic compounds in structure-selective adsorption (molecular fractionation) is less well-213 

constrained.  214 

Similarly, a plethora of recent work has probed the formation and structure of this 215 

multilayer over a range of time and length scales based on nanometer-scale microscopy and 216 
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spectroscopy 74, temporal partitioning of organic ligands from solution onto the mineral surface 217 
75,76, and detection of uneven structures at the mineral surface 77-79.  218 

Adsorption of OM at the mineral-water interface occurs at a rapid rate and reaches 219 

equilibrium with aqueous phase in 24 hours for many organic moieties and non-porous minerals 220 
80. The initial adsorption step is typically fast, and a majority of adsorption is completed within 221 

the first few hours after the solid-phase is exposed to aqueous OM. Slow adsorption can follow 222 

this first step and is most likely caused by the diffusion of molecules into the intra-particle 223 

regions [G] 45,65,81. Most kinetic datasets regarding OM sorption on soils and sediments come 224 

from studies conducted on xenobiotic compounds [G] 65. However, studies carried out on 225 

organic molecules isolated from soil and aquatic environments suggest that the variables that 226 

control the magnitude of sorption, also control its kinetics 82,83. Some of these variables include 227 

the size, charge, hydrophobicity, charge density, and concentration of OM, solution composition 228 

(pH, ionic strength, ion type), and mineral type (such as metal oxides versus silicates). For 229 

example, rapid adsorption is more common at lower pH values, high OM concentration, and in 230 

the presence of cations 82-85, where adsorption rates are faster under conditions that promote 231 

weaker adsorption affinity, such as in alkaline solutions 83. Notably, newly adsorbed organics 232 

might compete with and actually induce the release of previously adsorbed organic compounds86, 233 

though this process is not well studied in situ.  234 

 Once bound to a mineral surface, an organic ligand [G] only rarely remains undisturbed 235 

and instead is vulnerable to desorption and exchange processes, mineralization, and catalytic 236 

transformations in situ (Fig. 6). During these processes, organic molecules on mineral surfaces 237 

might experience changes to their hydration, structure, isomerization, rotation, and electron 238 

delocalization, depending on the type of chemical bonding at mineral-water interface. The 239 

overall chemical or electronic state of the adsorbed molecule tends to be similar to the molecule 240 

in solution when the adsorbed molecules exhibit H-bonding, Van der Waals interactions, or 241 

retain their solvated water (Fig. 6). Conversely, the adsorbed molecule tends to experience 242 

substantial changes to its chemical state if it forms covalent or ionic interactions and directly 243 

coordinates to the metal atoms at the mineral-water interface, such as during ligand-exchange. 244 

These distinct responses are relevant to hydrolysis, electron transfer, and radical mediated 245 

reactions, as well as photochemical lability [G] 87,88. Although electron transfer amongst weakly-246 

coordinated species can be limited in some of these complexes, for directly-bound covalent 247 

complexes, not only the chemical state of the organic molecule is changed but also the electronic 248 

state of the metal atom on the surface (Fig. 6). Unlike alkali and alkaline earth elements, 249 

transition metal ions in solution or at mineral-water interfaces, such as Mn, Fe, Ni, Cu, and Zn, 250 

play an important role in modifying the electronic states of the interacting organic functional 251 

groups 89-91. 252 

Adsorption potentially impacts not just the adsorbed OM, but also the minerals: adsorption 253 

invariably lowers interfacial energy 92, so accumulation of OM on mineral surfaces should both 254 

facilitate the nucleation [G] of new particles and inhibit the growth of existing particles. This 255 

should favor the formation and persistence of smaller particles, a phenomenon observed 256 
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experimentally in the apparent stabilization of short-range-ordered [G] (SRO) metal oxides 257 

(ferrihydrite) and aluminosilicates (proto-imogolite) 93-96. A logical consequence of this is that 258 

correlations between OM and fine-grained minerals, though generally interpreted as reflecting 259 

the impacts of minerals on OM, should additionally reflect (to an unknown extent) impacts of 260 

OM on mineral nucleation, growth, and transformation.  261 

 The transformations summarized here, and the subsequent temporal persistence of 262 

adsorbed molecules, are critical to parameterization of organic C cycling in environmental 263 

systems. Yet, comparatively few studies have assessed the susceptibility of organic ligands to 264 

desorption and exchange despite widespread attribution of adsorptive temporal persistence 265 
12,58,97,98. Even relatively short desorption experiments using minerals and whole soils reveal 266 

partial removal of adsorbed ligands from all surfaces except variable-charge hydrous oxides. 267 

However it is likely that there is continuous exchange even with these minerals, masked by near-268 

zero net solubility58,99. Mineral transformation and dissolution could also mediate release of 269 

adsorbed compounds into the aqueous phase. Anoxic events and biotic reductive dissolution of 270 

oxides 100-104, acidity-driven deprotonation in low-Fe systems 105, and secretion of root exudates 271 
106,107 could all serve a weathering-like role in releasing adsorbed ligands.  272 

A presumed link between particular bonding mechanisms and biotic mineralization of 273 

ligands has not been systematically addressed. Laboratory biodegradation studies suggest OM 274 

adsorption, particularly to high-surface area oxides in low-pH systems 108-111, can hinder 275 

decomposition. It is not clear, however, how such findings translate to natural soils and 276 

sediments, where dynamic weathering and solution chemistry will alter surface functionality, and 277 

where exoenzymes from fungi and bacteria can be abundant in solution. Indeed, whole-soil 278 

isotope tracer experiments suggest that metabolism of adsorbed ligands is continuous 112. Besides 279 

microbial degradation and consumption after direct desorption, displacement by biotic exudates 280 

can contribute to the decomposition of previously-adsorbed molecules 113, supported by 281 

observations that a substantial proportion of mineral-adsorbed organic matter is microbial in 282 

origin 114-116. Such evidence for the multifaceted role of biotic consumption, exchange, and 283 

deposition of organic ligands highlights the uncertainty in underlying controls and their 284 

quantitative effect on mineralization rates.  285 

 286 

 287 

[H1] Catalysis 288 

The potential of a mineral surface to act as a catalyst [G] and enhance reaction rates 289 

results from the combined action of multiple factors. For instance, minerals can concentrate 290 

organic compounds to several orders of magnitude higher than the bulk solution117,118, thus 291 

increasing the pre-exponential frequency factor in the Arrhenius equation. Association with a 292 

mineral surface can reduce the degree of orientational freedom [G] of an adsorbate by aligning 293 

monomers along two dimensions at planar surfaces 119, thereby facilitating recurring reaction 294 

patterns. Minerals also create centers of reactivity by providing coordinatively unsaturated sites 295 

and steric enhancement [G] of reactions at surfaces with substantial topography38. Furthermore, 296 
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mineral surfaces can transfer protons to a sorbate as well as offer empty electron orbitals for the 297 

reception of bonding electron pairs (Broensted- and Lewis-acid/base functionalities120). Lastly, 298 

minerals entirely made of transition metals (such as Fe and Mn oxides) or acting as solid 299 

supports for adsorbed transition metals at their surfaces and in interlayers (phyllosilicates) can 300 

contribute transition metal specific catalytic functionality 121,122.  301 

Laboratory observations made on the catalytic reactivity of different minerals can be used to 302 

recognize three mineral types of chemical reactivity (Fig. 6), although the intensity of the 303 

organomineral interactions within each class varies with changes in mineralogy, OM 304 

concentration, and geochemistry of the environment. 305 

Class I minerals are dioctahedral 2:1 clays that adsorb large organic molecules through 306 

cation-bridging and through hydrophobic expulsion and aromatic ring π-interactions with 307 

surfaces or Lifshitz - van der Waals forces. Direct complexation of OM can occur at edge sites. 308 

Because hydrophobic expulsion is the primary driver for adsorption, kinetics of adsorption are 309 

fast, macromolecular structures are rarely disturbed, and limited electron transfer is expected. 310 

However, heterogeneous oxidation of OM can occur on clay surfaces in the presence of adsorbed 311 

O2 and transition metals 123,124. Overall, the catalytic activity of Class I minerals is expected to be 312 

low with slow kinetics 123,125. 313 

Class II minerals are metal oxides, silicates, and 1:1 clays, and exhibit high adsorption 314 

capacity (Fig. 6). These minerals tend to catalyze moderate changes to the structure and 315 

electronic state of adsorbed molecules, primarily through direct bonding, hydrolytic breakdown 316 

from reactions with surface OH, and heterogeneous oxidation with adsorbed O2 
123,126,127.  317 

Finally, Class III minerals are highly reactive in terms of magnitude of sorption, and in terms 318 

of hydrolytic and electrolytic breakdown and heterogeneous oxidation (Fig. 6). Reduced clays 319 

(those with substituted transition metals), Mn oxides, sulfides and magnetite belong to this 320 

category 123,127-129. Mineral carbonates and sulfides, through major changes of surface acidity at 321 

the interface, play an important role in the hydrolytic breakdown of macromolecular organic 322 

molecules. Breakdown of large molecules into small molecules is possible, as is the subsequent 323 

transformation into larger molecules through nucleophilic addition, radical mediated 324 

polymerization and large molecule formation reactions (Fig. 6 129-131).  325 

Because of these changes, substantial alterations to mineral surface structure, including even 326 

eventual dissolution, are anticipated in the case of Class III minerals (Fig. 6). Strongest proof for 327 

all of these observations comes from solution studies, rather than from spectrometric work 328 

directed at the interface 123,132,133. The solution studies reveal the progress of catalytic reactions 329 

and their rates; however, not the reaction mechanisms at the interface. 330 

The impact of mineral catalytic behavior on OM stability is expected to be greater where 331 

there is direct organomineral interaction, or where there are monolayer coverages of OM (Fig. 332 

6). As a consequence, the intensity of organomineral interactions should be strongest during 333 

monolayer OM adsorption. In multilayer adsorption, conversely, the overall role of minerals as 334 

catalysts should be comparatively diminished as OM-OM interactions increasingly predominate 335 

over mineral-OM interactions (Fig. 6). Although a majority of molecular studies conducted on 336 
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soils or sediments belong to the latter category 74,134,135, the impact of layer thickness on OM 337 

behavior remains relatively poorly understood because of the analytical difficulties in exploring 338 

these systems. 339 

Metal atoms of mineral surfaces in the proximity of adsorbed molecules also tend to 340 

experience changes to the adsorbed water and surface hydroxyls, and to their electronic state. 341 

These can be three-fold: changes in the metal-ligand coordination (and hydration and hydrolysis) 342 

environment; complete e-transfer and oxidation or reduction of surface metal atoms; and 343 

perturbations to the energy levels of valence electrons 133,136,137. Although changes are less 344 

notable during the formation of weak H-bonded complexes, the formation of direct ionic and 345 

covalent interactions impact the binding of metal atoms of mineral surface strongly, with some 346 

additional impact to the buried atom layers next to the binding site 38 (Fig. 6). As a result, 347 

adsorption of OM to mineral surfaces often modifies the characteristics of both OM and mineral 348 

surfaces, and only in rare occasions are the chemical characteristics of each preserved at the 349 

interface during bonding 38,85,130. These considerations highlight the difficulty to distinguish 350 

between two fundamental functions (catalysis and redox reactions) of mineral surfaces when 351 

considering OM transformations at solid earth interfaces. At this time, it seems there is 352 

considerable conceptual uncertainty regarding these functions, with the available evidence 353 

favoring a role as reactant.  354 

 355 

 356 

[H1] Redox reactions 357 

Electron transfer reactions between OM and minerals, directly or mediated by microbes, 358 

are a primary pathway contributing to the oxidation, transformation, and mineralization of 359 

carbon within soils and sediments (Fig. 7a). Minerals and OM can serve as either electron 360 

donors or acceptors for a vast array of heterotrophic or mixotrophic [G] microbial metabolisms 361 

spanning a broad ecologic and taxonomic diversity 138. Various mechanisms are employed in the 362 

microbial coupling of organic carbon oxidation to the reduction of Fe and Mn oxides, including 363 

direct electron transfer via outer membrane enzymes 139 or conductive nanowires [G] 140,141 and 364 

indirect transfer via endogenously produced electron-shuttling molecules that are secreted by an 365 

organism after which they adsorb to an oxide surface and transfer the bacterial-derived electron 366 

to the mineral 142. The latter reaction pathway is a coupled biotic-abiotic pathway, whereby the 367 

second step is a direct electron transfer reaction between the organic molecule and mineral 368 

surface.  369 

A variety of organic molecules can be transformed via direct electron transfer at the 370 

surface of minerals, including Fe and Mn oxides, sulfides, and phyllosilicates 123. Within natural 371 

systems, metal oxides have garnered particular attention for their ability to serve as effective 372 

oxidants of a wide range of organic compounds 143, including humic acids, phenols, anilines, low 373 

molecular weight organic acids (such as oxalate, pyruvate, citrate) 7,144,145, and more recently 374 

proteins 128,146. The overall reaction sequence involves adsorption of the organic reactant to the 375 
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(hydr)oxide surface, transfer of electron(s) to the mineral-hosted metal, and subsequent 376 

detachment of the reduced metal and oxidized organic molecule 123.  377 

The adsorption, fractionation, and oxidative transformation upon reaction of dissolved 378 

organic matter with minerals are dependent on mineral surface chemistry, including the 379 

composition and abundance of terminal bonds 123,147. Despite typically lower adsorptive 380 

capacities, Mn oxides are stronger oxidants than Fe oxides, in large part owing to differences in 381 

redox potential 123,148,149. Indeed, Mn oxides are considered the strongest naturally occurring 382 

oxidants, and thus considerable attention has been placed in investigating the role of Mn oxides 383 

in organic carbon transformations 143. In general, organic compound oxidation rates increase with 384 

average oxidation state, redox potential, and specific surface area of the Mn oxide and decrease 385 

with apparent activation energy of the overall reaction and the pHpzc of the oxide 143. 386 

Furthermore, OM oxidation rates increase with decreasing pH, which has been primarily 387 

attributed to the higher redox potential at lower pH.  388 

As mineral-OM redox reactions rely on surface complex formation 150, the efficacy of 389 

mineral-induced organic matter oxidation and mineralization is ultimately determined by factors 390 

controlling initial adsorption. Thus, the extent and rates of organic carbon transformation and 391 

mineralization at mineral surfaces decline if surfaces become passivated [G] , for instance by 392 

high organic matter loadings 123 and/or reaction products blocking reactive sites on the surface143. 393 

Further, mineral ripening [G] and recrystallization to less reactive phases during reaction can 394 

constrain mineral surface reactivity over time. Extrapolation of the rates and products of mineral-395 

mediated OM transformations within natural systems from these reactions involving pure phases 396 

is therefore limited and convoluted.  397 

Nevertheless, correlations between oxidized Mn and oxidized OM point to a causal link 398 

between Mn oxidation and carbon transformations 113,149,151. In fact, the intimate and diverse 399 

association of OM with Mn oxides 149,152 leads to a continuum of reactions, including 400 

mineralization and polymerization within layers coating the oxide surface 129. Yet beyond 401 

correlations, there is limited data directly linking natural Mn oxides (or any mineral) to OM 402 

oxidation and transformation, pointing to a clear need for future investigations targeting mineral-403 

mediated OM redox mechanisms.  404 

 405 

 406 

[H1] Reactive Oxygen Species 407 

Mineral-derived ROS153, particularly hydrogen peroxide (H2O2), superoxide (O2
-/HO2), 408 

and hydroxyl radical (HO), represent likely important but currently underappreciated players in 409 

the transformation of soil and sediment organic matter 154. Among various biological and 410 

(photo)chemical processes 155,156, common soil and sediment minerals have also demonstrated 411 

the ability to produce ROS, including H2O2 and HO 157-161. These ROS-producing minerals 412 

include primary silicates (such as plagioclase), oxides, sulfides, and clays, with the titanium 413 

dioxide phases rutile and anatase (α- and β-TiO2), iron oxide hematite (α-Fe2O3), and Fe(II)-414 

bearing clays such as biotite and chlorite having the highest ROS yields observed to date 157,161. 415 



12 
 

Minerals contribute to ROS production via water and O2 reaction at defect sites or with mineral-416 

hosted or adsorbed Fe(II), and via photochemical electron transfer 158,161,162 (Fig. 7b-c). 417 

Alternatively, the reductive or oxidative dissolution of minerals leads to the release of metals 418 

(particularly iron) or ligands (particularly sulfide) that can create ROS upon reaction with 419 

oxygen 158 (Fig. 7b). Thus, albeit limited in number, these investigations of mineral-derived ROS 420 

indicate that the mechanisms and pathways of ROS formation vary as a function of the mineral, 421 

light, and aqueous environment. 422 

Mineral-derived ROS within natural soils and aquifers have been measured in a limited 423 

number of investigations. In subsurface soils and groundwaters, fluctuating redox conditions and 424 

oxygenation of Fe(II)-bearing minerals are the primary contributors to ROS production 161,163. 425 

Formation of ROS including O2
- and HO has been linked to the oxidation of aqueous Fe(II) 426 

emanating from subsurface marine 164 and lake sediments 165. Indeed, the oxygenation of reduced 427 

soils, sediments, and waters results in a cascade of ROS pathways, including initial formation of 428 

both O2
- and H2O2, ensuing dismutation of O2

- to H2O2, and ultimately formation of HO via 429 

reaction of aqueous Fe(II) and H2O2 (Fenton reaction)166. In sunlit surface environments, 430 

photochemical reactions at oxide surfaces have also been found to play an important role in ROS 431 

(particularly O2
- and H2O2) formation, including in both desiccated and wet desert soils 159. 432 

Production of ROS in soils pre-washed to remove photosensitizers such as nitrate point to direct 433 

mineral-induced ROS generation upon irradiation 159. Superoxide and peroxides can be stabilized 434 

within desiccated soils via complexation to metal oxide surfaces 159. These ROS are rapidly 435 

released when soils are (re)saturated, leading to pulses of oxidants within pore waters. Thus, 436 

several oxidants are formed upon oxygenation of soils and sediments, the species and flux 437 

controlled by mineral composition and mechanism of ROS generation. 438 

ROS vary in their selectivity and reactivity toward carbon functional groups, and react 439 

with a wide range of organic compounds, including carbohydrates, fatty acids, and biomolecules 440 

(such as DNA and proteins 167). The reaction progression upon interaction of DOM and ROS 441 

ranges from partial oxidation of organic carbon compounds and formation of low molecular 442 

weight organic acids to complete oxidation to CO2, depending on the reactants and conditions 443 

(such as pH). Aromatic moieties, such as quinones or humics, have been identified as primary 444 

sinks for O2
- in marine DOM, the reaction of which could lead to a catalytic cycle regenerating 445 

the original reactant and forming H2O2 
168. Hydroxyl radical is a particularly unselective and 446 

strong oxidant 169, having high reaction rates with DOM (108 M C-1 s-1)170 and the ability to 447 

oxidize carbon compounds within the DOM pool that are otherwise difficult to photo- or 448 

biodegrade 171,172.  449 

Although indirect evidence points to probable contributions of mineral-derived ROS in 450 

carbon processing, few studies to date have directly interrogated the role of ROS in carbon 451 

transformation and degradation. Still, the potential for ROS to be quantitatively relevant in 452 

carbon cycling was exemplified by a previous investigation where rates of CO2 produced from 453 
OH (109 μmol CO2 m

-2 d-1) in Arctic soils were found to be on the same order of magnitude as 454 

bacterial mineralization of DOM in surface waters 165. Similarly, DOM (including coloured 455 
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DOM) is a predominant sink of O2
- within several marine systems 173,174, and 456 

photodecomposition of DOM in lake waters has been linked to ROS formation 175. One of the 457 

first studies to directly link ROS to remineralization of carbon within soils showed that OH 458 

derived from Fe(II) oxidation was responsible for DOM oxidation to CO2 in Arctic soils 154. 459 

Specifically, production of CO2 in Arctic soil incubations scaled with OH production stimulated 460 

via H2O2 addition. Similarly, stimulation of carbon mineralization within aerobic incubations of 461 

humid and tropical soils amended with Fe(II) pointed to contributions from Fenton based 462 

reactions and ROS 57,176. In support of this, carbon mineralization decreased (8% less CO2 463 

compared to controls) within these incubations upon the addition of OH scavengers, further 464 

implicating OH as a terminal oxidant of OM 57. Similarly, addition of superoxide alone or in 465 

combination with Fe to soil incubations triggered OH formation and concomitant degradation of 466 

soil organic matter 177. Oxidation of tetracycline to CO2 was also recently linked to OH 467 

formation upon oxidation of sediments in lab incubations 161. Lastly, soil organic matter 468 

oxidation and decomposition in the absence of enzymatic activity (inactivation via autoclaving) 469 

within soils implicated mineral-derived ROS 56,178; yet, the mechanism at play was not 470 

elucidated.  471 

 472 

 473 

[H1] Definition of microbial habitats 474 

Mineral-organic matter associations play a critical role in structuring and 475 

compartmentalizing the biological reaction space of soils and sediments into microsites [G] , 476 

and, in combination with the water potential, determine the extent to which the individual 477 

microsites are connected 179 (Fig. 8). Pore connectivity, morphology, and size distribution at the 478 

microsite scale either enhance or restrict microbial access to OM 180. They also determine the 479 

conditions that microbial decomposers are exposed to, impacting the range and magnitude of the 480 

microbial activities that occur. For instance, the compartmentalisation of space results in the 481 

juxtaposition of microsites with different environmental conditions that can be mutually 482 

exclusive (for example, oxic and anoxic) at very fine scales such as within a single aggregate 483 
171,172. This juxtaposition leads to the emergence of gradients, allowing a range of processes to 484 

proceed. It also facilitates the development and persistence of extensive microbial diversity, 485 

because interactions that tend to reduce diversity, such as competition for resources or 486 

antagonism, are attenuated in compartmentalised space 173,174 (Fig 8). Understanding the link 487 

between microbes and their environment is fundamental to understanding soil and sediment 488 

microbial ecology, microbial activity and the involvement of microbial decomposers in OM 489 

dynamics 16,199,200. As many of the functional properties of soils and sediments (nutrient cycling 490 

and pollution degradation, for example) emerge from the diversity of their microbial inhabitants 491 
175, it is not unreasonable to suggest that this functioning is ultimately dependent on the minerals’ 492 

role in the structuring of space.  493 

Indeed, we posit that the overriding function of mineral matrices (Tier 1 in Fig. 1b) should 494 

be seen in their role in compartmentalizing the system. Microbially driven decomposition 495 
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requires decomposers and organic substrates to encounter one another 201. However, OM is 496 

heterogeneously distributed at scales that are relevant for microbial decomposition 202, as are 497 

microbial communities themselves 203. This distribution results in a patchwork of cold and 498 

hotspots of microbial activity 204, which is a fundamental characteristic of soils. Furthermore, 499 

there can be non-linear, concave relationships between the concentration of available organic 500 

substrate and microbial activities. These can be particularly apparent in activity hotspots and are 501 

possibly related to the saturation of cellular transport systems or local O2 limitations 132. A major 502 

consequence of non-linear, concave relationships between the concentration of available 503 

substrate and decomposition result is the lowering of overall organic matter decomposition 504 

relative to when substrate and decomposers are homogeneously distributed132.  505 

The variable connectivity of the microsites (Fig. 8) means that microbial communities 506 

function and evolve more or less independently of communities in other microsites and under 507 

different environmental conditions 176,177. Taxa that are better adapted to the prevalent microsite 508 

conditions, such as through the capacity to use electron acceptors other than O2 in anoxic 509 

conditions 178, can competitively exclude other, less adapted taxa, with the potential loss of 510 

metabolic capacity from the community. Metabolic capacity can also be lost when mutations 511 

cause the inactivation of genes that are not maintained by selective pressure (in essence, the gene 512 

does not provide any benefit to the microbe in the microsite) or genetic drift 179. Such losses of 513 

capacity from microsites could have consequences for subsequent organic matter dynamics, as 514 

they would allow organic molecules to persist over time, regardless of the intrinsic properties of 515 

the molecules or the microsite conditions. 516 

Just as plant roots affect and select microbial communities within their sphere of influence, 517 

the rhizosphere, minerals also exert influence over the microbial communities within their 518 

vicinity, and therefore the metabolic pathways and organic matter dynamics that are present in 519 

microsites 185. The sphere of influence of minerals has been termed the “mineralosphere” 186. For 520 

example, different types of minerals select different microbial communities 187-189, and the 521 

selective pressures exerted by minerals can even be greater than those associated with different 522 

environmental conditions or in the presence of different organic matter sources 188,190. Minerals, 523 

therefore, should not be viewed simply as supporting surfaces onto which microbial communities 524 

arrive from the surrounding environment in a random and passive fashion. The selective pressure 525 

exerted by minerals is likely derived from differences in resource availability at the surface or in 526 

the vicinity of the minerals induced by their function as a mobilisation filter, from the mineral 527 

acting as an electron acceptor or donor 191, from differences in surface charge, area, or 528 

topography192. Microbial attachment to mineral surfaces can also trigger wholesale changes in 529 

microbial functioning, with metabolic activity being either stimulated or inhibited, or growth and 530 

biofilm formation being promoted or suppressed, depending on the mineral type 193,194 and 531 

depending on the microorganism 195,196. The types of microbial metabolic pathways present at 532 

mineral surfaces is likely to have a major impact on mineral-organic matter associations and, 533 

indeed, a number of studies have suggested that a large part of mineral associated organic matter 534 

has been processed by microbial communities 109,197,181 particularly in agroecosystems or in 535 
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contexts where microbial communities flourish 182,183. Furthermore, the extent to which 536 

microbially processed organic matter associates with minerals could even depend upon the 537 

composition of the microbial communities 198. The mechanisms underlying the production of 538 

mineral associated organic matter via microbial processing remain as yet un-elucidated however. 539 

Nevertheless, the overriding message that emerges from these studies is that microbial 540 

communities not only mineralise organic matter but are also agents in the generation of mineral-541 

organic matter associations.  542 

Ultimately therefore, the properties, including the biotic composition, of the 543 

compartmentalized space are intimately linked to microbial-mineral associations. These 544 

properties affect the local environmental conditions, which, in turn, modulate subsequent 545 

biogeochemical processes 184. This kind of functioning, in which feedback controls are 546 

prominent and in which the overall performance of the system is not reflected in the properties of 547 

the individual components, but emerges from the component interdependencies, is typical of 548 

complex systems 184,185. The feedback controls impose a number of static and dynamic 549 

constraints on the system (Tier 2 in Fig. 1b). These constraints then determine the intensities and 550 

rates at which molecular scale biogeochemistry might be able to proceed (Tier 3 in Fig. 1b). 551 

Depending on the extent to which higher level (Tier 1 and 2) constraints operate in different parts 552 

of the system, different lower tier processes could occur simultaneously within the same system. 553 

How the structuring of space into a network of more or less connected microsites affects the 554 

assembly of microbial communities and determines local environmental conditions that modulate 555 

the expression of microbial functions and, ultimately, ecosystem performance has not yet been 556 

fully explored.  557 

 558 

[H1] Summary and future perspectives  559 

The mechanisms underlying mineral-organic interactions have a long tradition of being 560 

explored through adsorption experiments conducted with defined phases in tightly controlled 561 

laboratory environments. However, we strongly urge that this research take a more holistic, 562 

multidimensional view (Fig. 1b). We advise the scientific community to resist the temptation to 563 

attribute given manifestations of carbon dynamics to a single predictor value, such as the 564 

abundance of a certain mineral species, phyllosilicate clay content, or operationally determined 565 

specific surface area values, as has been frequent practice in the past. Rather, soils and sediments 566 

should be investigated as multidimensional entities, whose overall functional performance 567 

depends on the extent to which the structure of the matrix supports molecular scale reactions. 568 

Translating this insight into novel modeling approaches will be key to improved predictions of 569 

global biogeochemical cycles. Quantitative information about pore size, pore morphology and 570 

pore connectivity can be obtained from modern multidimensional imaging techniques such as 571 

computed tomography, rendering an explicit consideration of architectural features 572 

fundamentally possible. In this final section, we examine some of the outstanding questions and 573 

pressing research needs in organomineral interaction research.  574 

 575 

[H2] Structure and prokaryotic performance 576 
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Interactions within the mineral-organic matter complex not only have immediate and direct 577 

effects on organic matter dynamics as described above but might also have indirect and longer 578 

term consequences. Metabolic dependency [G] , when microbial cells lose the ability to produce 579 

essential metabolites and instead use those released into the environment by other cells, is 580 

common in natural microbial communities 179,180. Such metabolic dependency develops only if 581 

communities remain spatially co-located long enough for coevolution to occur 181,182. Metabolic 582 

dependency has been shown to evolve in experimental populations in 1000 to 2000 generations 583 
186. In soils and sediments, the probability of such co-evolutionary interactions occurring is 584 

greater if the physical structure of the microsite persists over time (Fig. 8). Microsite persistence 585 

is related to the organic matter content 183, but could also be related to the mineralogy. For 586 

example, there is evidence to suggest that 1:1 clays and oxides produce more persistent microsite 587 

structures 183, probably owing to electrostatic interactions between the variable charged minerals 588 
184. In view of the suggestion that the persistence of organic matter in soil is related to the 589 

heterogeneous distributions of organic substrate and metabolic capacities 187,188, it would be 590 

interesting to test the hypothesis that the mineral compartmentalizing the environment affects the 591 

distribution of metabolic capacity at the microsite scale. This could be achieved using shotgun 592 

metagenomics 189, at appropriate scales, in soils with different mineralogies.  593 

 594 

[H2] Adsorption, desorption and protection  595 

 Decomposition of adsorbed OM is typically substantially slower than decomposition of the 596 

same type of OM in a freely suspended or dissolved state 190, leading to the notion of ‘sorptive 597 

protection’ of OM. However, desorption can be facilitated by changes in pH, electron 598 

availability, or by modifications to sorbent surfaces 105. Indeed, evidence is mounting that plants 599 

are equipped with tools to achieve this exact purpose, such as the exudation of organic 600 

compounds designed to release bound organic matter from mineral surfaces 191 and to adjust 601 

patterns of microbial community composition for optimal functionality 192. With these 602 

developments in mind, we suggest that sorptive protection should be re-evaluated as an 603 

explanation for organic matter persistence, especially in systems inhabited by plant roots.  604 

More broadly, the idea that there is reduced bioavailability of adsorbed substrates must be 605 

further scrutinized. Potentially, it is not that the adsorption process exerts overwhelming bonding 606 

forces, preventing breakdown of sorbates. Instead, adsorption could temporarily fix the location 607 

of an adsorbed substrate within a given pore network. Such localization would force the 608 

decomposer community to overcome the resulting spatial complexity of substrate locations, 609 

slowing the rate of decomposition187,193. To understand the relationship between OM persistence, 610 

bioavailability, and adsorption, enzyme activity experiments should be moved away from 611 

traditional batch experiments conducted with phases dispersed in a slurry. Instead, investigations 612 

must consider and preserve the three-dimensional microstructure of natural mineral-organic 613 

interfaces 46,194.  614 

Although the importance of various physicochemical variables in determining the magnitude 615 

of OM adsorption to select phyllosilicates, metal oxides and carbonates are well understood, the 616 
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influence of these variables on the rates of adsorption and desorption is not. In addition, most 617 

OM sorption and desorption kinetic studies have been conducted on clean minerals exposed to 618 

aqueous phase OM. The kinetics of sorption onto realistic soils and sediments, where the newly 619 

offered adsorbate could compete with and actually induce the release of previously adsorbed 620 

organic compounds, have been studied on rare occasions 86, presumably because of the difficulty 621 

in unequivocally attributing resulting observations to certain mechanisms when the sorbent is 622 

complex 195. 623 

 624 

[H2] Adsorption as a framework-stabilizing process  625 

In addition to localizing the adsorbed substrate within a pore network, adsorption has the 626 

potential to significantly influence the stability of this network, thus influencing the microbial 627 

dynamics outlined above 196. For example, investigations of sediment dynamics demonstrate that 628 

fine-grained minerals and mineral-OM assemblages have a controlling influence on the cohesive 629 

nature of sediment. Detailed understanding of the relevant relationships, unfortunately, remains 630 

elusive due to complexity of interparticle interactions in assemblages of fine-grained minerals. 631 

Even in the absence of OM, colloidal interactions [G] involve a variety of interaction 632 

mechanisms with different sensitivities to distance and particle shape and charge, such that 633 

different interactions to predominate in different systems 197-199. In particular, for layered 634 

minerals, the combination of a long-range osmotic repulsion and a long-ranged attraction due to 635 

configurational entropy enables the formation of extensive aggregates with relatively dilute yet 636 

cohesive gel-like structures 200,201 202,203. 637 

In the presence of OM, the stability of the mineral framework is further stabilized 196. One 638 

conceptual model that could shed light into this stabilization is that the interaction of OM with 639 

mineral surfaces, at the OM abundances that exist in most soils and sediments, should be 640 

somewhat analogous to a wetting phenomenon. This analogy to wetting, in particular, is 641 

qualitatively consistent with the existence of either patchy or uniform distributions of OM in 642 

different systems 16,204-206 (although patchy distributions can partly reflect microbial lifestyles 643 
207,208, they are also observed in studies examining the uptake of dissolved organic matter on 644 

pristine mineral surfaces in abiotic conditions as well as in soils 135,209), with observations of 645 

preferential uptake of OM on rough surfaces or in colloidal aggregates 79,207, and with the 646 

tendency of OM to induce lasting mineral aggregation 94,96,210. It also is consistent with the 647 

hydrophobic character of the siloxane surface of phyllosilicate minerals in the absence of surface 648 

charge 211,212 or even, in the case of smectite, in uncharged surface patches resulting from the 649 

non-uniform distribution of isomorphic substitutions 62,67. In the case of oxides, studies 650 

indicating OM fractionation during uptake by Fe oxides suggest that the uptake of an initial 651 

‘contact layer’ plays an important role in enabling mineral wetting by OM 76. A number of other 652 

concepts developed in studies of wetting phenomena could prove useful in studies of mineral-653 

OM interactions, including theoretical representations of contact angles and thin films 213-215 and 654 

descriptions of the impacts of biosurfactants on microorganism distribution, carbon cycling, and 655 

bioremediation 45,216,217. 656 
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 657 

[H2] Mineral-catalyzed polymerization 658 

There is substantial interest in the ability of minerals to both induce molecular growth (such 659 

as polymerization and large molecule formation) and contribute to molecular fragmentation, as it 660 

has implications for the global carbon cycle 218,219 and in prebiotic chemistry 220. The 661 

fundamental ability of minerals to modify organic compounds has been confirmed in laboratory 662 

settings220-222, but the catalytic synthesis of novel organic compounds has not yet been observed 663 

in the environment. To investigate this phenomenon, observations need to occur simultaneously 664 

on extremely small spatial scales but on very long time scales, invoking serious experimental 665 

challenges. In the environment, mineral-catalyzed synthesis could occur but could be 666 

counterbalanced by mineral catalysed disassembly as soon as the newly made product diffuses 667 

away from its compartment of origin. Moreover, the same type of mineral can assume opposite 668 

functions in the microbial conversion of adsorbed substrates223. Directing greater research effort 669 

at the quantitative relevance of these phenomena in natural systems would be particularly useful 670 

to settle the ongoing debate regarding the importance of mineral-induced catalysis in the 671 

environment.  672 

 673 

[H2] Redox and ROS 674 

In direct opposition to the expectation that minerals act as stable repositories for OM, the 675 

close association of mineral and organic compounds also enables electron transfer and coupled 676 

redox reactions. It is now well established that a plethora of microbial taxa and biochemical 677 

pathways couple the decomposition of organic matter to the oxidative or reductive 678 

transformation of minerals. Yet, despite tremendous progress in understanding the 679 

biogeochemical underpinnings of mineral-dependent life, the taxonomy of, enzymatic machinery 680 

employed by, and ecological controls on mineral-transforming microbes remain active and 681 

essential areas of inquiry. Importantly, the thermodynamic and kinetic constraints on operative 682 

metabolisms within natural soils and sediments remain poorly constrained, and yet are essential 683 

components for the efficacy of qualitative and quantitative biogeochemical models.  684 

Further, despite some direct and indirect evidence of abiotic reactions mediating carbon 685 

transformation and mineralization at mineral surfaces, investigations of these interactions are 686 

sparse and, for those that have been conducted, conclusions are often based on correlations 687 

and/or anecdotal evidence. Moving forward, systematic and targeted investigations specifically 688 

linking OM cycling with direct and indirect reactions at mineral surfaces is needed. These 689 

investigations will undoubtedly require new methods and approaches to specifically probe the 690 

OM-mineral interface and track reaction products, such as incorporation of isotope labels and/or 691 

utilization of sophisticated imaging and spectroscopic techniques.  692 

 Acquisition of a clearer understanding of ROS-mediated carbon decomposition in soils and 693 

sediments has been hindered by several obstacles, including the difficulty in measuring short-694 

lived ROS and identifying the fate of ROS among the numerous potential decay pathways within 695 

complex matrices. In fact, OM competes with numerous other ROS sinks, such as metals, 696 
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chloride, bromide, or carbonates 165,170,224, and thus the contribution of ROS to OM cycling will 697 

undoubtedly vary with local geochemical conditions, and between freshwater and marine 698 

systems. Further the promiscuity of ROS such as O2
- and H2O2 to act as both reductants and 699 

oxidants depending on the reactants and aqueous conditions leads to complex reaction networks 700 

even within relatively simple systems. Investigations of dityrosine formation within marine 701 

waters recently highlighted the potential for ROS-induced polymerization as a means to generate 702 

less bioavailable "humic"-like fluorescent DOM in the ocean 225, indicating that ROS can 703 

mediate polymerization in addition to carbon mineralization. Thus, given the emerging 704 

recognition of minerals as sources of high ROS fluxes within the subsurface and the well-known 705 

role of ROS in organic carbon transformations, mineral-based ROS serve as a new frontier in 706 

understanding the carbon cycle.  707 

Disentangling the complex network of mineral-based redox reactions is a necessary next 708 

step to understanding the controls on carbon processing and availability within soils and 709 

sediments. These reactions will likely be most relevant at redox interfaces and in fluctuating 710 

redox environments. Under these conditions, fresh precipitates free of significant surface 711 

coatings and prior to ripening will have increased surface reactivity. Further, (re)generation of 712 

mineral-bound and aqueous redox reactants will lead to new mineral reactive sites and 713 

(re)generation of ROS and other reactive intermediates (such as reactive DOM). Teasing out the 714 

relative contributions of light-dependent and –independent reactions on ROS formation and 715 

DOM decomposition is also required within sunlit environments. Thus, an improved 716 

understanding of OM cycling in soils and sediments also requires quantification of fluxes of 717 

solid-phase and aqueous reactants across light and redox gradients, likely requiring the use of 718 

spatially resolved techniques and thermodynamic and kinetic modeling to tease out the network 719 

of reactions at play.  720 

 721 
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Key points 1333 

• Minerals enable the compartmentalisation of soils and sediments into small yet clearly 1334 

delineated spaces such that different chemical, ecological and evolutionary processes can 1335 

occur concurrently within a larger system context.  1336 

• Organic matter (OM) attachment to mineral surfaces is dynamic, sensitive to interfacial 1337 

energies and topology, and exhibits features reminiscent of a partial wetting phenomenon. 1338 

• Mineral-derived reactive oxygen species represent overlooked but undeniably key reactants 1339 

in the oxidation and transformation of OM within soils and sediments. 1340 

• Correlations between OM and fine-grained minerals, though generally interpreted as 1341 

reflecting the impacts of minerals on OM, could additionally reflect impacts of OM on 1342 

mineral nucleation, growth, and transformation.  1343 

• Depending on system logistics and environmental setting, the same type of mineral could act 1344 

as a sorbent, chemical reactant and catalyst for associated OM, enabling a vast portfolio of 1345 

potentially opposing outcomes.  1346 
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• Assessments regarding the fate of OM in the environment should not be derived from 1347 

correlations with single predictor values, such as abundance of a certain mineral phase or 1348 

specific surface area. 1349 

 1350 

 1351 

 1352 

 1353 

Figure Captions 1354 

 1355 

Figure 1 Organic-matter cycling in soils and sediments and mineral-organic matter 1356 

interactions a| Historic representation of organic matter cycling in soils and sediments. Major 1357 

organic matter (OM) pools and fluxes are represented as black boxes and arrows. Blue arrows 1358 

represent processes and interactions discussed in this Review. b| Multiscale representation of 1359 

mineral organic interactions. At the largest scale (Tier 1), the main function of the mineral matrix 1360 

is to delineate compartmentalized space. As a consequence of compartmentalization, a number of 1361 

static and dynamic constraints are imposed on smaller scales (Tier 2 functions). These constraints 1362 

then determine the intensities and rates at which molecular scale biogeochemistry could be able 1363 

to proceed (Tier 3 functions). 1364 

 1365 

Figure 2. Organic Multifunctionality. Variation of functional group combinations on organic 1366 

compounds allows for diverse modes of interaction with mineral surfaces.  1367 

 1368 

Figure 3. Key properties of fine-grained minerals and related solids. The material referred to 1369 

as allophane is a short-range-ordered (SRO) phyllosilicate with imogolite-like local structure and 1370 

highly variable stoichiometry; its distinguishing features are low crystallinity and transmission 1371 

electron microscopy (TEM) images suggestive of hollow spheres 3.5 to 5 nm in diameter, though 1372 

multiple studies have noted that the interpretation of three-dimensional structure from two-1373 

dimensional TEM image is ambiguous 95. Data based on Refs34,66,94,96,226-229. 1374 

 1375 

Figure 4. Size, shape, and global distributions of minerals. a| Size and shape of minerals 1376 

discussed here. b| Global map showing the most abundant fine-grained mineral in the subsoil 1377 

(0.3 to 2 m depth) as a function of location, and average relative abundance of different fine-1378 

grained minerals in the upper 2 m of soil averaged over the Earth’s land surface with the 1379 

exception of organic-rich soils (such as mollisols) and ice-covered regions33. Part X is adapted 1380 

from ref 33, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).  1381 

 1382 

Figure 5. Organic ligands at mineral interfaces. Mineral interfaces occur at a variety of spatial 1383 

scales and topography in soils and sediments, where a diversity of primarily low-molecular 1384 

weight, amphiphilic organic ligands may reach the solid-solution interface. Once proximal, 1385 
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ligands can bind to mineral surfaces through one or multiple complexation mechanisms based on 1386 

surface charge distribution and structural reactivity.  1387 

 1388 

Figure 6. Molecular mechanisms of OM reactions at mineral-water interfaces. Cartoon at 1389 

the top shows a mineral surface showing monolayer and multilayer (3-dimensional) sorption of 1390 

small and large OM. Molecular structures of organic molecules at mineral-water interfaces are: i: 1391 

cation bridging, ii: H-bonded or Lifshitz -Van der Waals interactions, and iii: direct covalent 1392 

interactions. Expanded views of OM interactions and expected trends for different mineral 1393 

structures in soils and sediments are shown at the bottom. The nature of chemical reactions are 1394 

(as numbered in the figure): 1: e--transfer and electrolytic breakdown of OM; 2: larger OM 1395 

formation from nucleophilic addition and radical mediated polymerization; 3: hydrolytic 1396 

breakdown of molecules from pH changes at the interface; 4: heterogeneous OM oxidation from 1397 

adsorbed O2; and 5: chemical changes to substrate showing electron transfer and reduction of 1398 

substrate atoms and changes to the coordination environments of neighboring atoms of substrate 1399 

surface. Based on their differences in chemical reactivity towards OM, we further classify 1400 

minerals presented above into 3 classes (I-III). Expected trends for OM behavior are included. 1401 

 1402 

Figure 7. Mineral-induced organic carbon redox pathways. a| Mineral induced oxidation, 1403 

which represents direct coupling. b| Mineral-derived aqueous Fe(II), which involved both direct 1404 

and reactive oxygen species (ROS) mediated reactions. c| ROS mediated reactions.  1405 

In b and c, the fate of mineral-derived ROS includes reaction of ROS with organic carbon (OC) 1406 

or transformation of one ROS to another (dismutation of superoxide to hydrogen peroxide, 1407 

formation of hydroxyl radical from ferrous iron and hydrogen peroxide via the Fenton reaction) – 1408 

for simplicity, all these fates are not shown here. The illustrations are meant to show general 1409 

processes, not mechanistic details, and the list of reactions is not exhaustive. 1410 

 1411 

Figure 8. Compartmentalization and mineral-organic matter-microbe interactions. Top 1412 

panel shows structure with high clay content that is compartmentalized and relatively constant 1413 

over time and lower panel shows structure with low clay content that is relatively dynamic over 1414 

time. The compartmentalization and constant micro-environmental conditions results in greater 1415 

niche differentiation, which allows a greater microbial diversity to co-exist through reduced 1416 

competitive interactions 230,231. The magnified insets show potential evolutionary consequences 1417 

in microsites that form constant habitats. The capacity to use organic substrate present is 1418 

subjected to strong selective pressure and preserved but other pathways could be lost (insets i. 1419 

and iii.). Less competitive species do not compete for organic substrate present, but exploits 1420 

metabolic by-product of more competitive species, resulting in a better use of available resources 1421 

by the microsite community 232 (insets ii. and iv.). 1422 

 1423 

 1424 

Glossary Terms 1425 
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 1426 

Adsorption - An increase in the concentration of a dissolved substance at the interface of a 1427 

condensed and a liquid or gaseous phase due to the operation of surface forces. 1428 

Catalyst - A substance that increases the rate of a reaction without modifying the overall 1429 

standard Gibbs energy change in the reaction 1430 

Chemotrophic – the ability to use electron donors other than photons for the synthesis of 1431 

organic compounds containing reduced carbon 1432 

Coagulation - the formation of aggregates from a fluid colloidal system 1433 

Colloid - molecules or polymolecular particles dispersed in a medium that have at least in one 1434 

direction a dimension roughly between 1 nm and 1 μm 1435 

Colloidal interactions - interactions that are enabled when particles become so small (equivalent 1436 

diameter < 1-2 micron) that surface borne electric forces between particles can effectively 1437 

control their behavior in a suspension (for instance, prevent them from settling) 1438 

Compartmentalization - the division of a system into multiple subsystems with well defined 1439 

boundaries that provide a certain degree of process autonomy  1440 

Coulombic interactions - interactions that result from the electric force between two charged 1441 

entities 1442 

Crystal facet - a flat plane on a crystal  1443 

Crystal growth - the addition of new atoms into the characteristic arrangement of the crystalline 1444 

lattice, releasing thermal energy (enthalpy of crystallization)  1445 

Depolymerization - the disassembly of a polymer into its constituent monomers or into a 1446 

mixture of products 1447 

Dispersion - A system in which particles of colloidal size of any nature (solid, liquid or gas) are 1448 

dispersed in a continuous phase of a different composition (or state). 1449 

 1450 

Fine-grained fraction - mineral grains with an average diameter smaller than 50/63 microns, 1451 

depending on classification system used  1452 

Heterotrophic - the ability to derive nutritional requirements from complex organic substances  1453 

Intra-particle region - any part of a particle that is not participating in surface reactions 1454 

Interfacial energy - excess free energy or work associated with the interface between two 1455 

phases, per interfacial area 1456 

Ligand - any atom or molecule attached to a central atom, usually a metallic element, in a 1457 

coordination or complex compound; if regarding part of a polyatomic molecular entity as 1458 

central, then the atoms, groups or molecules bound to that part are called ligands. 1459 

Metabolic dependency - a form of adaptation that leads to the absence or loss of the ability to 1460 

synthesize a certain metabolite essential for the organism, usually in response to an 1461 

abundance of said compound in the environment 1462 

Microsite - a clearly delineated space within an environment with unique conditions or features 1463 

in which specific microbial processes can occur.  1464 
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Mixotrophic – deriving carbon and energy from a mix of different sources, typically a 1465 

combination of inorganic and organic compounds 1466 

Nanowire – proteinaceous appendage produced by microbes, particularly bacteria, that is 1467 

electrically conductive 1468 

Nucleation - the process by which nuclei are formed in solution 1469 

Orientational freedom - the absence of any physical restrictions to the movement and 1470 

arrangement of a compound 1471 

Passivated - a surface that is unreactive owing to alteration or from the formation of a thin inert 1472 

coating  1473 

Photochemical lability - the tendency of a compound to undergo a chemical reaction when 1474 

exposed to light 1475 

Phototrophic - ability to capture photons as energy source for the synthesis of organic 1476 

compounds containing reduced carbon 1477 

Poorly crystalline - an operational term to distinguish crystalline structures with short range 1478 

order from others that exhibit order over longer distances 1479 

Reactive oxygen species - ROS are short-lived oxygen-bearing molecules with half-lives that 1480 

range from fractions of seconds to days, including hydrogen peroxide (H2O2), superoxide 1481 

(O2 • -/HO2), hydroxyl radical (HO), singlet oxygen (1O2), and carbonate radical (CO3 • −).  1482 

Ripening – physical and/or structural alteration of a mineral to obtain a lower surface free 1483 

energy and more energetically favorable state 1484 

unsaturated soil - a (soil) pore system that is only partially filled with water is unsaturated; a 1485 

pore system entirely filled with water is considered saturated. 1486 

Short-range ordered - the regular and predictable arrangement of atoms over a very short 1487 

distance; in crystals, order does not persist over distances of more than a few nanometers 1488 

and often extends over the distance of just a few bond lengths; Short range ordered 1489 

minerals are often also referred to as poorly crystalline minerals.  1490 

Solution - a homogeneous phase that results from the mixing of two (or more) phases 1491 

Steric constraints - factors or effects that either prevent the adoption of a certain spatial 1492 

orientation that would be required for the reaction to proceed unhindered  1493 

Steric enhancement - factors or effects that facilitate the adoption of a certain spatial orientation 1494 

that would be required for the reaction to proceed unhindered  1495 

Xenobiotic compound - a substance that is foreign to a given natural environment or ecosystem; 1496 

usually means that organisms in the system lack adaptations for the metabolic processing 1497 

of a xenobiotic compound  1498 

 1499 

Table of contents summary  1500 

Minerals and organic matter interact in soils and sediments, impacting biogeochemical 1501 

cycling and ecosystem functioning. This Review describes the major and emerging 1502 

environmental mineral-organic interactions observed, and their implications for organic matter 1503 

persistence. 1504 
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