

Dynamic interactions at the mineral–organic matter interface

Markus Kleber, Ian C Bourg, Elizabeth K Coward, Colleen M Hansel, Satish B. Myneni, Naoise Nunan

► To cite this version:

Markus Kleber, Ian C Bourg, Elizabeth K Coward, Colleen M Hansel, Satish B. Myneni, et al.. Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment, 2021, 2, pp.402-421. 10.1038/s43017-021-00162-y . hal-03225065

HAL Id: hal-03225065 https://hal.science/hal-03225065

Submitted on 12 May 2021 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dynamic interactions at the mineral-organic matter interface

Markus Kleber^{1*}, Ian C. Bourg², Elizabeth K. Coward³, Colleen M. Hansel⁴, Satish C.

B. Myneni⁵, Naoise Nunan^{6,7}

¹⁰ ¹Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA.

- ¹¹ ²Department of Civil and Environmental Engineering & High Meadows Environmental Institute,
- 12 Princeton University, Princeton, NJ, USA.
- ¹³ ³Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
- ¹⁴ ⁴Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- ¹⁵ ⁵Department of Geosciences, Princeton University, Princeton, NJ.
- ¹⁶ ⁶Sorbonne Université, CNRS, IRD, INRA, P7, UPEC, Institute of Ecology and Environmental Sciences—
- 17 Paris, Paris, France.

- ¹⁸ ⁷Department of Soil & Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- 19 *email: <u>Markus.Kleber@oregonstate.edu</u>

43 Abstract

Minerals are widely assumed to protect organic matter (OM) from degradation in the environment, promoting the persistence of carbon in soil and sediments. In this Review, we describe the mechanisms and processes operating at the mineral-organic interface as they relate to OM transformation dynamics. A broad set of interactions occur, with minerals adsorbing organic compounds to their surfaces and/or acting as catalysts for organic reactions. Minerals can serve as redox partners for OM through direct electron transfer or by generating reactive oxygen species, which then oxidize OM. Finally, the compartmentalization of soil and sediment by

⁵¹ minerals creates unique microsites that host diverse microbial communities. Acknowledgement

⁵² of this multiplicity of interactions suggests the general assumption that the mineral matrix

⁵³ provides a protective function for organic matter is overly simplistic. Future work must

⁵⁴ recognize adsorption as a condition for further reactions instead of as a final destination for

organic adsorbates, and should consider the spatial and functional complexity that is

⁵⁶ characteristic of the environments where mineral-OM interactions are observed.

57

- 58 [H1] Introduction
- 5**9**

The vast majority of organic carbon in the biosphere (5410 - 6545 PgC; including vegetation, 60 permafrost, soils, coastal systems, and marine sediments¹) occurs at solid earth interfaces in close 61 spatial proximity to some form of mineral matter. For this reason, carbon flowing through the 62 biosphere will at some point almost inevitably come into contact with mineral surfaces as it 63 undergoes the many transformations inherent in the carbon cycle. Consequently, the interactions 64 between organic and mineral phases have long been the subject of scientific inquiry. For 65 example, most soil organic carbon is associated with colloidal [G] -sized minerals^{2,3}, prompting 66 early suggestions that this association is critical for soil fertility and, by extension, is "vital to 67 life"⁴. When toxic organic chemicals were found to be accumulating in the biosphere⁵, mineral 68 phases were investigated for their ability to break down organic contaminants in the environment 69 ⁶⁻⁸. More recently, interest has turned towards using soils and sediments as repositories for excess 70 atmospheric carbon ^{9,10}, resulting in intensive research into the mechanisms determining the 71 formation, strength, and durability of mineral-OM associations¹⁰⁻¹³. These latter research efforts 72 have confirmed that minerals can protect OM from degradation. However, observed correlations 73 between individual predictor values such as clay content ¹⁴ or abundance of poorly crystalline 74 [G] minerals ¹⁵ tend to be specific to certain situations and soil types. To date, no carbon cycle 75 model has succeeded in predicting carbon turnover dynamics based on a generalised, broadly 76 applicable set of mineral phase parameters. 77

Several principles are critical to understanding mineral-OM interactions. First, soils and 78 sediments originate from a combination of destructive and constructive processes. Weathering 79 processes and organic matter decomposition disassemble rocks and organic debris into basic 80 molecular units, which combine to create micron-sized agglomerations ¹⁶. Biotic and abiotic 81 processes organise the resulting microfabric into a porous, internally-structured medium¹⁷. 82 Second, minerals generally dominate over OM in soils and sediments in terms of mass 83 proportions, with organic materials (including living organisms) rarely contributing more than 84 single-digit percentages to total mass ¹⁸⁻²⁰ (although exceptions are found in organic soils and 85 organic surface horizons). Owing to the quantitative dominance of the mineral phase, particle 86 size distribution serves as a major constraint on the physical shape of the pore system as it 87 evolves over time ²¹. Third, liquid water is the most abundant phase in pore systems²², enabling 88 geochemical and biological processes^{23,24}. Therefore, it is useful to consider even unsaturated 89 soils [G] and sediments as fundamentally aqueous systems. Finally, the mineral phase, the 90 organic phase, and the pore system are habitats for biota, which constantly modify both physical 91 shape of pores and biogeochemical activities within the system ²⁵ 92

In this Review, we undertake a broad appraisal of the complexity of the mineral organic interface and derive a perspective for future research efforts. The diverse roles of minerals in the environment are described (**Fig. 1a**), including OM adsorption [**G**], catalysis, chemical reactions participation, and reactive oxygen species [**G**] (ROS) generation. The role of the mineral matrix in creating distinct reaction spaces, and its importance of this compartmentalization [**G**] in the fate of OM, are examined. Finally, we urge the field to move towards considering mineral-OM
 interactions as multidimensional and multifaceted, and to reconsider the current notion of
 mineral protection of OM.

101 102

[H1] Fundamental properties

Mineral-organic interactions depend on several characteristic properties of the individual
 mineral and organic phases, which are briefly described below.

106

107 [H2] Organic phase

Organic molecules can be produced by abiotic processes ^{26,27} and by chemotrophic microorganisms ²⁸, but phototrophic **[G]** algae in the oceans and vascular plants on land are responsible for the bulk of modern biomass production, in roughly equal proportions ²⁹. Primary production in the oceans creates mostly lipids, proteinaceous materials, and carbohydrates other than cellulose ³⁰, whereas lignin and cellulose together account for around half of primary production on land ¹⁸.

Heterotrophic [G] organisms use the resulting biomass as a combined source of carbon, 114 energy, and nutrients. Because cell wall passage is restricted to molecules with relatively small 115 molecular masses (< 600-1000 Da)³⁰, the size of biomacromolecules must be reduced before 116 assimilation into the cell is possible. Depolymerization [G] and oxidation reactions inherent to 117 extracellular molecular disassembly add ionizable oxygen-containing functional groups to 118 decomposition products³. The resulting increasing abundances of polar functional groups (Fig. 119 2) enhance the aqueous solubility of the products, as well as their chemical reactivity towards 120 metal cations and mineral surfaces, particularly when these functional groups are ionized. 121 Moreover, the smaller molecular size facilitates diffusion ³¹ of solubilized, reactive organic 122 fragments towards mineral microstructures where they can become entrapped and adsorbed. 123 Once an organic molecule comes close to a mineral surface, the abundance and type of organic 124 functional groups constrain options for further reactions between matrix surfaces and mobile 125 organic adsorbates. 126

127 120 **[H2] M**

128 [H2] Mineral phase

A diverse suite of minerals occur in soils and sediments, including phyllosilicates and
aluminosilicates (collectively referred to as silicates); metal oxides, hydroxides, and
oxyhydroxides (collectively referred to as oxides); and metal carbonates and sulfides (Figs. 3 &
4). In most soils and sediments, phyllosilicates are the predominant component of the finegrained fraction [G] ^{32,33}. Metal oxides are an order of magnitude less abundant than
phyllosilicates except in highly weathered systems and metal-dominated marine benthic habitats
(such as hydrothermal vent deposits and ferromanganese crusts), but they contribute distinct

reactivity ^{22,34} (**Fig. 4**).

Minerals possess both permanent (structural) and variable (pH-dependent) surface charge 137 distributions. Subsequent coulombic interactions [G] dictate many physical and chemical properties, such as dispersion [G] behavior, coagulation [G], colloidal stability, solubility, and 139 adsorptive bonding mechanisms ³⁵⁻³⁷. Mineral surface reactivity is also driven by surface 140 topography ³⁸, which results from deviations in atomic crystal structure (such as steps or 141 vacancies), in tandem with particle shape and size. In altering the configuration and number of 142 reactive surface groups per unit mass, topographic surface drivers (steps, edges, and kinks, for 143 example) can thus influence the composition, abundance, and bond strength of compounds at the 144 mineral surface. Surface defects can facilitate the formation of stronger surface complexes or 145 reveal edges that offer unsaturated atoms available for direct complexation ³⁹⁻⁴², and particle size 146 modulates the relative number of reactive surface groups per unit mass of mineral. Finally, the 147 presence and size distribution of pores within mineral grain assemblages also affects the 148 available surface area for organic ligands, as well as exposure kinetics through steric constraints 149 **[G]** and diffusion limitation $^{43-46}$. 150

Beyond surface charge and topography, the key properties of fine-grained minerals that 151 determine their interactions with OM (that is, mineral size, shape, charge, and covalent 152 reactivity) are fundamentally derived from their crystal structures (Fig. 3). Notably, interfacial 153 energies [G] of the different crystal facets [G] have a strong influence on particle size and shape 154 ⁴⁷⁻⁴⁹. For layer-type minerals (phyllosilicates, gibbsite, and layered manganese (Mn) oxides such 155 as birnessite), one facet carries only surface O atoms or OH groups that are fully saturated 50, 51. The low interfacial energy of this crystal facet explains the tendency of the associated minerals 157 to adopt a lamellar shape. In turn, this lamellar shape minimizes the tendency towards crystal 158 growth [G] and hence favors the persistence of small particles ⁵². 159

The iron (Fe) oxides and framework Mn oxides are exceptions to the condition presented 160 above, in that all their crystal facets carry under- or over-coordinated surface O atoms ⁵³. One 161 consequence of this imperfect surface O coordination state is that these minerals are primed for 162 covalent reactions with appropriate organic functional groups. Another consequence is that these 163 minerals tend to grow and dissolve readily, and form particles in a variety of shapes depending 164 on the aqueous chemistry ³⁴. Finally, the relatively high interfacial energy of these minerals 165 enables the coexistence of multiple Fe oxides in most soils, as differences in surface and bulk 166 energies cause reversals in the order of thermodynamic stability as a function of particle size and 167 aqueous chemistry ⁴⁷. For example, poorly-crystalline ferrihydrite is often the initial product of 168 Fe^{III} crystallization owing to its favorable surface energy. However, at sizes greater than ~5 nm 169 ferrihydrite becomes unstable relative to more crystalline goethite and hematite owing to its less 170 favorable bulk energy ⁴⁸ 171

172

173 **[H1] Adsorption**

Adsorption has long stood as an explanation for the spatiotemporal preservation of organic matter in soils and sediments ⁵⁴. However, mounting recognition of the dynamism occurring at the mineral-organic interface, buoyed by diversifying intersectionality in expertise and analytical techniques^{14,55-58}, has emerged in the last decade of biogeochemical research.
Rather than a static and irreversible binding mechanism, it is increasingly clear that adsorption
itself encapsulates a series of fundamentally kinetic processes: diffusion, competition, and
exchange reactions are concurrent and continuous as organic matter accumulates at the mineral
surface. The dynamic mineral-OM interface evolves continuously with changes in the chemistry
of aqueous phases, OM, and mineralogy, and influences both magnitude and rate of OM
adsorption.

Observed complexity in OM adsorptive processes is rooted in the inherent diversity of the reactants. Organic matter encompasses a complex, heterogeneous continuum of structure, 185 processing, and functional diversity ⁵⁹⁻⁶¹. Even among small organic compounds, this variety 186 enables adsorption through a combination of multiple anchoring points and mechanisms ^{62,63} 187 (Fig. 2). In tandem, a diverse suite of mineral phases occurs in soils and sediments, varying in 188 surface charge and distribution, topography, and particle size (Fig. 4). OM adsorption almost 189 invariably involves a combination of several mechanisms. However, mechanisms of 190 organomineral adsorption can be grouped by the surface chemistry of the mineral (Fig. 5), as it 191 affects surface-ligand bond types, coordination state, and spatial organization. These surface 192 chemistries fall into three general groups: variably-charged, non-charged, and negatively 193 charged. 194

Variably-charged surfaces of metal oxides and phyllosilicate crystallite edges carry 195 hydroxyl groups that are increasingly protonated with decreasing pH, thereby acquiring positive 196 charge. This protonation, in turn, enables the retention of organic ligands through rapid ligand-197 exchange ^{64,65}. In many phyllosilicates, substitution of octahedral aluminum (Al) and tetrahedral 198 silicon (Si) with cations of lesser charge will generate permanently charged surfaces. The 199 prevailing negative charge of these surfaces allows for electrostatic attraction of metal cations ⁶⁶. 200 When isomorphic substitution is absent, as in some 2:1 phyllosilicates and kaolin-group 201 minerals, the resulting surfaces are electrostatically neutral and thus allow nonpolar organic 202 molecules to accumulate via entropy-driven hydrophobic exclusion phenomena in combination 203 with Lifshitz - van der Waals forces and H-bond formation 3,67 (Fig. 5).

As organic ligands partition from solution [G] to mineral surfaces, monolayer coverage 205 of the mineral surface converges into a multilayer molecular architecture ^{68,69,70} (Fig. 5). Organic 206 ligands tend to have a variety of functional groups (Fig. 2), thus there can be multiple bonding 207 mechanisms between the mineral and OM. This diversity of bonding reactions, paired with the 208 competition of organic compounds for sorptive sites both between themselves and with inorganic 209 ions 71 , results in complex multidimensional structures at the mineral surface (Fig. 5). Ion 210 concentrations are well known to modulate adsorption rates and extents, with variations amongst 211 bonding mechanisms and ion composition ^{72,73}. However, the importance of competition between 212 organic compounds in structure-selective adsorption (molecular fractionation) is less well-213 constrained. 214

215 Similarly, a plethora of recent work has probed the formation and structure of this 216 multilayer over a range of time and length scales based on nanometer-scale microscopy and spectroscopy ⁷⁴, temporal partitioning of organic ligands from solution onto the mineral surface
 ^{75,76}, and detection of uneven structures at the mineral surface ⁷⁷⁻⁷⁹.

Adsorption of OM at the mineral-water interface occurs at a rapid rate and reaches 219 equilibrium with aqueous phase in 24 hours for many organic moieties and non-porous minerals 220 ⁸⁰. The initial adsorption step is typically fast, and a majority of adsorption is completed within the first few hours after the solid-phase is exposed to aqueous OM. Slow adsorption can follow this first step and is most likely caused by the diffusion of molecules into the intra-particle regions [G] ^{45,65,81}. Most kinetic datasets regarding OM sorption on soils and sediments come 224 from studies conducted on xenobiotic compounds [G]⁶⁵. However, studies carried out on 225 organic molecules isolated from soil and aquatic environments suggest that the variables that 226 control the magnitude of sorption, also control its kinetics ^{82,83}. Some of these variables include 227 the size, charge, hydrophobicity, charge density, and concentration of OM, solution composition 228 (pH, ionic strength, ion type), and mineral type (such as metal oxides versus silicates). For 229 example, rapid adsorption is more common at lower pH values, high OM concentration, and in 230 the presence of cations⁸²⁻⁸⁵, where adsorption rates are faster under conditions that promote 231 weaker adsorption affinity, such as in alkaline solutions⁸³. Notably, newly adsorbed organics might compete with and actually induce the release of previously adsorbed organic compounds⁸⁶. 233 though this process is not well studied in situ. 234

Once bound to a mineral surface, an organic ligand [G] only rarely remains undisturbed 235 and instead is vulnerable to desorption and exchange processes, mineralization, and catalytic 236 transformations in situ (Fig. 6). During these processes, organic molecules on mineral surfaces 237 might experience changes to their hydration, structure, isomerization, rotation, and electron 238 delocalization, depending on the type of chemical bonding at mineral-water interface. The 239 overall chemical or electronic state of the adsorbed molecule tends to be similar to the molecule 240 in solution when the adsorbed molecules exhibit H-bonding, Van der Waals interactions, or 241 retain their solvated water (Fig. 6). Conversely, the adsorbed molecule tends to experience 242 substantial changes to its chemical state if it forms covalent or ionic interactions and directly 243 coordinates to the metal atoms at the mineral-water interface, such as during ligand-exchange. 244 These distinct responses are relevant to hydrolysis, electron transfer, and radical mediated 245 reactions, as well as photochemical lability [G] ^{87,88}. Although electron transfer amongst weakly-246 coordinated species can be limited in some of these complexes, for directly-bound covalent 247 complexes, not only the chemical state of the organic molecule is changed but also the electronic 248 state of the metal atom on the surface (**Fig. 6**). Unlike alkali and alkaline earth elements, 249 transition metal ions in solution or at mineral-water interfaces, such as Mn, Fe, Ni, Cu, and Zn, 250 play an important role in modifying the electronic states of the interacting organic functional 251 groups⁸⁹⁻⁹¹. 252

Adsorption potentially impacts not just the adsorbed OM, but also the minerals: adsorption invariably lowers interfacial energy ⁹², so accumulation of OM on mineral surfaces should both facilitate the nucleation **[G]** of new particles and inhibit the growth of existing particles. This should favor the formation and persistence of smaller particles, a phenomenon observed experimentally in the apparent stabilization of short-range-ordered [G] (SRO) metal oxides (ferrihydrite) and aluminosilicates (proto-imogolite) ⁹³⁻⁹⁶. A logical consequence of this is that correlations between OM and fine-grained minerals, though generally interpreted as reflecting the impacts of minerals on OM, should additionally reflect (to an unknown extent) impacts of OM on mineral nucleation, growth, and transformation.

The transformations summarized here, and the subsequent temporal persistence of 262 adsorbed molecules, are critical to parameterization of organic C cycling in environmental 263 systems. Yet, comparatively few studies have assessed the susceptibility of organic ligands to 264 desorption and exchange despite widespread attribution of adsorptive temporal persistence 265 ^{12,58,97,98}. Even relatively short desorption experiments using minerals and whole soils reveal 266 partial removal of adsorbed ligands from all surfaces except variable-charge hydrous oxides. 267 However it is likely that there is continuous exchange even with these minerals, masked by near-268 zero net solubility^{58,99}. Mineral transformation and dissolution could also mediate release of 269 adsorbed compounds into the aqueous phase. Anoxic events and biotic reductive dissolution of 270 oxides ¹⁰⁰⁻¹⁰⁴, acidity-driven deprotonation in low-Fe systems ¹⁰⁵, and secretion of root exudates 271 ^{106,107} could all serve a weathering-like role in releasing adsorbed ligands. 272

A presumed link between particular bonding mechanisms and biotic mineralization of ligands has not been systematically addressed. Laboratory biodegradation studies suggest OM 274 adsorption, particularly to high-surface area oxides in low-pH systems ¹⁰⁸⁻¹¹¹, can hinder 275 decomposition. It is not clear, however, how such findings translate to natural soils and 276 sediments, where dynamic weathering and solution chemistry will alter surface functionality, and 277 where exoenzymes from fungi and bacteria can be abundant in solution. Indeed, whole-soil 278 isotope tracer experiments suggest that metabolism of adsorbed ligands is continuous ¹¹². Besides 279 microbial degradation and consumption after direct desorption, displacement by biotic exudates 280 can contribute to the decomposition of previously-adsorbed molecules ¹¹³, supported by 281 observations that a substantial proportion of mineral-adsorbed organic matter is microbial in 282 origin ¹¹⁴⁻¹¹⁶. Such evidence for the multifaceted role of biotic consumption, exchange, and 283 deposition of organic ligands highlights the uncertainty in underlying controls and their 284 quantitative effect on mineralization rates. 285

286 287

288 [H1] Catalysis

The potential of a mineral surface to act as a catalyst **[G]** and enhance reaction rates 289 results from the combined action of multiple factors. For instance, minerals can concentrate 290 organic compounds to several orders of magnitude higher than the bulk solution^{117,118}, thus 291 increasing the pre-exponential frequency factor in the Arrhenius equation. Association with a 292 mineral surface can reduce the degree of orientational freedom [G] of an adsorbate by aligning 293 monomers along two dimensions at planar surfaces ¹¹⁹, thereby facilitating recurring reaction 294 patterns. Minerals also create centers of reactivity by providing coordinatively unsaturated sites 295 and steric enhancement [G] of reactions at surfaces with substantial topography³⁸. Furthermore, 296

mineral surfaces can transfer protons to a sorbate as well as offer empty electron orbitals for the
reception of bonding electron pairs (Broensted- and Lewis-acid/base functionalities¹²⁰). Lastly,
minerals entirely made of transition metals (such as Fe and Mn oxides) or acting as solid
supports for adsorbed transition metals at their surfaces and in interlayers (phyllosilicates) can
contribute transition metal specific catalytic functionality ^{121,122}.

Laboratory observations made on the catalytic reactivity of different minerals can be used to recognize three mineral types of chemical reactivity (**Fig. 6**), although the intensity of the organomineral interactions within each class varies with changes in mineralogy, OM concentration, and geochemistry of the environment.

³⁰⁶ Class I minerals are dioctahedral 2:1 clays that adsorb large organic molecules through ³⁰⁷ cation-bridging and through hydrophobic expulsion and aromatic ring π -interactions with ³⁰⁸ surfaces or Lifshitz - van der Waals forces. Direct complexation of OM can occur at edge sites. ³⁰⁹ Because hydrophobic expulsion is the primary driver for adsorption, kinetics of adsorption are ³¹⁰ fast, macromolecular structures are rarely disturbed, and limited electron transfer is expected. ³¹¹ However, heterogeneous oxidation of OM can occur on clay surfaces in the presence of adsorbed ³¹² O₂ and transition metals ^{123,124}. Overall, the catalytic activity of Class I minerals is expected to be ³¹³ low with slow kinetics ^{123,125}.

Class II minerals are metal oxides, silicates, and 1:1 clays, and exhibit high adsorption capacity (**Fig. 6**). These minerals tend to catalyze moderate changes to the structure and electronic state of adsorbed molecules, primarily through direct bonding, hydrolytic breakdown from reactions with surface OH, and heterogeneous oxidation with adsorbed O₂ ^{123,126,127}.

Finally, Class III minerals are highly reactive in terms of magnitude of sorption, and in terms of hydrolytic and electrolytic breakdown and heterogeneous oxidation (**Fig. 6**). Reduced clays (those with substituted transition metals), Mn oxides, sulfides and magnetite belong to this category ^{123,127-129}. Mineral carbonates and sulfides, through major changes of surface acidity at the interface, play an important role in the hydrolytic breakdown of macromolecular organic

molecules. Breakdown of large molecules into small molecules is possible, as is the subsequent

transformation into larger molecules through nucleophilic addition, radical mediated

polymerization and large molecule formation reactions (**Fig. 6** $^{129-131}$).

Because of these changes, substantial alterations to mineral surface structure, including even eventual dissolution, are anticipated in the case of Class III minerals (**Fig. 6**). Strongest proof for all of these observations comes from solution studies, rather than from spectrometric work directed at the interface ^{123,132,133}. The solution studies reveal the progress of catalytic reactions

directed at the interface ^{125,152,155}. The solution studies reveal the progress of catalytic reactives and their rates; however, not the reaction mechanisms at the interface.

The impact of mineral catalytic behavior on OM stability is expected to be greater where there is direct organomineral interaction, or where there are monolayer coverages of OM (**Fig. 6**). As a consequence, the intensity of organomineral interactions should be strongest during monolayer OM adsorption. In multilayer adsorption, conversely, the overall role of minerals as catalysts should be comparatively diminished as OM-OM interactions increasingly predominate over mineral-OM interactions (**Fig. 6**). Although a majority of molecular studies conducted on ³³⁷ soils or sediments belong to the latter category ^{74,134,135}, the impact of layer thickness on OM

behavior remains relatively poorly understood because of the analytical difficulties in exploring
 these systems.

Metal atoms of mineral surfaces in the proximity of adsorbed molecules also tend to 340 experience changes to the adsorbed water and surface hydroxyls, and to their electronic state. 341 These can be three-fold: changes in the metal-ligand coordination (and hydration and hydrolysis) 342 environment; complete e-transfer and oxidation or reduction of surface metal atoms; and 343 perturbations to the energy levels of valence electrons ^{133,136,137}. Although changes are less 344 notable during the formation of weak H-bonded complexes, the formation of direct ionic and 345 covalent interactions impact the binding of metal atoms of mineral surface strongly, with some 346 additional impact to the buried atom layers next to the binding site ³⁸ (**Fig. 6**). As a result, 347 adsorption of OM to mineral surfaces often modifies the characteristics of both OM and mineral 348 surfaces, and only in rare occasions are the chemical characteristics of each preserved at the 349 interface during bonding ^{38,85,130}. These considerations highlight the difficulty to distinguish 350 between two fundamental functions (catalysis and redox reactions) of mineral surfaces when 351 considering OM transformations at solid earth interfaces. At this time, it seems there is 352 considerable conceptual uncertainty regarding these functions, with the available evidence 353 favoring a role as reactant. 354

355 356

357 [H1] Redox reactions

Electron transfer reactions between OM and minerals, directly or mediated by microbes, are a primary pathway contributing to the oxidation, transformation, and mineralization of 359 carbon within soils and sediments (Fig. 7a). Minerals and OM can serve as either electron 360 donors or acceptors for a vast array of heterotrophic or mixotrophic [G] microbial metabolisms 361 spanning a broad ecologic and taxonomic diversity ¹³⁸. Various mechanisms are employed in the 362 microbial coupling of organic carbon oxidation to the reduction of Fe and Mn oxides, including 363 direct electron transfer via outer membrane enzymes ¹³⁹ or conductive nanowires **[G]** ^{140,141} and 364 indirect transfer via endogenously produced electron-shuttling molecules that are secreted by an 365 organism after which they adsorb to an oxide surface and transfer the bacterial-derived electron 366 to the mineral ¹⁴². The latter reaction pathway is a coupled biotic-abiotic pathway, whereby the 367 second step is a direct electron transfer reaction between the organic molecule and mineral 368 surface. 369

A variety of organic molecules can be transformed via direct electron transfer at the surface of minerals, including Fe and Mn oxides, sulfides, and phyllosilicates ¹²³. Within natural systems, metal oxides have garnered particular attention for their ability to serve as effective oxidants of a wide range of organic compounds ¹⁴³, including humic acids, phenols, anilines, low molecular weight organic acids (such as oxalate, pyruvate, citrate) ^{7,144,145}, and more recently proteins ^{128,146}. The overall reaction sequence involves adsorption of the organic reactant to the $_{376}$ (hydr)oxide surface, transfer of electron(s) to the mineral-hosted metal, and subsequent detachment of the reduced metal and oxidized organic molecule 123 .

The adsorption, fractionation, and oxidative transformation upon reaction of dissolved 378 organic matter with minerals are dependent on mineral surface chemistry, including the 379 composition and abundance of terminal bonds ^{123,147}. Despite typically lower adsorptive 380 capacities, Mn oxides are stronger oxidants than Fe oxides, in large part owing to differences in 381 redox potential ^{123,148,149}. Indeed, Mn oxides are considered the strongest naturally occurring 382 oxidants, and thus considerable attention has been placed in investigating the role of Mn oxides 383 in organic carbon transformations ¹⁴³. In general, organic compound oxidation rates increase with 384 average oxidation state, redox potential, and specific surface area of the Mn oxide and decrease 385 with apparent activation energy of the overall reaction and the pH_{pzc} of the oxide ¹⁴³. Furthermore, OM oxidation rates increase with decreasing pH, which has been primarily 387 attributed to the higher redox potential at lower pH. 388

As mineral-OM redox reactions rely on surface complex formation 150 , the efficacy of mineral-induced organic matter oxidation and mineralization is ultimately determined by factors 390 controlling initial adsorption. Thus, the extent and rates of organic carbon transformation and 391 mineralization at mineral surfaces decline if surfaces become passivated [G], for instance by 392 high organic matter loadings ¹²³ and/or reaction products blocking reactive sites on the surface¹⁴³. 393 Further, mineral ripening [G] and recrystallization to less reactive phases during reaction can 394 constrain mineral surface reactivity over time. Extrapolation of the rates and products of mineral-395 mediated OM transformations within natural systems from these reactions involving pure phases 396 is therefore limited and convoluted. 397

Nevertheless, correlations between oxidized Mn and oxidized OM point to a causal link
between Mn oxidation and carbon transformations ^{113,149,151}. In fact, the intimate and diverse
association of OM with Mn oxides ^{149,152} leads to a continuum of reactions, including
mineralization and polymerization within layers coating the oxide surface ¹²⁹. Yet beyond
correlations, there is limited data directly linking natural Mn oxides (or any mineral) to OM
oxidation and transformation, pointing to a clear need for future investigations targeting mineralmediated OM redox mechanisms.

405 406

407 [H1] Reactive Oxygen Species

Mineral-derived ROS¹⁵³, particularly hydrogen peroxide (H_2O_2), superoxide (O_2^{\bullet}/HO_2), 408 and hydroxyl radical (HO[•]), represent likely important but currently underappreciated players in 409 the transformation of soil and sediment organic matter ¹⁵⁴. Among various biological and 410 (photo)chemical processes ^{155,156}, common soil and sediment minerals have also demonstrated 411 the ability to produce ROS, including H_2O_2 and HO^{• 157-161}. These ROS-producing minerals 412 include primary silicates (such as plagioclase), oxides, sulfides, and clays, with the titanium 413 dioxide phases rutile and anatase (α - and β -TiO₂), iron oxide hematite (α -Fe₂O₃), and Fe(II)-414 bearing clays such as biotite and chlorite having the highest ROS yields observed to date ^{157,161}. 415

- 416 Minerals contribute to ROS production via water and O₂ reaction at defect sites or with mineral-
- ⁴¹⁷ hosted or adsorbed Fe(II), and via photochemical electron transfer ^{158,161,162} (**Fig. 7b-c**).
- 418 Alternatively, the reductive or oxidative dissolution of minerals leads to the release of metals
- (particularly iron) or ligands (particularly sulfide) that can create ROS upon reaction with
- ⁴²⁰ oxygen ¹⁵⁸ (**Fig. 7b**). Thus, albeit limited in number, these investigations of mineral-derived ROS
- indicate that the mechanisms and pathways of ROS formation vary as a function of the mineral,
- light, and aqueous environment.
- Mineral-derived ROS within natural soils and aquifers have been measured in a limited 423 number of investigations. In subsurface soils and groundwaters, fluctuating redox conditions and 424 oxygenation of Fe(II)-bearing minerals are the primary contributors to ROS production ^{161,163}. 425 Formation of ROS including O_2^{\bullet} and HO[•] has been linked to the oxidation of aqueous Fe(II) 426 emanating from subsurface marine ¹⁶⁴ and lake sediments ¹⁶⁵. Indeed, the oxygenation of reduced 427 soils, sediments, and waters results in a cascade of ROS pathways, including initial formation of 428 both O_2^{\bullet} and H_2O_2 , ensuing dismutation of O_2^{\bullet} to H_2O_2 , and ultimately formation of HO[•] via 429 reaction of aqueous Fe(II) and H₂O₂ (Fenton reaction)¹⁶⁶. In sunlit surface environments, 430 photochemical reactions at oxide surfaces have also been found to play an important role in ROS 431 (particularly O_2^{\bullet} and H_2O_2) formation, including in both desiccated and wet desert soils ¹⁵⁹. 432 Production of ROS in soils pre-washed to remove photosensitizers such as nitrate point to direct 433 mineral-induced ROS generation upon irradiation¹⁵⁹. Superoxide and peroxides can be stabilized 434 within desiccated soils via complexation to metal oxide surfaces ¹⁵⁹. These ROS are rapidly 435 released when soils are (re)saturated, leading to pulses of oxidants within pore waters. Thus, 436 several oxidants are formed upon oxygenation of soils and sediments, the species and flux 437 controlled by mineral composition and mechanism of ROS generation. 438
- ROS vary in their selectivity and reactivity toward carbon functional groups, and react 439 with a wide range of organic compounds, including carbohydrates, fatty acids, and biomolecules 440 (such as DNA and proteins ¹⁶⁷). The reaction progression upon interaction of DOM and ROS 441 ranges from partial oxidation of organic carbon compounds and formation of low molecular 442 weight organic acids to complete oxidation to CO₂, depending on the reactants and conditions 443 (such as pH). Aromatic moieties, such as guinones or humics, have been identified as primary 444 sinks for O_2^{-1} in marine DOM, the reaction of which could lead to a catalytic cycle regenerating 445 the original reactant and forming H_2O_2 ¹⁶⁸. Hydroxyl radical is a particularly unselective and 446 strong oxidant ¹⁶⁹, having high reaction rates with DOM $(10^8 \text{ M C}^{-1} \text{ s}^{-1})^{170}$ and the ability to 447 oxidize carbon compounds within the DOM pool that are otherwise difficult to photo- or 448 biodegrade ^{171,172}. 449
- Although indirect evidence points to probable contributions of mineral-derived ROS in carbon processing, few studies to date have directly interrogated the role of ROS in carbon transformation and degradation. Still, the potential for ROS to be quantitatively relevant in carbon cycling was exemplified by a previous investigation where rates of CO₂ produced from 'OH (109 μ mol CO₂ m⁻² d⁻¹) in Arctic soils were found to be on the same order of magnitude as bacterial mineralization of DOM in surface waters ¹⁶⁵. Similarly, DOM (including coloured

- 456 DOM) is a predominant sink of O_2^{\bullet} within several marine systems ^{173,174}, and
- ⁴⁵⁷ photodecomposition of DOM in lake waters has been linked to ROS formation ¹⁷⁵. One of the
- 458 first studies to directly link ROS to remineralization of carbon within soils showed that 'OH
- derived from Fe(II) oxidation was responsible for DOM oxidation to CO_2 in Arctic soils ¹⁵⁴.
- $_{460}$ Specifically, production of CO₂ in Arctic soil incubations scaled with 'OH production stimulated
- $_{461}$ via H_2O_2 addition. Similarly, stimulation of carbon mineralization within aerobic incubations of
- humid and tropical soils amended with Fe(II) pointed to contributions from Fenton based reactions and ROS 57,176 . In support of this, carbon mineralization decreased (8% less CO₂
- reactions and ROS 57,170 . In support of this, carbon mineralization decreased (8% less CO₂ compared to controls) within these incubations upon the addition of $^{\circ}$ OH scavengers, further
- ⁴⁶⁵ implicating 'OH as a terminal oxidant of OM ⁵⁷. Similarly, addition of superoxide alone or in
- ⁴⁶⁶ combination with Fe to soil incubations triggered 'OH formation and concomitant degradation of
- soil organic matter ¹⁷⁷. Oxidation of tetracycline to CO_2 was also recently linked to 'OH
- formation upon oxidation of sediments in lab incubations ¹⁶¹. Lastly, soil organic matter
- ⁴⁶⁹ oxidation and decomposition in the absence of enzymatic activity (inactivation via autoclaving)
- within soils implicated mineral-derived ROS 56,178 ; yet, the mechanism at play was not
- 471 elucidated.
- 472 473

[H1] Definition of microbial habitats

Mineral-organic matter associations play a critical role in structuring and 475 compartmentalizing the biological reaction space of soils and sediments into microsites [G], 476 and, in combination with the water potential, determine the extent to which the individual 477 microsites are connected ¹⁷⁹ (Fig. 8). Pore connectivity, morphology, and size distribution at the 478 microsite scale either enhance or restrict microbial access to OM¹⁸⁰. They also determine the 479 conditions that microbial decomposers are exposed to, impacting the range and magnitude of the 480 microbial activities that occur. For instance, the compartmentalisation of space results in the 481 juxtaposition of microsites with different environmental conditions that can be mutually 482 exclusive (for example, oxic and anoxic) at very fine scales such as within a single aggregate 483 ^{171,172}. This juxtaposition leads to the emergence of gradients, allowing a range of processes to 484 proceed. It also facilitates the development and persistence of extensive microbial diversity, 485 because interactions that tend to reduce diversity, such as competition for resources or 486 antagonism, are attenuated in compartmentalised space ^{173,174} (**Fig 8**). Understanding the link 487 between microbes and their environment is fundamental to understanding soil and sediment 488 microbial ecology, microbial activity and the involvement of microbial decomposers in OM 489 dynamics ^{16,199,200}. As many of the functional properties of soils and sediments (nutrient cycling 490 and pollution degradation, for example) emerge from the diversity of their microbial inhabitants 491 ¹⁷⁵, it is not unreasonable to suggest that this functioning is ultimately dependent on the minerals' 492 role in the structuring of space. 493

Indeed, we posit that the overriding function of mineral matrices (Tier 1 in **Fig. 1b**) should be seen in their role in compartmentalizing the system. Microbially driven decomposition

requires decomposers and organic substrates to encounter one another ²⁰¹. However, OM is 496 heterogeneously distributed at scales that are relevant for microbial decomposition²⁰², as are 497 microbial communities themselves ²⁰³. This distribution results in a patchwork of cold and 498 hotspots of microbial activity ²⁰⁴, which is a fundamental characteristic of soils. Furthermore, 499 there can be non-linear, concave relationships between the concentration of available organic 500 substrate and microbial activities. These can be particularly apparent in activity hotspots and are 501 possibly related to the saturation of cellular transport systems or local O₂ limitations ¹³². A major 502 consequence of non-linear, concave relationships between the concentration of available 503 substrate and decomposition result is the lowering of overall organic matter decomposition 504 relative to when substrate and decomposers are homogeneously distributed¹³².

The variable connectivity of the microsites (Fig. 8) means that microbial communities 506 function and evolve more or less independently of communities in other microsites and under 507 different environmental conditions ^{176,177}. Taxa that are better adapted to the prevalent microsite 508 conditions, such as through the capacity to use electron acceptors other than O₂ in anoxic 509 conditions ¹⁷⁸, can competitively exclude other, less adapted taxa, with the potential loss of 510 metabolic capacity from the community. Metabolic capacity can also be lost when mutations 511 cause the inactivation of genes that are not maintained by selective pressure (in essence, the gene 512 does not provide any benefit to the microbe in the microsite) or genetic drift ¹⁷⁹. Such losses of 513 capacity from microsites could have consequences for subsequent organic matter dynamics, as 514 they would allow organic molecules to persist over time, regardless of the intrinsic properties of 515 the molecules or the microsite conditions. 516

Just as plant roots affect and select microbial communities within their sphere of influence, 517 the rhizosphere, minerals also exert influence over the microbial communities within their 518 vicinity, and therefore the metabolic pathways and organic matter dynamics that are present in 519 microsites ¹⁸⁵. The sphere of influence of minerals has been termed the "mineralosphere" ¹⁸⁶. For 520 example, different types of minerals select different microbial communities ¹⁸⁷⁻¹⁸⁹, and the 521 selective pressures exerted by minerals can even be greater than those associated with different 522 environmental conditions or in the presence of different organic matter sources ^{188,190}. Minerals, therefore, should not be viewed simply as supporting surfaces onto which microbial communities 524 arrive from the surrounding environment in a random and passive fashion. The selective pressure 525 exerted by minerals is likely derived from differences in resource availability at the surface or in 526 the vicinity of the minerals induced by their function as a mobilisation filter, from the mineral 527 acting as an electron acceptor or donor¹⁹¹, from differences in surface charge, area, or 528 topography¹⁹². Microbial attachment to mineral surfaces can also trigger wholesale changes in 529 microbial functioning, with metabolic activity being either stimulated or inhibited, or growth and 530 biofilm formation being promoted or suppressed, depending on the mineral type ^{193,194} and 531 depending on the microorganism ^{195,196}. The types of microbial metabolic pathways present at mineral surfaces is likely to have a major impact on mineral-organic matter associations and, 533 indeed, a number of studies have suggested that a large part of mineral associated organic matter 534 has been processed by microbial communities ^{109,197},¹⁸¹ particularly in agroecosystems or in 535

⁵³⁶ contexts where microbial communities flourish ^{182,183}. Furthermore, the extent to which

- microbially processed organic matter associates with minerals could even depend upon the
- ⁵³⁸ composition of the microbial communities ¹⁹⁸. The mechanisms underlying the production of

⁵³⁹ mineral associated organic matter via microbial processing remain as yet un-elucidated however.

- Nevertheless, the overriding message that emerges from these studies is that microbial
- communities not only mineralise organic matter but are also agents in the generation of mineral organic matter associations.

Ultimately therefore, the properties, including the biotic composition, of the 543 compartmentalized space are intimately linked to microbial-mineral associations. These 544 properties affect the local environmental conditions, which, in turn, modulate subsequent 545 biogeochemical processes ¹⁸⁴. This kind of functioning, in which feedback controls are 546 prominent and in which the overall performance of the system is not reflected in the properties of 547 the individual components, but emerges from the component interdependencies, is typical of 548 complex systems ^{184,185}. The feedback controls impose a number of static and dynamic 549 constraints on the system (Tier 2 in Fig. 1b). These constraints then determine the intensities and 550 rates at which molecular scale biogeochemistry might be able to proceed (Tier 3 in Fig. 1b). 551 Depending on the extent to which higher level (Tier 1 and 2) constraints operate in different parts 552 of the system, different lower tier processes could occur simultaneously within the same system. 553 How the structuring of space into a network of more or less connected microsites affects the 554 assembly of microbial communities and determines local environmental conditions that modulate 555 the expression of microbial functions and, ultimately, ecosystem performance has not yet been 556 fully explored. 557

558 559

[H1] Summary and future perspectives

The mechanisms underlying mineral-organic interactions have a long tradition of being 560 explored through adsorption experiments conducted with defined phases in tightly controlled 561 laboratory environments. However, we strongly urge that this research take a more holistic, 562 multidimensional view (Fig. 1b). We advise the scientific community to resist the temptation to 563 attribute given manifestations of carbon dynamics to a single predictor value, such as the 564 abundance of a certain mineral species, phyllosilicate clay content, or operationally determined 565 specific surface area values, as has been frequent practice in the past. Rather, soils and sediments 566 should be investigated as multidimensional entities, whose overall functional performance 567 depends on the extent to which the structure of the matrix supports molecular scale reactions. 568 Translating this insight into novel modeling approaches will be key to improved predictions of 569 global biogeochemical cycles. Quantitative information about pore size, pore morphology and 570 pore connectivity can be obtained from modern multidimensional imaging techniques such as 571 computed tomography, rendering an explicit consideration of architectural features 572 fundamentally possible. In this final section, we examine some of the outstanding questions and 573 pressing research needs in organomineral interaction research. 574 575

576 [H2] Structure and prokaryotic performance

Interactions within the mineral-organic matter complex not only have immediate and direct 577 effects on organic matter dynamics as described above but might also have indirect and longer term consequences. Metabolic dependency [G], when microbial cells lose the ability to produce 579 essential metabolites and instead use those released into the environment by other cells, is 580 common in natural microbial communities ^{179,180}. Such metabolic dependency develops only if 581 communities remain spatially co-located long enough for coevolution to occur^{181,182}. Metabolic 582 dependency has been shown to evolve in experimental populations in 1000 to 2000 generations 583 ¹⁸⁶. In soils and sediments, the probability of such co-evolutionary interactions occurring is 584 greater if the physical structure of the microsite persists over time (Fig. 8). Microsite persistence 585 is related to the organic matter content ¹⁸³, but could also be related to the mineralogy. For 586 example, there is evidence to suggest that 1:1 clavs and oxides produce more persistent microsite 587 structures ¹⁸³, probably owing to electrostatic interactions between the variable charged minerals ¹⁸⁴. In view of the suggestion that the persistence of organic matter in soil is related to the 589 heterogeneous distributions of organic substrate and metabolic capacities ^{187,188}, it would be 590 interesting to test the hypothesis that the mineral compartmentalizing the environment affects the 591 distribution of metabolic capacity at the microsite scale. This could be achieved using shotgun 592 metagenomics ¹⁸⁹, at appropriate scales, in soils with different mineralogies. 593

594

[H2] Adsorption, desorption and protection

Decomposition of adsorbed OM is typically substantially slower than decomposition of the 596 same type of OM in a freely suspended or dissolved state ¹⁹⁰, leading to the notion of 'sorptive 597 protection' of OM. However, desorption can be facilitated by changes in pH, electron 598 availability, or by modifications to sorbent surfaces ¹⁰⁵. Indeed, evidence is mounting that plants 599 are equipped with tools to achieve this exact purpose, such as the exudation of organic 600 compounds designed to release bound organic matter from mineral surfaces ¹⁹¹ and to adjust 601 patterns of microbial community composition for optimal functionality ¹⁹². With these 602 developments in mind, we suggest that sorptive protection should be re-evaluated as an 603 explanation for organic matter persistence, especially in systems inhabited by plant roots. 604

More broadly, the idea that there is reduced bioavailability of adsorbed substrates must be 605 further scrutinized. Potentially, it is not that the adsorption process exerts overwhelming bonding 606 forces, preventing breakdown of sorbates. Instead, adsorption could temporarily fix the location 607 of an adsorbed substrate within a given pore network. Such localization would force the 608 decomposer community to overcome the resulting spatial complexity of substrate locations, 609 slowing the rate of decomposition^{187,193}. To understand the relationship between OM persistence, 610 bioavailability, and adsorption, enzyme activity experiments should be moved away from 611 traditional batch experiments conducted with phases dispersed in a slurry. Instead, investigations 612 must consider and preserve the three-dimensional microstructure of natural mineral-organic 613 interfaces 46,194. 614

⁶¹⁵ Although the importance of various physicochemical variables in determining the magnitude ⁶¹⁶ of OM adsorption to select phyllosilicates, metal oxides and carbonates are well understood, the influence of these variables on the rates of adsorption and desorption is not. In addition, most

OM sorption and desorption kinetic studies have been conducted on clean minerals exposed to

aqueous phase OM. The kinetics of sorption onto realistic soils and sediments, where the newly

offered adsorbate could compete with and actually induce the release of previously adsorbed

 621 organic compounds, have been studied on rare occasions 86 , presumably because of the difficulty

- ⁶²² in unequivocally attributing resulting observations to certain mechanisms when the sorbent is ⁶²³ complex ¹⁹⁵.
- 624

625 [H2] Adsorption as a framework-stabilizing process

In addition to localizing the adsorbed substrate within a pore network, adsorption has the 626 potential to significantly influence the stability of this network, thus influencing the microbial 627 dynamics outlined above ¹⁹⁶. For example, investigations of sediment dynamics demonstrate that 628 fine-grained minerals and mineral-OM assemblages have a controlling influence on the cohesive 629 nature of sediment. Detailed understanding of the relevant relationships, unfortunately, remains 630 elusive due to complexity of interparticle interactions in assemblages of fine-grained minerals. 631 Even in the absence of OM, colloidal interactions [G] involve a variety of interaction 632 mechanisms with different sensitivities to distance and particle shape and charge, such that 633 different interactions to predominate in different systems ¹⁹⁷⁻¹⁹⁹. In particular, for layered 634 minerals, the combination of a long-range osmotic repulsion and a long-ranged attraction due to 635 configurational entropy enables the formation of extensive aggregates with relatively dilute yet 636

cohesive gel-like structures ^{200,201} ^{202,203}.
In the presence of OM, the stability of the miner

In the presence of OM, the stability of the mineral framework is further stabilized ¹⁹⁶. One conceptual model that could shed light into this stabilization is that the interaction of OM with 639 mineral surfaces, at the OM abundances that exist in most soils and sediments, should be 640 somewhat analogous to a wetting phenomenon. This analogy to wetting, in particular, is 641 qualitatively consistent with the existence of either patchy or uniform distributions of OM in 642 different systems ^{16,204-206} (although patchy distributions can partly reflect microbial lifestyles 643 ^{207,208}, they are also observed in studies examining the uptake of dissolved organic matter on 644 pristine mineral surfaces in abiotic conditions as well as in soils ^{135,209}), with observations of 645 preferential uptake of OM on rough surfaces or in colloidal aggregates ^{79,207}, and with the 646 tendency of OM to induce lasting mineral aggregation ^{94,96,210}. It also is consistent with the 647 hydrophobic character of the siloxane surface of phyllosilicate minerals in the absence of surface 648 charge ^{211,212} or even, in the case of smectite, in uncharged surface patches resulting from the 649 non-uniform distribution of isomorphic substitutions ^{62,67}. In the case of oxides, studies 650 indicating OM fractionation during uptake by Fe oxides suggest that the uptake of an initial 651 'contact layer' plays an important role in enabling mineral wetting by OM ⁷⁶. A number of other 652 concepts developed in studies of wetting phenomena could prove useful in studies of mineral-653 OM interactions, including theoretical representations of contact angles and thin films ²¹³⁻²¹⁵ and 654 descriptions of the impacts of biosurfactants on microorganism distribution, carbon cycling, and 655 bioremediation 45,216,217. 656

17

658 [H2] Mineral-catalyzed polymerization

There is substantial interest in the ability of minerals to both induce molecular growth (such 659 as polymerization and large molecule formation) and contribute to molecular fragmentation, as it 660 has implications for the global carbon cycle ^{218,219} and in prebiotic chemistry ²²⁰. The 661 fundamental ability of minerals to modify organic compounds has been confirmed in laboratory 662 settings²²⁰⁻²²², but the catalytic synthesis of novel organic compounds has not yet been observed 663 in the environment. To investigate this phenomenon, observations need to occur simultaneously 664 on extremely small spatial scales but on very long time scales, invoking serious experimental 665 challenges. In the environment, mineral-catalyzed synthesis could occur but could be 666 counterbalanced by mineral catalysed disassembly as soon as the newly made product diffuses 667 away from its compartment of origin. Moreover, the same type of mineral can assume opposite 668 functions in the microbial conversion of adsorbed substrates²²³. Directing greater research effort 669 at the quantitative relevance of these phenomena in natural systems would be particularly useful 670 to settle the ongoing debate regarding the importance of mineral-induced catalysis in the 671 environment. 672

673

674 [H2] Redox and ROS

In direct opposition to the expectation that minerals act as stable repositories for OM, the 675 close association of mineral and organic compounds also enables electron transfer and coupled 676 redox reactions. It is now well established that a plethora of microbial taxa and biochemical 677 pathways couple the decomposition of organic matter to the oxidative or reductive 678 transformation of minerals. Yet, despite tremendous progress in understanding the 679 biogeochemical underpinnings of mineral-dependent life, the taxonomy of, enzymatic machinery 680 employed by, and ecological controls on mineral-transforming microbes remain active and 681 essential areas of inquiry. Importantly, the thermodynamic and kinetic constraints on operative 682 metabolisms within natural soils and sediments remain poorly constrained, and yet are essential 683 components for the efficacy of qualitative and quantitative biogeochemical models. 684

Further, despite some direct and indirect evidence of abiotic reactions mediating carbon 685 transformation and mineralization at mineral surfaces, investigations of these interactions are 686 sparse and, for those that have been conducted, conclusions are often based on correlations 687 and/or anecdotal evidence. Moving forward, systematic and targeted investigations specifically 688 linking OM cycling with direct and indirect reactions at mineral surfaces is needed. These 689 investigations will undoubtedly require new methods and approaches to specifically probe the 690 OM-mineral interface and track reaction products, such as incorporation of isotope labels and/or 691 utilization of sophisticated imaging and spectroscopic techniques. 692

Acquisition of a clearer understanding of ROS-mediated carbon decomposition in soils and sediments has been hindered by several obstacles, including the difficulty in measuring shortlived ROS and identifying the fate of ROS among the numerous potential decay pathways within complex matrices. In fact, OM competes with numerous other ROS sinks, such as metals,

- ⁶⁹⁷ chloride, bromide, or carbonates 165,170,224 , and thus the contribution of ROS to OM cycling will ⁶⁹⁸ undoubtedly vary with local geochemical conditions, and between freshwater and marine ⁶⁹⁹ systems. Further the promiscuity of ROS such as O_2^{-1} and H_2O_2 to act as both reductants and ⁷⁰⁰ oxidants depending on the reactants and aqueous conditions leads to complex reaction networks ⁷⁰¹ even within relatively simple systems. Investigations of dityrosine formation within marine
- waters recently highlighted the potential for ROS-induced polymerization as a means to generate
 less bioavailable "humic"-like fluorescent DOM in the ocean ²²⁵, indicating that ROS can
- mediate polymerization in addition to carbon mineralization. Thus, given the emerging
 recognition of minerals as sources of high ROS fluxes within the subsurface and the well-known
 role of ROS in organic carbon transformations, mineral-based ROS serve as a new frontier in
 understanding the carbon cycle.
- Disentangling the complex network of mineral-based redox reactions is a necessary next 708 step to understanding the controls on carbon processing and availability within soils and 709 sediments. These reactions will likely be most relevant at redox interfaces and in fluctuating 710 redox environments. Under these conditions, fresh precipitates free of significant surface 711 coatings and prior to ripening will have increased surface reactivity. Further, (re)generation of 712 mineral-bound and aqueous redox reactants will lead to new mineral reactive sites and 713 (re)generation of ROS and other reactive intermediates (such as reactive DOM). Teasing out the 714 relative contributions of light-dependent and -independent reactions on ROS formation and 715 DOM decomposition is also required within sunlit environments. Thus, an improved 716 understanding of OM cycling in soils and sediments also requires quantification of fluxes of 717 solid-phase and aqueous reactants across light and redox gradients, likely requiring the use of 718 spatially resolved techniques and thermodynamic and kinetic modeling to tease out the network 719
- ⁷²⁰ of reactions at play.
- 721 722

723 **References**

- 725
 1
 Friedlingstein, P. et al. Global Carbon Budget 2019. Earth System Science Data 11, 1783-1838,

 726
 doi:10.5194/essd-11-1783-2019 (2019).
- 7272Henin, S. & Turc, L. in Transactions of the 4th International Congress of Soil Science. 4th728International Congress of Soil Science. 152-154. (1950)
- Kleber, M. *et al.* in *Advances in Agronomy, Vol 130* Vol. 130 *Advances in Agronomy* (ed D. L.
 Sparks) 1-140 (2015).
- Jacks, G. V. The biological nature of soil productivity. *Soils and Fertilizers* **26**, 147-150 (1963).
- ⁷³² 5 Carson, R. *Silent Spring*. (Houghton Mifflin Company, 1962).
- 7336Stone, A. T. & Morgan, J. J. Reduction and sisolution of manganese (III) and manganese (IV)734oxides by organics. 1. Reaction with hydroquinone. Environmental Science & Technology 18,735450-456, doi:10.1021/es00124a011 (1984).
- 736 7 Stone, A. T. & Morgan, J. J. Reduction and dissolution of manganese (III) and manganese (IV)
 737 oxides by organics. 2. Survey of the reactivity of organics. *Environmental Science & Technology* 738 18, 617-624, doi:10.1021/es00126a010 (1984).

739	8	McBride, M. B. Reactivity of adsorbed and structural iron in hectorite as indicated by oxidation
740		of benzidine. <i>Clays and Clay Minerals</i> 27 , 224-230, doi:10.1346/ccmn.1979.0270308 (1979).
741	9	Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Analysis of factors controlling soil organic
742		matter levels in Great Plains grasslands. Soil Science Society of America Journal 51, 1173-1179
743		(1987).
744	10	Oades, J. M. The retention of organic matter in soils. Biogeochemistry. 5 35-70 (1988).
745	11	Jardine, P. M., Weber, N. L. & McCarthy, J. F. Mechanisms of dissolved organic carbon
746		adsorption on soil. Soil Science Society of America Journal 53, 1378-1385 (1989).
747	12	Gu, B., Schmitt, J., Chen, Z., Liang, L. & McCarthy, J. F. Adsorption and desorption of natural
748		organic matter on iron oxide: mechanisms and models. Environmental Science and Technology
749		28 , 38-46 (1994).
750	13	Hedges, J. I. The formation and clay mineral reactions of melanoidins. Geochimica et
751		Cosmochimica Acta 42 , 69-76 (1978).
752	14	Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil
753		organic matter content. <i>Biogeochemistry</i> 137 , 297-306, doi:10.1007/s10533-018-0424-3 (2018).
754	15	Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control
755		of soil organic carbon storage and turnover. <i>Nature</i> 389 , 170-173 (1997).
756	16	Chenu, C. & Plante, A. F. Clay-sized organo-mineral complexes in a cultivation chronosequence:
757		revisiting the concept of the 'primary organo-mineral complex'. European Journal of Soil Science
758		57 , 596-607, doi:10.1111/j.1365-2389.2006.00834.x (2006).
759	17	Baveye, P. C. et al. Emergent Properties of Microbial Activity in Heterogeneous Soil
760		Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major
761		Challenges Remain. Frontiers in Microbiology 9, doi:10.3389/fmicb.2018.01929 (2018).
762	18	Oades, J. M. in Minerals in soil environments. Second Edition. Vol. Book Serie Nr.1 (eds J. B.
763		Dixon & S. B. Weed) 89-160 (SSSA, 1989).
764	19	Batjes, N. H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science
765		47 , 151-163 (1996).
766	20	Jobbagy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to
767		climate and vegetation. Ecological Applications 10, 423-436 (2000).
768	21	Vereecken, H., Maes, J., Feyen, J. & Darius, P. ESTIMATING THE SOIL-MOISTURE RETENTION
769		CHARACTERISTIC FROM TEXTURE, BULK-DENSITY, AND CARBON CONTENT. Soil Science 148, 389-
770		403, doi:10.1097/00010694-198912000-00001 (1989).
771	22	Sposito, G. The Chemistry of Soils. Third Edition edn, (Oxford University Press, 2016).
772	23	Ball, P. Water is an active matrix of life for cell and molecular biology. Proceedings of the
773		National Academy of Sciences of the United States of America 114 , 13327-13335,
774		doi:10.1073/pnas.1703781114 (2017).
775	24	Schimel, J. et al. in 19th World Congress of Soil Science, Soil Solutions for a Changing World. 55-
776		58.
777	25	Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: a fresh look at Darwin's last
778		idea. Trends in Ecology & Evolution 21 , 688-695, doi:10.1016/j.tree.2006.08.002 (2006).
779	26	Miller, S. L. A production of amino acids under possible primitive earth conditions. Science 117,
780		528-529 (1953).
781	27	Heck, P. R. et al. The fall, recovery, classification, and initial characterization of the Hamburg,
782		Michigan H4 chondrite. <i>Meteorit. Planet. Sci.</i> , 19, doi:10.1111/maps.13584.
783	28	Lengeler, J. W., Drews, G. & Schlegel, H. G. <i>Biology of the Prokaryotes</i> . 984 (Wiley-Blackwell,
784		1999).

785	29	Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the
786		biosphere: Integrating terrestrial and oceanic components. Science 281, 237-240,
787		doi:10.1126/science.281.5374.237 (1998).
788	30	Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and marine sediments.
789		Organic Geochemistry 27 , 319-361 (1997).
790	31	Anslyn, E. V. & Dougherty, D. A. Modern physical organic chemistry. (University Science Books,
791		2006).
792	32	Fagel, N. in Developments in marine geology Ch. Chapter 4, 139-184 (Elsevier, 2007).
793	33	Ito, A. & Wagai, R. Global distribution of clay-size minerals on land surface for biogeochemical
794		and climatological studies. Scientific Data 4, doi:10.1038/sdata.2017.103 (2017).
795	34	Barron, V. & Torrent. in EMU Notes in Mineralogy Vol. 14 297-336 (2013).
796	35	Schulthess, C. P. & Sparks, D. L. A critical assessment of surface adsorption models. Soil Science
797		Society of America Journal 52 , 92-97, doi:10.2136/sssaj1988.03615995005200010016x (1988).
798	36	Heil, D. & Sposito, G. Organic matter role in illitic soil colloids flocculation. 2. Surface charge. Soil
799		Science Society of America Journal 57 , 1246-1253,
800		doi:10.2136/sssaj1993.03615995005700050015x (1993).
801	37	Quirk, J. P. in Advances in Agronomy, Vol 53 Vol. 53 Advances in Agronomy (ed D. L. Sparks) 121-
802		183 (1994).
803	38	Brown, G. E. et al. Metal Oxides Surfaces and Their Interactions with Aqueous Solutions and
804		Microbial Organisms. Chemical Reviews 99, 77-174 (1999).
805	39	Armanious, A., Aeppli, M. & Sander, M. Dissolved Organic Matter Adsorption to Model Surfaces:
806		Adlayer Formation, Properties, and Dynamics at the Nanoscale. Environmental Science &
807		Technology 48 , 9420-9429, doi:10.1021/es5026917 (2014).
808	40	Petridis, L. et al. Spatial Arrangement of Organic Compounds on a Model Mineral Surface:
809		Implications for Soil Organic Matter Stabilization. Environmental Science & Technology 48, 79-
810		84, doi:10.1021/es403430k (2014).
811	41	Sanderman, J., Maddern, T. & Baldock, J. Similar composition but differential stability of mineral
812		retained organic matter across four classes of clay minerals. <i>Biogeochemistry</i> 121 , 409-424,
813		doi:10.1007/s10533-014-0009-8 (2014).
814	42	Mueller, C. W. <i>et al.</i> Microscale soil structures foster organic matter stabilization in permatrost
815		soils. <i>Geoderma</i> 293 , 44-53, doi:10.1016/j.geoderma.2017.01.028 (2017).
816	43	Deen, W. M. Hindered transport of large molecules in liquid-filled pores. <i>Aiche Journal</i> 33 , 1409-
817		1425, doi:10.1002/aic.690330902 (1987).
818	44	McBride, M. B. Mobility of small molecules in interlayers of hectorite gels -ESR study with an
819		uncharged spin-probe. <i>Clays and Clay Minerals</i> 42 , 455-461, doi:10.1346/ccmn.1994.0420412
820	45	
821	45	Pignatello, J. J. & Xing, B. S. Mechanisms of slow sorption of organic chemicals to natural
822	10	particles. Environmental Science & Technology 30 , 1-11, doi:10.1021/es940683g (1996).
823	46	Yang J.Q., Zhang X., Bourg I.C. & Communications, S. H. A. N. 4D imaging reveals mechanisms of
824	47	clay-carbon protection and release. <i>Nature communications</i> , in press (2021).
825	47	Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and
826		nanoparticles. Proceedings of the National Academy of Sciences of the United States of America
827	40	101 , 12090-12101, doi:10.10/3/pnas.0404/78101 (2004).
828	48	waychunas, G. A., Kim, C. S. & Bantield, J. F. Nanoparticulate iron oxide minerals in soils and
829		sediments: unique properties and contaminant scavenging mechanisms. <i>Journal of Nanoparticle</i>
830		kesearch 7, 409-433, aoi:10.1007/S11051-005-0931-X (2005).

831	49	Zucker, R. V., Chatain, D., Dahmen, U., Hagege, S. & Carter, W. C. New software tools for the
832		calculation and display of isolated and attached interfacial-energy minimizing particle shapes.
833		Journal of Materials Science 47 , 8290-8302, doi:10.1007/s10853-012-6739-x (2012).
834	50	Sposito, G. The Surface Chemistry of Natural Particles. (Oxford University Press, 2004).
835	51	Pauling, L. The structure of micas and related materials. Proc Natl Acad Sci U.S.A. 16, 123-129
836		(1930).
837	52	Chen, J. J. et al. Building two-dimensional materials one row at a time: Avoiding the nucleation
838		barrier. <i>Science</i> 362 , 1135-+, doi:10.1126/science.aau4146 (2018).
839	53	Venema, P., Hiemstra, T., Weidler, P. G. & Van Riemsdijk, W. H. Intrinsic proton affinity of
840		reactive surface groups of metal (hydr)oxides: Application to iron (hydr)oxides. J. Colloid Interf.
841		<i>Sci.</i> 198 , 282-295 (1998).
842	54	Sollins, P., Homann, P. & Caldwell, B. A. Stabilization and destabilization of soil organic matter:
843		Mechanisms and controls. Geoderma 74, 65-105 (1996).
844	55	Abramoff, R. et al. The Millennial model: in search of measurable pools and transformations for
845		modeling soil carbon in the new century. Biogeochemistry 137, 51-71, doi:10.1007/s10533-017-
846		0409-7 (2018).
847	56	Blankinship, J. C., Becerra, C. A., Schaeffer, S. M. & Schimel, J. P. Separating cellular metabolism
848		from exoenzyme activity in soil organic matter decomposition. Soil Biology and Biochemistry 71,
849		68-75, doi: <u>http://dx.doi.org/10.1016/j.soilbio.2014.01.010</u> (2014).
850	57	Chen, C., Hall, S. J., Coward, E. & Thompson, A. Iron-mediated organic matter decomposition in
851		humid soils can counteract protection. Nature communications 11 , 1-13 (2020).
852	58	Leinemann, T. et al. Multiple exchange processes on mineral surfaces control the transport of
853		dissolved organic matter through soil profiles. Soil Biology and Biochemistry 118, 79-90,
854		doi: <u>https://doi.org/10.1016/j.soilbio.2017.12.006</u> (2018).
855	59	Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L. & De Yoreo, J. J. Developing a molecular
856		picture of soil organic matter-mineral interactions by quantifying organo-mineral binding.
857		Nature communications 8 , 1-8 (2017).
858	60	Ding, Y. et al. Chemodiversity of Soil Dissolved Organic Matter. Environmental Science &
859		Technology 54, 6174-6184, doi:10.1021/acs.est.0c01136 (2020).
860	61	Kellerman, A. M. <i>et al.</i> Unifying Concepts Linking Dissolved Organic Matter Composition to
861		Persistence in Aquatic Ecosystems. <i>Environmental Science & Technology</i> 52 , 2538-2548,
862		doi:10.1021/acs.est.7b05513 (2018).
863	62	Teppen, B. J. & Aggarwal, V. Thermodynamics of organic cation exchange selectivity in
864	60	smectites. Clays and Clay Minerals 55 , 119-130, doi:10.1346/ccmn.2007.0550201 (2007).
865	63	Mackay, A. A. & Vasudevan, D. Polyfunctional lonogenic Compound Sorption: Challenges and
866		New Approaches To Advance Predictive Models. Environmental Science & Technology 46, 9209-
867	C A	9223, doi:10.1021/es301036t (2012).
868	64	NI, J. & Pignatello, J. J. Charge-assisted hydrogen bonding as a conesive force in soil organic
869		Company Droppesson & Impagete 20 , 1222, 1222 (2018)
870	6E	Science: Processes & Inipacis 20, 1225-1233 (2018).
871	65	Schwartzenbach, R. P., Gschwend, P. M. & Imboden, D. M. Environmental Organic Chemistry.
872	66	1024 (Wiley, 2010). Specite C. Skiper N. T. Sutten D. Dark S. H. Seper A. K. Greathause, I. A. Surface
8/3	00	Spusitu, B., Skiper, N. T., Sutton, K., Park, SA., Super, A. K. Gredthouse, J. A. Surface
8/4 075		geochemistry of the clay minerals. Proceedings of the National Academy of Sciences USA 96, 2252, 2264 (1000)
076	67	Willemsen I A R Myneni S C R & Rourg I C Molecular Dynamics Simulations of the
0/0	07	Advantion of Databate Esters on Smeetite Clay Surfaces Journal of David Chemistry C 122
0//		1262/(12626) doi:10.1021/2cc incc.0b01864 (2010)
010		13024-13030, dui.10.1021/acs.jpcc.3b01004 (2013).

879	68	Wershaw, R. L. Model for Humus in Soils and Sediments. Envionmental Science and Technology
880		27 , 814-816 (1993).
881	69	Kleber, M., Sollins, P. & Sutton, R. A conceptual model of organo-mineral interactions in soils:
882		self-assembly of organic molecular fragments into zonal structures on mineral surfaces.
883		Biogeochemistry 85 , 9-24 (2007).
884	70	Huang, X. Z. et al. Direct evidence for thickening nanoscale organic films at soil biogeochemical
885		interfaces and its relevance to organic matter preservation. <i>Environmental Science-Nano</i> 7,
886		2747-2758, doi:10.1039/d0en00489h (2020).
887	71	Ohno, T. & Kubicki, J. D. Adsorption of Organic Acids and Phosphate to an Iron (Oxyhydr)oxide
888		Mineral: A Combined Experimental and Density Functional Theory Study. Journal of Physical
889		<i>Chemistry A</i> 124 , 3249-3260, doi:10.1021/acs.jpca.9b12044 (2020).
890	72	Bowden, J. W., Posner, A. M. & Quirk, J. P. Ionic adsorption on variable charge mineral surfaces.
891		Theoretical charge development and titration curves. Soil Research 15 , 121-136 (1977).
892	73	Riedel, T., Biester, H. & Dittmar, T. Molecular Fractionation of Dissolved Organic Matter with
893		Metal Salts. <i>Environmental Science & Technology</i> 46 , 4419-4426, doi:10.1021/es203901u (2012).
894	74	Possinger, A. R. <i>et al.</i> Organo–organic and organo–mineral interfaces in soil at the nanometer
895		scale. Nature communications 11 (2020).
896	75	Mitchell, P. J., Simpson, A. J., Soong, R. & Simpson, M. J. Nuclear Magnetic Resonance Analysis of
897		Changes in Dissolved Organic Matter Composition with Successive Lavering on Clay Mineral
898		Surfaces. Soils 2 , 8 (2018).
899	76	Coward, E. K., Ohno, T. & Sparks, D. L. Direct Evidence for Temporal Molecular Fractionation of
900		Dissolved Organic Matter at the Iron Oxyhydroxide Interface. Environmental Science &
901		<i>Technology</i> 53 . 642-650. doi:10.1021/acs.est.8b04687 (2019).
902	77	Hatton, PJ., Remusat, L., Zeller, B., Brewer, E. A. & Derrien, D. NanoSIMS investigation of
903		glycine-derived C and N retention with soil organo-mineral associations. <i>Biogeochemistry</i> 125 ,
904		303-313, doi:10.1007/s10533-015-0138-8 (2015).
905	78	Lehmann, J. <i>et al.</i> Spatial complexity of soil organic matter forms at nanometre scales. <i>Nature</i>
906		<i>Geoscience</i> 1 , 238-242, doi:10.1038/ngeo155 (2008).
907	79	Vogel, C. <i>et al.</i> Submicron structures provide preferential spots for carbon and nitrogen
908		sequestration in soils. <i>Nature Communications</i> 5 , doi:10.1038/ncomms3947 (2014).
909	80	Shaker, A., Komy, Z., Heggy, S. & Elsayed, M. Kinetic Study for Adsorption Humic Acid on Soil
910		Minerals. The journal of physical chemistry. A 116 , doi:10.1021/jp3078826 (2012).
911	81	Koopal, L., Tan, W. F. & Avena, M. Mixed ad/desorption kinetics unraveled with the equilibrium
912		adsorption isotherm. Colloids and Surfaces a-Physicochemical and Engineering Aspects 577, 709-
913		722, doi:10.1016/j.colsurfa.2019.06.033 (2019).
914	82	Avena, M. J. & Wilkinson, K. J. Disaggregation kinetics of a peat humic acid: Mechanism and pH
915		effects. Environmental Science & Technology 36 , 5100-5105, doi:10.1021/es025582u (2002).
916	83	Li, W. L. <i>et al.</i> Real-time evaluation of natural organic matter deposition processes onto model
917		environmental surfaces. Water Res. 129 , 231-239, doi:10.1016/j.watres.2017.11.024 (2018).
918	84	Avena, M. J. & Koopal, L. K. Kinetics of humic acid adsorption at solid-water interfaces.
919		Environmental Science & Technology 33 , 2739-2744, doi:10.1021/es981236u (1999).
920	85	Lee, S. S., Fenter, P., Park, C. & Nagy, K. L. Fulvic acid sorption on muscovite mica as a function of
921		pH and time using in situ X-ray reflectivity. <i>Langmuir</i> 24 . 7817-7829. doi:10.1021/la703456t
922		(2008).
923	86	Lilienfein, J., Qualls, R. G., Uselman, S. M. & Bridgham. S. D. Adsorption of dissolved organic
924		carbon and nitrogen in soils of a weathering chronosequence. Soil Science Society of America
925		Journal 68, 292-305 (2004).
.20		

926	87	Mostovaya, A., Hawkes, J. A., Dittmar, T. & Tranvik, L. J. Molecular Determinants of Dissolved
927		Organic Matter Reactivity in Lake Water. Frontiers in Earth Science 5,
928		doi:10.3389/feart.2017.00106 (2017).
929	88	Chacon, S. S. et al. Mineral Surfaces as Agents of Environmental Proteolysis: Mechanisms and
930		Controls. Environmental Science & Technology, doi:10.1021/acs.est.8b05583 (2019).
931	89	Haas, K. L. & Franz, K. J. Application of Metal Coordination Chemistry To Explore and Manipulate
932		Cell Biology. Chemical Reviews 109, 4921-4960, doi:10.1021/cr900134a (2009).
933	90	Christl, I. & Kretzschmar, R. C-1s NEXAFS spectroscopy reveals chemical fractionation of humic
934		acid by cation-induced coagulation. Environmental Science & Technology 41, 1915-1920,
935		doi:10.1021/es062141s (2007).
936	91	Edwards, D. C. & Myneni, S. C. B. Hard and soft X-ray absorption spectroscopic investigation of
937		aqueous Fe(III)-hydroxamate siderophore complexes. Journal of Physical Chemistry A 109,
938		10249-10256, doi:10.1021/jp053349n (2005).
939	92	Radke, C. J. Gibbs adsorption equation for planar fluid-fluid interfaces: Invariant formalism.
940		Advances in Colloid and Interface Science 222 , 600-614, doi:10.1016/j.cis.2014.01.001 (2015).
941	93	Schwertmann, U. Inhibitory effect of soil organic matter on crystallization of amorphous ferric
942		hydroxide. <i>Nature</i> 212 , 645-+, doi:10.1038/212645b0 (1966).
943	94	Eusterhues, K. <i>et al.</i> Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-ray
944		Diffraction and Mossbauer Spectroscopy. Environmental Science & Technology 42, 7891-7897,
945		doi:10.1021/es800881w (2008).
946	95	Levard, C. et al. Structure and distribution of allophanes, imogolite and proto-imogolite in
947		volcanic soils. <i>Geoderma</i> 183 , 100-108, doi:10.1016/j.geoderma.2012.03.015 (2012).
948	96	Chen, C. M., Kukkadapu, R. & Sparks, D. L. Influence of Coprecipitated Organic Matter on Fe-
949		(aq)(2+)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics.
950		Environmental Science & Technology 49 , 10927-10936, doi:10.1021/acs.est.5b02448 (2015).
951	97	Kaiser, K. & Zech, W. Release of natural organic matter sorbed to oxides and a subsoil. Soil
952		Science Society of America Journal 63 , 1157-1166 (1999).
953	98	Oren, A. & Chefetz, B. Sorptive and Desorptive Fractionation of Dissolved Organic Matter by
954		Mineral Soil Matrices. J. Environ. Qual. 41, 526-533, doi:10.2134/jeq2011.0362 (2012).
955	99	Lippold, H. & Lippmann-Pipke, J. Effect of humic matter on metal adsorption onto clay materials:
956		Testing the linear additive model. Journal of Contaminant Hydrology 109, 40-48,
957		doi: <u>https://doi.org/10.1016/j.jconhyd.2009.07.009</u> (2009).
958	100	Eusterhues, K. et al. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter:
959		microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite.
960		<i>Biogeosciences</i> 11 , 4953-4966, doi:10.5194/bg-11-4953-2014 (2014).
961	101	Eusterhues, K., Rumpel, C., Kleber, M. & Kogel-Knabner, I. Stabilisation of soil organic matter by
962		interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic
963		Geochemistry 34 , 1591-1600 (2003).
964	102	Grybos, M., Davranche, M., Gruau, G. & Petitjean, P. Is trace metal release in wetland soils
965		controlled by organic matter mobility or Fe-oxyhydroxides reduction? Journal of Colloid and
966		Interface Science 314 , 490-501, doi:10.1016/j.jcis.2007.04.062 (2007).
967	103	Pan, W., Kan, J., Inamdar, S., Chen, C. & Sparks, D. Dissimilatory microbial iron reduction release
968		DOC (dissolved organic carbon) from carbon-ferrihydrite association. Soil Biology and
969		Biochemistry 103, 232-240, doi:10.1016/j.soilbio.2016.08.026 (2016).
970	104	Poggenburg, C., Mikutta, R., Schippers, A., Dohrmann, R. & Guggenberger, G. Impact of natural
971		organic matter coatings on the microbial reduction of iron oxides. Geochimica et Cosmochimica
972		Acta 224 , 223-248, doi: <u>https://doi.org/10.1016/j.gca.2018.01.004</u> (2018).

973	105	Thompson, A., Chadwick, O. A., Boman, S. & Chorover, J. Colloid mobilization during soil iron
974		redox oscillations. Environmental Science & Technology 40, 5743-5749 (2006).
975	106	Collignon, C., Ranger, J. & Turpault, M. P. Seasonal dynamics of Al- and Fe-bearing secondary
976		minerals in an acid forest soil: influence of Norway spruce roots (Picea abies (L.) Karst.).
977		<i>European Journal of Soil Science</i> 63 , 592-602, doi:10.1111/j.1365-2389.2012.01470.x (2012).
978	107	Ochs, M., Brunner, I., Stumm, W. & Cosovic, B. Effect of root exudates and humic substances on
979		weathering kinetics. Water Air and Soil Pollution 68, 213-229, doi:10.1007/bf00479404 (1993).
980	108	Fang, L., Cao, Y., Huang, Q., Walker, S. L. & Cai, P. Reactions between bacterial exopolymers and
981		goethite: A combined macroscopic and spectroscopic investigation. Water Res. 46, 5613-5620,
982		doi: <u>http://dx.doi.org/10.1016/j.watres.2012.07.046</u> (2012).
983	109	Goyne, K. W., Chorover, J., Zimmerman, A. R., Komarneni, S. & Brantley, S. L. Influence of
984		mesoporosity on the sorption of 2,4-dichlorophenoxyacetic acid onto alumina and silica. J.
985		Colloid Interf. Sci. 272 , 10-20 (2004).
986	110	Johnston, C. T., Premachandra, G. S., Szabo, T., Lok, J. & Schoonheydt, R. A. Interaction of
987		Biological Molecules with Clay Minerals: A Combined Spectroscopic and Sorption Study of
988		Lysozyme on Saponite. <i>Langmuir</i> 28 , 611-619, doi:10.1021/la203161n (2012).
989	111	Hunter, W. R. et al. Metabolism of mineral-sorbed organic matter and microbial lifestyles in
990		fluvial ecosystems. Geophysical Research Letters 43, 1582-1588, doi:10.1002/2016gl067719
991		(2016).
992	112	McGhee, I., Sannino, F., Gianfreda, L. & Burns, R. G. Bioavailability of 2,4-D sorbed to a chlorite-
993		like complex. Chemosphere 39 , 285-291, doi:10.1016/s0045-6535(99)00109-5 (1999).
994	113	Keiluweit, M. et al. Long-term litter decomposition controlled by manganese redox cycling.
995		Proceedings of the National Academy of Sciences, 201508945 (2015).
996	114	Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic
997		matter formation and its ecophysiological controls. Nature Communications 7,
998		doi:10.1038/ncomms13630 (2016).
999	115	Malik, A. & Gleixner, G. Importance of microbial soil organic matter processing in dissolved
1000		organic carbon production. Fems Microbiology Ecology 86, 139-148, doi:10.1111/1574-
1001		6941.12182 (2013).
1002	116	Simpson, A., J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially Derived Inputs to Soil
1003		Organic Matter: Are Current Estimates Too Low? Environmental Science & Technology 41, 8070-
1004		8076 (2007).
1005	117	Ferris, J. P. Montmorillonite catalysis of 30-50 mer oligonucleotides: Laboratory demonstration
1006		of potential steps in the origin of the RNA world. Origins of Life and Evolution of the Biosphere
1007		32 , 311-332, doi:10.1023/a:1020543312109 (2002).
1008	118	Aldersley, M. F., Joshi, P. C., Price, J. D. & Ferris, J. P. The role of montmorillonite in its catalysis
1009		of RNA synthesis. Applied Clay Science 54, 1-14, doi:10.1016/j.clay.2011.06.011 (2011).
1010	119	Duval, S. <i>et al.</i> On the why's and how's of clay minerals' importance in life's emergence. <i>Applied</i>
1011		<i>Clay Science</i> 195 , doi:10.1016/j.clay.2020.105737 (2020).
1012	120	Laszlo, P. Chemical reactions on clays. <i>Science</i> 235 , 1473-1477,
1013		doi:10.1126/science.235.4/95.14/3 (1987).
1014	121	McBride, M. B. Adsorption and oxidation of phenolic compounds by iron and manganese oxides
1015		Soil Science Society of America Journal 51 , 1466-1472 (1987).
1016	122	Sheng, F. <i>et al.</i> Rapid Hydrolysis of Penicillin Antibiotics Mediated by Adsorbed Zinc on Goethite
1017		Surfaces. Environmental Science & Technology 53 , 10/05-10/13, doi:10.1021/acs.est.9b02666
1018	422	(2019). Changaran I. 8. Anvistadi: NA. K. Dagatian of format floor
1019	123	Chorover, J. & Amistadi, IVI. K. Reaction of forest floor organic matter at goethite, birnessite and
1020		smectite surfaces. <i>Geochimica et Cosmochimica Acta</i> 65, 95-109 (2001).

124 Faure, P., Schlepp, L., Burkle-Vitzthum, V. & Elie, M. Low temperature air oxidation of n-alkanes in the presence of Na-smectite. Fuel 82, 1751-1762, doi:10.1016/s0016-2361(03)00133-9 (2003). 1022 Mitchell, P. J. et al. Solution-state NMR investigation of the sorptive fractionation of dissolved 125 organic matter by alkaline mineral soils. Environmental Chemistry 10, 333-340 (2013). 1024 126 Riedel, T., Zak, D., Biester, H. & Dittmar, T. Iron traps terrestrially derived dissolved organic 1025 matter at redox interfaces. Proceedings of the National Academy of Sciences of the United States 1026 of America 110, 10101-10105, doi:10.1073/pnas.1221487110 (2013). 1027 127 Chacon, S. S., Garcia-Jaramillo, M., Liu, S. Y., Ahmed, M. & Kleber, M. Differential capacity of 1028 kaolinite and birnessite to protect surface associated proteins against thermal degradation. Soil Biology & Biochemistry **119**, 101-109, doi:10.1016/j.soilbio.2018.01.020 (2018). 1030 128 Reardon, P. N. et al. Abiotic Protein Fragmentation by Manganese Oxide: Implications for a 1031 Mechanism to Supply Soil Biota with Oligopeptides. Environmental Science & Technology 50, 3486-3493, doi:10.1021/acs.est.5b04622 (2016). 1033 129 Johnson, K. et al. Towards a mechanistic understanding of carbon stabilization in manganese 1034 oxides. Nature Comm. 6, 7628 (2015). 1035 130 Cleaves, H. J. et al. Mineral-organic interfacial processes: potential roles in the origins of life. 1036 Chemical Society Reviews 41, 5502-5525, doi:10.1039/c2cs35112a (2012). 1037 131 Soma, Y. & Soma, M. CHEMICAL-REACTIONS OF ORGANIC-COMPOUNDS ON CLAY SURFACES. 1038 Environmental Health Perspectives 83, 205-214, doi:10.2307/3430656 (1989). 1039 132 Norde, W. My voyage of discovery to proteins in flatland...... and beyond. Colloids and 1040 Surfaces B-Biointerfaces 61, 1-9, doi:10.1016/j.colsurfb.2007.09.029 (2008). 1041 133 Hoarau, M., Badieyan, S. & Marsh, E. N. G. Immobilized enzymes: understanding enzyme -1042 surface interactions at the molecular level. Organic & Biomolecular Chemistry 15, 9539-9551, doi:10.1039/c7ob01880k (2017). 1044 134 Maurice, P. A. & Namjesnik-Dejanovic, K. Aggregate structures of sorbed humic substances 1045 observed in aqueous solution. Environmental Science and Technology 33, 1538-1541 (1999). 1046 Myneni, S. C. B., Brown, J. T., Martinez, G. A., Meyer-Ilse, W.,. Imaging of humic substance 135 1047 macromolecular structures in water and soils. Science 286, 1335-1337 (1999). 1048 136 Denton, J. K. et al. Molecular-level origin of the carboxylate head group response to divalent 1049 metal ion complexation at the air-water interface. Proceedings of the National Academy of Sciences of the United States of America 116, 14874-14880, doi:10.1073/pnas.1818600116 1051 (2019). Liu, W., Tkatchenko, A. & Scheffler, M. Modeling Adsorption and Reactions of Organic Molecules 1053 137 at Metal Surfaces. Accounts of Chemical Research 47, 3369-3377, doi:10.1021/ar500118y 1054 (2014).138 Nealson, K. H. & Saffarini, D. Iron and manganese in anaerobic respiration: Environmental 1056 significance, physiology, and regulation. Annu. Rev. Microbiol. 48, 311-343 (1994). 139 Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. 1058 Nature Rev. Microbiol. 14, 651-662 (2016). 140 Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis 1060 strain MR-1 and other microorganisms. Proc. Nation. Acad. Sci. 103, 11358-11363 (2006). 1061 141 Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098-1062 1101, doi:10.1038/nature03661 (2005). 1063 Marsili, E. et al. Shewanella Secretes flavins that mediate extracellular electron transfer. 142 1064 Proceedings of the National Academy of Sciences of the United States of America 105, 3968-1065 3973, doi:10.1073/pnas.0710525105 (2008). 1066 143 Remucal, C. K. & Ginder-Vogel, M. A critical review of the reactivity of manganese oxides with 1067 organic contaminants. Environ. Sci.: Processes Impacts 16, 1247 (2014). 1068

1069	144	Sunda, W. G. & Kieber, D. J. Oxidation of humic substances by manganese oxides yields low-
1070		molecular weight organic substrates. <i>Nature</i> 367 , 62-64, doi:10.1038/367062a0 (1994).
1071	145	Ma, D., Wu, J., Yang, P. & Zhu, M. Q. Coupled Manganese Redox Cycling and Organic Carbon
1072		Degradation on Mineral Surfaces. Environmental Science & Technology 54, 8801-8810,
1073		doi:10.1021/acs.est.0c02065 (2020).
1074	146	Russo, F., Johnson, C. J., McKenzie, D., Aiken, J. M. & Pedersen, J. A. Pathogenic prion protein is
1075		degraded by a manganese oxide mineral found in soils. Journal of General Virology 90, 275-280,
1076		doi:10.1099/vir.0.003251-0 (2009).
1077	147	Heckman, K., Vazquez-Ortega, A., Gao, X. D., Chorover, J. & Rasmussen, C. Changes in water
1078		extractable organic matter during incubation of forest floor material in the presence of quartz,
1079		goethite and gibbsite surfaces. Geochimica et Cosmochimica Acta 75, 4295-4309,
1080		doi:10.1016/j.gca.2011.05.009 (2011).
1081	148	Lehmann, R. G., Cheng, H. H. & Harsh, J. B. Oxidation of phenolic acids by soil iron and
1082		manganese oxides. Soil Sci. Soc. Am. J. 51, 352-356 (1987).
1083	149	Stuckey, J. W. et al. Impacts of hydrous manganese oxide on the retention and lability of
1084		dissolved organic matter. <i>Geochem. Trans.</i> 19, 6 (2018).
1085	150	Suter, D., Banwart, S. & Stumm, W. Dissolution of hydrous iron(III) oxides byb reductive
1086		mechanisms. <i>Langmuir</i> 7 , 809-813, doi:10.1021/la00052a033 (1991).
1087	151	Jones, M. E. et al. Manganese-driven carbon oxidation at oxic-anoxic interfaces. Environ. Sci.
1088		Technol. 52 , 12349-12357 (2018).
1089	152	Estes, E. R., Andeer, P. F., Nordlund, D., Wankel, S. & Hansel, C. M. Biogenic manganese oxides
1090		as reservoirs of organic carbon and proteins in terrestrial and marine environments. Geobiol. 15,
1091		158-172 (2016).
1092	153	Fridovich, I. Oxygen toxicity: A radical explanation. Journal of Experimental Biology 201, 1203-
1093		1209 (1998).
1094	154	Trusiak, A., Treibergs, L. A., Kling, G. W. & Cory, R. M. The role of iron and reactive oxygen
1095		species in the production of CO2 in arctic soil waters. Geochimica Et Cosmochimica Acta 224, 80-
1096		95, doi:10.1016/j.gca.2017.12.022 (2018).
1097	155	Hansel, C. M. & Diaz, J. M. Reactive oxygen species production by marine biota. Annual Review
1098		of Marine Science. Annual Review of Marine Science, doi:doi:10.1146/annurev-marine-041320-
1099		102550 (2021).
1100	156	Blough, N. V. & Zepp, R. G. in Active Oxygen in Chemistry (eds C.S. Foote, J.S. Valentine, A.
1101		Greenburg, & J.F. Liebman) 280-333 (1995).
1102	157	Xu, X. et al. Chraracteristics of desert varnish from nanometer to micrometer scale: A photo-
1103		oxidation model of its formation. Chem. Geol. 522, 55-70, doi:10.1016/j.chemgeo.2019.05.016
1104		(2019).
1105	158	Schoonen, M. A. A. et al. in The Emergent Field of Medical Mineralogy and Geochemistry Vol. 64
1106		(eds N. Sahia, M.A.A. Schoonen, & H.C.W. Skinner) 59-113 (Geochemical Society, 2006).
1107	159	Georgiou, C. D. et al. Evidence for photochemical production of reactive oxygen species in
1108		desert soils. <i>Nature Comm.</i> 6 , 7100, doi:10.1038/ncomms8100 (2015).
1109	160	Gil-Lozano, C., Davila, A. F., Losa-Adams, E., Fairen, A. G. & Gago-Duport, L. Quantifying Fenton
1110		reaction pathways driven by self-generated H_2O_2 on pyrite surfaces. Scientific Reports 7 , 43703
1111		(2017).
1112	161	Tong, M. et al. Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface
1113		Sediments. Environmental Science & Technology 50, 214-221, doi:10.1021/acs.est.5b04323
1114		(2016).

- 1115162Xu, J., Sahia, N., Eggleston, C. M. & Schoonen, M. A. A. Reactive oxygen species at the1116oxide/water interface: Formation mechanisms and implications for prebiotic chemistry and the1117origin of life. *EPSL* 363, 156-167 (2013).
- 1118163Yuan, X. *et al.* Production of hydrogen peroxide in groundwater at Rifle, Colorado. *Environ. Sci.*1119*Technol.* **51**, 7881-7891 (2017).
- 1120164Sutherland, K. M. *et al.* Spatial heterogeneity in particle associated, light-independent1121superoxide production within productive coastal waters. *JGR Oceans*, In review (2020).
- 1122165Page, S. E. *et al.* Dark Formation of Hydroxyl Radical in Arctic Soil and Surface Waters.1123Environmental Science & Technology 47, 12860-12867, doi:10.1021/es4033265 (2013).
- 1124 166 Rose, A. L. The influence of extracellular superoxide on iron redox chemistry and bioavailability 1125 to aquatic microorganisms. *Frontiers in Microbiology* **3**, doi:10.3389/fmicb.2012.00124 (2012).
- 1126 167 Waggoner, D. C., Wozniak, A. S., Cory, R. M. & Hatcher, P. G. The role of reactive oxygen species
 1127 in the degradation of lignin derived dissolved organic matter. *Geochimica Et Cosmochimica Acta*1128 208, 171-184, doi:10.1016/j.gca.2017.03.036 (2017).
- 1129168Goldstone, J. V. & Voelker, B. M. Chemistry of superoxide radical in seawater: CDOM associated1130sink of superoxide in coastal waters. Environmental Science & Technology 34, 1043-1048,1131doi:10.1021/es9905445 (2000).
- 1132169Voelker, B. M. & Sulzberger, B. Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide.1133Environmental Science & Technology **30**, 1106-1114, doi:10.1021/es9502132 (1996).
- Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. CRITICAL-REVIEW OF RATE
 CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL
 RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION. *Journal of Physical and Chemical Reference Data* **17**, 513-886, doi:10.1063/1.555805 (1988).
- 171 Goldstone, J. V., Pullin, M. J., Bertilsson, S. & Voelker, B. M. Reactions of hydroxyl radical with
 humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates.
 Environ. Sci. Technol. **36**, 364-372 (2002).
- 1141172Pullin, M. J., Bertilsson, S., Goldstone, J. V. & Voelker, B. M. Effects of sunlight and hydroxyl1142radical on dissolved organic matter: Bacterial growth efficiency and production of carboxylic1143acids and other substrates. *Limnol. Oceanogr.* **49**, 2011-2022 (2014).
- 1144173Wuttig, K., Heller, M. I. & Croot, P. L. Pathways of Superoxide (O-2(-)) Decay in the Eastern1145Tropical North Atlantic. Environmental Science & Technology 47, 10249-10256,1146doi:10.1021/es401658t (2013).
- Heller, M. I., Wuttig, K. & Croot, P. L. Identifying the Sources and Sinks of CDOM/FDOM across
 the Mauritanian Shelf and Their Potential Role in the Decomposition of Superoxide (O2-).
 Frontiers in Marine Science 3, doi:10.3389/fmars.2016.00132 (2016).
- Scully, N. M., Cooper, W. J. & Tranvik, L. J. Photochemical effects on microbial activity in natural
 waters: the interaction of reactive oxygen species and dissolved organic matter. *Fems Microbiology Ecology* 46, 353-357, doi:10.1016/s0168-6496(03)00198-3 (2003).
- 1153176Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid1154tropical forest soils. Global Change Biology 19, 2804-2813, doi:10.1111/gcb.12229 (2013).
- 177 Xiao, Y. H., Carena, L., Nasi, M. T. & Vahatalo, A. V. Superoxide-driven autocatalytic dark
 production of hydroxyl radicals in the presence of complexes of natural dissolved organic matter
 and iron. *Water Res.* 177, doi:10.1016/j.watres.2020.115782 (2020).
- 1158178Bach, C. E. *et al.* Measuring phenol oxidase and peroxidase activities with pyrogallol, L-DOPA,1159and ABTS: Effect of assay conditions and soil type. *Soil Biology & Biochemistry* 67, 183-191,1160doi:10.1016/j.soilbio.2013.08.022 (2013).
- 1161179Carson, J. K. *et al.* Low Pore Connectivity Increases Bacterial Diversity in Soil. Applied and1162Environmental Microbiology **76**, 3936-3942, doi:10.1128/aem.03085-09 (2010).

- 180 Negassa, W. C. *et al.* Properties of Soil Pore Space Regulate Pathways of Plant Residue
 Decomposition and Community Structure of Associated Bacteria. *Plos One* **10**,
 1165 doi:10.1371/journal.pone.0123999 (2015).
- 1166 181 Miltner, A., Bombach, P., Schmidt-Brucken, B. & Kastner, M. SOM genesis: microbial biomass as 1167 a significant source. *Biogeochemistry* **111**, 41-55, doi:10.1007/s10533-011-9658-z (2012).
- Angst, G., Mueller, K. E., Nierop, K. G. J. & Simpson, M. J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. *Soil Biology and Biochemistry*, doi:<u>https://doi.org/10.1016/j.soilbio.2021.108189</u> (2021).
- 1171 183 Liang, C., Amelung, W., Lehmann, J. & Kastner, M. Quantitative assessment of microbial
 1172 necromass contribution to soil organic matter. *Global Change Biology* 25, 3578-3590,
 1173 doi:10.1111/gcb.14781 (2019).
- 1174 184 Young, I. M. & Crawford, J. W. Interactions and self-organization in the soil-microbe complex.
 1175 Science 304, 1634-1637 (2004).
- 1176185Levin, S. A. Ecosystems and the biosphere as complex adaptive systems. *Ecosystems* 1, 431-436,1177doi:10.1007/s100219900037 (1998).
- 1178186D'Souza, G. & Kost, C. Experimental Evolution of Metabolic Dependency in Bacteria. Plos1179Genetics 12, doi:10.1371/journal.pgen.1006364 (2016).
- 1180187Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nature1181Geoscience 13, 529-534, doi:10.1038/s41561-020-0612-3 (2020).
- 188 Nunan, N., Schmidt, H. & Raynaud, X. The ecology of heterogeneity: soil bacterial communities
 and C dynamics. *Philosophical Transactions of the Royal Society B-Biological Sciences* 375,
 doi:10.1098/rstb.2019.0249 (2020).
- 189 Wilhelm, R. C., Pepe-Ranney, C., Weisenhorn, P., Lipton, M. & Buckley, D. H. Competitive
 Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy
 of an Agricultural Soil. *Mbio* 12, doi:10.1128/mBio.03099-20 (2021).
- 1188190Kalbitz, K., Schwesig, D., Rethemeyer, J. & Matzner, E. Stabilization of dissolved organic matter1189by sorption to the mineral soil. Soil Biology & Biochemistry **37**, 1319-1331 (2005).
- 1190191Keiluweit, M. *et al.* Mineral protection of soil carbon counteracted by root exudates. Nature1191Climate Change 5, 588-595 (2015).
- 1192192Zhalnina, K. *et al.* Dynamic root exudate chemistry and microbial substrate preferences drive1193patterns in rhizosphere microbial community assembly. *Nature Microbiology* **3**, 470-480,1194doi:10.1038/s41564-018-0129-3 (2018).
- 1195193Woolf, D. & Lehmann, J. Microbial models with minimal mineral protection can explain long-
term soil organic carbon persistence. Scientific Reports **9**, doi:10.1038/s41598-019-43026-81197(2019).
- 1198194Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen1199and carbon counter-gradients in pore networks. Nature Communications 9, doi:10.1038/s41467-1200018-03187-y (2018).
- 195 Barzen-Hanson, K. A., Davis, S. E., Kleber, M. & Field, J. A. Sorption of Fluorotelomer Sulfonates,
 Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer Sulfonamido Amine in National Foam
 Aqueous Film-Forming Foam to Soil. *Environmental Science & Technology* 51, 12394-12404,
 doi:10.1021/acs.est.7b03452 (2017).
- 196 Grabowski, R. C., Droppo, I. G. & Wharton, G. Erodibility of cohesive sediment: The importance
 of sediment properties. *Earth-Science Reviews* **105**, 101-120,
 1207 doi:10.1016/j.earscirev.2011.01.008 (2011).
- 1208 197 Israelachvili, J. & Wennerstrom, H. Role of hydration and water structure in biological and 1209 colloidal interactions. *Nature* **379**, 219-225, doi:10.1038/379219a0 (1996).

1210	198	Sushko, M. L. & Rosso, K. M. The origin of facet selectivity and alignment in anatase TiO2
1211		nanoparticles in electrolyte solutions: implications for oriented attachment in metal oxides.
1212		Nanoscale 8 , 19714-19725, doi:10.1039/c6nr06953c (2016).
1213	199	Shen, X. Y. & Bourg, I. C. Molecular dynamics simulations of the colloidal interaction between
1214		smectite clay nanoparticles in liquid water. Journal of Colloid and Interface Science 584, 610-621,
1215		doi:10.1016/j.jcis.2020.10.029 (2021).
1216	200	Michot, L. J. et al. Liquid-crystalline aqueous clay suspensions. Proceedings of the National
1217		Academy of Sciences of the United States of America 103 , 16101-16104,
1218		doi:10.1073/pnas.0605201103 (2006).
1219	201	Underwood, T. R. & Bourg, I. C. Large-Scale Molecular Dynamics Simulation of the Dehydration
1220		of a Suspension of Smectite Clay Nanoparticles. Journal of Physical Chemistry C 124, 3702-3714,
1221		doi:10.1021/acs.jpcc.9b11197 (2020).
1222	202	Pignon, F. <i>et al.</i> Yield stress thixotropic clay suspension: Investigation of structure by light,
1223		neutron, and x-ray scattering. <i>Physical Review E</i> 56, 3281-3289, doi:10.1103/PhysRevE.56.3281
1224		(1997).
1225	203	Bourg, I. C. & Ajo-Franklin, J. B. Clay, Water, and Salt: Controls on the Permeability of Fine-
1226		Grained Sedimentary Rocks. Accounts of Chemical Research 50, 2067-2074,
1227		doi:10.1021/acs.accounts.7b00261 (2017).
1228	204	Mayer, L. M. Surface area control of organic carbon accumulation in continental shelf
1229		sediments. <i>Geochimica et Cosmochimica Acta</i> 58 , 1271-1284 (1994).
1230	205	Ransom, B., Dongsom, K., Kastner, M. & Wainwright, S. Organic matter preservation on
1231		continental slopes: Importance of mineralogy and surface area. <i>Geochimica et Cosmochimica</i>
1232	200	Acta 62 , 1329-1345 (1998).
1233	206	Kaiser, K. & Guggenberger, G. Mineral surfaces and soil organic matter. European Journal of Soil
1234	207	Science 54 , 219-236, doi:doi:10.1046/J.1365-2389.2003.00544.X (2003).
1235	207	Barker, W. W., Weich, S. A., Chu, S. & Banneid, J. F. Experimental observations of the effects of
1230		1009 11 1242 (1009)
1237	208	1990-11-1245 (1990). Wattaau E. & Villemin, G. Soil Microstructures Examined Through Transmission Electron
1230	200	Microscony Reveal Soil-Microorganisms Interactions Frontiers in Environmental Science 6
1237		doi:10.3389/fenvs 2018.00106 (2018)
1240	209	Namiesnik-Dejanovic K & Maurice P A Conformations and aggregate structures of sorbed
1247	205	natural organic matter on muscovite and hematite. <i>Geochimica Et Cosmochimica Acta</i> 65 , 1047-
1243		1057. doi:10.1016/s0016-7037(00)00542-1 (2001).
1244	210	Moreau, J. W. <i>et al.</i> Extracellular proteins limit the dispersal of biogenic nanoparticles. <i>Science</i>
1245		316 , 1600-1603, doi:10.1126/science.1141064 (2007).
1246	211	Jaynes, W. F. & Boyd, S. A. Hydrophobicity of siloxane surfaces in smectites as revealed by
1247		aromatic hydrocarbon adsorption from water. <i>Clays and Clay Minerals</i> 39 , 428-436 (1991).
1248	212	Rotenberg, B., Patel, A. J. & Chandler, D. Molecular Explanation for Why Talc Surfaces Can Be
1249		Both Hydrophilic and Hydrophobic. Journal of the American Chemical Society 133, 20521-20527,
1250		doi:10.1021/ja208687a (2011).
1251	213	Radke, C. J. & Prausnitz, J. M. THERMODYNAMICS OF MULTI-SOLUTE ADSORPTION FROM
1252		DILUTE LIQUID SOLUTIONS. Aiche Journal 18, 761-+, doi:10.1002/aic.690180417 (1972).
1253	214	Degennes, P. G. WETTING - STATICS AND DYNAMICS. Reviews of Modern Physics 57, 827-863,
1254		doi:10.1103/RevModPhys.57.827 (1985).
1255	215	McGinley, P. M., Katz, L. E. & Weber, W. J. A DISTRIBUTED REACTIVITY MODEL FOR SORPTION BY
1256		SOILS AND SEDIMENTS.2. MULTICOMPONENT SYSTEMS AND COMPETITIVE EFFECTS.
1257		Environmental Science & Technology 27 , 1524-1531, doi:10.1021/es00045a006 (1993).

- Davey, M. E., Caiazza, N. C. & O'Toole, G. A. Rhamnolipid surfactant production affects biofilm
 architecture in Pseudomonas aeruginosa PAO1. *J. Bacteriol.* 185, 1027-1036,
 doi:10.1128/jb.185.3.1027-1036.2003 (2003).
- 217 Zhang, Y. M. & Miller, R. M. ENHANCED OCTADECANE DISPERSION AND BIODEGRADATION BY A
 PSEUDOMONAS RHAMNOLIPID SURFACTANT (BIOSURFACTANT). *Applied and Environmental Microbiology* 58, 3276-3282, doi:10.1128/aem.58.10.3276-3282.1992 (1992).
- 218 Myneni, S. C. B. Chemistry of Natural Organic Matter-The Next Step: Commentary on a Humic
 Substances Debate. *Journal of Environmental Quality* 48, 233-235,
 doi:10.2134/jeq2019.02.0002c (2019).
- 1267219Kleber, M. & Lehmann, J. Humic Substances Extracted by Alkali Are Invalid Proxies for the1268Dynamics and Functions of Organic Matter in Terrestrial and Aquatic Ecosystems. Journal of1269Environmental Quality 48, 207-216, doi:10.2134/jeq2019.01.0036 (2019).
- 1270220Hazen, R. M. & Sverjensky, D. A. Mineral surfaces, geochemical complexities, and the origins of1271life. Cold Spring Harb. Perspect. Biol. 2, a002162 (2010).
- Huang, P. M. & Hardie, A. G. in *Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems* (eds N. Senesi, B. Xing, & Huang P. M.) 41-109 (John
 Wiley & Sons, Inc., 2009).
- Huang, P. M. & Hardie, A. G. in *Handbook of soil sciences: Properties and processes* (eds P.M.
 Huang, Y. Li, & M.E. Sumner) 18.11 18.40 (CRC Press, 2012).
- Van Loosdrecht, M. C. M., Lyklema, J., Norde, W. & Zehnder, A. J. B. Influence of interfaces on
 microbial activity *Microbiological Reviews* 54, 75-87 (1990).
- Lipson, D. A., Jha, M., Raab, T. K. & Oechel, W. C. Reduction of iron (III) and humic substances
 plays a major role in anaerobic respiration in an Arctic peat soil. *Journal of Geophysical Research-Biogeosciences* 115, doi:10.1029/2009jg001147 (2010).
- Paerl, R. W., Claudio, I. M., Shields, M. R., Bianchi, T. S. & Osburn, C. L. Dityrosine formation via
 reactive oxygen consumption yields increasingly recalcitrant humic-like fluorescent organic
 matter in the ocean. *Limnology and Oceanography Letters* 5, 337-345, doi:10.1002/lol2.10154
 (2020).
- 1286226Guggenheim, S. *et al.* Summary of recommendations of nomenclature committees relevant to
clay mineralogy: Report of the Association Internationale pour l'Etude des Argiles (AIPEA)1288Nomenclature. Clays and Clay Minerals 54, 761-772, doi:10.1346/ccmn.2006.0540610 (2006).
- Theng, B. K. G. & Yuan, G. Nanoparticles in the soil environment. *Elements* **4**, 395-399 (2008).
- 1290228Tournassat, C., Bourg, I. C., Steefel, C. I. & Bergaya, F. in *Developments in Clay Science* Vol. 6 (eds1291Christophe Tournassat, Carl I. Steefel, Ian C. Bourg, & Faœza Bergaya) 5-31 (Elsevier, 2015).
- Hansel, C. M. *et al.* Secondary mineralization pathways induced by dissimilatory iron reduction
 of ferrihydrite under advective flow. *Geochimica Et Cosmochimica Acta* 67, 2977-2992,
 doi:10.1016/s0016-7037(03)00276-x (2003).
- 1295230Treves, D. S., Xia, B., Zhou, J. & Tiedje, J. M. A two-species test of the hypothesis that spatial1296isolation influences microbial diversity in soil. *Microbial Ecology* **45**, 20-28, doi:10.1007/s00248-1297002-1044-x (2003).
- Biesgen, D., Frindte, K., Maarastawi, S. & Knief, C. Clay content modulates differences in
 bacterial community structure in soil aggregates of different size. *Geoderma* 376,
 doi:10.1016/j.geoderma.2020.114544 (2020).
- Pascual-Garcia, A., Bonhoeffer, S. & Bell, T. Metabolically cohesive microbial consortia and
 ecosystem functioning. *Philosophical Transactions of the Royal Society B-Biological Sciences* 375,
 doi:10.1098/rstb.2019.0245 (2020).
- 1304
- 1305

1306	
1307	
1308	
1309	Acknowledgements
1311	We acknowledge the constructive suggestions of three anonymous reviewers ICB was supported
1312	by the U.S. Department of Energy Office of Science Office of Basic Energy Sciences
1313	Geosciences Program under Award DE-SC0018419 SCBM was supported by the NSF (CHE)
1314	Award: 1609927). CMH's contribution was supported by NSF award EAR 1826940.
1315	
1316	Author contributions
1317	All authors participated in developing the concept. Figures were developed by E.C. (Figures 1
1318	and 5), M. K. (Figure 2), I.C.B. (Figures 3 and 4), S.M. (Figure 6), C.M.H. (Figure 7) and N.N.
1319	(Figure 8). All authors contributed to writing and editing.
1320	
1321	Competing interests
1322	The authors declare no competing interests.
1323	
1324	Peer review information
1325	Nature Reviews Earth & Environment thanks M. Aeppli, L. Aristilde and the other, anonymous,
1326	reviewer(s) for their contribution to the peer review of this work.
1327	
1328	Publisher's note
1329	Springer Nature remains neutral with regard to jurisdictional claims in published maps and
1330	institutional affiliations.
1331	
1332	
1333	Key points
1334	• Minerals enable the compartmentalisation of soils and sediments into small yet clearly delineated aneaga such that different chemical ecological and evolutionary processes con
1335	defineated spaces such that different chemical, ecological and evolutionary processes can
1330	 Organia matter (OM) attachment to mineral surfaces is dynamia, sensitive to interfacial
1337	• Organic matter (OW) attachment to inneral surfaces is dynamic, sensitive to interfacial energies and topology, and exhibits features reminiscent of a partial wetting phenomenon
1000	 Mineral derived reactive evygen species represent overlooked but underiably key reactants
1339	in the evidation and transformation of OM within soils and sodiments
1340	Correlations between OM and fine grained minerals, though generally interpreted as
1341	• Contractions between OW and time-grained initiality, model generally interpreted as reflecting the impacts of minorals on OM, could additionally reflect impacts of OM on
1342	mineral nucleation, growth, and transformation
1343	 Depending on system logistics and environmental setting, the same type of minoral could set
1344	• Depending on system registres and environmental setting, the same type of milleral could act as a sorbent, chemical reactant and catalyst for associated OM, anabling a vast portfolio of
1545	as a solutin, chemical reactain and catalyst for associated Ow, chapting a vast pollibility of
1540	potentiary opposing outcomes.

Assessments regarding the fate of OM in the environment should not be derived from
 correlations with single predictor values, such as abundance of a certain mineral phase or
 specific surface area.

Figure Captions

1354

1356 Figure 1 Organic-matter cycling in soils and sediments and mineral-organic matter

interactions a Historic representation of organic matter cycling in soils and sediments. Major
 organic matter (OM) pools and fluxes are represented as black boxes and arrows. Blue arrows
 represent processes and interactions discussed in this Review. b Multiscale representation of
 mineral organic interactions. At the largest scale (Tier 1), the main function of the mineral matrix
 is to delineate compartmentalized space. As a consequence of compartmentalization, a number of
 static and dynamic constraints are imposed on smaller scales (Tier 2 functions). These constraints
 then determine the intensities and rates at which molecular scale biogeochemistry could be able
 to proceed (Tier 3 functions).

- **Figure 2. Organic Multifunctionality.** Variation of functional group combinations on organic compounds allows for diverse modes of interaction with mineral surfaces.
- **Figure 3. Key properties of fine-grained minerals and related solids**. The material referred to as allophane is a short-range-ordered (SRO) phyllosilicate with imogolite-like local structure and highly variable stoichiometry; its distinguishing features are low crystallinity and transmission electron microscopy (TEM) images suggestive of hollow spheres 3.5 to 5 nm in diameter, though multiple studies have noted that the interpretation of three-dimensional structure from twodimensional TEM image is ambiguous ⁹⁵. Data based on Refs^{34,66,94,96,226-229}.
- 1375

1365

Figure 4. Size, shape, and global distributions of minerals. a| Size and shape of minerals discussed here. **b**| Global map showing the most abundant fine-grained mineral in the subsoil (0.3 to 2 m depth) as a function of location, and average relative abundance of different fine-grained minerals in the upper 2 m of soil averaged over the Earth's land surface with the exception of organic-rich soils (such as mollisols) and ice-covered regions³³. Part X is adapted from ref ³³, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

1382

Figure 5. Organic ligands at mineral interfaces. Mineral interfaces occur at a variety of spatial
 scales and topography in soils and sediments, where a diversity of primarily low-molecular
 weight, amphiphilic organic ligands may reach the solid-solution interface. Once proximal,

ligands can bind to mineral surfaces through one or multiple complexation mechanisms based onsurface charge distribution and structural reactivity.

- Figure 6. Molecular mechanisms of OM reactions at mineral-water interfaces. Cartoon at 1389 the top shows a mineral surface showing monolayer and multilayer (3-dimensional) sorption of 1390 small and large OM. Molecular structures of organic molecules at mineral-water interfaces are: i: 1391 cation bridging, ii: H-bonded or Lifshitz -Van der Waals interactions, and iii: direct covalent interactions. Expanded views of OM interactions and expected trends for different mineral 1393 structures in soils and sediments are shown at the bottom. The nature of chemical reactions are 1394 (as numbered in the figure): 1: e⁻-transfer and electrolytic breakdown of OM; 2: larger OM 1395 formation from nucleophilic addition and radical mediated polymerization; 3: hydrolytic 1396 breakdown of molecules from pH changes at the interface; 4: heterogeneous OM oxidation from 1397 adsorbed O₂; and 5: chemical changes to substrate showing electron transfer and reduction of 1398 substrate atoms and changes to the coordination environments of neighboring atoms of substrate 1399 surface. Based on their differences in chemical reactivity towards OM, we further classify 1400 minerals presented above into 3 classes (I-III). Expected trends for OM behavior are included. 1401
- 1402

Figure 7. Mineral-induced organic carbon redox pathways. a Mineral induced oxidation,
which represents direct coupling. b Mineral-derived aqueous Fe(II), which involved both direct
and reactive oxygen species (ROS) mediated reactions. c ROS mediated reactions.
In b and c, the fate of mineral-derived ROS includes reaction of ROS with organic carbon (OC)
or transformation of one ROS to another (dismutation of superoxide to hydrogen peroxide,
formation of hydroxyl radical from ferrous iron and hydrogen peroxide via the Fenton reaction) –
for simplicity, all these fates are not shown here. The illustrations are meant to show general

processes, not mechanistic details, and the list of reactions is not exhaustive.

1411

Figure 8. Compartmentalization and mineral-organic matter-microbe interactions. Top 1412 panel shows structure with high clay content that is compartmentalized and relatively constant 1413 over time and lower panel shows structure with low clay content that is relatively dynamic over 1414 time. The compartmentalization and constant micro-environmental conditions results in greater 1415 niche differentiation, which allows a greater microbial diversity to co-exist through reduced 1416 competitive interactions ^{230,231}. The magnified insets show potential evolutionary consequences 1417 in microsites that form constant habitats. The capacity to use organic substrate present is 1418 subjected to strong selective pressure and preserved but other pathways could be lost (insets i. 1419 and iii.). Less competitive species do not compete for organic substrate present, but exploits 1420 metabolic by-product of more competitive species, resulting in a better use of available resources 1421 by the microsite community 232 (insets ii. and iv.). 1422

- 1423
- 1424
- 1425

1426	
1427	Adsorption - An increase in the concentration of a dissolved substance at the interface of a
1428	condensed and a liquid or gaseous phase due to the operation of surface forces.
1429	Catalyst - A substance that increases the rate of a reaction without modifying the overall
1430	standard Gibbs energy change in the reaction
1431	Chemotrophic – the ability to use electron donors other than photons for the synthesis of
1432	organic compounds containing reduced carbon
1433	Coagulation - the formation of aggregates from a fluid colloidal system
1434	Colloid - molecules or polymolecular particles dispersed in a medium that have at least in one
1435	direction a dimension roughly between 1 nm and 1 µm
1436	Colloidal interactions - interactions that are enabled when particles become so small (equivalent
1437	diameter < 1-2 micron) that surface borne electric forces between particles can effectively
1438	control their behavior in a suspension (for instance, prevent them from settling)
1439	Compartmentalization - the division of a system into multiple subsystems with well defined
1440	boundaries that provide a certain degree of process autonomy
1441	Coulombic interactions - interactions that result from the electric force between two charged
1442	entities
1443	Crystal facet - a flat plane on a crystal
1444	Crystal growth - the addition of new atoms into the characteristic arrangement of the crystalline
1445	lattice, releasing thermal energy (enthalpy of crystallization)
1446	Depolymerization - the disassembly of a polymer into its constituent monomers or into a
1447	mixture of products
1448	Dispersion - A system in which particles of colloidal size of any nature (solid, liquid or gas) are
1449	dispersed in a continuous phase of a different composition (or state).
1450	
1451	Fine-grained fraction - mineral grains with an average diameter smaller than 50/63 microns,
1452	depending on classification system used
1453	Heterotrophic - the ability to derive nutritional requirements from complex organic substances
1454	Intra-particle region - any part of a particle that is not participating in surface reactions
1455	Interfacial energy - excess free energy or work associated with the interface between two
1456	phases, per interfacial area
1457	Ligand - any atom or molecule attached to a central atom, usually a metallic element, in a
1458	coordination or complex compound; if regarding part of a polyatomic molecular entity as
1459	central, then the atoms, groups or molecules bound to that part are called ligands.
1460	Metabolic dependency - a form of adaptation that leads to the absence or loss of the ability to
1461	synthesize a certain metabolite essential for the organism, usually in response to an
1462	abundance of said compound in the environment
1463	Microsite - a clearly delineated space within an environment with unique conditions or features
1464	in which specific microbial processes can occur.

1465	Mixotrophic – deriving carbon and energy from a mix of different sources, typically a
1466	combination of inorganic and organic compounds
1467	Nanowire – proteinaceous appendage produced by microbes, particularly bacteria, that is
1468	electrically conductive
1469	Nucleation - the process by which nuclei are formed in solution
1470	Orientational freedom - the absence of any physical restrictions to the movement and
1471	arrangement of a compound
1472	Passivated - a surface that is unreactive owing to alteration or from the formation of a thin inert
1473	coating
1474	Photochemical lability - the tendency of a compound to undergo a chemical reaction when
1475	exposed to light
1476	Phototrophic - ability to capture photons as energy source for the synthesis of organic
1477	compounds containing reduced carbon
1478	Poorly crystalline - an operational term to distinguish crystalline structures with short range
1479	order from others that exhibit order over longer distances
1480	Reactive oxygen species - ROS are short-lived oxygen-bearing molecules with half-lives that
1481	range from fractions of seconds to days, including hydrogen peroxide (H ₂ O ₂), superoxide
1482	(O_2^{+}/HO_2) , hydroxyl radical (HO [•]), singlet oxygen (¹ O ₂), and carbonate radical (CO ₃ ⁺).
1483	Ripening – physical and/or structural alteration of a mineral to obtain a lower surface free
1484	energy and more energetically favorable state
1485	unsaturated soil - a (soil) pore system that is only partially filled with water is unsaturated; a
1486	pore system entirely filled with water is considered saturated.
1487	Short-range ordered - the regular and predictable arrangement of atoms over a very short
1488	distance; in crystals, order does not persist over distances of more than a few nanometers
1489	and often extends over the distance of just a few bond lengths; Short range ordered
1490	minerals are often also referred to as poorly crystalline minerals.
1491	Solution - a homogeneous phase that results from the mixing of two (or more) phases
1492	Steric constraints - factors or effects that either prevent the adoption of a certain spatial
1493	orientation that would be required for the reaction to proceed unhindered
1494	Steric enhancement - factors or effects that facilitate the adoption of a certain spatial orientation
1495	that would be required for the reaction to proceed unhindered
1496	Xenobiotic compound - a substance that is foreign to a given natural environment or ecosystem;
1497	usually means that organisms in the system lack adaptations for the metabolic processing
1498	of a xenobiotic compound
1499	
1500	Table of contents summary
1501	Minerals and organic matter interact in soils and sediments, impacting biogeochemical
1502	cycling and ecosystem functioning. This Review describes the major and emerging
1503	environmental mineral-organic interactions observed, and their implications for organic matter
1504	persistence.