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Data-driven fault detection of open circuits in
multi-phase inverters based on current polarity using

Auto-adaptive and Dynamical Clustering

Abstract

This paper proposes a data-driven method for the detection and isolation of
open-circuit faults in multi-phase inverters using measurements of the motor
currents. First, feature variables are formulated in terms of the averages of
the phase currents and their absolute values. Next, by using an AUto-adaptive
and Dynamical Clustering (AUDyC) based on Gaussian Mixture Models, fea-
ture data is clustered into different classes characterizing normal and faulty
operation modes. Afterwards, these classes are used for deriving appropriate
conditions for detecting and labelling faults. The proposed method requires
minimal knowledge about the system operation. Furthermore, it allows us to
update our knowledge of existing faults online, thus making it possible to detect
unknown faults. Moreover, conditions are formulated to describe the influence of
the method parameters on the detection time. Once parameters are tuned, the
accuracy of the proposed method is illustrated on various experimental data
sets, where single and double faults are detected with detection times in the
order of the fundamental signal period.

1. Introduction

Multi-phase inverters are interesting for industrial applications because of
their fault-tolerance and high power density [1]. Since power switches are the
most vulnerable components in inverters, most inverter faults are due to the
switches remaining closed or open longer than the defined period, leading to5

Short-Circuit (SC) or Open-Circuit (OC) faults, respectively [2]. With the SC
fault, there are usually standard protection systems which immediately shut
down the system. However, when OC faults happen, the system can keep run-
ning with degraded performance. Hence, Fault Detection and Isolation (FDI)
of OC faults in multi-phase inverters associated to a multi-phase motor is an10

ongoing research topic [3]. Different approaches were proposed in the liter-
ature: model-based, signal-based and data-driven [4]. The model-based ap-
proach is rather involved for real-world applications (e.g., deriving the model of
a multi-phase asynchronous motor is a tedious task). On the other hand, the
signal-based approach is generally not robust because of the influence of varying15

parameters or the presence of noise in the measurements [5]. A middle ground
between the two, the data-driven approach only requires some knowledge of the
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system’s operation, while still being robust, as it considers a large amount of
measurement data. For the system including a multi-phase inverter governing a
multi-phase inductive load (e.g., motor), using measurements of the phase cur-20

rents in the data-driven approach is preferred to the phase voltages due to the
reduced cost related to additional sensor installation [3]. This approach first ex-
tracts the features of the operation modes through feature vectors whose values
are later treated in the machine learning procedure to construct feature classes
corresponding to operation modes. Based on the resulting classes, conditions25

for the operation mode labelling and the FDI are formulated.
Both supervised and unsupervised machine learning approaches were con-

sidered for FDI problems depending on the available prior information. If input
feature vectors along with their corresponding target vectors are included in the
training data, the approach is called supervised learning [6], with some meth-30

ods applied to FDI problem being: Support Vector Machines [7], Discriminant
Analysis [8], Bayesian Networks [2], K-Nearest Neighbors [9], Neural Networks
[10]. However, a supervised learning method may not be suitable for complex
industrial systems in case no historical data of faulty operation modes is avail-
able, or a new fault (different from the training data) appears. To deal with35

these issues, the unsupervised learning approach is employed where only input
feature vectors are available [6]. The most popular method of this approach is
clustering. With K-means [11] or Fuzzy C-means [12], the input feature vectors
are clustered such that the distance between them and the corresponding classes
is minimal. This method is simple, but requires to know a priori the number40

of faults, which is not always available. In [13], the authors use hierarchical
clustering, where two similar clusters of feature vectors are grouped to form a
cluster on a higher position in a binary and hierarchical tree. This method does
not need an a priori number of faults, but its results are sensitive to outliers. In
[14], the density-based spatial clustering is considered, where data classes are45

defined by high density clusters which are separated by sparse areas. Although
this method identifies well outliers as noise, it does not work well when the
data density in clusters is varying. By using Gaussian Mixture Models (GMM),
the authors in [15] can obtain clusters of more flexible shapes (ellipses). In
real-world applications, measured data is usually non-stationary, so on-line and50

adaptive learning should be employed to deal with this kind of data. To this end,
Artificial Neural Networks (ANN) are usually applied for unsupervised learning,
a well-known example being Self-Organizing Maps [16]. Most existing methods
do not possess self-organizing abilities, constructive architectures or fully auto-
adaptive structures, but AUto-adaptive and Dynamical Clustering (AUDyC),55

which is based on GMM and ANN, does [17, 18]. Recently, this machine learn-
ing method was employed to detect and isolate converter faults in [19, 20], and
is the method of choice in this paper.

Machine learning techniques are generally not used directly on measure-
ment data, but on appropriately defined feature vectors, for effective algorithms.60

Methods to design feature vectors are based on time domain data, frequency do-
main data or their combination. Time-domain feature variables are directly de-
rived from the measurement data such as the average current over a fundamental
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signal period [3], or the Principle Component Analysis [2]. Frequency-domain
feature vectors are usually computed based on the Fast Fourier Transform [2, 21]65

or wavelet transform [22].
The present manuscript builds on the authors’ previous work in [20, 4]. Dou-

ble OC faults in inverters were detected using feature variables defined in terms
of the average phase currents and their average absolute values. These choices
avoid expensive computations and load dependence with minimum knowledge of70

the system’s faulty operation modes. However, there is still the need to choose
an appropriate threshold making the tuning task complicated. Moreover, when
dealing with experimental data obtained from a closed loop controlled system,
a suitable value for the threshold is difficult to find due to the uncertainty of
the motor current frequency.75

Table 1: Parameter and variable notations.
Notation Description
N set of natural numbers
R set of real numbers
R+ set of positive real numbers
n number of inverter phases
f signal frequency
ts sampling time
Ns number of time samples on a fundamental signal period
ks sample time index
β(t) feature variable
β(t) feature vector
Bk set of k feature vectors

βk mean vector of Bk
C(t) feature class

β(t) mean vector of a feature class

βk(t) kth element of β(t)
In identity matrix of dimension n
µmin class membership threshold
σ initial covariance
Nmin, Nmax minimum and maximum numbers of class elements
εl labelling threshold
Nf sliding window width
Ff fault threshold
tC faulty class creation time
tL faulty class labelling time
td faulty class isolation time (detection time)
M(t) indicator matrix
ik(t) current of phase k
|ik(t)| absolute value of phase-k current
〈ik(t)〉 average value of signal ik(t) over a fundamental signal period
I0 〈ik(t)〉 in the normal operation mode
x(t) observation vector
g(t), gε(t), gσ(t) real functions of time
gµ(t), gN (t) real functions of time

In this paper, the FDI algorithm previously proposed in [20] is improved
to avoid the tuning of a threshold value in the feature extraction procedure
for a multi-phase inverter. Moreover, this manuscript presents the influence of
algorithm parameters on the detection time under some specific assumptions.
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The proposed method and the influence of the method parameters are validated80

on experimental data obtained from a closed loop system.
The remaining part of the paper is structured as follows. First, Table 1

presents the notation for the parameters and the variables used in this paper.
Section 2 describes the inverter operation in the normal and faulty modes. Next,
Section 3 introduces the FDI method. Section 4 studies the influence of the85

method parameters on the detection time. Section 5 validates the method on
experimental data. Section 6 concludes the paper and presents some possible
future research directions.

2. Inverter in normal and faulty operation modes

The descriptions of the 3-phase and 5-phase inverter operation modes can90

be found in [20] and [3], respectively. These systems contain Insulated-Gate
Bipolar Transistors (IGBTs) which act as switches controlled by a Pulse Width
Modulation (PWM) signal. The switches are opening and closing periodically
with the PWM frequency. An OC fault occurs when a switch remains open
longer than the period defined by the control.95

Figure 1: 3-phase inverter driving an inductive load [2].

For a 3-phase inverter, the single and double OC faults essentially lead to 4
general cases, shown in Fig. 2, even though there are 21 different possibilities.
This figure presents the 3-phase current profiles in normal operation before 0.2s,
and in faulty mode after that.

� In Case 1, only one IGBT, e.g., T1 (see Fig. 1), is faulty. This results in the100

negative phase-1 current, i.e., i1(t) ≤ 0 (see Scenario 1 in Fig. 2). When
T3 or T5 is faulty, results are similar: i2(t) ≤ 0 or i3(t) ≤ 0, respectively.
When T2, T4 or T6 is faulty, i1(t) ≥ 0, i2(t) ≥ 0 or i3(t) ≥ 0, respectively.

� In Case 2, two IGBTs of the same phase, e.g., T1&T2 (see Fig. 1), are
faulty. This results in a zero phase-1 current, i.e., i1(t) = 0 (see Scenario 2105

in Fig. 2). Similar behavior is observed when T3&T4 (i2(t) = 0) or T5&T6
(i3(t) = 0) are faulty.

� In Case 3, two IGBTs of different phases but on the same side, e.g., T1&T3
(see Fig. 1), are faulty. This results in negative currents for phase 1 and
2, i.e., i1(t) ≤ 0, and i2(t) ≤ 0, while the phase-3 current is positive, i.e.,110
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Figure 2: Current profiles in the double cases of the 3-phase inverter.

i3(t) ≥ 0 (see Scenario 3 in Fig. 2). The opposite behavior is noticed
when T2&T4 are faulty. When T1&T5 are faulty, i1(t) ≤ 0, i3(t) ≤ 0 and
i2(t) ≥ 0, which is opposite to when T2&T6 are faulty. When T3&T5 are
faulty, i2(t) ≤ 0, i3(t) ≤ 0 and i1(t) ≥ 0, which is opposite to when T4&T6
are faulty.115

� In case 4, two IGBTs of different phases and on different sides, e.g., T1&T4
(see Fig. 1), are faulty. This results in a negative phase-1 current, i.e.,
i1(t) ≤ 0, and a positive phase-2 current, i.e., i2(t) ≥ 0 (see Scenario 4
in Fig. 2). This is opposite to when T2&T3 are faulty. When T1&T6 are
faulty, i1(t) ≤ 0, i3(t) ≥ 0, and this is opposite to when T2&T5 are faulty.120

When T3&T6 are faulty, i2(t) ≤ 0, i3(t) ≥ 0, which is opposite to when
T4&T5 are faulty.

In summary, if only one phase current does not change polarity, the single
fault is in one of the two transistors in that branch; if one phase current is always
zero, both transistors in that branch are faulty; if all three phase currents do not125

change polarities, two transistors on the same side in the two branches, where
the currents have the same polarity, are faulty; if only two phase currents do
not change the polarities, two transistors on different sides in these branches
are faulty. For an inverter with more than 3 phases, it is not necessary to
discriminate between Case 3 and Case 4, since a phase current does not change130

the polarity if and only if a transistor of that branch is faulty. Based on the
polarity analysis, appropriate feature variables are derived in the next section.
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3. Proposed method

This section presents the proposed FDI algorithm which includes the fol-
lowing procedures: feature extraction, data clustering with AUDyC, labelling135

and fault detection and isolation, as summarized in Fig. 3. In the feature ex-
traction, the measurement data from the motor currents is represented in the
feature space where the steady-state data corresponding to different operation
modes is separated. For AUDyC learning, only representative vectors in the
feature space are collected to construct feature classes. In the labelling stage,140

these classes are labelled using knowledge about the system operation. In the
last stage, based on similarities between recent feature vectors and the labelled
classes, the faulty modes are declared.

Figure 3: Diagram of the proposed fault detection method.

3.1. Feature extraction

This procedure aims at formulating an appropriate feature vector contain-145

ing all feature variables, allowing us to do the clustering, labelling and FDI. In
our case, the observation (or data) vector x(t) gathers the load currents, i.e.,

x(t) =
[
i1(t) . . . in(t)

]T ∈ Rn, where n ∈ N is the number of phases (3 or
5). In [4], the normalized average phase currents were used as feature variables.
However, in Case 2 presented in Section 2, a feature variable is possibly infinite150

due to the zero faulty phase current. Therefore, in [20], an additional feature

variable, β0(t) =
n

Π
h=1

〈|ik(t)|〉
I0

with I0 = 〈|ik(t)|〉 in the normal operation mode,

was considered to allow treating Case 2 within the whole procedure, an addi-
tional threshold was used, while the formulations for the other feature variables
were modified to avoid the infinite value in Case 2.155

When phase-k is faulty (Case 2), 〈|ik(t)|〉 /I0 and, hence, β0(t) are zero.
However, in real systems, they are usually positive due to the uncertainty. Even
when 〈|ik(t)|〉 /I0 is small, its product with corresponding terms of the other
currents is still considerably large. This makes the parameter tuning even more
complex. To deal with this problem, the value of 〈|ik(t)|〉 /I0 is amplified such
that the positiveness of the absolute values of the other currents is reduced.
The simplest choice to this end is the application of a logarithmic function on
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〈|ik(t)|〉 /I0, i.e., ln (〈|ik(t)|〉 /I0). Moreover, to eliminate the additional thresh-
old, zero is chosen as an invariant threshold to define the feature variables in
the following way:

β0(t) =
n

Π
h=1

n

√
1 + ln

(
〈|ik(t)|〉
I0

)
, (1a)

βk(t) =


〈ik(t)〉
〈|ik(t)|〉

, if β0(t) > 0, h = 1, . . . , n,

〈|ik(t)|〉
I0

, if β0(t) ≤ 0, h = 1, . . . , n,

(1b)

where |ik(t)| is the absolute value of phase-k current, 〈g(t)〉 =
∑Ns−1
ks=0

g(t− ksts)
Ns

is the average value of function g(t) over a fundamental signal period, ts is the
sampling time, ks ∈ N is the sampling time index, and Ns ∈ N is the num-
ber of time samples on a fundamental signal period. The nth root in (1a) is
to simplify the tuning task for the data clustering by making the variance of160

β0(t) approximate to the other feature variables. Note that β0(t) is equal to
1 in the normal mode. In Case 1, 3 and 4, it is positive, while it is negative
when there is at least one phase current close to zero in Case 2. Moreover,
due to uncertainty, 〈|ik(t)|〉 is not zero, and hence, β0(t) is not negative in-
finity. The feature vector is obtained from the feature variables given in (1)165

as β(t) =
[
β0(t) β1(t) . . . βn(t)

]T ∈ Rn+1. This vector will be used as
input for the data clustering procedure.

3.2. Data clustering

In this procedure, AUDyC is used for clustering the feature vectors β(t) into
classes, as described in [4]. A simplified formulation of AUDyC is considered,170

where the distribution of class data is Gaussian. A class is represented by the
center, the covariance matrix and a number of feature vectors. Whenever a
new feature vector β(t) appears, the closeness between this vector and existing
classes is verified using the Mahalanobis distance with a chosen membership
threshold µmin ∈ (0, 1). If there is no class, a new class is created with a175

given initial covariance matrix σIn+1, where σ ∈ R+ is the initial covariance.
Moreover, the feature vector β(t) is used as the class center, and stored in the
class memory. If there is a unique class close to β(t), its parameters are modified
by taking into account β(t), and β(t) is added to the class memory. The number
of vectors stored in a class is limited to a chosen range [Nmin, Nmax]. If there are180

more than one class close to β(t) and these classes are close enough, they will be
fused to obtain a new class. Thereafter, the new class parameters are modified
according to the adaptation procedure where there is a unique class close to
β(t). Finally, if the number of feature vectors in a class is less than Nmin, the
class is eliminated. All the removed vectors will be used in the next iterative185

learning loop. From the algorithm description in [4], the following condition is
derived for the class creation which will be used hereafter for investigating the
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influence of the initial covariance σ, the membership threshold µmin and the
minimum class cardinality Nmin on the detection time.

Remark 1 ([20]). A feature class is created after a learning step if and only
if there exists N ≥ Nmin feature vectors which are far from existing classes but
close to each other, i.e.,:

exp

(
−
∥∥β − βN

∥∥
2

2σ2

)
≥ µmin, for all β ∈ BN , (2)

where BN is the set of N feature vectors, and βN is the mean vector of BN .190

As this is an unsupervised learning procedure, the obtained classes have no
physical meaning, so they need to be named using knowledge about the system
operation in the labelling procedure.

3.3. Labelling

Here, a feature class C(t) is labelled based on its mean vector denoted by195

β(t). From the fault analysis in Section 2 and the feature variable formulation
in Subsection 3.1, which leads to feature variable values illustrated in Fig. 4,
some remarks are in place.
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Figure 4: Feature variable profiles in Scenarios 1-4.
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In the normal mode, the first feature variable β0(t) is positive, while the
others are zero. In Case 1 and 4, β0(t) is positive and the feature variables200

corresponding to the faulty phases are equal to 1 or -1 (see Scenario 1 and 4 in
Fig. 4). In Case 2, β0(t) is negative and the feature variable corresponding to
the faulty phase is zero (see Scenario 2 in Fig. 4). In Case 3, β0(t) is positive
and the feature variables corresponding to faulty phases are equal to 1 or -1 (see
Scenario 3 in Fig. 4). The other feature variables are equal to -1 or 1 in the case205

of the 3-phase inverter, while they are not in the case of n-phase inverters with
n > 3. However, when taking into account uncertainty, a positive threshold
εl ∈ R+ is used to verify the position of the mean vector β(t) with respect to 0,
1 or -1. The previous remarks are summarized in Table 2.

Table 2: Labelling conditions.
Fault Condition

None β0 > 0 & max
m∈{1,...,n}

∣∣∣βm∣∣∣ < εl

T2m−1 β0 > 0 &
∣∣∣βm + 1

∣∣∣ ≤ εl &
∣∣∣βp ± 1

∣∣∣ > εl, with m, p ∈ {1, . . . , n}, m 6= p

T2m β0 > 0 &
∣∣∣βm − 1

∣∣∣ ≤ εl &
∣∣∣βp ± 1

∣∣∣ > εl, with m, p ∈ {1, . . . , n}, m 6= p

T2m−1 & T2p β0 > 0 &
∣∣∣βm + 1

∣∣∣ ≤ εl &
∣∣∣βp − 1

∣∣∣ ≤ εl &
∣∣∣βq ± 1

∣∣∣ > εl,

with m, p, q ∈ {1, . . . , n}, m 6= p 6= q

T2m−1 & T2p−1 β0 > 0 &
∣∣∣βm + 1

∣∣∣ ≤ εl &
∣∣∣βp + 1

∣∣∣ ≤ εl &
∣∣∣βq − 1

∣∣∣ ≤ εl,
with m, p, q ∈ {1, . . . , 3}, m 6= p 6= q

β0 > 0 &
∣∣∣βm + 1

∣∣∣ ≤ εl &
∣∣∣βp + 1

∣∣∣ ≤ εl &
∣∣∣βq ± 1

∣∣∣ > εl,

with m, p, q ∈ {1, . . . , n}, m 6= p 6= q, n > 3

T2m & T2p β0 > 0 &
∣∣∣βm − 1

∣∣∣ ≤ εl &
∣∣∣βp − 1

∣∣∣ ≤ εl &
∣∣∣βq + 1

∣∣∣ ≤ εl,
with m, p, q ∈ {1, . . . , n}, m 6= p 6= q

β0 > 0 &
∣∣∣βm − 1

∣∣∣ ≤ εl &
∣∣∣βp − 1

∣∣∣ ≤ εl &
∣∣∣βq ± 1

∣∣∣ > εl,

with m, p, q ∈ {1, . . . , n}, m 6= p 6= q, n > 3

T2m−1 & T2m β0 ≤ 0 &
∣∣∣βm∣∣∣ ≤ εl

3.4. Fault detection and isolation210

In this subsection, the fault indicator chosen in [4] is briefly presented. To
reduce the possibility of false alarms, fault declaration is investigated from the
sliding window B(t) = {β(t − (Nf − 1)ts), . . . ,β(t)} instead of from a single
feature vector β(t), where Nf ∈ N is the window width. This sequence is con-
structed online in the “Data buffer” procedure (see Fig. 3). Afterwards, it is215

sent to the “Similarity verification” procedure, where the closeness of its vectors
and reference classes is described by an indicator matrix M(t) ∈ {0, 1}Nf×np(t),
with the number of reference classes being np(t). Based on this matrix, the
“Maximum similarity” procedure derives the maximum number of vectors of
B(t) which are close to a reference class. This is equal to the maximum abso-220

lute column sum norm of the matrix M(t). Next, this number is used as the
fault indicator F (t), i.e., F (t) = ‖M(t)‖1. Finally, the indicator and the class
identity are sent to the “Fault declaration” procedure. Class C(t) represents the
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system operation mode if F (t) ≥ Ff , where Ff ∈ N is a chosen fault threshold.
Otherwise, the system operation mode is unknown.225

Some criteria to evaluate the proposed algorithm are presented in the fol-
lowing remarks: accuracy, tuning effort, complexity and detection time.

Remark 2 (Accuracy). The influence of white noise is drastically reduced
thanks to the use of phase current averages for the feature extraction, of Gaus-
sian Mixture Models for the feature clustering and the consideration of a number230

of consecutive feature vectors for the fault declaration. Moreover, the latter also
helps to reduce the mode confusion possibility caused by the passage of evolving
reference classes through different labelling regions in the feature space. Obvi-
ously, the algorithm accuracy depends on appropriate values of the parameters.
A comprehensive investigation on the algorithm accuracy should take into ac-235

count a lot of outlier cases, e.g., variations of mechanical torque and/or of
system parameters, different control systems, etc.

Remark 3 (Tuning effort). Although the proposed algorithm does not require
choosing a threshold in the feature extraction procedure, there are still at least 7
parameters to tune: the labelling threshold εl, the initial covariance σ, the class240

membership threshold µmin, the minimum and maximum number of class ele-
ments Nmin, Nmax, the sliding window width Nf and the fault threshold Ff . This
requires an important effort for the parameter tuning. However, some ranges for
choosing effective values of these parameters will be hereafter presented in Table
3, which may simplify the tuning task. Moreover, these parameters add extra245

freedom to the FDI algorithm to deal with the system’s dynamical evolution in
the real-world and the unknown impact of outliers.

Remark 4 (Complexity). Generally, a data-driven approach for the FDI prob-
lem requires a larger computational effort than model-based and signal-based
approaches. However, it usually gives high accuracy diagnosis results for the250

case of complex systems with different perturbations. In our work, the complex-
ity of the machine learning technique is reduced thanks to a small number of
feature variables and self learning abilities.

Remark 5 (Detection time). The detection time is defined as the duration
from the appearance of a fault to the fault isolation. Since many procedures are255

employed to improve the algorithm accuracy, the detection times of data-driven
approaches are generally higher than of model-based and signal-based approaches.
In the case where the reconfiguration of the system operation is decided by the
system operator, a detection time shorter than one second may not be meaningful
since the operator needs more time to perform the said action. However, with260

the perspective of integrating the FDI algorithm to the control system, reducing
the detection time is still an important issue in the algorithm design. This
motivates investigating the influence of the method parameters on the detection
time in the next section.
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4. Influence of the method parameters on the detection time265

Here, the influence of the method parameters on the detection time is studied
when there is no mode confusion. Since a general consideration for this problem
is hard to achieve, the following assumptions are made:

(A1) there are the normal mode and a faulty mode in a scenario,

(A2) for an operation mode, only one class is created,270

(A3) class labels are correct,

(A4) at a class creation moment, its stored vectors are consecutive,

(A5) all feature vectors of an operation mode arriving after the creation of the
corresponding class stay in this class,

(A6) at the fault isolation moment, the number of vectors stored in the faulty275

class is less than the sliding window width,

(A7) at the faulty class creation time, the number of feature vectors, which are
not close to the normal class, is greater than the minimum class cardinality
Nmin.

Let tC , tL and td be the durations from the appearance of a fault to the280

following moments: i) the faulty class creation, ii) the faulty class labelling,
iii) the fault isolation, respectively. According to Section 3, the presented time
durations respect the inequality tC ≤ tL ≤ td. To motivate the subsequent
results, the following property of a discrete-time monotonic function is recalled.

285

Remark 6 ([20]). Let tε(εg) be a function defined as g(tε(εg) − ts) < εg ≤
g(tε(εg)), where εg ∈ (g(t1), g(t2)), the function g(t) is strictly increasing over
the time interval (t1, t2), and ts is the sampling time. tε(εg) is therefore mono-
tonically increasing. On the contrary, if g(t) is strictly decreasing and g(tε(εg)) ≤
εg < g(tε(εg)− ts), tε(εg) is monotonically decreasing.290

The influence of the window width Nf , the fault threshold Ff , the labelling
threshold εl and the initial covariance σ is previously presented in [20]. td(Nf )
and td(Ff ) are increasing. The function tL(εl) is monotonically decreasing, if

gε(t) = max
q=1,...,n

{∣∣βf,q(t)∣∣} (3)

is strictly increasing, where β̄f (t) is the mean vector of the faulty mode class.
tC(σ) is monotonically decreasing, if

gσ(t) = − 1

2ln(µmin)
max

β∈Bm(t)

∥∥β − β̄m(t)
∥∥
2

(4)
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is strictly decreasing, where Bm(t) = {β(t−Nmints + ts), . . . ,β(t)} is the time
sequence of Nmin consecutive feature vectors, and β̄(t) is the mean vector of
Bm(t).

Here, the influence of the membership threshold µmin and the minimum class
cardinality Nmin on the detection time is presented in the following proposition.295

Proposition 1. Let gµ(t), gN (t) ∈ R be given as:

gµ(t) = exp

(
− 1

2σ2
max

β∈Bm(t)

∥∥β − β̄m(t)
∥∥
2

)
,

gN (t) = max
r∈{1,...,Nmax}

r

s.t. exp

(
− 1

2σ2

∥∥β − β̄r(t)
∥∥
2

)
≥ µmin, ∀β ∈ Br(t),

(5)

where Br(t) = {β(t−rts+ts), . . . ,β(t)} is the time sequence of r ∈ N consecutive
feature vectors; β̄r(t) is the mean vector of Br(t).

(P1) If gµ(t) is strictly increasing, tC(µmin) is monotonically increasing.

(P2) If gN (t) is strictly increasing, tC(Nmin) is monotonically increasing.

Note that this proposition is only valid for Case 1, 3 and 4 of the OC faults.300

Proof.

(P1) According to Proposition 1 in [20], the faulty class is created based on
the sequence Bm(tC(µmin)). Assume that gµ(t) is strictly increasing, and
gµ(t) < µmin, ∀t < tC(µmin). This implies that each vector in the se-
quence Bm(t) is far from others according to the membership function in305

[4] and (5). Therefore, these vectors can not be used to create a class.
Until t = tC(µmin), gµ(tC(µmin)− ts) < µmin ≤ gµ(tC(µmin)). Therefore,
each vector of Bm(t) is close enough to the others. Hence, the faulty class
is created, and all vectors of Bm(tC(µmin)) are stored in the new class.
Consequently, tC(µmin) is monotonically increasing according to Remark310

6.

(P2) From (2) and (5), when gN (t) < Nmin, each feature vector in the sequence
Bm(t) is not close enough to all others. Therefore, the faulty class can
not be created. Assume that gN (t) is strictly increasing, gN (t) < Nmin
with t < tC(Nmin). Until t = tC(Nmin), gN (tC(Nmin) − ts) < Nmin ≤315

gN (tC(Nmin)), and thus, the feature vectors in Bm(t) are close enough
to create the faulty class. Hence, according to Remark 6, tC(µmin) is
monotonically increasing.

Note that if there is no mode confusion, Nmin ≥ max {Nf/2, Ff} and εl ≥
1−gµ(tC), then, td = tL = tC [20]. There is still the maximum class cardinality320

Nmax which is not mentioned in Proposition 1. Indeed, with Assumption (A7),
this parameter has no influence on the detection time since the faulty class
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creation time does not change with its different values. However, it may affect
the mode confusion.

The presented algorithm and the influence of its parameters are validated325

on experimental data in the following section.

5. Fault detection and isolation results

In this section, the proposed FDI algorithm is applied to experimental data
from 5 different scenarios. In Scenario 1-4, the data are from an open loop
system containing a 3-phase inverter governing a 3-phase Resistance-Inductance330

series circuit with star coupling (see Fig. 5). In Scenario 5, the data provided
by the L2EP laboratory in Lille, France, are of a closed loop system containing
a 5-phase inverter governing a 5-phase synchronous motor (detail of the system
can be found in [3]). A natural variable fault(t) ∈ N is used to simply describe
the mode flag. If the operation mode is not isolated, this variable is set to -11.335

With Scenario 1, the influence of the method parameters on the detection time
is investigated for validating Proposition 1 and the similar one in [20]. Some
properties of the experimental systems used for the FDI and the values of the
algorithm parameters are described in Table 3. Table 4 presents the operation
modes, their labels and the detection times in the considered scenarios. The340

FDI algorithm is implemented in MATLAB RO.
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Figure 5: Test bench scheme for the studied 3-phase system.

Table 3: Parameters for the data and the algorithm.
Parameter\Scenario All 1-5

Data
Signal frequency [Hz] 50
Sample time ts [µs] 80

Algorithm
Class membership threshold µmin 0 < µmin < 1 0.61
Initial covariance σ 0 < σ < 1 0.8
Minimum class cardinality Nmin Nmin = O(Ns) 170
Maximum class cardinality Nmax Nmax = O(Ns) 200
Labelling threshold εl 0 < εl ≤ 0.5 0.2
Sliding window width Nf Nf = O(Ns) 220
Fault threshold Ff Ff = O(Ns) 170
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Table 4: Detection times in Scenarios 1-5.
Scenario 1 2 3 4
Duration [s] 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2
Fault None T1 None T1&T2 None T1&T3 None T1&T4
faultref 00 10 00 12 00 13 00 14
Det. time [ms] 30.5 28.2 28.0 32.0

Scenario 5
Duration. [s] 0.25 0.25 0.25 0.25 0.25 0.25
Fault None T4 T3 T2 T1 T3&T4
faultref 00 40 30 20 10 34
Det. time [ms] 24.8 31.9 25.0 31.8 27.9

5.1. Scenario 1-4: Fault detection and isolation on a 3-phase inverter

Fig. 2 and Fig. 4 illustrate the profiles of the 3-phase currents and the feature
variables, respectively. In these figures, the feature variables have different
stable values for different modes. Moreover, the values of β0(t) in Scenario 2345

(phase fault) are separated by zero instead of a varying threshold as in [20] (see
the feature variable profile in row 4, column 2 of Fig. 4). Fig. 6 illustrates
the profiles of the mean vectors β̄(t) of the normal and faulty classes, the fault
indicator Ff (t) and the fault flag fault(t). Based on these profiles, the labelling
conditions in Table 2 and the fault isolation condition in Section 3.4 can be350

verified. Notice that with the algorithm parameters given in Table 3, the faulty
class is labelled as soon as it is created. According to this table, the detection
times are in the range of [1,1.6] times the fundamental signal period (ts = 20
ms).

15



Figure 6: Profiles of the class mean vectors, the fault indicator and the fault flag in Scenarios
1-4.

5.2. Scenario 5: Fault detection and isolation on a 5-phase inverter355

Figure 7 describes the profiles of the 5-phase currents and the feature vari-
ables in Scenario 5. In this figure, there are oscillations in the profiles of the
feature variables during the system operation. This is due to the uncertainty
in the signal frequency caused by the closed loop controller. Indeed, in (1), the
number of time samples on a fundamental signal period Ns = 1/(fts) depends360

on the signal frequency f . Since f is not constant, Ns and, thus, the feature
variables are also varying. Fig. 8 describes the profiles of the class means of the
normal and faulty modes β̄(t), the fault indicator Ff and the fault flag fault(t).
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Figure 7: Profiles of the phase currents and the feature variables in Scenario 5.
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Figure 8: Profiles of the class mean vectors, fault indicator and fault flag in Scenario 5.

5.3. Scenario 1: Influence of the method parameters on the detection time

This section aims at illustrating the conclusions in Section 4 about the influ-365

ence of the method parameters on the detection time (Table 3). Note that the
assumptions A1-A7 hold for parameter values investigated in this subsection.

Table 5 presents the detection times in Scenario 1 with several values of the
fault threshold Ff and sliding window widthNf . The detection times td(Ff ) and
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td(Nf ) are monotonically increasing. Moreover, when max

{
Ff ,

Nf
2

}
≤ Nmin,370

they are constant since the fault is isolated at the faulty class labelling, i.e.,
td(Ff , Nf ) = tL. Note that tL does not depend on Ff and Nf (see Subsection
3.3).

Table 5: Detection times [ms] in Scenario 1 with several values of Ff and Nf .

Ff\Nf 220 300 340 380 420
160 30.5 30.5 30.5 32.0 33.7
170 30.5 30.5 30.5 32.0 33.7
180 31.1 31.1 31.1 32.0 33.7
190 31.9 31.9 31.9 32.0 33.7
200 32.8 32.8 32.8 32.8 33.7
220 34.5 34.5 34.5 34.5 34.5

Table 6 lists the labelling times in Scenario 1 with several values of the
labelling threshold εl. The function gε(t) in (3) is strictly increasing, which375

is partially illustrated through its positive discrete-time derivative ∆gε(t)/∆t.
Hence, the labelling time tL(ε) is monotonically decreasing. In these tests,
Nmin = 50 is considered instead of 170 since the faulty class is labelled after its
creation, i.e., tL(εl) > tC . Note that tC does not depend on εl (see Subsection
3.2).380

Table 6: Labelling times [ms] in Scenario 1 with several values of εl with Nmin = 50.

εl 0.1 0.15 0.20 0.25 0.3
∆gε(t)/∆t [s−1] 5.8 16.4 32.0 53.7 53.7
tL(ε) [ms] 28.2 23.2 21.1 19.9 19.9

Table 7 illustrates the class creation times in Scenario 1 for different values
of the initial covariance σ, membership threshold µmin and minimum class car-
dinality Nmin. The function gσ(t) in (4) is strictly decreasing, which is partially
illustrated through its negative discrete-time derivative ∆gσ(t)/∆t. Hence, the
faulty class creation time tC(σ) is monotonically decreasing. Similarly, since the385

functions gµ(t) and gN (t) in (5) are strictly increasing, the faulty class creation
times tC(µ) and tC(Nmin) are monotonically increasing according to Proposi-
tion 1.

Table 7: Class creation times [ms] in Scenario 1 for different values of σ, µmin and Nmin.

σ 0.1 0.2 0.3 0.4
∆gσ(t)/∆t [s−1] -130 -159 -151 -137
tC(σ) [ms] 30.7 30.1 29.4 28.7

σ = 0.2
µmin 0.15 0.30 0.45 0.61
∆gµ/∆t [s−1] 16 46 104 196
tC(µ) [ms] 28.8 29.3 29.7 30.1

Nmin 130 140 150 160
∆gN/∆t [s−1] 12444 12444 12444 12444
tC(Nmin) [ms] 28.4 29.4 30.5 31.6
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6. Conclusion

This paper presents several improvements to the data-driven fault detection390

and isolation algorithm previously proposed for double open-circuit faults in 3-
phase inverters [20]. In this manuscript, the algorithm has been extended to deal
with the multi-phase case and be applicable to experimental data. The features
are firstly extracted from the measurements of the load currents. Then, the
feature vectors are clustered using the Auto-adaptive and Dynamical Cluster-395

ing. Using the obtained classes, the conditions for the labelling, fault detection
and isolation are formulated. Briefly, the main contributions of this paper are
summarized as follows: i) a new feature variable was proposed to avoid using a
threshold in the feature extraction procedure; ii) labelling conditions were devel-
oped for the multi-phase inverter case; iii) rigorous conditions were formulated400

for describing the influence of all algorithm parameters on the detection time.
Some elements of these conditions can be used in other applications of AUDyC.
With the presented improvements the accuracy of the proposed method was
illustrated through experimental data from real systems with several scenar-
ios. As future work, we aim at generalizing the method to multi (more than 2)405

Open-Circuit fault cases and evaluating the algorithm complexity. Moreover,
the proposed approach will be compared to the state of the art and will be
applied to data from an industrial system.
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