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Introduction

Multi-phase inverters are interesting for industrial applications because of their fault-tolerance and high power density [START_REF] Levi | Multiphase Electric Machines for Variable-Speed Applications[END_REF]. Since power switches are the most vulnerable components in inverters, most inverter faults are due to the switches remaining closed or open longer than the defined period, leading to Short-Circuit (SC) or Open-Circuit (OC) faults, respectively [START_REF] Cai | A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[END_REF]. With the SC fault, there are usually standard protection systems which immediately shut down the system. However, when OC faults happen, the system can keep running with degraded performance. Hence, Fault Detection and Isolation (FDI) of OC faults in multi-phase inverters associated to a multi-phase motor is an ongoing research topic [START_REF] Trabelsi | Experimental investigation of inverter open-circuit fault diagnosis for bi-harmonic five-phase permanent magnet drive[END_REF]. Different approaches were proposed in the literature: model-based, signal-based and data-driven [START_REF] Pham | Autoadaptive and Dynamical Clustering for open-circuit fault diagnosis of power inverters[END_REF]. The model-based approach is rather involved for real-world applications (e.g., deriving the model of a multi-phase asynchronous motor is a tedious task). On the other hand, the signal-based approach is generally not robust because of the influence of varying parameters or the presence of noise in the measurements [START_REF] Gao | A survey of fault diagnosis and faulttolerant techniques-part II: Fault diagnosis with knowledge-based and hybrid/active approaches[END_REF]. A middle ground between the two, the data-driven approach only requires some knowledge of the Preprint submitted to Special Issue on Prognostics and Health Management of Complex Systems, June 5, 2020 system's operation, while still being robust, as it considers a large amount of measurement data. For the system including a multi-phase inverter governing a multi-phase inductive load (e.g., motor), using measurements of the phase currents in the data-driven approach is preferred to the phase voltages due to the reduced cost related to additional sensor installation [START_REF] Trabelsi | Experimental investigation of inverter open-circuit fault diagnosis for bi-harmonic five-phase permanent magnet drive[END_REF]. This approach first extracts the features of the operation modes through feature vectors whose values are later treated in the machine learning procedure to construct feature classes corresponding to operation modes. Based on the resulting classes, conditions for the operation mode labelling and the FDI are formulated.

Both supervised and unsupervised machine learning approaches were considered for FDI problems depending on the available prior information. If input feature vectors along with their corresponding target vectors are included in the training data, the approach is called supervised learning [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF], with some methods applied to FDI problem being: Support Vector Machines [START_REF] Delpha | Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing[END_REF], Discriminant Analysis [START_REF] Zeng | Fault diagnosis based on variableweighted separability-oriented subclass discriminant analysis[END_REF], Bayesian Networks [START_REF] Cai | A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[END_REF], K-Nearest Neighbors [START_REF] He | Plastic Bearing Fault Diagnosis Based on a Two-Step Data Mining Approach[END_REF], Neural Networks [START_REF] Khomfoi | Fault Diagnosis and Reconfiguration for Multilevel Inverter Drive Using AI-Based Techniques[END_REF]. However, a supervised learning method may not be suitable for complex industrial systems in case no historical data of faulty operation modes is available, or a new fault (different from the training data) appears. To deal with these issues, the unsupervised learning approach is employed where only input feature vectors are available [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. The most popular method of this approach is clustering. With K-means [START_REF] Chen | K-means Bayes algorithm for imbalanced fault classification and big data application[END_REF] or Fuzzy C-means [START_REF] Zheng | Gear fault diagnosis method based on local mean decomposition and generalized morphological fractal dimensions[END_REF], the input feature vectors are clustered such that the distance between them and the corresponding classes is minimal. This method is simple, but requires to know a priori the number of faults, which is not always available. In [START_REF] Liu | Weighted random forests for fault classification in industrial processes with hierarchical clustering model selection[END_REF], the authors use hierarchical clustering, where two similar clusters of feature vectors are grouped to form a cluster on a higher position in a binary and hierarchical tree. This method does not need an a priori number of faults, but its results are sensitive to outliers. In [START_REF] Li | Fault diagnosis of rolling bearing using symmetrized dot pattern and density-based clustering[END_REF], the density-based spatial clustering is considered, where data classes are defined by high density clusters which are separated by sparse areas. Although this method identifies well outliers as noise, it does not work well when the data density in clusters is varying. By using Gaussian Mixture Models (GMM), the authors in [START_REF] Hong | Early Fault Diagnosis and Classification of Ball Bearing Using Enhanced Kurtogram and Gaussian Mixture Model[END_REF] can obtain clusters of more flexible shapes (ellipses). In real-world applications, measured data is usually non-stationary, so on-line and adaptive learning should be employed to deal with this kind of data. To this end, Artificial Neural Networks (ANN) are usually applied for unsupervised learning, a well-known example being Self-Organizing Maps [START_REF] Meng | Safety assessment for electrical motor drive system based on SOM neural network[END_REF]. Most existing methods do not possess self-organizing abilities, constructive architectures or fully autoadaptive structures, but AUto-adaptive and Dynamical Clustering (AUDyC), which is based on GMM and ANN, does [START_REF] Lecoeuche | New supervision architecture based on on-line modelling of non-stationary data[END_REF][START_REF] Boubacar | AUDyC Neural Network using a new Gaussian Densities Merge Mechanism[END_REF]. Recently, this machine learning method was employed to detect and isolate converter faults in [START_REF] Toubakh | Hybrid dynamic classifier for drift-like fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine converters[END_REF][START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF], and is the method of choice in this paper.

Machine learning techniques are generally not used directly on measurement data, but on appropriately defined feature vectors, for effective algorithms.

Methods to design feature vectors are based on time domain data, frequency domain data or their combination. Time-domain feature variables are directly derived from the measurement data such as the average current over a fundamental signal period [START_REF] Trabelsi | Experimental investigation of inverter open-circuit fault diagnosis for bi-harmonic five-phase permanent magnet drive[END_REF], or the Principle Component Analysis [START_REF] Cai | A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[END_REF]. Frequency-domain feature vectors are usually computed based on the Fast Fourier Transform [START_REF] Cai | A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[END_REF][START_REF] Xia | A data-driven method for IGBT open-circuit fault diagnosis based on hybrid ensemble learning and sliding-window classification[END_REF] or wavelet transform [START_REF] Sun | A novel fault diagnostic approach for DC-DC converters based on CSA-DBN[END_REF].

The present manuscript builds on the authors' previous work in [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF][START_REF] Pham | Autoadaptive and Dynamical Clustering for open-circuit fault diagnosis of power inverters[END_REF]. Double OC faults in inverters were detected using feature variables defined in terms of the average phase currents and their average absolute values. These choices avoid expensive computations and load dependence with minimum knowledge of the system's faulty operation modes. However, there is still the need to choose an appropriate threshold making the tuning task complicated. Moreover, when dealing with experimental data obtained from a closed loop controlled system, a suitable value for the threshold is difficult to find due to the uncertainty of the motor current frequency. In this paper, the FDI algorithm previously proposed in [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF] is improved to avoid the tuning of a threshold value in the feature extraction procedure for a multi-phase inverter. Moreover, this manuscript presents the influence of algorithm parameters on the detection time under some specific assumptions.

The proposed method and the influence of the method parameters are validated on experimental data obtained from a closed loop system.

The remaining part of the paper is structured as follows. First, Table 1 presents the notation for the parameters and the variables used in this paper. Section 2 describes the inverter operation in the normal and faulty modes. Next, Section 3 introduces the FDI method. Section 4 studies the influence of the method parameters on the detection time. Section 5 validates the method on experimental data. Section 6 concludes the paper and presents some possible future research directions.

Inverter in normal and faulty operation modes

The descriptions of the 3-phase and 5-phase inverter operation modes can be found in [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF] and [START_REF] Trabelsi | Experimental investigation of inverter open-circuit fault diagnosis for bi-harmonic five-phase permanent magnet drive[END_REF], respectively. These systems contain Insulated-Gate Bipolar Transistors (IGBTs) which act as switches controlled by a Pulse Width Modulation (PWM) signal. The switches are opening and closing periodically with the PWM frequency. An OC fault occurs when a switch remains open longer than the period defined by the control. For a 3-phase inverter, the single and double OC faults essentially lead to 4 general cases, shown in Fig. 2, even though there are 21 different possibilities. This figure presents the 3-phase current profiles in normal operation before 0.2s, and in faulty mode after that.

In Case 1, only one IGBT, e.g., T 1 (see Fig. 1), is faulty. This results in the negative phase-1 current, i.e., i 1 (t) ≤ 0 (see Scenario 1 in Fig. 2). When T 3 or T 5 is faulty, results are similar: i 2 (t) ≤ 0 or i 3 (t) ≤ 0, respectively. When T 2 , T 4 or T 6 is faulty, i 1 (t) ≥ 0, i 2 (t) ≥ 0 or i 3 (t) ≥ 0, respectively.

In Case 2, two IGBTs of the same phase, e.g., T 1 &T 2 (see Fig. 1), are faulty. This results in a zero phase-1 current, i.e., i 1 (t) = 0 (see Scenario 2 in Fig. 2). Similar behavior is observed when T 3 &T 4 (i 2 (t) = 0) or T 5 &T 6 (i 3 (t) = 0) are faulty.

In Case 3, two IGBTs of different phases but on the same side, e.g., T 1 &T 3 (see Fig. 1), are faulty. This results in negative currents for phase 1 and 2, i.e., i 1 (t) ≤ 0, and i 2 (t) ≤ 0, while the phase-3 current is positive, i.e., i 3 (t) ≥ 0 (see Scenario 3 in Fig. 2). The opposite behavior is noticed when T 2 &T 4 are faulty. When T 1 &T 5 are faulty, i 1 (t) ≤ 0, i 3 (t) ≤ 0 and i 2 (t) ≥ 0, which is opposite to when T 2 &T 6 are faulty. When T 3 &T 5 are faulty, i 2 (t) ≤ 0, i 3 (t) ≤ 0 and i 1 (t) ≥ 0, which is opposite to when T 4 &T 6 are faulty.

0.1 0.2 0.3 -1 0 1 i 1 [A] Scenario 1 0.1 0.2 0.3 -1 0 1 i 2 [A] 0.1 0.2 0.3 Time [s] -1 0 1 i 3 [A] 0.1 0.2 0.3 -1 0 1 i 1 [A] Scenario 2 0.1 0.2 0.3 -1 0 1 i 2 [A] 0.1 0.2 0.3 Time [s] -1 0 1 i 3 [A] 0.1 0.2 0.3 -1 0 1 i 1 [A] Scenario 3 0.1 0.2 0.3 -1 0 1 i 2 [A] 0.1 0.2 0.3 Time [s] -1 0 1 i 3 [A] 0.1 0.2 0.3 -1 0 1 i 1 [A] Scenario 4 0.1 0.2 0.3 -1 0 1 i 2 [A] 0.1 0.2 0.3 Time [s] -1 0 1 i 3 [A]
In case 4, two IGBTs of different phases and on different sides, e.g., T 1 &T 4 (see Fig. 1), are faulty. This results in a negative phase-1 current, i.e., i 1 (t) ≤ 0, and a positive phase-2 current, i.e., i 2 (t) ≥ 0 (see Scenario 4 in Fig. 2). This is opposite to when T 2 &T 3 are faulty. When T 1 &T 6 are faulty, i 1 (t) ≤ 0, i 3 (t) ≥ 0, and this is opposite to when T 2 &T 5 are faulty.

When T 3 &T 6 are faulty, i 2 (t) ≤ 0, i 3 (t) ≥ 0, which is opposite to when T 4 &T 5 are faulty.

In summary, if only one phase current does not change polarity, the single fault is in one of the two transistors in that branch; if one phase current is always zero, both transistors in that branch are faulty; if all three phase currents do not change polarities, two transistors on the same side in the two branches, where the currents have the same polarity, are faulty; if only two phase currents do not change the polarities, two transistors on different sides in these branches are faulty. For an inverter with more than 3 phases, it is not necessary to discriminate between Case 3 and Case 4, since a phase current does not change the polarity if and only if a transistor of that branch is faulty. Based on the polarity analysis, appropriate feature variables are derived in the next section.

Proposed method

This section presents the proposed FDI algorithm which includes the following procedures: feature extraction, data clustering with AUDyC, labelling and fault detection and isolation, as summarized in Fig. 3. In the feature extraction, the measurement data from the motor currents is represented in the feature space where the steady-state data corresponding to different operation modes is separated. For AUDyC learning, only representative vectors in the feature space are collected to construct feature classes. In the labelling stage, these classes are labelled using knowledge about the system operation. In the last stage, based on similarities between recent feature vectors and the labelled classes, the faulty modes are declared. 

Feature extraction

This procedure aims at formulating an appropriate feature vector containing all feature variables, allowing us to do the clustering, labelling and FDI. In our case, the observation (or data) vector x(t) gathers the load currents, i.e., x(t) = i 1 (t) . . . i n (t) T ∈ R n , where n ∈ N is the number of phases (3 or 5). In [START_REF] Pham | Autoadaptive and Dynamical Clustering for open-circuit fault diagnosis of power inverters[END_REF], the normalized average phase currents were used as feature variables. However, in Case 2 presented in Section 2, a feature variable is possibly infinite due to the zero faulty phase current. Therefore, in [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF], an additional feature variable,

β 0 (t) = n Π h=1 |i k (t)| I 0 with I 0 = |i k (t)| in the normal operation mode,
was considered to allow treating Case 2 within the whole procedure, an additional threshold was used, while the formulations for the other feature variables were modified to avoid the infinite value in Case 2.

When phase-k is faulty (Case 2), |i k (t)| /I 0 and, hence, β 0 (t) are zero. However, in real systems, they are usually positive due to the uncertainty. Even when |i k (t)| /I 0 is small, its product with corresponding terms of the other currents is still considerably large. This makes the parameter tuning even more complex. To deal with this problem, the value of |i k (t)| /I 0 is amplified such that the positiveness of the absolute values of the other currents is reduced. The simplest choice to this end is the application of a logarithmic function on |i k (t)| /I 0 , i.e., ln ( |i k (t)| /I 0 ). Moreover, to eliminate the additional threshold, zero is chosen as an invariant threshold to define the feature variables in the following way:

β 0 (t) = n Π h=1 n 1 + ln |i k (t)| I 0 , (1a) 
β k (t) =        i k (t) |i k (t)| , if β 0 (t) > 0, h = 1, . . . , n, |i k (t)| I 0 , if β 0 (t) ≤ 0, h = 1, . . . , n, (1b) 
where

|i k (t)| is the absolute value of phase-k current, g(t) = Ns-1 ks=0 g(t -k s t s )
N s is the average value of function g(t) over a fundamental signal period, t s is the sampling time, k s ∈ N is the sampling time index, and N s ∈ N is the number of time samples on a fundamental signal period. The n th root in (1a) is to simplify the tuning task for the data clustering by making the variance of β 0 (t) approximate to the other feature variables. Note that β 0 (t) is equal to 1 in the normal mode. In Case 1, 3 and 4, it is positive, while it is negative when there is at least one phase current close to zero in Case 2. Moreover, due to uncertainty, |i k (t)| is not zero, and hence, β 0 (t) is not negative infinity. The feature vector is obtained from the feature variables given in [START_REF] Levi | Multiphase Electric Machines for Variable-Speed Applications[END_REF] as β(t) = β 0 (t) β 1 (t) . . . β n (t)

T ∈ R n+1 . This vector will be used as input for the data clustering procedure.

Data clustering

In this procedure, AUDyC is used for clustering the feature vectors β(t) into classes, as described in [START_REF] Pham | Autoadaptive and Dynamical Clustering for open-circuit fault diagnosis of power inverters[END_REF]. A simplified formulation of AUDyC is considered, where the distribution of class data is Gaussian. A class is represented by the center, the covariance matrix and a number of feature vectors. Whenever a new feature vector β(t) appears, the closeness between this vector and existing classes is verified using the Mahalanobis distance with a chosen membership threshold µ min ∈ (0, 1). If there is no class, a new class is created with a given initial covariance matrix σI n+1 , where σ ∈ R + is the initial covariance. Moreover, the feature vector β(t) is used as the class center, and stored in the class memory. If there is a unique class close to β(t), its parameters are modified by taking into account β(t), and β(t) is added to the class memory. The number of vectors stored in a class is limited to a chosen range [N min , N max ]. If there are more than one class close to β(t) and these classes are close enough, they will be fused to obtain a new class. Thereafter, the new class parameters are modified according to the adaptation procedure where there is a unique class close to β(t). Finally, if the number of feature vectors in a class is less than N min , the class is eliminated. All the removed vectors will be used in the next iterative learning loop. From the algorithm description in [START_REF] Pham | Autoadaptive and Dynamical Clustering for open-circuit fault diagnosis of power inverters[END_REF], the following condition is derived for the class creation which will be used hereafter for investigating the influence of the initial covariance σ, the membership threshold µ min and the minimum class cardinality N min on the detection time.

Remark 1 ([20]

). A feature class is created after a learning step if and only if there exists N ≥ N min feature vectors which are far from existing classes but close to each other, i.e.,:

exp - β -β N 2 2σ 2 ≥ µ min , for all β ∈ B N , (2) 
where B N is the set of N feature vectors, and β N is the mean vector of B N .
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As this is an unsupervised learning procedure, the obtained classes have no physical meaning, so they need to be named using knowledge about the system operation in the labelling procedure.

Labelling

Here, a feature class C(t) is labelled based on its mean vector denoted by 195 β(t). From the fault analysis in Section 2 and the feature variable formulation in Subsection 3.1, which leads to feature variable values illustrated in Fig. 4, some remarks are in place. In the normal mode, the first feature variable β 0 (t) is positive, while the others are zero. In Case 1 and 4, β 0 (t) is positive and the feature variables corresponding to the faulty phases are equal to 1 or -1 (see Scenario 1 and 4 in Fig. 4). In Case 2, β 0 (t) is negative and the feature variable corresponding to the faulty phase is zero (see Scenario 2 in Fig. 4). In Case 3, β 0 (t) is positive and the feature variables corresponding to faulty phases are equal to 1 or -1 (see Scenario 3 in Fig. 4). The other feature variables are equal to -1 or 1 in the case of the 3-phase inverter, while they are not in the case of n-phase inverters with n > 3. However, when taking into account uncertainty, a positive threshold l ∈ R + is used to verify the position of the mean vector β(t) with respect to 0, 1 or -1. The previous remarks are summarized in Table 2. 

β m < l T 2m-1 β 0 > 0 & β m + 1 ≤ l & β p ± 1 > l , with m, p ∈ {1, . . . , n}, m = p T 2m β 0 > 0 & β m -1 ≤ l & β p ± 1 > l , with m, p ∈ {1, . . . , n}, m = p T 2m-1 & T 2p β 0 > 0 & β m + 1 ≤ l & β p -1 ≤ l & β q ± 1 > l , with m, p, q ∈ {1, . . . , n}, m = p = q T 2m-1 & T 2p-1 β 0 > 0 & β m + 1 ≤ l & β p + 1 ≤ l & β q -1 ≤ l , with m, p, q ∈ {1, . . . , 3}, m = p = q β 0 > 0 & β m + 1 ≤ l & β p + 1 ≤ l & β q ± 1 > l ,
with m, p, q ∈ {1, . . . , n}, m = p = q, n > 3

T 2m & T 2p β 0 > 0 & β m -1 ≤ l & β p -1 ≤ l & β q + 1 ≤ l , with m, p, q ∈ {1, . . . , n}, m = p = q β 0 > 0 & β m -1 ≤ l & β p -1 ≤ l & β q ± 1 > l ,
with m, p, q ∈ {1, . . . , n}, m = p = q, n > 3

T 2m-1 & T 2m β 0 ≤ 0 & β m ≤ l

Fault detection and isolation

In this subsection, the fault indicator chosen in [START_REF] Pham | Autoadaptive and Dynamical Clustering for open-circuit fault diagnosis of power inverters[END_REF] is briefly presented. To reduce the possibility of false alarms, fault declaration is investigated from the sliding window B(t) = {β(t -(N f -1)t s ), . . . , β(t)} instead of from a single feature vector β(t), where N f ∈ N is the window width. This sequence is constructed online in the "Data buffer" procedure (see Fig. 3). Afterwards, it is sent to the "Similarity verification" procedure, where the closeness of its vectors and reference classes is described by an indicator matrix M(t) ∈ {0, 1} N f ×np(t) , with the number of reference classes being n p (t). Based on this matrix, the "Maximum similarity" procedure derives the maximum number of vectors of B(t) which are close to a reference class. This is equal to the maximum absolute column sum norm of the matrix M(t). Next, this number is used as the fault indicator F (t), i.e., F (t) = M(t) 1 . Finally, the indicator and the class identity are sent to the "Fault declaration" procedure. Class C(t) represents the system operation mode if F (t) ≥ F f , where F f ∈ N is a chosen fault threshold. Otherwise, the system operation mode is unknown. Some criteria to evaluate the proposed algorithm are presented in the following remarks: accuracy, tuning effort, complexity and detection time.

Remark 2 (Accuracy). The influence of white noise is drastically reduced thanks to the use of phase current averages for the feature extraction, of Gaussian Mixture Models for the feature clustering and the consideration of a number of consecutive feature vectors for the fault declaration. Moreover, the latter also helps to reduce the mode confusion possibility caused by the passage of evolving reference classes through different labelling regions in the feature space. Obviously, the algorithm accuracy depends on appropriate values of the parameters. A comprehensive investigation on the algorithm accuracy should take into account a lot of outlier cases, e.g., variations of mechanical torque and/or of system parameters, different control systems, etc.

Remark 3 (Tuning effort). Although the proposed algorithm does not require choosing a threshold in the feature extraction procedure, there are still at least 7 parameters to tune: the labelling threshold l , the initial covariance σ, the class membership threshold µ min , the minimum and maximum number of class elements N min , N max , the sliding window width N f and the fault threshold F f . This requires an important effort for the parameter tuning. However, some ranges for choosing effective values of these parameters will be hereafter presented in Table 3, which may simplify the tuning task. Moreover, these parameters add extra freedom to the FDI algorithm to deal with the system's dynamical evolution in the real-world and the unknown impact of outliers.

Remark 4 (Complexity). Generally, a data-driven approach for the FDI problem requires a larger computational effort than model-based and signal-based approaches. However, it usually gives high accuracy diagnosis results for the case of complex systems with different perturbations. In our work, the complexity of the machine learning technique is reduced thanks to a small number of feature variables and self learning abilities.

Remark 5 (Detection time). The detection time is defined as the duration from the appearance of a fault to the fault isolation. Since many procedures are employed to improve the algorithm accuracy, the detection times of data-driven approaches are generally higher than of model-based and signal-based approaches. In the case where the reconfiguration of the system operation is decided by the system operator, a detection time shorter than one second may not be meaningful since the operator needs more time to perform the said action. However, with the perspective of integrating the FDI algorithm to the control system, reducing the detection time is still an important issue in the algorithm design. This motivates investigating the influence of the method parameters on the detection time in the next section.

is strictly decreasing, where B m (t) = {β(t -N min t s + t s ), . . . , β(t)} is the time sequence of N min consecutive feature vectors, and β(t) is the mean vector of B m (t).

Here, the influence of the membership threshold µ min and the minimum class cardinality N min on the detection time is presented in the following proposition.

Proposition 1. Let g µ (t), g N (t) ∈ R be given as:

               g µ (t) = exp - 1 2σ 2 max β∈Bm(t) β -βm (t) 2 , g N (t) = max r∈{1,...,Nmax} r s.t. exp - 1 2σ 2 β -βr (t) 2 ≥ µ min , ∀β ∈ B r (t), (5) 
where B r (t) = {β(t-rt s +t s ), . . . , β(t)} is the time sequence of r ∈ N consecutive feature vectors; βr (t) is the mean vector of B r (t).

(P1) If g µ (t) is strictly increasing, t C (µ min ) is monotonically increasing. (P2) If g N (t) is strictly increasing, t C (N min ) is monotonically increasing.
Note that this proposition is only valid for Case 1, 3 and 4 of the OC faults.

Proof.

(P1) According to Proposition 1 in [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF], the faulty class is created based on the sequence B m (t C (µ min )). Assume that g µ (t) is strictly increasing, and g µ (t) < µ min , ∀t < t C (µ min ). This implies that each vector in the sequence B m (t) is far from others according to the membership function in [START_REF] Pham | Autoadaptive and Dynamical Clustering for open-circuit fault diagnosis of power inverters[END_REF] and [START_REF] Gao | A survey of fault diagnosis and faulttolerant techniques-part II: Fault diagnosis with knowledge-based and hybrid/active approaches[END_REF]. Therefore, these vectors can not be used to create a class. Until t = t C (µ min ), g µ (t C (µ min ) -t s ) < µ min ≤ g µ (t C (µ min )). Therefore, each vector of B m (t) is close enough to the others. Hence, the faulty class is created, and all vectors of B m (t C (µ min )) are stored in the new class. Consequently, t C (µ min ) is monotonically increasing according to Remark 6.

(P2) From ( 2) and ( 5), when g N (t) < N min , each feature vector in the sequence B m (t) is not close enough to all others. Therefore, the faulty class can not be created. Assume that g N (t) is strictly increasing, g

N (t) < N min with t < t C (N min ). Until t = t C (N min ), g N (t C (N min ) -t s ) < N min ≤ g N (t C (N min ))
, and thus, the feature vectors in B m (t) are close enough to create the faulty class. Hence, according to Remark 6, t C (µ min ) is monotonically increasing.

Note that if there is no mode confusion, [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF]. There is still the maximum class cardinality N max which is not mentioned in Proposition 1. Indeed, with Assumption (A7), this parameter has no influence on the detection time since the faulty class creation time does not change with its different values. However, it may affect the mode confusion.

N min ≥ max {N f /2, F f } and l ≥ 1 -g µ (t C ), then, t d = t L = t C
The presented algorithm and the influence of its parameters are validated on experimental data in the following section.

Fault detection and isolation results

In this section, the proposed FDI algorithm is applied to experimental data from 5 different scenarios. In Scenario 1-4, the data are from an open loop system containing a 3-phase inverter governing a 3-phase Resistance-Inductance series circuit with star coupling (see Fig. 5). In Scenario 5, the data provided by the L2EP laboratory in Lille, France, are of a closed loop system containing a 5-phase inverter governing a 5-phase synchronous motor (detail of the system can be found in [START_REF] Trabelsi | Experimental investigation of inverter open-circuit fault diagnosis for bi-harmonic five-phase permanent magnet drive[END_REF]). A natural variable f ault(t) ∈ N is used to simply describe the mode flag. If the operation mode is not isolated, this variable is set to -11.

With Scenario 1, the influence of the method parameters on the detection time is investigated for validating Proposition 1 and the similar one in [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF]. Some properties of the experimental systems used for the FDI and the values of the algorithm parameters are described in Table 3. Table 4 presents the operation modes, their labels and the detection times in the considered scenarios. The FDI algorithm is implemented in MATLAB R O . 5.1. Scenario 1-4: Fault detection and isolation on a 3-phase inverter Fig. 2 and Fig. 4 illustrate the profiles of the 3-phase currents and the feature variables, respectively. In these figures, the feature variables have different stable values for different modes. Moreover, the values of β 0 (t) in Scenario 2
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(phase fault) are separated by zero instead of a varying threshold as in [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF] (see the feature variable profile in row 4, column 2 of Fig. 4). Fig. 6 illustrates the profiles of the mean vectors β(t) of the normal and faulty classes, the fault indicator F f (t) and the fault flag f ault(t). Based on these profiles, the labelling conditions in Table 2 and the fault isolation condition in Section 3.4 can be 350 verified. Notice that with the algorithm parameters given in Table 3, the faulty class is labelled as soon as it is created. According to this table, the detection times are in the range of [1,1.6] times the fundamental signal period (t s = 20 ms). 

Scenario 1: Influence of the method parameters on the detection time

This section aims at illustrating the conclusions in Section 4 about the influ-365 ence of the method parameters on the detection time (Table 3). Note that the assumptions A1-A7 hold for parameter values investigated in this subsection. 3) is strictly increasing, which is partially illustrated through its positive discrete-time derivative ∆g (t)/∆t. Hence, the labelling time t L ( ) is monotonically decreasing. In these tests, N min = 50 is considered instead of 170 since the faulty class is labelled after its creation, i.e., t L ( l ) > t C . Note that t C does not depend on l (see Subsection 3.2). 4) is strictly decreasing, which is partially illustrated through its negative discrete-time derivative ∆g σ (t)/∆t. Hence, the faulty class creation time t C (σ) is monotonically decreasing. Similarly, since the functions g µ (t) and g N (t) in ( 5) are strictly increasing, the faulty class creation times t C (µ) and t C (N min ) are monotonically increasing according to Proposition 1. 

Conclusion

This paper presents several improvements to the data-driven fault detection and isolation algorithm previously proposed for double open-circuit faults in 3phase inverters [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF]. In this manuscript, the algorithm has been extended to deal with the multi-phase case and be applicable to experimental data. The features are firstly extracted from the measurements of the load currents. Then, the feature vectors are clustered using the Auto-adaptive and Dynamical Clustering. Using the obtained classes, the conditions for the labelling, fault detection and isolation are formulated. Briefly, the main contributions of this paper are summarized as follows: i) a new feature variable was proposed to avoid using a threshold in the feature extraction procedure; ii) labelling conditions were developed for the multi-phase inverter case; iii) rigorous conditions were formulated for describing the influence of all algorithm parameters on the detection time. Some elements of these conditions can be used in other applications of AUDyC.

With the presented improvements the accuracy of the proposed method was illustrated through experimental data from real systems with several scenarios. As future work, we aim at generalizing the method to multi (more than 2)

Open-Circuit fault cases and evaluating the algorithm complexity. Moreover, the proposed approach will be compared to the state of the art and will be applied to data from an industrial system.
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 13 Figure 1: 3-phase inverter driving an inductive load [2].
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 2 Figure 2: Current profiles in the double cases of the 3-phase inverter.
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 3 Figure 3: Diagram of the proposed fault detection method.
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 4 Figure 4: Feature variable profiles in Scenarios 1-4.

Figure 5 :

 5 Figure 5: Test bench scheme for the studied 3-phase system.

Figure 6 :

 6 Figure 6: Profiles of the class mean vectors, the fault indicator and the fault flag in Scenarios 1-4.
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 27 Figure7describes the profiles of the 5-phase currents and the feature variables in Scenario 5. In this figure, there are oscillations in the profiles of the feature variables during the system operation. This is due to the uncertainty in the signal frequency caused by the closed loop controller. Indeed, in (1), the number of time samples on a fundamental signal period N s = 1/(f t s ) depends 360

Figure 7 :Figure 8 :

 78 Figure 7: Profiles of the phase currents and the feature variables in Scenario 5.

Table 1 :

 1 Parameter and variable notations.

	Notation	Description
	N	set of natural numbers
	R	set of real numbers
	R +	set of positive real numbers
	n	number of inverter phases
	f	signal frequency
	ts	sampling time
	Ns	number of time samples on a fundamental signal period
	ks	sample time index
	β(t)	feature variable
	β(t)	feature vector
	B k	set of k feature vectors
	β k	mean vector of B k
	C(t)	feature class
	β(t)	mean vector of a feature class
	β k (t)	k th element of β(t)
	In	identity matrix of dimension n
	µ min	class membership threshold
	σ	initial covariance
	N min , Nmax	minimum and maximum numbers of class elements
	l	labelling threshold
	N f	sliding window width
	F f	fault threshold
	t C	faulty class creation time
	t L	faulty class labelling time
	t d	faulty class isolation time (detection time)
	M(t)	indicator matrix
	i k (t)	current of phase k
	|i k (t)|	absolute value of phase-k current
	i k (t)	average value of signal i k (t) over a fundamental signal period
	I 0	i k (t) in the normal operation mode
	x(t)	observation vector
	g(t), g (t), gσ(t) real functions of time
	gµ(t), g N (t)	real functions of time

Table 2 :

 2 Labelling conditions.

	Fault	Condition	
	None	β 0 > 0 &	max m∈{1,...,n}

Table 4 :

 4 Detection times in Scenarios 1-5.

	Scenario	1		2		3		4	
	Duration [s]	0.4	0.2	0.4	0.2	0.4	0.2	0.4	0.2
	Fault	None	T 1	None	T 1 &T 2	None T 1 &T 3	None	T 1 &T 4
	f ault ref	00	10	00	12	00	13	00	14
	Det. time [ms]		30.5		28.2		28.0		32.0
	Scenario				5				
	Duration. [s]	0.25	0.25	0.25	0.25	0.25	0.25		
	Fault	None	T 4	T 3	T 2	T 1	T 3 &T 4		
	f ault ref	00	40	30	20	10	34		
	Det. time [ms]		24.8	31.9	25.0	31.8	27.9		

Table 5

 5 presents the detection times in Scenario 1 with several values of the fault threshold F f and sliding window width N f . The detection times t d (F f ) and t d (N f ) are monotonically increasing. Moreover, when max F f , N f 2 ≤ N min , they are constant since the fault is isolated at the faulty class labelling, i.e., t d (F f , N f ) = t L . Note that t L does not depend on F f and N f (see Subsection 3.3).

Table 5 :

 5 Detection times [ms] in Scenario 1 with several values of F f and N f .

	F f \N f 220 300 340 380 420
	160	30.5 30.5 30.5 32.0 33.7
	170	30.5 30.5 30.5 32.0 33.7
	180	31.1 31.1 31.1 32.0 33.7
	190	31.9 31.9 31.9 32.0 33.7
	200	32.8 32.8 32.8 32.8 33.7
	220	34.5 34.5 34.5 34.5 34.5

Table 6

 6 lists the labelling times in Scenario 1 with several values of the labelling threshold l . The function g (t) in (

Table 6 :

 6 Labelling times [ms] in Scenario 1 with several values of l with N min = 50. 0.15 0.20 0.25 0.3 ∆g (t)/∆t [s -1 ] 5.8 16.4 32.0 53.7 53.7 t L ( ) [ms] 28.2 23.2 21.1 19.9 19.9 Table 7 illustrates the class creation times in Scenario 1 for different values of the initial covariance σ, membership threshold µ min and minimum class cardinality N min . The function g σ (t) in (

l 0.1

Table 7 :

 7 Class creation times [ms] in Scenario 1 for different values of σ, µ min and N min .

	σ	0.1	0.2	0.3	0.4
	∆g σ (t)/∆t [s -1 ]	-130	-159	-151	-137
	t C (σ) [ms]	30.7	30.1	29.4	28.7
		σ = 0.2		
	µ min	0.15	0.30	0.45	0.61
	∆g µ /∆t [s -1 ]	16	46	104	196
	t C (µ) [ms]	28.8	29.3	29.7	30.1
	N min	130	140	150	160
	∆g N /∆t [s -1 ]	12444 12444 12444 12444
	t C (N min ) [ms]	28.4	29.4	30.5	31.6
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Influence of the method parameters on the detection time

Here, the influence of the method parameters on the detection time is studied when there is no mode confusion. Since a general consideration for this problem is hard to achieve, the following assumptions are made: (A1) there are the normal mode and a faulty mode in a scenario, (A2) for an operation mode, only one class is created, (A3) class labels are correct, (A4) at a class creation moment, its stored vectors are consecutive, (A5) all feature vectors of an operation mode arriving after the creation of the corresponding class stay in this class, (A6) at the fault isolation moment, the number of vectors stored in the faulty class is less than the sliding window width, (A7) at the faulty class creation time, the number of feature vectors, which are not close to the normal class, is greater than the minimum class cardinality N min .

Let t C , t L and t d be the durations from the appearance of a fault to the following moments: i) the faulty class creation, ii) the faulty class labelling, iii) the fault isolation, respectively. According to Section 3, the presented time durations respect the inequality t C ≤ t L ≤ t d . To motivate the subsequent results, the following property of a discrete-time monotonic function is recalled.

Remark 6 ([20]

). Let t ( g ) be a function defined as g(t ( g ) -t s ) < g ≤ g(t ( g )), where g ∈ (g(t 1 ), g(t 2 )), the function g(t) is strictly increasing over the time interval (t 1 , t 2 ), and t s is the sampling time. t ( g ) is therefore monotonically increasing. On the contrary, if g(t) is strictly decreasing and g(t ( g )) ≤

g < g(t ( g ) -t s ), t ( g ) is monotonically decreasing.

The influence of the window width N f , the fault threshold F f , the labelling threshold l and the initial covariance σ is previously presented in [START_REF] Pham | Auto-adaptive and Dynamical Clustering for double open-circuit fault diagnosis of power inverters[END_REF].

is strictly increasing, where βf (t) is the mean vector of the faulty mode class.