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Abstract

Fully resolved solid-fluid coupling is exploredwith the gradient correctedweakly compressible SPHmethodology being used to
simulate an incompressible Newtonian fluid as well as being used to obtain the coupling force information required to accurately
represent these interactions. Gradient correction allows for the application of the Neumann boundary condition required to
describe the pressure fields at solid interfaces, as well as symmetry boundary conditions for velocity (where applicable) without
the use of ghost or mirrored particles. A scaling study is performed by investigating the drag on an infinitely long cylinder at
different smoothed particle hydrodynamics (SPH) resolutions, with finer resolution scales showing good correlation to other
studies. The drag characteristics of several particle shapes and topologies are also investigated making use of both convex and
non-convex particle shapes. Clear distinction for both the fluid and solid particle responses for the various solid particle shapes
are observed. Boundary effects are also explored with results showing a strong responses to changing domain geometry aspect
ratios. A many particle system with two different particle shapes are simulated to investigate bulk behaviour of the different
solids falling under gravity in a fluid. All results presented in this paper are obtained from full 3D simulations.
Keywords: Smoothed Particle Hydrodynamics (SPH), Solid-Fluid Coupling, Weakly Compressible, Gradient Correction,
Particle Drag, Boundary Condition

1. Introduction

Processing of granular material is a very common problem inmany different industries such as construction, pharmaceuticals or
even food production and storage. This makes understanding the behaviour of these materials very important, especially from a
design and optimization point of view. The discrete element method (DEM), as introduced in 1978 by Cundall and Strack [1], is
a numerical tool used to describe the behaviour of a granular media by resolving interactions between individual particles. With
its simplified contact laws, DEM allows itself to be cast into a massively parallel form which, by exploiting developments in
multiprocessing, enables DEM to be applied to industrial scale problems [2]. Unfortunately, granular materials are rarely found
in isolation in their operating environments, with other physics (usually at a continuum scale) not only influencing the granular
material, but also being of interest to the designer. As an example, moisture in geotechnical soil and pharmaceutical powders
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as well as particle-liquid interactions in food processing, chemical catalysis and comminution processes plays a large role in the
overall system performance. In a more generalized sense, a few key examples include fluid-solid interaction, thermofluid-solid
interaction and solid particle fracture. Due to coupling usually taking place at the particle-continuum interface, it is clear that
the boundary condition implementations would have a significant effect on the quality of results obtained. Due to the parallel
nature of DEM, it would be desirable to couple the DEM solver to other parallelizable solvers such as the lattice Boltzmann
method (LBM) [3, 4] or smoothed particle hydrodynamics (SPH) [5, 6, 7].
In recent years, smoothed particle hydrodynamics (SPH) has shown itself to be a unique and powerful technique to simulate
many dynamic fluid systems. Due to its particle representation, it has been found that SPH very naturally handles multi-fluid
and multi-physics environments with various groups having had success simulating multi-phase flow [8, 9, 10], multi-species
interactions [11, 12, 13] and physical phenomena such as temperature driven buoyancy flows [13, 14].
However, due to the meshless Lagrangian formulation of SPH, boundary conditions have posed several problems in the past.
Libersky and Petschek [15] introduced the idea of generating a ghost particle outside the computational domain with properties
based on a real fluid particle close to solid boundaries. The ghost particle positions are obtained bymirroring the corresponding
fluid particles across the boundary while its other properties are fixed in such a way as to handle simple boundary conditions
such as full-slip or no-slip. The relative simplicity required to impose boundary conditions has led to this method becoming a
common technique used to handle boundary conditions while also inspiring many other variants related to this idea. Boundary
conditions for simple geometries are handled elegantly using this implementation, however for more complex boundaries,
it becomes increasingly difficult to determine a ghost particle’s properties in such a way that consistently leads to accurate
boundary condition representations. In order to resolve these issues, several studies [16, 17, 18, 19] have made use of pre-
generated ghost-interior particle pairs whereby the internal particle obtain information from the actual SPH particles being
updated via an interpolation scheme. The ghost particles then take on a specific value to enforce boundary conditions just as in
the traditional ghost particle method. Again, while this does have several advantages over the classic ghost particle approach,
there are still certain geometries that lead to complications when applying this boundary implementation, however methods
have been proposed to alleviate these issues by using similar interpolation techniques that are now applied to the generated
ghost particles to fill any voids that may be present [16].
In order to avoid using ghost particles altogether, the methods proposed by Randles and Libersky [20], Bonnet and Lok [21]
and Vila [22] uses linear truncation operations to reduce the order of errors present in the generalized SPH gradient from a
0tℎ order scheme to a first order scheme allowing for the recovery of a linear function’s derivatives exactly. Furthermore,
Fatehi and Manzari [23] extended this idea to the evaluation of the Laplacian thereby allowing for a full first order consistent
approximations of all differential operators present in the incompressible Navier-Stokes equations (NSE). Using truncation
methods, Fatehi and Manzari [24] were able to recover accurate solutions to a lid driven cavity problem as well as a locally
expanding channel problem while Hashemi et al. [25] successfully simulated flow around periodically arranged cylinders.
Gradient truncation methods have also been used in a study by Hashemi et al. [26] as a way to handle solid-fluid interactions
whereby fluid forces on the solid bodies were resolved by inverting the fluid’s momentum equation at solid surfaces as a means
to resolve surface pressures.
At least conceptually, these studies present the possibility to allow SPH to deal with extremely arbitrary system geometries
and boundary conditions. In the context of fluid-solid coupling, it becomes possible to couple fluid-solid interactions for a
generalized particle shape in a fully resolved sense. This has an advantage over drag correlation based approaches such as
those seen in [27, 28, 29] since a drag correlation strategy requires simple particle shapes with know drag correlations. This
usually leads to these approaches being applied to spherical particles only. When compared to the strategy proposed in [30,
31], whereby a solid particle is represented by a set of SPH particles with rigid body constraints between each other, clearly
then, this approach does take particles shape into account, however, with these particles being treated identically to fluid SPH
particles during the forcing calculations, this approach lacks explicit enforcement of boundary conditions and again leads to a
type of unresolved coupling strategy.
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Keeping this in mind, the main goal of this paper is to present an extension to the ideas proposed in [26] in the context of a
solid-fluid coupled environment with the focus being on implementing generalized boundary conditions in a 3D environment.
Three validation cases and four numerical experiments are presented with the intent of investigating the applicability of the
presented method as a strategy to couple 3D fluid simulations with general purpose DEM. In order to critically analyse the solid
particle interactions, this paper mainly deals with individual solid particles. Validation is looked at in the context of fluid only
systems, single particle solid-fluid systems, and multi-particle solid-fluid systems. As for the numerical experiments, due to the
expected low fidelity of the SPHmodel that is to be coupled to the DEM solvers, the first experiment investigates the behaviour
of SPH fluid resolution on the forcing conditions of the solid particle. The second experiment investigates the behaviour of a
low fidelity coupled system with different particle shapes specifically dealing with spheres, convex polyhedra and non-convex
polyhedra. The third experiment explores boundary interactions with a solid. Finally, a multi-particle system with five solid
particles are simulated for both a set of spheres and non-convex particles. The solver presented is monolithically coupled to
the multi-GPU DEM framework Blaze-DEM, and also makes use of the NVIDIA CUDA toolkit to run a parallel SPH solver
on a general purpose GPU.
Following this, the contributions of this paper can be summarised as:

• Extending the solid-fluid coupling pressure boundary condition implementation of [26] from a 2D to 3D environment,
• Utilizing gradient corrected surface derivatives to apply Neumann boundary conditions to velocity fields and
• Investigating low fidelity fully resolved flow behaviour and drag characteristics of gradient corrected SPH aroundmoving

solid particles.

2. Numerical methods

In this paper an incompressible Newtonian fluid will be used as the model of interest. As such the incompressible Navier-
Stokes equations (NSE) will be the partial differential equations (PDE) that will be required to be discretized by the SPH
methodology:

d�
dt

= 0 (1)
du
dt

= −
∇p
�
+ �∇2u + g (2)

Here, � is the fluid density, u is the flow velocity vector, p is the pressure, � is the kinematic viscosity of the fluid and g is
the acceleration due to external forces. It should be noted that unlike many stencil or element methods, the SPH methodology
handles advection by integrating the particle position, and so requires the NSE to be cast in a Lagrangian frame. Clearly, true
incompressibility is assumed in the above continuity and momentum equations, however, a common strategy to handle this
constraint with SPH specifically is to weaken the incompressibility requirement in (1) leading to an approximate enforcement
of incompressibility via a stiff equation of state. This requires a generalized continuity equation since � is now required to
evolve as well:

d�
dt

= −�∇ ⋅ u (3)
It should be stated that momentum equation (2) remains in its incompressible form implying that it is assumed that the fluid
stress induced by a non-zero ∇ ⋅ u is negligible.
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2.1. Equations of state

In order to couple the continuity and momentum equations, a common strategy used in SPH revolves around the uses of an
equation of state that allows for the coupling of the pressure and density fields of a fluid. Throughout this paper, the weakly
compressible (WC) fluid model will be used to approximate an incompressible fluid and is given as:

pi =
�0c2s


((

�i
�0

)
− 1

)

, (4)

where �0 is a reference density,  is the coefficient of expansion and cs is the speed of sound.
It should be mentioned that cs does not pertain to any physical fluid property, but can rather be seen as a numerical tuning
factor used to balance the degree of compressibility and the speed at which information can travel through the fluid. A larger
value stiffens the constraint on the incompressibility, but also increases the rate at which information propagates through the
medium and thus limits the maximum allowable time step of the numerical integration scheme. In order to ensure accurate
representation of an incompressible fluid, cs should be at least 10 times the maximum expected fluid velocity [32].
With regards to the coefficient of expansion, it can be seen that for the case of  = 1.0, a linear dependency between pressure
and density is enforced. When choosing  larger, it can be seen that positive pressure respond strongly to density variations
while negative pressures grow at a slower rate. This behaviour plays well with the SPH methodology as it allows particle very
close to each other to be strongly repelled while nearly incompressible particles are allowed to fill the void in low density
regions with less resistance. It has been shown by Monaghan [32] that  = 7.0 produces an acceptable response for the case of
approximating incompressible flow.

2.2. SPH discretization

The original SPH methodology introduced by Gingold and Monaghan [33] approximate exact function values using a kernel
functionW (r, ℎ) that approaches the Dirac-� function in the limit as ℎ→ 0 allowing nearby function value information to be
interpolated to the desired location. In its discrete form where the general field f (r) is represented by a set of "particles" this
can be written as:

⟨f (ri)⟩ =
∑

j∈I
Vjf (rj)W (ri − rj , ℎ) =

∑

j∈I
VjfjWij , (5)

where I is the set of particle indices of particles inside the support radius of the itℎ particle, fj is the field value at rj and
Vj is the volume associated to the jtℎ particle. While Vj has physical meaning strongly related to the SPH particle mass mjand density �j in the context of standard SPH, it should be noted that by using the truncation methods discussed in section
2.3.1, this link is severed with mj simply becoming a scaling factor and so only requires Vj ∝ �−1j , however by not keeping mjconsistent with �j and Vj leads to a scaled identity matrix being recovered as the truncation matrix for fully supported particles.
It should also be noted that in general ⟨f (ri)⟩ ≠ fi since there is no explicit constraint fixing the field value evaluated at the
particle position to the particle value itself.
This paper uses a quintic kernel given as:

W (r, ℎ) = �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(3 − q)5 + 6(2 − q)5 + 15(1 − q)5 for 0 ≤ q ≤ 1
(3 − q)5 + 6(2 − q)5 for 1 < q ≤ 2
(3 − q)5 for 2 < q ≤ 3
0 otherwise

(6)

4



Figure 1: Visual representation of the SPH discretization.

where q = ‖r‖2∕ℎ is the scaled distance and � = 3∕359�ℎ3 is the kernel normalization parameter [34].
Schematically, this process can be described as seen in Figure 1, where a fluid body is approximated by many individual SPH
particles. The itℎ particle is represented by the black particle, while the blue particles represent the collection of particles
associated with I and the orange circle indicates the support of the kernel function.
Since this approximation is itself a continuous field, it becomes possible to take derivatives of (5) directly, however, in order to
improve the accuracy of the derivative approximation, applying the chain rule to ∇ ⟨cf ⟩i where c is a constant, the followingform of the derivative can be found:

⟨∇f⟩i =
∑

j∈I
Vj(fj − fi)∇Wij (7)

Finally, in order to approximate the second order derivates of f , consider the scheme proposed by Morris et al. [34] whereby
a hybrid SPH-finite difference approach is used to estimate the function Laplacian. This approximation has been found to be
more accurate and robust than taking second derivates of (5) which has been shown to produce inconsistent results simply
based on the particle distribution [35]. Modifying the original proposed Laplacian, the Hessian is given as:

⟨∇⊗ ∇f ⟩i = 2
∑

j∈I,i≠j
Vj

(

fi − fj
r2ij

)

rij ⊗ ∇Wij , (8)

where rij = ri − rj , rij = ‖rij‖2 and⊗ indicates the outer product.

2.3. SPH modifications

The standard SPH scheme as discussed in Section 2.2 has several issues related to truncated support at boundaries, noisy
pressure fields and numerical instability. The proposed methodology introduces modification to standard SPH to alleviate some
of these issues, specifically gradient correction, mass correction and particle shifting to address each of the above mentioned
issues.
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Figure 2: Contours of entries for B−1 in 2D space.

2.3.1. Gradient correction

Following the analysis in [23] a Taylor series expansion of (7) shows that the proposed SPH gradient recovers:

⟨∇f ⟩i = −

(

∑

j∈I
Vjrij ⊗ ∇Wij

)

⋅ ∇fi +… (9)

Clearly then, by defining a inverted truncation matrix as:

B−1i = −

(

∑

j∈I
Vjrij ⊗ ∇Wij

)

, (10)

it becomes possible to recover first order accurate gradient via the linear mapping of the gradient ⟨∇f⟩ci = Bi ⋅ ⟨∇f ⟩i with thesuperscript c indicating truncation.
A visual description of this process in 2D is supplied in Figure 2 where the contour of the inverse truncation matrix entries
over a single particle’s support domain is shown. An immediate observation that can be made is how the scaled identity
matrix would emerge from a fully supported particle via integration over the domain. Due to the diagonal entries simply being
rotations of each other, it is clear that they would have identical values. Furthermore, the off-diagonal terms are zero due to the
anti-symmetries present over the x- or y-axis leading to identical cancellation. It also shows how at flat boundaries where the
support is not complete, the matrix diagonals would clearly be smaller in the direction of the surface normal (leading to larger
diagonals in its inverse) and as such scale the appropriate derivatives, while corners would couple the directional derivatives
based on the corner’s angle as would conceptually be necessary to extrapolate information at a corner, and so account for
missing information in a manner consistent with linear extrapolation.
The idea applied in (9) can be expanded to the Laplacian by following a Taylor series expansion of (8) leading to:

2
∑

j∈I,i≠j
Vj

(fi − fj
rij

− eij ⋅ ⟨∇f ⟩ci

)

eij ⊗ ∇Wij = −∇⊗ ∇fi ∶ Ĉi +… (11)
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where eij = rij∕rij and Ĉi is the fourth order tensor defined as:

Ĉi =
∑

j∈I
Vjrij ⊗ eij ⊗ eij ⊗ ∇Wij +

(

∑

j∈I
Vjrij ⊗ rij ⊗ ∇Wij

)

⋅ B ⋅

(

∑

j∈I
Vjeij ⊗ eij ⊗ ∇Wij

)

It can be seen that if the Hessian approximation in (11) is contracted with a new truncation matrix B̂i, a first order consistentLaplacian can be obtained given that B̂i ∶ Ĉi = −I.
Using the corrected SPH gradients and Laplacians, (3) and (2) can be discretized into a collection of ODEs. More specifically,
the equations of motion for the itℎ particle becomes:

d�i
dt

= −�i
∑

j∈I
Vj(uj − ui) ⋅ Bi ⋅ ∇Wij (12)

dui
dt

= − 1
�i

∑

j∈I
Vj(pj − pi)Bi ⋅ ∇Wij

+ 2�
∑

j∈I,i≠j
Vj

(ui − uj
rij

− eij ⋅ ⟨∇⊗ u⟩ci

)

B̂i ∶
(

eij ⊗ ∇Wij
)

+ gi
(13)

When considering the symmetries present in Ĉi, it can seen that the linear system required to be solved can be reduced from
d2 to (d2 + d)∕2 linear equations where d is the spatial dimensions of the PDE. This implies that for each particle, a system of
d linear equations need to be solved for gradient correction as well as a system with (d2 + d)∕2 linear equation for Laplacian
correction. The inverted truncation matrix as well as the symmetric components of the three sub-tensors of Ĉi are constructedand saved in GPU memory. Due to the small size of these systems, a direct linear solver is used to solve these systems directly
on the GPU as well.

2.3.2. Mass correction

While weakly compressible SPH (WCSPH) is known to have a tendency of producing noisy pressure fields, a modification
presented in [24] has been shown to smooth out the pressure field allowing for a more realistic pressure field approximation to
be obtained. This method adds an additional term to (12) with the modified equation given as:

d�i
dt

= −�i

[

⟨∇ ⋅ u⟩ci − ΓΔt
(⟨

∇ ⋅
(

∇p
�

)⟩c

i
−
⟨

∇ ⋅
⟨

∇p
�

⟩⟩c

i

)]

(14)
The SPH approximation of divergence of the pressure gradient is given by:

⟨

∇ ⋅
(

∇p
�

)⟩c

i
= 2

∑

j∈I,i≠j
Vj

( 2(pi − pj)
(�i + �j)rij

− eij ⋅ ⟨∇p⟩ci

)

B̂i ∶
(

eij ⊗ ∇Wij
) (15)

while the SPH approximation of divergence of the SPH approximation of the pressure gradient is given by:
⟨

∇ ⋅
⟨

∇p
�

⟩⟩c

i
=
∑

j∈I
Vj

(

⟨

∇p
�

⟩c

j
−
⟨

∇p
�

⟩c

i

)

⋅ Bi ⋅ ∇Wij (16)

Looking at the correction term, it should be noticed this scheme evaluates the difference between two different measures of the
pressure Laplacian and with it accordingly modifies the density field until this difference is insignificantly small. Furthermore,
it has been shown that (14) rapidly converges to (12) [24]. It should also be noted that Γ in (14) is a smoothing factor set to be
larger than or equal to 1.
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2.3.3. Particle shifting

To counteract the numerical instabilities caused by the fluid particles having a tendency to form clusters, a particle shifting
algorithm introduced by Xu et al. [36] is used to redistribute particles ensuring approximately uniformly distributed particles.
The particle positions are shifted according to the following scheme:

�ri = �‖u‖maxΔt
∑

j∈I

r̄2i
r2ij
eij , (17)

where � is a decrowding factor set between 0.001 and 0.1, ‖u‖max is the maximum fluid velocity, Δt is the time step size,
r̄i is the average distance to all particles in the itℎ particle’s support radius and �ri being the shift applied to the particle
position.
The pressure and velocity fields are adjusted via a simple first order Taylor series expansion. Writing this in terms of a
directional derivative with a step gives the form:

�fi = ⟨∇f ⟩ci ⋅ �ri, (18)
where f is either the pressure or velocity fields. The density is modified via a first order Taylor series expansion of density in
terms of pressure:

��i = �pi
d�i
dpi

=
(

�0
�i

)−1 �pi
c2s

(19)

2.4. Integration methods

A similar two step predictor-corrector integration scheme outlined in [26] has been used throughout this work. More specifi-
cally, (13) and (14) are used to determine a new set of intermediate value f ∗ from the current variables at the ntℎ time step f n
for density and velocity. The pressure values are also updated using (4) to reflect the respective densities. The same process
is followed again to determine f ∗∗ from f ∗, and finally the new variable f n+1 is set to the average between f ∗∗ and f ∗. It
should be emphasised that the time derivative df∗i

dt is obtained by re-evaluating (13) and (14) again with respect to the predictor
particle values f ∗. This leads to the following integration scheme:

f ∗i = f
n
i + Δt

df ni
dt

(20)

f ∗∗i = f ni + Δt
df ∗i
dt

(21)
f n+1i = 1

2
(f ∗∗i + f ∗i ) (22)

Where f is either velocity or density and df ni
dt is the corresponding time derivative as presented in (13) and (14). The particle

positions are updated only once every time step using the new fluid velocities:
rn+1i = rni + Δtu

n+1
i (23)

The time step is limited by either a CFL condition based on the maximum fluid speed or the rate of viscous diffusion given
as:

Δt = smin

(

�min
cs + ‖u‖max

,
�2min
�

)

, (24)
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where �min is the smallest particle spacing, ‖u‖max is the maximum fluid velocity, � is the kinematic viscosity and s is a user
specified stability factor between 0 and 1 that, for the case of this study, was kept between 0.1 and 0.2. The maximum expected
fluid velocity is used to evaluate the CFL condition initially, after which the time step size remains fixed for the remainder of
the simulation.

2.5. Boundary conditions

Since truncation is used to correct for the differential operators’ sensitivity to particle distribution, Dirichlet boundary condi-
tions can now be applied by simply using 1 layer of boundary particles with fixed properties set to the required value. This
boundary implementation is used for all no-slip boundary conditions throughout the paper.
While the no-slip boundary condition requires a Dirichlet boundary condition for velocity, the surface pressure is enforced via
a Neumann boundary condition. As shown in [26], by contracting (13) with a surface normal n̂i at solid boundaries it becomes
possible to manipulate this expression in such a way to determine surface pressures:

pi =

n̂i ⋅
∑

j∈I
Vj
pj
�j
Bi ⋅ ∇Wij − n̂i ⋅

⟨

∇ ⋅ �
�

⟩c

i
− n̂i ⋅ g + n̂i ⋅

dui
dt

n̂i ⋅
∑

j∈I

Vj
�j
Bi ⋅ ∇Wij

(25)

This in turn allows one to obtain surface densities without the need for evolving it via (14).
In this paper, this idea has also been extended to the velocity fields allowing for Neumann boundary conditions to be imple-
mented for these variables. To do this, consider a field f . Its directional derivative )f

)n along the surface normal n̂ can be
approximated as:

⟨

)f
)n

⟩c

i
= n̂i ⋅ ⟨∇f⟩ci =

∑

j∈I
Vj(fj − fi)n̂i ⋅ Bi ⋅ ∇Wij , (26)

from which the surface value fi can be determined as:

fi =

n̂i ⋅
∑

j∈I
VjfjBi ⋅ ∇Wij −

)f
)n

|

|

|

|i

n̂i ⋅
∑

j∈I
VjBi ⋅ ∇Wij

, (27)

leading to a generalised handling of Neumann (or mixed) boundary condition.

2.6. Solid coupling

As mentioned during the introduction, the SPH solver is built upon the Blaze-DEM framework with the goal being to couple
continuum physics to DEM via SPH. Since the majority of this paper deals with single DEM particles, a detailed discussion of
the DEM solver is omitted, however a thorough overview of the solver can be found in [2, 37, 38]. Rather, this section focusses
on the coupling between the fluid and solid particles.
Three categories of shapes are considered in this paper which can be classified as follows: Analytical geometries, convex
polyhedra and non-convex polyhedra. Analytical geometries are fully characterised by a surfaces satisfying some analytical
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(a) (b) (c)
Figure 3: SPH representation of solid particles described by an (a) analytical shape, (b) convex polyhedron and (c) non-convex polyhedron.

equation of the form f (r) = 0. Convex polyhedra are described by a collection of vertices, edges and planar surfaces. Non-
convex polyhedra are described by a collection of convex polyhedra. While this representation allows the DEM solver to
determine particle collision effectively, the SPH solver needs some discretized representation of these solid particles in order
to interface with it. Since only a single layer of particles is required to implement the fluid boundary conditions, only the
surfaces of these solid particles are meshed with SPH particles. For the analytical case this simply means placing the SPH
particles via a parameterisation of the surface. For the case of a convex polyhedron, a bilinear mesh is used for any face that
is rectangular, while other faces are decomposed into triangular subsection that are then meshed accordingly. Non-convex
polyhedra follow this same logic, however only the outer surfaces are meshed in this case. Figure 3a to 3c shows the meshed
surface for the case of an analytical, convex polyhedral and non-convex polyhedral particle representation, respectively.
All simulations presented in this paper consider the influence of gravity as this is the driving force for solid particle motion,
however gravity is never applied as a body force to the SPH fluid particles. Rather, the hydrostatic forces are accounted for with
a buoyancy argument whereby the body force on the solid particle Fs is determined as the difference between the gravitational
force on the solid mass msg and the displaced fluid mass �fVsg where Vs is the solid volume:

Fs = (ms − �fVs)g (28)
Several methods exists to account for dynamic fluid forces and moments ranging from the commonly applied drag force cor-
relations [27, 28, 29] to realising solids as a collection of SPH particles with a rigid body constraint between them [30, 31].
While drag correlation provide an efficient coupling strategy for the case of spherical particles, there clearly exists an issue
when it comes to generalizing this approach to other particle shapes. In the strategy where the solid is treated in an SPH context,
this idea closely resembles that of other under-resolved strategies since the solid boundary conditions are never truly enforced.
Due to the strong focus on particle shape throughout the paper, a fully resolved coupling strategy is used. This leads to the
dynamic fluid forces and moments being computed via integration of the pressure and surface shear fields.
In its continuum form, the macroscopic forces and moments are written as:

Fd = ∫)Ωs

(

−pn̂ + �(∇⊗ u + (∇⊗ u)T ) ⋅ n̂
)

dS, (29)

Md = ∫)Ωs

(

r − rcg
)

×
(

−pn̂ + �(∇⊗ u + (∇⊗ u)T ) ⋅ n̂
)

dS, (30)

where Ωs is the solid particle domain, rcg is the position of the solid’s center of gravity, n̂ is the surface normal and � = �� is
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the dynamic viscosity. In its discrete form, (29) and (30) are written as:
Fd =

∑

i∈IB

(

−pin̂i + �
(

⟨∇⊗ u⟩ci + ⟨∇⊗ u⟩ci
T ) ⋅ n̂i

)

ΔSi, (31)

Md =
∑

i∈IB

(

ri − rcg
)

×
(

−pin̂i + �
(

⟨∇⊗ u⟩ci + ⟨∇⊗ u⟩ci
T ) ⋅ n̂i

)

ΔSi, (32)

where IB is the set of particle indices of SPH particles associated to the solid particle’s boundary, n̂i is the surface normal
obtained from the DEM particle at the position of the itℎ SPH particle, ⟨∇⊗ u⟩i is the SPH approximation of velocity gradients
and ΔSi is the surface area of the DEM particle associated with the surface SPH particle. The surface pressure pi is obtainedfrom (25), while the surface velocities are obtained from the rigid body kinematic equations, specifically:

ui = us + !s × (ri − rcg), (33)
where us and!s are the linear and angular velocity of the solid particle, respectively. For the case of multiple particle systems,
an additional linear and angular forcing condition Fc andMc needs to be considered due to particle contact with these forces
being a function of some measure of overlap between particles. Again the reader is referred to [2, 37, 38] for a detailed
discussion. This leads to the following equations of motion, handled by the DEM solver:

ms
dus
dt

= Fs + Fd + Fc , (34)

Is ⋅
d!s
dt

=Md +Mc − !s ×
(

Is ⋅ !s
)

, (35)

where ms is the mass of the solid and Is is the inertial matrix of the solid.
Finally, when considering the effects of lubrication on multi-particle systems, it has been shown that fluid forces cannot be
resolved accurately when solid interfaces get closer than the fluid resolution [39]. While this does require correction in cases
where a particle’s own momentum is dwarfed by the fluid pressure gradient between two solids, such as neutrally buoyant
systems, many studies have shown that if the particle is sufficiently energetic, this correction is not needed to capture the rel-
evant physics [30, 31, 40, 41, 42]. The cases considered in this study falls into the latter category, and so avoids the need for
lubrication forces leading to contact being handled solely by the DEM solver.

3. Validation

In this section, the SPH methodology discussed in Section 2 is applied to three systems with each of the corresponding result
used to systematically validate the response of the solver. The first case investigated addresses the classic lid driven cavity
problem. These results are compared to literature as a means to validate the implemented solver as as a standalone fluid
solver.
Next, in order to investigate the solid-fluid coupling behaviour, a single particle system representative of a submerged infinitely
long cylinder is released under gravity. The results are compared to a similar 2D investigation.
Finally, the behaviour of multiple submerged solid particles are investigated by simulating a two particle system with the goal
of showing the so-called drafting-kissing-tumbling (DKT) phenomenon frequently explored in multi-particle fluid simula-
tions.
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Figure 4: Schematic representation of the lid driven cavity problem.

3.1. Lid driven cavity

In order to validate both the SPH solver and the proposed Neumann boundary conditions, a 3D lid driven cavity systems with
symmetry boundary conditions on both faces aligned with the XY-plane is simulated. Specifically, the Re = 100 case is
considered in this study.
A schematic representation of the system of can be seen in Figure 4 with the system being fully described by:

• Geometry ofH = L = 1.0m, B = 0.1m,
• Fluid density of � = 1000kg∕m3,
• Kinematic viscosity of � = 1.0 × 10−2m2∕s,
• Speed of sound of cs = 10.0m∕s,
• Lid velocity of Ulid = 1.0m∕s2.

The SPH particle diameter �0 is defined as the distance between SPH particles in the initial configuration. For this study an
SPH particle diameter of �0 = 1×10−2mwas used leading to a 100k particle simulation. The results presented are all evaluated
at the z-mid plane.
Contours of x-velocity, y-velocity and velocity magnitude can be seen in Figures 5a to 5c, respectively.
The mid-plane velocities are compared, in Figure 6, to the classical results of Ghia et al. [43] as well as the ISPH results of Xu
et al. [36].
Comparing the results to those of Ghia et al., a maximum difference of 1.29% and 1.11% was found for the x- and y-velocity,
respectively, while compared to the results of Xu et al., a maximum difference of 2.53% and 2.58% was found for the x- and
y-velocity, respectively.
Similarly, with respect to the results of Ghia et al., an average difference of 0.48% and 0.36% was found for the x- and y-
velocity, respectively. The average difference with respect to Xu et al. was found to be 0.79% and 1.56% for the x- and
y-velocity, respectively.
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(a) (b) (c)
Figure 5: Contours of (a) x-velocity, (b) y-velocity and (c) velocity magnitude for the lid driven cavity evaluated at the z-mid plane.

Figure 6: Mid plane velocities of the lid driven cavity.
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(a) (b)
Figure 7: System description with (a) the schematic representation for infinitely long cylinder falling in an enclosed cavity and (b) the polyhedral representation
of the cylinder.

3.2. Infinitely long cylinder falling in a viscous fluid

In order to validate the fluid-solid forcing methods described above, a single particle system is simulated and compared to the
results of Hashemi et al. [26]. Specifically, the case of interest in this section deals with an infinitely long cylinder falling
through a viscous fluid under gravity.
The simulation is carried out in 3D space with symmetric boundary conditions applied in the longitudinal direction of the
cylinder aligned with the z-axis. Figure 7a shows the schematic representation of the geometry. For this study, L is set to be
20 × 10−3m andH is set to be 50 × 10−3m, while B is chosen based on particle size to ensure that 10 SPH fluid particle layers
are present in the z-direction. The cylinder has a radius of 1.25 × 10−3m. The cylinder is started at rest from the center of
the cavity in the x-direction at a height of ℎ = 40 × 10−3m, while the caps of the cylinder lies exactly on both walls in the
z-direction. A time step of Δt = 1 × 10−5s was used. It should be noted that since the solid particle’s forcing and integration
scheme is handled by the Blaze-DEM solver, the "cylinder" is actually only an approximation generated from a polyhedron
with 12 planar faces as shown in 7b, which are then meshed with SPH particles.
An SPH particle diameter of �o = 1.0 × 10−4m was used in this case. The support radius of the simulation is set to be 3�0,varying from that used in [26]. This is justified by the fact that here a 3D simulation is conducted as opposed to the 2D
simulation conducted in [26].
The physical parameters used in these simulations are as follows:

• Fluid density of �f = 1000kg∕m3,
• Solid density of �s = 1250kg∕m3,
• Kinematic viscosity of � = 1.0 × 10−5m2∕s,
• Speed of sound of cs = 1.0m∕s,
• Gravitational acceleration of g = 9.81m∕s2.
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(a) (b) (c)
Figure 8: Fine scale mid plane profile for (a) fluid velocity x, (b) fluid velocity y, (c) fluid velocity magnitude at time t = 0.63s.

(a) (b)
Figure 9: Comparison of (a) solid particle height and (b) solid particle velocity to the results of [26].

Figures 8a to 8c shows the x- and y-velocities and velocity magnitude of the mid plane section, respectively.
Figure 9a shows the comparison between the solid particles vertical height at similar SPH particle resolutions while Figure 9b
shows a comparison between the solid particle velocity and the results of Hashemi et al., along with the results presented by
Glowinski et al. [44] used for comparison in [26].
Considering the fact that the geometry of the solid particle is not an ideal cylinder, but rather a polyhedral approximation, it can
be seen that even with the additional complexity of a full 3D simulation requiring symmetric boundary conditions without the
use of ghost particles, the results, although showing slight variations to other previous studies, clearly capture both the solid and
fluid behaviour with a 2.8% and 5.5% variation from the results of Hashemi et al., in position and velocity, respectively.

3.3. Drafting-kissing-tumbling phenomenon

With section 3.2 showing that fluid forces are approximated well in the case where momentum transfer is only considered
between the fluid and the solid particle, this section expands upon these results by introducing a second solid particle allowing
for an investigation into the solver’s behaviour under both particle-particle and particle-fluid momentum transfer modes.
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Figure 10: Schematic representation for the DKT problem.

A schematic representation of the system is shown in Figure 10 with L set to 20 × 10−3m, H set to 60 × 10−3m and B set to
1 × 10−3m. The particles are started at rest at a height of ℎ1 = 50 × 10−3m and ℎ2 = 53 × 10−3m. The particle radii r are set
to 1 × 10−3m.
The physical parameters of the system are chosen as:

• Fluid density of �f = 1000kg∕m3,
• Solid density of �s = 1100kg∕m3,
• Kinematic viscosity of � = 5.0 × 10−6m2∕s,
• Speed of sound of cs = 1.0m∕s,
• Gravitational acceleration of g = 9.81m∕s2.

When comparing the results found in this section to those in literature, it is important to take note of the remarks in [26], where
it was stated that this type of system’s behaviour during the kissing stage is highly sensitive to its contact model used to the
point where different contact models can lead to very distinct behaviour. Both cylinders are again approximated by the 12
sided polyhedra seen in Figure 7b, hence some variation in particular after contact is expected when compared to other studies
that had more idealized cylinder representations.
Figures 11a, 11b and 11c shows the velocity magnitude of the fluid during intervals representative of the drafting, kissing and
tumbling phase, respectively.
Figures 12a and 12b show the x- and y-positions of the solid particles, respectively, while Figures 13a and 13b show the particle
velocities in the x- and y-directions, respectively. The results are Compared to the results of Singh et al. [45] and Hashemi et
al. [26].
As expected, it can be noticed that there is a very good agreement between all three simulations during the drafting phase,
however this method see a response emerging once the kissing stage is initiated that is unique from either of the two other
observed behaviours. In this case, it can be seen that the kissing phase transitioned into the tumbling phase very rapidly. This
can again be attributed to the fact that the cylinder is approximated by a polyhedron where contact is made directly between
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(a) (b) (c)
Figure 11: Velocity magnitude of the fluid at (a) t = 0.27s (b) t = 0.54s and (c) t = 0.66s.

(a) (b)
Figure 12: Position of the solid particles for the (a) x-position and (b) y-position

(a) (b)
Figure 13: Velocities of the solid particles for the (a) x-position and (b) y-position
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SPH particle diameter �0 [m] Total SPH particlesN
Coarse: 2.5 × 10−4 141K
Medium: 1.75 × 10−4 290K
Fine: 1.0 × 10−4 894K

Table 1: Particle sizes and particle count for Section 4.1.

edges of the leading faces. This, in turn, leads to a highly unstable contact point where slight perturbations can cause highly
dynamic behaviour. Of course, these perturbations do occur during the slow displacement of the leading particle to the side and,
instead of the smooth force expected from idealized cylinders, the particles receives a discontinuous force leading to the kissing
phase being cut short. However, due to the very similar kinematic conditions at the start of the tumbling phases, this still led
to very good correlations between the tumbling phase of the current results and those of [26] albeit slightly dampened.

4. Numerical experiments

Four sets of results are presented in this section. The first set of results investigate the effects of SPH fluid resolution on the
drag force experienced by a solid particle. This is done by considering a fixed geometry that is approximated using varying
sizes of SPH particles.
The second investigation looks at a comparison between the flow behaviour and drag characteristics of different particle shapes
at low SPH fluid resolution. This is done in order to determine whether even at low fidelity it is possible to resolve flow around
various particle shapes to a degree where it is possible to capture the differences between particle shapes.
The next set of results deals with effects that boundary distance to the solid particles have on the drag experienced by the solid.
These results give good indication of the sensitivity of the method’s drag force predictions on pressure and shear. It is well
known that these properties have a strong dependency to boundary effects when the infinite fluid approximation is sufficiently
violated.
The last set of results presented deals with the case of multiple particle-fluid interactions and looks at the effects that particle
shape have on the general behaviour of a cluster of solid particles.
Finally, it should be noted that all results presented are obtained from full 3D simulations.

4.1. Infinitely long cylinder falling in a viscous fluid

Building upon the results of section 3.2, this study looks at the same case considered during validation. Again, Figure 7a shows
a schematic representation of the system of interest with the same geometry described before. Specifically, L = 20 × 10−3m
andH = 50×10−3m, while B is chosen in such a way to ensure that 10 SPH fluid particle layers are present in the z-direction.
With this study focussed on the effect of varying the SPH particle diameter, the solid and fluid properties as well as other
parameters for the numerical method remains the same as those used in 3.2.
Table 1 provides a summary of the particle sizes and total number of SPH particles for the three cases.
Figure 14a and 14b shows the cylinder height and velocity as a function of time for the three cases, respectively. From these
results, it can be seen that although similar trends are present between the different simulations, the coarse resolution simulation
differs by 16.33% from the fine resolution simulation with regards to the solid particle’s terminal velocity. It can also be noted
that a higher SPH resolution results in a slower moving solid particle (or equivalently in a larger drag force). For this reason,
a comparison between particle drag characteristics are also provided.
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(a) (b)
Figure 14: Response of an infinitely long cylinder’s (a) height and (b) velocity as a function of time to a varying SPH resolution.

Figure 15: Tangential velocity of the fine case over the from face of the cylinder.

The non-dimensional drag coefficient CD is defined as:

CD =
FD

1
2�fApU

2
cyl

, (36)

where FD is the total drag force, Ap is the projected area of the solid in the flow direction and Ucyl is the vertical velocity of thecylinder. The CD value is averaged over the period where the velocity is seen to remain constant. The Reynolds number based
on diameter at the terminal velocity is also provided. The results are summarised in Table 2. As mentioned above, these results
show that coarser SPH fluid resolutions leads to an underestimation of drag forces which in turn leads to faster fall speed as
captured by the larger Re. This is possibly due to the coarser fluid resolution not being able to capture the sharp gradient due
to boundary layer flow around solid particles and so underestimate the surface shear on the particle. This is explored in Figure
15, where the tangential velocity along the cylinder is plotted at regular intervals over the cylinders surface for the fine case.
The dots in the middle indicate the fluid resolution for the fine case. Clearly then, in the area where large gradient are present,
even the fine resolution case only resolves this layer with 5-6 particles over a large portion of the leading face. Comparing this
to the coarse and medium case, it is clear that these cases would have 2-3 and 3-4 particles in this region, respectively, leading
to a much poorer estimation of the boundary layer effects and surface shear.
It should be noted that even when considering the lower fidelity models, while the results may not match the numerical values,
the results give strong insight into the behaviour and trends of the system and so may possibly allow one to extract general
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Coarse Medium Fine
Re 17.03 15.71 14.64
CD 10.45 12.18 14.02

Table 2: Coefficient of drag for an infinitely long cylinder at various resolutions.

Figure 16: Schematic representation for the various particles falling in an enclosed cavity

behaviours of the system as would be of interest when dealing with a much larger number of solid DEM particles in situations
such as design or optimization.

4.2. Drag characteristics of convex and non-convex particle shapes

The results presented in this section investigates the trends among the drag characteristic for various particle shapes under
otherwise similar conditions. This is done to determine the degree to which the described fluid-solid coupling can represent
various particle geometries and capture the differences due to particle shape, and so investigate the possibility of its applications
to large scale DEM simulations.
With the trends between particle shapes being the main focus of this investigation, it was decided that low fidelity models
are to be used to evaluate the drag behaviours of the particle shapes. Similarly to the previous section, a particle is started
at rest at the height of ℎ = 40 × 10−3m and is then allowed to fall under the effects of gravity through the fluid. For this
investigation, the particles are positioned in the center of the cavity while all walls have a no-slip boundary condition applied
to them. The schematic representation of the system can be seen in Figure 16 with both L and B set to 15 × 10−3m andH set
to be 50 × 10−3m.
Four different particle types are investigated, namely a sphere, a cylinder, a ring and a cross as depicted in Figure 17 with
the exact geometrical properties tabulated in Table 3. As with the previous set of results, the cylinder is approximated by
a convex polyhedron while the ring and cross are both represented by non-convex polyhedra. The cross is built using five
identical cuboids and the ring is built using 12 identical trapezoidal prisms. The sphere is described analytically. Arguably,
it would be beneficial to keep the solid particles at a similar mass as well as projected area, however since it was desired to
keep the material properties constant over all simulations and due to the surface of the solid particle being meshed with SPH
particle, it was chosen that the area and mass of the solids be only approximately equivalent, but rather ensure that the SPH
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Sphere: Cylinder:
• Radius of r = 1.25 × 10−3m • Radius of r = 1.25 × 10−3m

• Height of ℎ = 1.75 × 10−3m
Ring: Cross:

• Inner radius of ri = 0.725 × 10−3m• Outer radius of ro = 1.45 × 10−3m• Height of ℎ = 1.75 × 10−3m
• Cuboid height of ℎ = 1.0 × 10−3m
• Cuboid base of b = 2.25 × 10−3m
• Cuboid width of w = 0.75 × 10−3m

Table 3: Geometric characteristics of the various particle type.

Sphere Cylinder Ring Cross
Ap∕Aref 1.000 1.000 1.009 1.031
ms∕mref 1.000 1.050 1.060 1.031
lc∕D 1.000 1.000 1.160 0.900

Table 4: Comparison between particle projected area and mass relative to the sphere.

particle spacing remain as uniform as possible over the solid particles surface, due to the strong relationship between density
and particle concentration under the SPH methodology.
The sphere was found to have a projected area of Aref = 4.909 × 10−6m2 and mass of mref = 1.022 × 10−5kg. Table 4 showsthe comparison between the solid particle’s projected area and mass with respect to that of the sphere. The characteristic
length used to determine Re relative to sphere’s diameter is also provided here. The solid and fluid properties used in these
simulations are kept the same as discussed in section 4.1, while a time step size of Δt = 2 × 10−5s is used. An initial SPH
particle spacing of �0 = 2.5 × 10−4m was used for each simulation while the support radius for this study was fixed at 2.4�0.This led to each simulation requiring 693K SPH fluid particles.
Figure 18a and 18b shows the height and velocity profiles for the different solid particles. The velocity magnitude at t = 0.7s
for the various shapes for both the side and top view can be seen in Figures 19 and 20, respectively, and, as with the previous
section, to compare the drag characteristics, (36) is used to obtain the average coefficient of drag for each particle during the
time when the velocity remains constant. These results can be seen in Table 5.

(a) (b) (c) (d)
Figure 17: Schematic representation of the particle geometry for the (a) sphere, (b) cylinder, (c) ring and (d) cross.
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(a) (b)
Figure 18: Comparison of solid particle (a) height and (b) velocity for the sphere, cylinder, ring and cross.

Sphere Cylinder Ring Cross
Re 13.15 11.95 12.55 11.37
CD 14.76 18.76 22.57 15.98
Table 5: Coefficient of drag for various particle shapes.

From the results presented, it becomes clear that even under a low fidelity model, the fully resolved SPH flow around the
different particle shapes leads to drastically different behaviours of the solid and fluid particles. As expected, the sphere has a
considerably lower drag when compared to any of the other particle shapes. When comparing the cross and cylinder, it can be
seen that the front section of the cross has the effect of breaking the flow and somewhat channelling the fluid around the larger
flat faces. This leads to a more aerodynamic behaviour when compared to the purely flat face of the cylinder. Finally, it can
also be seen that due to the viscous nature of fluid, the shear generated on the internal surface of the ring has a considerable
effect on the drag response leading to the largest drag force of the four particle types under consideration.
As a supplement to the investigation above, the solid particle responses are also compared to well known results found in
literature for the case of the sphere. As a way to explore the space surrounding the chosen design point, two additional
simulations are preformed with varying solid particle density. Specifically, a density of �s = 1100kg∕m3 and �s = 1500kg∕m3

(a) (b) (c) (d)
Figure 19: Fluid velocity magnitude of the (a) sphere, (b) cylinder, (c) ring and (d) cross at time t = 0.7s.
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(a) (b) (c) (d)
Figure 20: Top view of fluid velocity magnitude of the (a) sphere, (b) cylinder, (c) ring and (d) cross at time t = 0.7s.

(a) (b)
Figure 21: Comparison of (a) height and (b) velocity of spheres with varying densities falling in a viscous fluid.

are used. The terminal velocity Ut is given as the solution to:
(�s − �f )Vsg =

1
2
CD�fU

2
t As (37)

A correlation for CD based on ReD as presented in [46] is used to determine CD as a function of Ut, and is given as:

CD =
24
ReD

+
2.6

(

ReD
5.0

)

1 +
(

ReD
5.0

)1.52
+
0.411

(

ReD
2.63×105

)−7.94

1 +
(

ReD
2.63×105

)−8.00
+
0.25

(

ReD
106

)

1 +
(

ReD
106

) (38)

The vertical positions and velocities for the three cases are show in Figures 21a and 21b, respectively, with the red lines showing
the corresponding theoretical terminal velocities of the particles. A clear trend is observed here with a somewhat expected
behaviour where slower moving particles show a much closer correlation to the theoretical results. Specifically, a difference to
the theoretical terminal velocity of 0.11%, 9.21% and 13.52% was observed for the case of �s = 1100kg∕m3, �s = 1250kg∕m3,
and �s = 1500kg∕m3, respectively. This can again be explained by the simplified surface dynamics of the slower moving
particle being approximated well by the coarse SPH resolution, while the sharper and more dominant boundary layer effects
of faster moving particles require a much finer resolution to accurately describe the surface forcing conditions.
Of course, this correlation does assume that the fluid body is infinite and so one would expect boundary effects to influence
the solution to some degree (especially for the faster moving particles), however this does serve at the very least as a good way
to estimate realistic particle responses.
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(a) (b)
Figure 22: Comparison of ring (a) height and (b) velocity for the case of the original, 2/3, and 1/2 domain.

1/2 2/3 Full
Re 8.12 10.68 12.55
CD 53.97 31.19 22.57

Table 6: Coefficient of drag for Ring at different boundary geometries.

4.3. Boundary effects on drag characteristics of rings

Due to the no-slip boundary conditions applied to the cavity walls in the previous section, it is expected that the results obtained
differ from that of an infinite fluid approximation. In this section, the dependency of drag on the system geometry is investigated
by varying the wall distances to the solid particle. This will have the effect of changing the flow area available to the fluid and
thus lead to a pressure build up. Of course, it is also expected that the boundary positions will have an effect on the viscous
momentum diffusion. Specifically, this investigation will only consider the slowest moving particle, namely the non-convex
ring.
Due to these expected fluid behaviour it can be seen that this investigation serves as a good means of exploring the sensi-
tivity of the fully resolved low fidelity coupling to the internal fluid forcing condition, specifically the surface pressure and
shears.
Two additional simulations are compared against the results found in Section 4.2. The same geometry as seen Figure 16 is
used for this study with L = B scaled to 2∕3 and 1∕2 of the original geometry.
Solid particle heights and velocities can be seen in Figure 22a and 22b, respectively. Furthermore, Re based on outer diameter
and the CD for the three cases at the constant velocity can be found in Table 6. The influence of the choked flow due to the
shrinking domain can be clearly seen with the expected trend of an increasing drag with the shrinking of the domain presenting
itself. Quantitatively, the terminal velocity was reduced by 14.9% for the case of the 2/3 domain, while the 1/2 domain showed
a decrease of 35.3%. A massive change in drag characteristics can be notices with the 2/3 and 1/2 domain case showing an
increase of 38.19% and 139.1% to CD when compared to the original domain, respectively.
Finally, the y-velocity of the fluid for the three cases can be seen in Figure 23. It can be seen that the shrinking domain has the
effects of constraining the flow development around the solid particle, leading to a much stronger interaction between the fluid
travelling with the solid and that being displaced. Also, it can be noticed that the fluid is travelling faster around the outside of
the solid, as expected with the reducing flow area, which in turn has a strong effect on surface shear as well.
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(a) (b) (c)
Figure 23: Fluid y-velocity of the (a) 1/2, (b) 2/3 and (c) full domain cases at time t = 0.7s.

4.4. Multi-solid particle simulation

Previous results allow one to probe the physics of a fluid reacting to a solid particle travelling within it, however with the
essentially single parameter models based on terminal velocity that can be derived for the solid particle behaviours, these flow
cases do not explore complex coupling in multiple spatial dimensions. For this reason, this section focus on the qualitative
behaviour of a cluster of particles falling through a fluid with the particles starting initially in a staggered configuration. This
leads to complex non-symmetric flow patterns influencing particle trajectories in a much more dynamic sense.
It was chosen to compare cases using the sphere and ring of section 4.2 as these shapes where found to have the extremal drag
characteristics when considering the set of particles investigated.
The schematics as seen in Figure 24 show the initial configuration of the solid particles. A boxwith dimensionH = 50×10−3m,
L = 10 × 10−3m and B = 8 × 10−3m houses the particles and fluid. The solid particles are initialised at the mid plane in
the z-direction while the in-plane positions are characterised by ℎ = 33 × 10−3m, s = 3 × 10−3m and w = 4 × 10−3m. As
with section 4.2, a time step of Δt = 2 × 10−5s and an initial spacing of �0 = 2.5 × 10−4m is used. This leads to 241K fluid
particles taking part in the simulation. Fluid and solid properties as discussed in section 4.1 are used for these simulations as
well.
No-slip boundary conditions are applied to the top and bottom planes and the planes normal to the z-direction. A symmetry
boundary condition is applied to the planes normal to the x-direction essentially representing the case of many scattered particle
settling in a large fluid bath.
Snapshots of the fluid velocity magnitudes for the spheres and rings can be seen in Figures 25 and 26, respectively.
As expected from the drag results in section 4.2, the set of spheres collectively travel faster through the fluid when compared to
the set of rings. Furthermore, it can be noticed that the rings now have a strong rotational response due to the non-symmetric
flow tripping the particle from its conditionally stable state. This further reduces descent rates due to energy now being stored
and dissipated in a rotational mode as well. The sphere also experiences small rotational effects, but due to its rotationally
symmetric nature this effect has a much less drastic consequence on the particle behaviours.
Finally, it should be noted that contact was not forbidden over the course of the simulations. Although these simulations deal
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Figure 24: Schematic representation for the various particles falling in an enclosed cavity

(a) (b) (c) (d)
Figure 25: Fluid velocity magnitude for the case with multiple spheres at (a) t = 0.175s, (b) t = 0.35s, (c) t = 0.525s and (d) t = 0.7s.
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(a) (b) (c) (d)
Figure 26: Fluid velocity magnitude for the case with multiple rings at (a) t = 0.175s, (b) t = 0.35s, (c) t = 0.525s and (d) t = 0.7s.

with many fewer particles than a typical DEM simulation, contact did occur between solid particle and was handled effectively
by the DEM solver with the SPH solver behaving as expected as well. This leads to higher degree of confidence in this method
as a tool for dealing with larger scale solid-fluid coupled environments.

5. Conclusion

An investigation into the applicability of gradient corrected SPH for the use of solid-fluid coupling in 3D was presented. It
was found that although lower fidelity models tend to present a lower than expected coupling force, the observed trends still
allow information about the physics present in the system to be extracted. Furthermore, it was shown that high resolution
models yield accurate representations of fluid-solid interactions. It was also shown that even at low fidelity scales for both
the case of single and multiple particles, the presented fluid-solid coupling was able to represent the various fluid and solid
particle behaviours associated to specific solid particle geometries which, at least for the case of the non-convex particles, are
sufficiently complex to pose challenges for other boundary implementations. Finally, as a results of the strong comparison
between the 2D and 3D results for the lid driven cavity and infinitely long cylinder, at least as an initial proof of concept, it
has been found that by utilizing gradient truncation, it is possible to extended beyond only the recovery of surface pressures to
also apply a variety of other Neumann boundary conditions for velocity fields as well.
With this in mind, it is proposed that future work focuses on an investigations into the behaviour of larger scale DEM-SPH
coupling making use of low fidelity fully resolved flow as not only an analysis tool, but also as a design and optimization tool.
Furthermore due to the flexibility of the boundary condition method, investigations into other multi-physics domains such as
heat or elasticity may also be explored.
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