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Data-driven modeling for river flood forecasting based

on a Piecewise Linear ARX system identification ?

Baya Hadida,∗, Eric Duviellaa, Stéphane Lecoeuchea

aIMT Lille Douai, University of Lille, Informatics and Automatics Research Unit,
F-59000 Lille, France.

Abstract

Most of the studies related to the rainfall-runoff modeling of rivers con-

sist of data-driven models, given that the corresponding physical modeling

approaches are based on a thorough geological knowledge of the river in ad-

dition to a time consuming simulation. Indeed, flood forecasting services

have the difficult task of avoiding natural and human disasters and choose

for that to use input-output or grey box models for their simplicity and easy

calibration updates. However, these models are not evolving according to the

variations of environmental conditions or need at least the evapotranspira-

tion and the soil humidity measurements in addition to the rainfall quantity.

This paper gives an alternative approach to the existing rainfall/runoff linear

and nonlinear models by the utilization of a hybrid system consisting in a

Piecewise Auto-Regressive eXogeneous (PWARX) structure identified using
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an approach that alternates between data assignment and parameter estima-

tion. The usage of this special kind of nonlinear systems bears a potential

to handle the nonlinearities and varying-time delays mainly induced by the

soil water storage and evapotranspiration.

Keywords: Rainfall-Runoff model, Hybrid system, Data-driven model,

Non-supervised clustering, Data assignment

1. Introduction1

Nonlinearities are the biggest challenge faced when one seeks for a com-2

plex large-scale natural system model that has to be reproducible, especially3

when we have a limited knowledge of the intrinsic phenomena governing the4

system and when this system is virtually unique, for example in terms of5

geophysical properties. This is particularly true when it comes to model the6

rainfall-runoff relationship of a river for a precise flood forecast with having7

as an only knowledge the precipitation past measurements and forecast and8

the runoff measurements. Indeed, the generation process of a flood start-9

ing from precipitations in a natural catchment in order to deliver an early10

warning for extreme hydrological events is one of the biggest challenges faced11

by hydrologists. [1] assessed in its study at least 19 existing daily rainfall-12

runoff models, leading rapidly to a bigger number of models when it comes13

to take into account the seasonality and the climate change we are currently14

undergoing. The reason is that the stream level or discharge is not similarly15

impacted by the same amount of rainfall according to seasons due to the16

influence of the temperature on the evapotranpiration of the ground and the17

vegetative cover. Other factors affecting the runoff come into play such as18
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the soil permeability, the river slope, the drainage due to agriculture activity,19

factors that differ from a river to another.20

The common goal of all the rainfall-runoff modeling approaches is to pro-21

vide a flood forecast with a minimum lead-time (time between its announce-22

ment and arrival). The overwhelming majority of the proposed approaches23

are either physical/mathematical approaches, data-based alternately named24

black box approaches, and conceptual approaches. Mathematical/hydrological25

modeling is known to be time consuming due to the huge number of param-26

eters to calibrate and it is thus critical to use for an online forecast. In27

addition to the computational burden, it requires a non negligible amount of28

detailed information on each concerned river such as a bathymetric survey.29

On the contrary, data-driven, black box fully numerical modelling ap-30

proaches establish models by using only input and output measurements.31

Many researchers have developed numerical runoff/rainfall models with vary-32

ing degrees of success. A good survey on non parametric data driven model-33

ing techniques is presented in [2]. Neural networks (ANNs), genetic program-34

ming, evolutionary polynomial regression, Support vector machines (SVM),35

M5 model trees, K-nearest neighbors, and multiple linear regression tech-36

niques are implemented and evaluated using daily stream flow data. The37

SVM approach was also explored in [3], where a short-term stream flow pre-38

diction was performed on hourly data. Other approaches based on the neural39

networks were developed by for instance, introducing an a priori knowledge40

on the evapotranspiration (see [4] and references therein). Neural Fuzzy41

Networks (NFS) and preciseley ANFIS (Adaptive Network-based Fuzzy In-42

ference Systems) were also applied through the years ([5], wavelet neuro-43
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fuzzy models [6], and radial basis function artificial neural network extreme44

training on monthly data in [7]) but still suffer from a non flexible structure45

that depend on the expert’s knowledge. Recent studies use adaptive fuzzy-46

techniques for a more flexible structure achievement, such as the Self-adaptive47

Fuzzy Inference Network (SaFIN) presented in [8]. However, and despite re-48

spectable results provided by Machine learning techniques, they still need a49

huge database to achieve a correct training and validation results.50

In the family of black box parametric approaches, the linear models con-51

sisting in ARX and ARMAX models were firstly used due to their simplicity52

[9, 10]. These methods have been abandoned because of the non linear-53

ities due to, as examples, evapotranspiration phenomenon and saturation54

due to soil storage. Recently, a black box Linear Parameter Varying (LPV)55

model was investigated for the Rainfall-Runoff Relationship (RRR) in urban56

drainage networks [11] and rural catchment [12]. This kind of systems con-57

sider a lot of nonlinearities and depend on one or several external variables,58

called scheduling variables, and then could be linearized at different operating59

points resulting in a set of local Linear Time-Invariant (LTI) systems. The60

issue with this approach comes from how to choose the right scheduling vari-61

able which is not trivial and could be a non observable variable or unknown62

measurement. In [11], the scheduling variable was chosen as the output of a63

non parametric model and the model was identified using the least-squares64

algorithm when the scheduling parameter is taken as the output of the best65

linear model in [12] but the optimal identification Simplified Refined Instru-66

ment Variable (SRIV) algorithm was applied. Both LPV methods lead to67

acceptable results. In [13], the authors proposed an online recursive nonlinear68
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identification algorithm applied to Liane river (France) and was compared69

to a recursive least-squares linear model over a future horizon of 24 hours.70

Indeed, the online estimation allows to track the catchment intrinsic varia-71

tions by updating at each time-step the model parameters. The study over a72

horizon is innovative comparing to the previous cited approaches and shows73

that even the Fit score [14] or the Nash coefficient [15] are good, the intro-74

duction of a prediction horizon deteriorates the estimation results and then75

increases the number of false alarms and missed alarms.76

In [16], a conceptual daily lumped rainfall/runoff model called GR4J77

(from the french “Génie Rural à 4 paramètres Journaliers”) and its hourly78

version GR4H, is presented as an improvement of the GR3J [17, 18] and the79

performance was tested using five criteria. This conceptual model is based80

on a reservoir system and its initialization requires the knowledge of the soil81

saturation of the previous day. This approach has shown its reliability once82

it was properly calibrated using a large amount of data and was applied on83

several case studies [19, 20, 21].84

Hydromax tool used currently as a part of the Belgium forecasting sys-85

tem and presented in [22] represents the nonlinearities by a Hammerstein86

structure using an a priori knowledge of the hydrological system to char-87

acterize the static function on the river basin maximum storage, the runoff88

coefficient and the percolation parameter. An evapotranspiration estimation89

is also required to calculate the effective rainfall which is the final input of a90

predictive ARX model. Even if this approach is effective for important flow91

forecasts, a larger prediction error is observed for low water. The authors92

propose a combination or a switch between a linear ARX prediction model93
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and nonlinear ARX (NARX).94

In this paper, a rainfall-river level PieceWise Affine model (PWA) is pro-95

posed as a new solution to handle the maximum of nonlinearities. PWA sys-96

tems falls into the category of Hybrid systems. The term “hybrid” is related97

to the interaction between continuous and discrete dynamics. The discrete98

state sequence could be a result of the interaction between logic devices and99

continuous processes or a physical phenomena that shows a discontinuous100

behavior. A hybrid system could also be the result of an approximation of101

a nonlinear system by a set of linear submodels. PWA model has the prop-102

erty of being universal due to its particular mapping and make this kind of103

systems particularly attractive for nonlinear dynamical system identification104

[23, 24].105

The principle is to consider the model as a combination of different sub-106

models. Each submodel is assimilated to a state or a mode and the switching107

between the states depends for example on the change in the operating con-108

ditions. However, it is not obvious to know a priori the number of modes109

and the state sequence, especially in case of natural large-scale systems. In-110

deed, it depends on the knowledge degree of our system and even so, there is111

no guarantee to achieve satisfactory prediction performances. The literature112

proposes multiple approaches of PWA estimation. These approaches can be113

based on Algebraic procedures[25, 26], Bayesian procedures [27], Bounded-114

error (set-membership) procedures [28], Clustering procedures [29, 30, 31],115

Optimization-based procedures [32, 33]Recursive procedures [34, 35, 36, 37].116

Since the objective is to model the rainfall-runoff relationship without a pri-117

ori knowledge on the physical system using real data provided by gauges,118
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it then becomes important to choose carefully the right method that makes119

possible a PWA approximation with a minimum knowledge on the structure120

especially on the number of modes. We prefer among them the unsupervised121

techniques and precisely, the PWA model identification algorithm proposed122

by [31]. This algorithm is an unsupervised clustering technique based on the123

theory of evidence introduced by [38] and explored later by [39] for clustering124

purposes on the basis of the evidence of nearby observation samples called125

the k-nearest neighbors according to the euclidean distance between data.126

It solves simultaneously the problem of data assignment to discrete modes,127

the parameter estimation of submodel dynamics and the number of possible128

regimes or modes, thanks to an evidential procedure. The unsupervised fea-129

ture of this approach allows therefore to do not make any assumption on the130

total number of operating modes, only the linear model orders are fixed a131

priori.132

In the algorithm scheme, each data is assigned and the number of sub-133

models is reduced at each iteration thanks to a criteria that combines the134

prediction error and the Euclidean distance between data samples, and then135

the parameters of each submodel are updated. The problem of the PWA136

model estimation is thus solved by clustering data and estimating a parame-137

ter vector using data contained in each class and an identification technique of138

a linear model such as the least squares algorithm, with ensuring a minimum139

number of submodels that gives the better performances. This algorithm is140

therefore an alternation between data assignment and parameter adaptation.141

This paper is organized as follows: Section 2 introduces the PWA iden-142

tification problem statement with considering a short-term and a long-term143

7



prediction horizon, states the Evidential algorithm principle and details the144

Dempster-Shafer rules used for data reassignment. The problem of mode se-145

quence forecasting with a lead time considering validation data is addressed146

in Section 3 through the prism of the region estimation based on machine147

learning techniques. The water level forecasting results of a river located in148

the north of France are reported in Section 4. Finally, Section 5 summarizes149

the key findings and foreshadows possible improvements in future research.150

2. PWA with a prediction horizon identification problem statement151

The basic principle of the proposed method is to put together data that152

are more likely to have been generated by the same and underlying linear153

submodel. For each group of data, we can hence estimate one parameter154

vector to represent the corresponding submodel. The method is based on a155

unsupervised clustering by alternating the regression data assignment to a156

submodel and the submodel estimation.157

2.1. Problem description158

Let us consider the following PieceWise AutoRegressive eXogenous (PWARX)159

model with a prediction horizon H160

y (k) = f (k)
σk

(ϕH (k)) + e (k) , (1)

σk is the discrete state σk ∈ {1, . . . , s} and ϕH(k) is the regression vector161

having the following structure162
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ϕH(k) = [ y(k−H−1) · · · y(k−H−na) u(k) u(k−1) · · · u(k−H−nb) ]>,

(2)

where u(k) ∈ Rnu and y(k) ∈ Rny are respectively the input and the measured163

output of the system at time k ∈ Z, na and nb are the orders of the discrete-164

time ARX model transfer function and H is the prediction horizon. e(k) is165

a noise/error term regarded as a zero-mean Gaussian noise with a standard166

deviation σ2. For the sake of exposition and according to the case study,167

only the Single Input Single Output (SISO) case is discussed in the following168

(nu = ny = 1). F is a piecewise linear map of the form169

F (k)
σk

(ϕH) =


θ>1 ϕ̄H(k) if σk = 1
...

θ>s ϕ̄H(k) if σk = s,

(3)

where θσk is the parameter vector defining the linear submodel Mσk and170

ϕ̄H(k) =
[
ϕH(k)> 1

]>
is the extended regression vector.171

σk is described by a polyhedral partition of the regression space and is172

then defined by173

σk = i iff ϕH(k) ∈ Ri, i = 1, . . . , s. (4)

The regions {Ri}si=1 form a complete polyhedral partition of the regression174

space R ⊂ Rn where n = na + nb + 1. Each distinct region is described by175

Ri = {ϕH(k) ∈ Rn : Hiϕ̄ ≤ 0} . (5)
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Hi ∈ R(n+1) is a function defining the separating boundaries delimiting176

the region Ri. Finally, the piecewise affine map F can be rewritten as follows177

F (k)
σk

(ϕH) =


θ>1 ϕ̄H(k) if H1ϕ̄H ≤ 0
...

θ>s ϕ̄H(k) if Hsϕ̄H ≤ 0.

(6)

The PWARX model identification consists in estimating the parameter178

vectors {θi}si=1, given a set of N observations {ϕH(k)>, y(k)}Nk=1 generated179

by the PWARX system defined by (1) and the boundaries’ parameters of the180

partitions {Ri}si=1 under the assumption that the discrete mode sequence181

{σk}Nk=1 and the number of submodels s are unknown.182

PWARX model estimation is classically used with a null prediction hori-183

zon H = 0 and the algorithm is a one-step ahead prediction model. Since184

the objective is to forecast the output at a future time k+f at time k, noted185

k+f |k with f ≥ 1, the prediction at time k+f with a null prediction horizon186

is given by187

ŷ (k + f |k) = θ̂>i ϕ̂0 (k + f |k) i = 1, . . . , s, (7)

ϕ̂0 (k + f |k) = [ ŷ(k + f − 1|k) · · · ŷ(k + f − na|k)

u(k + f) · · · u(k + f − nb) ]>, (8)

where ϕ̂0 is the regression vector containing the estimated output ŷ instead188

of the real output y. We note here that ϕ̂0 contains the predicted outputs189
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previously and repeatedly estimated using the forecasted inputs u(k + 1)190

to u(k + f − 1) to simulate the model output using ŷ(k) = θ̂>i ϕ̂0(k). The191

repetition of this operation causes an error propagation. To achieve directly192

ŷ (k + f |k), a prediction horizon equal to H = f is used. The inconvenient193

is that the model is more complex due to the higher number of parameters194

to estimate. The predicted output is then defined by195

ŷ (k + f |k) = θ̂>i ϕH (k + f) i = 1, . . . , s, (9)

ϕH (k + f) = [ y(k − 1) · · · y(k − na) u(k + f) · · · u(k − nb) ]>. (10)

Increasing the prediction horizon leads then to an increasing of the re-196

gression vector dimension. However, the regression vector is commonly used197

as feature vectors to estimate the regions boundaries based on a supervised198

machine learning technique (see Section 3). It is yet recommended to keep199

the dimension of feature vectors as low as possible to avoid simulation time200

issues while ensuring that the clustering performances are not compromised201

due to a poor dimension. On the other hand, increasing the prediction hori-202

zon limits the effects of the error propagation. A high training precision203

remains however a necessity. This is possible thanks to a good value selec-204

tion of number of nearest neighbors which is the main tuning parameter of205

the evidential algorithm defined in Section 2.2.206

Based on this, we define first a new prediction horizon H ′ where 1 ≤207

H ′ < H in Eq. (2) selected depending on the system dynamic and more208
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specifically smaller than the response time of the system. The predicted209

output is then simulated as for the case H = 0, i.e. applying repeatedly the210

operation ŷ(k +H ′) = θ̂>i ϕ̂H′(k +H ′) with211

ϕ̂H′ (k +H ′) = [ ŷ(k− 1|k) · · · ŷ(k− na|k) u(k+H ′) · · · u(k+H ′− nb) ]>.

(11)

Note that at each new prediction, the real values of the output are assim-212

ilated by replacing the estimated output by its real value in the regression213

vector ϕH′ (k +H ′).214

2.2. Algorithm principle and initialization215

The approach is based on an unsupervised clustering combined with a216

linear regression to merge regression data belonging to the same submodel.217

In unsupervised clustering techniques, the class labels/indexes of regression218

data are not known a priori. They hence need a clustering rule or a similarity219

criterion to build the data partitioning.220

The clustering based procedures consider that the local linearity charac-221

terizing the PWA map can be reconstructed using a resemblance between222

a submodel parameter vector and an estimated parameter vector generated223

from small local data sets. Each algorithm iteration consists of an alternation224

between regression data assignment to a class built using the unsupervised225

clustering and a submodel parameter estimation for this new updated class226

using identification approaches dedicated to linear ARX systems.227

Since the number of submodels is unknown a priori, regression data are228

first partitioned into N clusters C = {C1, . . . , CN}, where Ci = {X(i)}. We229

assign the initial parameter matrix Θ(0) =
[
θ̂

(0)
1 , . . . , θ̂

(0)
N

]
to these N clusters.230
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The objective is to reduce the number of clusters at each iteration and to231

converge to s models by means of a decision rule that determine how data232

migrate towards the most representative clusters. Thanks to the adaptation233

procedure, the less representative clusters become empty and are eliminated234

resulting in a decreasing number of clusters. θ̂i is computed by considering235

the data of the cluster Ci and its “c” nearest neighbors and by using a least-236

squares (LS) on these c + 1 data. Each data is achieved by concatenating237

the regression vector and the observed output X(i) =
[
ϕ(i)>, y(i)

]>
, i =238

1, . . . , N .239

We briefly recall that a LS estimation based on an observed data sequence240

{u(k), y(k)}Ni
k=1 of the parameter vector defining the ARX system is given by241

θ̂i =

(
Ni∑
k=1

ϕ̄H(k)ϕ̄>H(k)

)−1 Ni∑
k=1

ϕ̄H(k)y(k). (12)

The tuning parameter c value is a compromise between the noise level242

and the risk of achieving a number of mixed submodels generated from mixed243

local data belonging to different submodels. If the noise level is high, its effect244

is filtered by using a large value of c. In the case of rainfall/runoff observations245

provided by gauges, the effect of noise is weak if not non-existent. A small c246

is then recommended to avoid the problem of mixed submodels. In addition,247

a small c value results in a higher number of submodels leading inevitably to248

higher performances. Numerical examples show that beyond a certain value,249

the number of submodels converges to the real s beyond a certain value [31].250
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2.3. Data reassignement based on Dempster-Shafer theory251

Dempster-Shafer theory, also called theory of Belief functions, is used to252

model information uncertainty [38]. This theory is thus based on the belief253

functions that allows reasoning on uncertain facts, not relying on probabilistic254

quantification, but in a more general way than the Bayesian model. The255

Transferable Belief Model (TBM) represents the quantified beliefs of an agent256

and was subject to varying interpretations [40]. The Dempster-Shafer theory257

is composed of a first level called credal where the beliefs are quantified and258

merged and a second level called pignistic which comes from the Latin pignus259

which means literally a bet where decisions are made by a transformation of260

the belief functions to probability functions.261

Let C a set of propositions called a frame of discernment and A a subset262

of C, A ⊆ C, m(A) is a part of the belief in the membership of the agent X263

to the subset A. m : C → [0, 1] is defined as follows264

m (∅) = 0 , (13a)∑
A⊆C

m (A) = 1. (13b)

The m(A) values are called the Basic Belief Masses (BBM) and the m265

function is the Basic Belief Assignment (BBA). As an example, a total lack266

of information concerning the potential membership of the agent X to a267

subset of C is represented by m(A) = 0 for any strict subset A of C.268

If we transfer this interpretation to the case of the nearest neighbors for269

the data assignment, we define Γc (X(i)) as a set of the c nearest neighbors270
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of X(i). Each neighbor X(j) ∈ Γc (X(i)), j = 1, . . . , c can be considered as271

a piece of evidence that influences one’s belief in the cluster C membership272

of the data X(i), and a mass of belief mi
j is associated to their relationship.273

In other words, if X(j) is a member of the class CP , P ∈ {1, . . . , s̄} where274

s̄ is the estimated number of submodels, then a part of the mass of belief275

is allocated to the action of assigning the data point X(i) to the cluster CP276

given by mi
j ({CP}) and the remaining part, to the set C as described as277

follows278

mi
j(A) =


α0φ

i
j if A = CP

1− α0φ
i
j if A = C

0 if A ∈ 2C\ {{CP} , C}
, (14)

where279

φij = exp
(
−γP‖X(i)−X(j)‖2 − βP

(
y(i)− θ>P ϕ̄H(i)

)2
)
. (15)

What is notable in φij expression, is that the exponent is composed of two280

terms. The first one expresses the Euclidean distance between X(i) and the281

neighbor X(j) represented by dij =

√
(X(i)−X(j))> (X(i)−X(j)), and the282

second term represents the prediction error related to the estimation of the283

parameter vector θP of the submodel P , associated to the cluster CP . This284

formulation aims at minimizing simultaneously the euclidean distance and285

the output error (both shown in Figure 1.286

α0 is a positive parameter such as 0 << α0 < 1 that prevents from287

allocating the entire mass of belief to the class CP . Indeed, even if there is288

zero distance between X(i) and X(j) and the prediction error is also towards289

zero, it remains an uncertainty concerning the belonging to the same class.290
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y(k)

ϕ(k)

b

‖X(i)−X(j)‖

‖X(i)‖ |y(i)− θ̂P ϕ̄(i)|

CP

Figure 1: Example of three affine submodels in the augmented regression space

The mass of belief of X(j) on cluster Cp i.e. mi
j ({CP}) is therefore func-

tion of the mean distance dP between two data belonging to the same class

CP and its proximity with the linear model expressed by the average error eP

between the measured output and the submodel output as described in the

following

βP =
1

d2
P

, (16a)

γP =
1

e2
P

. (16b)

Simple heuristics for the choice of α0 and the initial value of γP is pre-291

sented in Section 4.2. One can note that if X(i) is far from X(j) and in the292

same time the error
(
y(i)− θ>P ϕ̄(i)

)2
is large, the class CP of X(j) will be293

considered as providing very little information regarding the class of X(i).294

For more detailed and comprehensive explanation on how the decision295

rules are built based on the combination between the belief functions and296
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Dempster’s rule, the reader is invited to refer to [39, 31, 41].297

Credal level:298

After tuning the c BBAs mi
1,m

i
2, . . . ,m

i
c, the combination of all the BBAs299

using Dempster’s combination rule is performed using the orthogonal sum ⊕300

and yields to a single mass301

mi = mi
1 ⊕ . . .⊕mi

c, (17)

which can be calculated using a second rule called the conjunctive rule of302

combination. In case of A = C, it is defined by303

mi(C) =
∑

A1,A2,...,Ac| ∩
j
Aj=C

c∏
j=1

mj
i (Aj). (18)

It is obvious that:

(
∩
j
Aj = C

)
⇒ Aj = C. According to Eq. (14), mi(C)304

becomes305

mi(C) =
c∏
j=1

(1− α0φ
i
j). (19)

The same reasoning applies to the belief function mi({CP}) which is given306

by307

mi({CP}) = (1−
∏

j/X(j)∈CP

(1− α0φ
j
i ))

s̄∏
q=1
q 6=P

∏
j/X(j)∈CP

(1− α0φ
j
i ). (20)

Pignistic level:308
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Let P a set of probability distributions derived from the BBAs. the309

unknown pignistic probability measure P satisfies310

Bel(A) < P(A) < Pl(A), (21)

where Bel(A) is the belief function also called the credibility of A and Pl(A)311

is the plausibility of A defined respectively by312

Beli ({CP}) = mi ({CP}) , (22a)

Pli ({CP}) = mi ({CP}) +mi (C) . (22b)

P i is then expressed by313

P i ({CP}) = mi ({CP}) +
mi(C)
s̄

. (23)

The decision is made by assigning the data X(i) to the cluster Cq with314

maximum of pignistic probability. Then the decision rule is given by:315

Cq = Cq ∪ {X(i)} such that q = max
P,P=1,...,s̄

(
P i ({CP})

)
. (24)

An iteration procedure allows the convergence of the clusters and their316

parameters using a stop criterion based on a comparison between the old and317

the new parameter vectors. Indeed, an adaptation of the parameter vector318

θ̂P is performed at each new iteration it after a new data reassignment. The319

clustering is stabilized if320

18



∥∥Θit+1 −Θit
∥∥ ≤ ε, (25)

where ε is fixed by the user.321

Finally, all the previous steps are summarized in Algorithm 1. β0 is ini-322

tialized using Eq. (16a), γ0 = νβ0 where ν is a positive coefficient arbitrarily323

chosen by the user. This parameter allows to adjust the weights in each of324

the two terms of the exponent in Eq. (15) corresponding to the euclidean325

distance and the submodel error to give each more or less importance de-326

pending on the case study. The parameters γP and βP are adapted after327

each iteration in order to take into account the evolution of the clusters. The328

number of the nearest neighbors c is the main tuning parameter. After a329

finite number of iterations, the procedure converges relatively fast to a rea-330

sonable number of submodels. s̄ is the number of non empty clusters but, in331

the case of noisy data, the cardinality of some clusters falling under a given332

number are removed. The problem of noisy data does not generally arise333

in case of measurements provided by hydrometric stations. However, some334

outliers could be encountered due to defective or blocked sensors.335

3. Model validation for event forecasts336

The computation of the river flow forecasts over a prediction horizon337

H involves necessarily the knowledge of the discrete state with a time-step338

ahead equal to this prediction horizon. In fact, the issue of the estimation of339

the discrete state on validation data was rarely addressed in literature. The340

literature survey is even rarer when it comes to real case studies, especially341
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Algorithm 1
1: Initialization

– Set c, α0, β0, γ0, s̄ = N , it = 0 and ε (e.g. ε = 10−4).

– Set Ci = {X(i)} , i = 1, . . . , s̄.

– Estimate Θ(0) =
[
θ̂

(0)
1 , . . . , θ̂

(0)
s̄

]
.

2: Data reassignment
for i = 1, .., N

– For all X(j) ∈ Γc (X(i)), j = 1, . . . , c, calculate φji , Eq. (15).

– Calculate mi
j ({CP}) and mi

j ({C}), Eq. (14).

– Combine all the BBA functions using Dempster’s rule, Eq. (19) and
(20).

– Calculate all the P i ({CP}) using Eq. (23).

– Decide on the assignment of X(i) based on Eq. (24).

end for.

– s̄ = number of non empty clusters.

– Adaptation of the parameters:

- Adapt Θ(it) using LS algorithm on the data of each non empty
cluster.

- Adapt the parameters βP and γP , Eq. (16a) and (16b).

3: Convergence test
If
∥∥Θ(it+1) −Θ(it)

∥∥ ≤ ε
s = s̄.

else
Set it = it+ 1 and return to step 2.

end.
4: Return Θit and σ̂(k).

when the number of states is relatively important, thus making the task of342

state prediction even more delicate. Also, the case of discrete state prediction343
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over a prediction horizon was not investigated to the best of the author’s344

knowledge.345

The output of the data classification step provides the discrete state es-346

timation σ̂(k) and the estimates of the submodel parameters Θ. It is now347

possible to estimate the shapes of the polyhedral region boundaries. These348

regions are in reality hyperplanes that form a complete polyhedral parti-349

tion {Ri}si=1 of the regression space. The problem can then be equivalent350

to the separation to s sets using linear classifiers [24]. However, the same351

author highlights two problems encountered when a linear classification is352

used. First, it is not possible to exactly estimate the regions starting from a353

finite set of data which induces small errors in shaping, leading to the second354

problem consisting in a misclassification of the regression vector located near355

the discontinuities and larger prediction error can then be observed. A pos-356

terior re-attribution to the correct submodel could be envisaged during the357

validation. For a more complete discussion about class separation methods358

applied for SARX and PWARX systems, the reader is referred to Section 4.2359

of [24].360

The Multicategory Support Vector Machine (SVM) algorithm [42, 43] is361

used to predict the shapes of partitions. This technique is commonly used in362

literature related to PWARX identification approaches in order to estimate363

the polyhedral regions. In [44], a SVM classifier using a one-versus-the-rest364

approach was applied.365
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4. Application to flood forecasting366

4.1. Case study367

Our study focuses on the Liane coastal river of 37 km long. It is situated in368

the north of France (see Fig. 2) and flows in the La Manche sea (the English369

Channel as called by the British). The catchment drained by this river covers370

a total area of 244 km2 and flows out a significant annual amount of rainfall371

higher than 480 mm, which is much greater then the national average. The372

Liane river has an average annual flow of 1.81 m3/s [45] corresponding to373

a stream level of 47 mm but knows an increasingly number of severe flood374

events due to the drainage network practiced in agriculture and a limited375

exchange between the ground and surface water, exceeding frequently the 20376

m3/s. We can cite for example the flood of November 2012 where its level377

achieved 4,37 m.378

A hydrometric station is situated in Wirwignes (red marker in Figure 2)379

and is equipped with a telemetered rain gauge since 2003 and a limnimeter380

since 1970. The rain gauge gives an information on the quantity of rain falling381

on the catchment and the limnimeter gives the measurement of the river382

upstream level. The data are collected with a basic time-step of 1 hour. It is383

important to note that most of the studies related to flood forecasting deal384

with the prediction of the streamflow instead of the water level. However,385

in practice, the streamflow is not directly measured but is inferred using386

a periodically revised relation between the measured stream level and the387

streamflow. This relation is determined by a simultaneous measurements of388

these two physical quantities over the natural range of flows from the lowest389

to the highest values corresponding to the floods.390
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Figure 2: Localisation of Liane river and the hydrometric station (red marker) in the north
of France.

Figures 1.a and 1.b shows respectively the hourly rainfall and the hourly391

water level measurements, from January 2010 to June 2018 i.e. over a period392

of eight years and a half. Two high water level periods are noticed: during393

winter and at beginning of spring. The low level period is during summer394

and autumn. The Liane is also characterized by a short hydrological response395

time and a flood period less than 24 hours. The objective of the study is to396

forecast the river level with the prediction horizon of at least 24 hours, using397

the rainfall forecast provided by weather services and the observed stream398

levels.399
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Figure 3: Model input and output from January 2010 to June 2018. (a) Rainfall in [mm]
(b) Liane level [m]. The blue dashed line refers to the green threshold.

4.2. Prediction results400

The Liane river underwent from January 1st, 2010 to June 13th, 2018, 55401

significant floods where the river level exceeds the threshold of 2 m which402

corresponds to a return period of one year (the green threshold, see Fig.403

3) which still relatively a low threshold considering that in practice, it is404

taken equivalent to a return period of two years (yellow threshold). Since we405

are interested in the flood prediction, only the flood periods corresponding406

to heavy rainfall seasons are manually selected for the study. Each period407

duration is between 3000 and 5000 hours. Hence, only 31072 samples on408

74045 are selected. About 70% of the 55 most significant events are used409

for the training (which corresponds to 40 events and 20715 samples) and410

the remaining events are used for validation (15 events and 10357 samples).411

Figure 4 represents level samples used for estimation (black line) and for412
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validation (red line).413
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Figure 4: Training data (black line) together with checking data (red line)

Different criteria are used to globally appreciate the performances of each414

model. The FIT criterion introduced by Ljung [14] defined by (26), the Mean415

Square Error defined by (27) and the Nash-Sutcliff coefficient [15] defined by416

(28) give an information about the global fitting of the predicted output in417

the observed data, considering that a prediction is performed each f points418

(of the f next water level samples).419

FIT = 100× (1− ‖y − ŷ‖2

‖y − y‖2

), (26)

MSE =
1

N

N∑
k=1

(y(k)− ŷ(k))2, (27)
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NASH = 1−
1
N

∑N
k=1 [ŷ(k)− y(k)]2

var(y(k))
, (28)

where y is the mean of the observed output, N is the total number of samples420

and var(.) is the signal variance. Other indicators are used specifically to the421

flood events in hydrological modeling. The most important one is the Critical422

Success Index CSI [46] which represents the ratio between the number of423

“Correct alarms” CA which are the number of the well-estimated crests with424

respect to the total number of alarms i.e. the significant events. CSI is425

defined by (29).426

CSI =
CA

CA+MA+ FA
× 100. (29)

If the observed event is not simulated or underestimated with more than427

10% of the crest maximum, a Missed Alarm occurs and MA is the number428

of Missed Alarms. Conversely, a False Alarm occurs if a non observed event429

is simulated or overestimated with more than 10% and FA is the number430

of False Alarms. The MA and FA indicators are then defined as follows for431

each significant event432

If |y(k)− ŷ(k|k − f)| > 0.1× |y(k)| :433  MA : if y(k) > ŷ(k|k − f)

FA : if y(k) < ŷ(k|k − f)
. (30)

We thus simply define a CA for events fulfilling the following condition :434

|y(k)− ŷ(k|k − f)| ≤ 0.1× |y(k)|.435

436
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4.2.1. Short-term forecasting437

The selection of the short-term prediction horizon depends usually on the438

sample time and the response time of a unit hydrograph. A typical choice439

of the natural response time is one fifth to one third of a unit hydrograph440

peak time in order to consider the slightest dynamic changes [22]. However,441

since SVM technique is used to predict the discrete sequence mode, it is442

recommended to shorten the prediction horizon to ensure a better validation.443

Indeed, the dimension of the features used for training which consists in the444

regression vectors depends on the horizon value. Higher is H, higher is445

the dimension of features and more restrictive is the data recognition. A446

classical solution commonly used in machine learning algorithms consists in447

reducing the features dimension by replacing the regression vector by some448

statistical metrics such as the mean, the variance and the kurtosis values.449

The problem of this procedure is the risk of loss of information related to the450

exact location of the local data provided initially by the regression vectors451

leading to a confusion between submodels resulting in different data located452

in the same region with same parameter vectors.453

The peak time of the Liane river is about twelve hours which implies a454

response time between two and four hours. Finally, the prediction horizon is455

reduced to one hour for the previously stated reasons.456

Model orders for the tested methods were chosen according to the perfor-457

mances structures built by increasing na and nb from 1 to 20. Due to a high458

signal to noise ratio, it is allowed to choose the tuning parameter c small459

relatively to the number of training data samples to avoid a mixed submodel460

stemming from an important number of mixed local data as mentioned in461
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the previous section.462

The choice of the parameter c is difficult to make a priori, especially when463

the method is sensitive to this parameter. A systematic search is necessary464

to obtain optimal results with a minimum number of modes.465

To see the influence of the parameter c on the estimation of the number466

of submodels and for a selection that will approach the optimum as near as467

possible, the PWARX identification algorithm is applied to the same training468

set for different c values. The FIT score is calculated after the evaluation469

of the PWARX model on the validation set and for a long-term forecasting470

chosen arbitrarily equal to f = 24.471

Selection of the hyperparameters:472

Fig. 5 shows the resulting number of modes and FIT scores on validation473

data for f = 24 with c ranging from 50 to 500. It can be noticed that, non474

surprisingly, the smaller the c value, the larger is the number of estimated475

modes and FIT score. However, FIT scores for c = 150 and c = 200 are476

substantially equal to each other whereas the resulting number of modes are477

respectively s̄ = 85 and s̄ = 60. The choice was naturally directed towards478

c = 200.479
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Figure 5: Number of submodels s̄ estimated by the Evidential algorithm and the FIT
resulting values on validation data set for f = 24 as a function of c nearest neighbors.

γ is usually chosen between 0.1 and 5 and β is taken 10 to 40 times480

greater then γ. The ratio between these two weighting parameters is in481

fact rather more important then the values themselves given that the goal482

is to favour the prediction error in this case study rather then the euclidean483

distance in Eq. (15). These hyperparameter c gives the user the possibility484

to achieve a high accuracy depending on the application but at the expense485

of an important number of resulting modes. It is although possible to achieve486

equivalent accuracy values with a smaller number of modes by testing one of487

the parameters β or γ.488

The best PWA structure in terms of performances criteria using estima-489

tion data is for na = 1, nb = 1, c = 200, γ = 0.5, β = 20, leading to the490

training scores FIT = 93.7%, Nash = 0.996 and 60 classes. Fig. 6 shows491

the simulated output, the prediction error and the estimated discrete state492
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resulting from the training step.493
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Figure 6: (a) Observed level used to train the PWARX model (black solid line) together
with PWA model output (red solid line) (b) Prediction error (c) Predicted discrete state,
for H = 1 and f = 1

The Evidential algorithm gives the number of modes and the discrete494

state sequence. The latter information is considered as a labelling of data495

and is used to train a Support Vector Machine (SVM) classifier [42] in order496

to predict the discrete state sequence corresponding to the validation data.497

Although the fact that the model is piecewise linear, the kernel function498

used for training is the RBF (Radial Basis Function) instead of a linear499

function to minimize a wrong classification of the regression vectors close500

to linear boundaries (see Section 3). The normalized regression vectors are501

used as inputs of the SVM classifier. The feature vectors are normalized502

by subtracting the mean in the numerator and dividing by the standard503
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deviation in order to make the values of each feature have zero-mean and504

unit-variance [47]. Feature normalization is a classical preprocessing step in505

machine learning that is required when features have different ranges and it506

has shown in our case study better performance results.507

In order to assess the effectiveness of the classification, some measures508

based on the Confusion Matrix are calculated: the Accuracy rate, the Recall509

rate and the Precision rate. We briefly recall that a Confusion Matrix [48, 49]510

is a concept coming from machine learning. It contains information about511

actual and predicted classifications and is then used to estimate the overall512

classification accuracy. A confusion matrix is a two-dimensional matrix, one513

is indexed by the actual class of an object, the other is indexed by the class514

that the classifier predicts.515

Table 1 presents the basic form of confusion matrix for a multi-class516

classification task, with the classes C1, . . . , Cs̄. Nij represents the number of517

misclassed data i.e. belonging to class Ci but classified as class Cj. The518

confusion matrix is computed using the matlab routine “confusionmat”.519

Predicted
C1 · · · Cj · · · Cs̄

A
ct

u
al

C1 N11 · · · N1j · · · N1s̄
...

...
...

...
Ci N11 · · · Nij · · · Nis̄
...

...
...

...
Cs̄ Ns̄1 · · · Ns̄j · · · Ns̄s̄

Table 1: Confusion matrix

Accuracy is the proportion of the total number of the correct predictions520

and is then defined as the ratio between the trace and the sum of the confusion521
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matrix as follows522

Accuracy =

s̄∑
i=1

Nii

s̄∑
i=1

s̄∑
j=1

Nij

. (31)

Recall is a measure of the ability of a prediction model to select instances523

of a certain class from a data set. The overall Recall rate is the average value524

of each individual recall rate and is provided by the following formula525

Recall =
1

s̄

s̄∑
i=1

Nii

s̄∑
k=1

Nik

. (32)

Precision is a measure of the accuracy provided that a specific class has526

been predicted. The overall Precision rate is the average value of each indi-527

vidual class precision rate and is provided by528

Precision =
1

s̄

s̄∑
i=1

Nii

s̄∑
k=1

Nki

. (33)

The resulting SVM Accuracy indicator is 91.78%, the Recall indicator is529

88.48% and the Precision indicator is 88.81%, showing a good recovery of530

the estimated state sequence.531

Table 2 compares the PWA performance indicators with one-step ahead532

prediction horizon (H = 1,f = 1) with the LPV approach on the checking533

data i.e. the 15 remaining flood events. The LPV approach is chosen for534

comparison to PWARX modeling instead of the Nonlinear ARX (NARX)535

which is the other data-driven nonlinear approach because of the difficulty536
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encountered to opt for the most effective static nonlinearities of both in-537

puts and outputs. Several static functions were tested (linear, Radial Basis538

Function with two tuning parameters, logarithmic, sigmoid, etc) and none of539

them was able to give fair results. Bad performances would necessarily be540

attributed to a bad selection of the static functions.541

The index in LPV1 and PWA1 is relative to f = 1. LPV model struc-542

ture is chosen according to the performance indicators for na = 1, . . . , 10543

and nb = 1, . . . , 10. Concerning the LPV model, four different possibilities544

for the scheduling variable are tested: past rainfall samples (u(k − 1), u(k −545

2), . . . , u(k − 24)), past water level samples (y(k − 1), . . . , y(k − 5)), linear546

model output [50], identified using for example Least Squares algorithm or547

an Output Error (OE) algorithm based on a nonlinear minimization of the548

prediction error based on Levenberg-Marquardt algorithm [51, 52], or the Re-549

fined Instrumental Variable identification of a Box-Jenkins Transfer Function550

model [53]. The last possibility is a combination between the average of past551

rainfall inputs and past water level ([mean(u(k − 1), . . . , u(k − i)) y(k − 1)]552

where i = 1, . . . , 24). A polynomial dependency function to the scheduling553

variable with a polynomial degree r = 1, . . . , 5 is tested [10]. The OE ap-554

proach based on Levenberg-Marquardt algorithm is extended to the discrete-555

time LPV case and used for LPV model identification. PWA model outputs556

are presented in Fig. 7.557

% FIT Nash MSE Max CA MA FA % CSI
PWA1 90.9 0.9917 9.6×10−4 0.99 15 0 0 100
LPV1 94.7 0.997 3.3×10−4 0.47 15 0 1 93.75

Table 2: Performance results of the tested models on validation set, for H = 1, f = 1
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Figure 7: (a) Actual level (black solid line) together with PWA model output (red solid
line) (b) Prediction error (c) Predicted discrete state, with H = 1 and f = 1

According to Table 2, the performance indicators are in favor of the LPV558

model for a very short-term forecast f = 1, albeit with one FA. The good559

performances are most observed for lower water levels. One can note that560

the PWA performance indicators did not significantly decrease in validation.561

This is primarily due to a good selection of training data and tuning param-562

eters, and obviously, to the small prediction horizon value, thus limiting the563

loss of accuracy in the SVM prediction of the discrete state and the error564

accumulation due to the multiple iterations.565

4.2.2. Long-term forecasting :566

In case of prediction horizons larger than the natural response time, a567

good forecast of the precipitation is required and must be provided by the568

34



user using weather forecasts services. In the following, an assumption on the569

exact knowledge of the future rainfall is made. Naturally, a discussion on a570

pessimistic and optimistic forecast must be conducted to quantify to what571

extent the model is sensitive to its inputs. A comparison between the LPV572

model and the PWARX model for 6h, 12h, 24h and 48h prediction horizons573

is driven and the performance indicators are drawn in Table 3 and it shows574

the clear superiority of the PWA performance indicators regardless to the575

lead time.576

In addition, the percentage of forecasted warnings regarding the green577

threshold overrun with a temporal prediction accuracy smaller than 1 hour578

is 88% for a prediction horizon H = 24, making this approach one of the best579

ARX approaches in terms of prediction lag performances. The peaks are also580

globally forecasted in time where the peak prediction lag percentage smaller581

then 1 hour is 85%. Note that the CSI is also a good indicator of the peak582

prediction temporal accuracy since it is impacted in case of an important583

lag between real and forecasted peak. Fig. 8 shows the water level and the584

prediction error when considering 24h ahead PWA forecasts.585

% FIT Nash MSE Max CA MA FA % CSI
LPV H = 6 67.5 0.894 0.0123 1.74 10 5 1 62.5

H = 12 57.03 0.815 0.021 1.96 3 11 1 20
H = 24 50 0.75 0.029 1.88 2 12 1 13.3
H = 48 46.4 0.713 0.033 1.64 1 14 0 6.7

PWA H = 6 85.5 0.9790 0.0025 1.42 15 0 1 93.75
H = 12 84.7 0.9767 0.0027 1.43 13 1 1 92.86
H = 24 84.4 0.9758 0.0028 1.43 13 2 1 86.67
H = 48 84.25 0.9752 0.0029 1.43 12 2 2 85

Table 3: Performance results of the LPV model and the PWARX model for river level
forecasts and for lead times 6h, 12h, 24h and 48h.
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Figure 8: (a) Observed level (solid black line) together with PWA model output (solid red
line) (b) Prediction error, with H = 1 and f = 24

Figures 9, 10 and 11 show long-term forecasts of the three most important586

flood events during the validation period, respectively during December, 13th,587

2017, November 19th, 2016 and January 3rd, 2016, with the smaller lead588

time H = 6 and the larger lead time H = 48 in order to assess the error589

propagation due to the multiple iterations. One can note that the PWARX590

output deviation does not significantly increase with the prediction horizon.591

This is due to the high accuracy of the estimated model during the training592

thus becoming the main condition for PWARX precise forecasts in the case of593

an exact knowledge of the rainfall forecasts. Errors in water level forecasting594

in long term will hence be attributed to the errors in the rainfall forecasts595

which not surprisingly are higher in longer term.596

We also note a worse deviation for multiple hydrographs i.e. several597
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successive flood peaks like the phenomenon observed during November 19th,598

2016. It is most likely due to the fact that the data set used for training599

the model does not probably include the exact similar event, which is the600

common shortcoming of the black box approaches.601
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Figure 9: Observed river level (black line) together with PWA short-term forecasts f = 6 h
(blue line) and long-term forecasts f = 48 h (red line) of the flood of the December, 13th,
2017. The blue crosses indicate the time when forecasting is done.

5. Conclusion602

This paper deals with the stream level prediction of a river using a hy-603

brid model over a short-term and long-term prediction horizon in order to604

prevent damages by a short-term forecast of a flood. The choice of a non-605

linear model is justified by numerous factors among them the soil saturation606

caused notably by intense rainy events during the previous days or the evap-607

otranspiration of the soil and the canopy water interception. The choice of608
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Figure 10: Observed river level (black line) together with PWA short-term forecasts f =
6 h (blue line) and long-term forecasts f = 48 h (red line) of the flood of November 19th,
2016. The blue crosses indicate the time when forecasting is done.

a piecewise linear structure as a hybrid system is justified by the fact that a609

river acts differently for the same amount of precipitation and this can be as-610

similated to a switch between multiple models that might be linear according611

to the presented results, allowing the usage of an easy implementable algo-612

rithm with a low processing time according to the number of treated data613

samples. In addition, the utilization of an unsupervised clustering technique614

for the PWARX model identification facilitates the task of achieving a num-615

ber of modes with no a priori knowledge and non systematic search. This616

is possible thanks to the algorithm based on Dempster-Shafer adapted for617

PWARX modeling. The main difficulty is to fix optimally the value of the618

main tuning parameter consisting in the number of the nearest neighbors.619

If this is properly done, one can achieve high performances both in a short-620
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Figure 11: Observed river level (black line) together with PWA short-term forecasts f =
6 h (blue line) and long-term forecasts f = 48 h (red line) of the flood of January 3rd,
2016. The blue crosses indicate the time when forecasting is done.

term and a long-term flood forecasting in terms of peak value, the instant621

when the threshold is crossed and the instant of the peak occurrence. It is622

however important to mention that the rainfall measurement issued by the623

rain gauges does not necessarily translate the real precipitation spilled on the624

catchment. This information has to be cross-checked with the weather radar625

information in order to reduce the uncertainty on any rainfall-runoff model626

input. This paper presented the first step of an exploratory work on the627

usage of PWARX systems in the flood forecast field. Future works will con-628

cern the robustness of these models to an uncertainty on the rainfall which629

has to be replaced by its forecast, a sensitivity analysis on the parameters,630

the model calibration and validation on a larger data base and finally, the631

evaluation of the model use in real-life settings.632
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