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Abstract

Human activity recognition (HAR) is highly relevant to many real-world do-

mains like safety, security, and in particular healthcare. The current machine

learning technology of HAR is highly human-dependent which makes it costly

and unreliable in non-stationary environment. Existing HAR algorithms assume

that training data is collected and annotated by human a prior to the training

phase. Furthermore, the data is assumed to exhibit the true characteristics of

the underlying distribution. In this paper, we propose a new autonomous ap-

proach that consists of novel algorithms. In particular, we adopt active learning

(AL) strategy to selectively query the user/resident about the label of particular

activities in order to improve the model accuracy. This strategy helps overcome

the challenge of labelling sequential data with time dependency which is highly

time-consuming and difficult. Because of the changes that may affect the way

activities are performed, we regard sensor data as a stream and human activity

learning as an online continuous process. In such process the leaner can adapt to

changes, incorporate novel activities and discard obsolete ones. To this extent,

we propose a novel semi-supervised classifier (OSC) that works together with

a novel Bayesian stream-based active learning (BSAL). Because of the changes

in the sensor layouts across different houses’ settings, we use Conditional Re-
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stricted Boltzmann Machine (CRBM) to handle the features engineering issue

by learning the features regardless of the environment settings. CRBM is then

applied to extract low-level features from unlabelled raw high-dimensional ac-

tivity input. The resulting approach will then tackle the challenges of activity

recognition using a three-module architecture composed of a feature extrac-

tor (CRBM), an online semi-supervised classifier (OSC) equipped with BSAL.

CRBM-BSAL-OSC allows completely autonomous learning that adjusts to the

environment setting, explores the changes and adapt to them. The paper pro-

vides the theoretical details of the proposed approach as well as an extensive

empirical study to evaluate the performance of the approach.

Keywords: Activity Recognition, Data Streams, Active Learning, Online

Learning.

1. Introduction

The recent advances of sensor technologies have led to affordable sensors

with excellent performance, low weight, and low power consumption. In smart-

homes, these sensors are widely deployed to collect data for monitoring purposes.

From such data, useful knowledge can be extracted allowing for a variety of5

applications. In many of these applications, human activity recognition (HAR)

is an essential task, such as health-care [1, 2], ambient assistive living [3, 4,

5, 6, 7] and surveillance-based security [8, 9, 10]. There are three main types

of HAR, sensor-based [11, 12], vision-based [8] and radio-based [13]. Sensor-

based methods rely on a large number of pervasive distributed sensors. Vision-10

based methods utilise image and video processing techniques to detect human

activities. Radio-based methods use signal attenuation, propagation, and fading

characteristics to detect human activities. In this paper, we are interested in

sensor-based methods, which, unlike the other two classes of methods, do not

work under a limited coverage area, enjoy the merits of information privacy, use15

widely available and affordable sensors and do not expose the human body to

radiation that may raise health concerns.
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A major contribution of this paper is the application of online and active

learning for HAR. To the best of our knowledge, this study is the first in the

field to propose online active learning to train an HAR algorithm. The HAR20

approaches have dominantly focused on traditional offline learning algorithms

which assume that the training data is available prior to the training phase.

Once this latter is exhausted, the learning algorithm is deployed and, cannot be

trained any further even if performs poorly. This can happen if the used training

data does not exhibit the true characteristics of the underlying distribution. In25

contrast, online learning views the data as a stream continuously arriving over

time, where the learner can keep learning and adapt to changes. The standard

assumption for activity recognition is that any new activities can be recognised

using trained model on previously collected data. This is a strong assump-

tion as it ignores natural changes in individuals’ activity patterns and sensory30

measurements. In real-world situations, future data deviates from historical

data because of changes in the activities induced by the resident. Such changes

take place for several reasons: the way the people perform activities changes

over time, their health conditions change, they perform novel activities, sensors

displacement etc. We adopt an online learning algorithm to cope with these35

changes over time; hence, we view the sensory input as a continuous stream.

Besides the aforementioned benefits, online learning copes well with memory

and computation requirements because data samples are processed on-the-fly

and then discarded immediately afterwards.

In the vast majority of HAR approaches, training data is assumed to be40

manually annotated (labelled). Such manual annotation is extremely hard and

time-consuming task. For example, an expert will have to monitor the start and

end of each of the resident’s activity and attach labels to them. Furthermore,

in the online setting, the data stream evolves, meaning that fresh labels are

needed from time to time. Active learning (AL) is a paradigm of machine45

learning where the learning algorithm (learner) has control over the selection of

training examples [14, 15]. AL deliberately queries particular instances to train

the learner using as few labelled data instances as possible. In the context of
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HAR, AL algorithm can query the user (individual carrying out the activities)

about ambiguous or unknown activities in order to guide the learning process50

when needed. There exist two main approaches of AL: pool-based selective

sampling (PSS) and stream-based selective sampling (SSS). PSS is the most

popular AL method, according to which the selection of instances is made by

exhaustively searching in a large collection of unlabelled data gathered at once

in a pool. Here, PSS evaluates and ranks the entire collection before selecting55

the best query. On the other hand, SSS scans through the data sequentially and

makes query decisions individually. Different AL sampling criteria have been

proposed [15]. Authors in [16] introduce one of the most general frameworks

for measuring informativeness, label uncertainty sampling criterion, where the

queried instances are those which the model is most uncertain about their label.60

Another popular AL sampling criterion framework is the query-by-committee

[17]. Here, a committee of models trained on the same dataset are maintained.

They represent different hypotheses. The data label about which they most

disagree is queried. Density-based is another AL sampling criterion that differs

from uncertainty and query-by-committee in that it uses unlabelled data for65

measuring the instance informativeness [18]. Density-based criterion assumes

that the data instances in dense regions are more important.

In this paper, we propose a novel online semi-supervised classifier (OSC)

equipped with an AL strategy. The proposed online classier is based on the

Dirichlet process mixture model (DPMM) [19] with a stick-breaking prior [20]70

over the classes. Basically, the proposed model is a class-specific mixture model,

where a mixture model is associated with each class. DPMM is a flexible non-

parametric Baysian model which allows the complexity of the model to grow as

more data is seen. Such a characteristic is useful in the case of data streams as

not much prior knowledge is available. The application of stick-breaking prior75

over the classes allows accommodating new classes (activities). We employ a

particle filter method [21, 22] to perform online inference.

We also propose a Bayesian stream-based AL strategy called (BSAL) that

does not explicitly and purely adopt any of the aforementioned criteria. BSAL
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is an information theory based AL which aims at reducing the space of hypoth-80

esis by querying samples according to how much they are expected to reduce

the model uncertainty [23]. On the contrary, decision theory based AL aims

at reducing the prediction error by querying samples according to how much

they are expected to reduce the future classification error [24]. While the two

approaches seem quite distinct, they both aim at identifying data instances that85

give the largest reduction of the expected loss function. Thus, they mainly dif-

fer in the used type of loss functions. While decision theory based AL relies

on the prediction error, information theory based AL losses involve the model

parameters. One commonly used loss is the entropy of the model distribution.

Our proposed BSAL uses the Kullback-Leibler (KL) divergence as loss func-90

tion (see Sec.3.2). We adopt an information based AL approach because it

fits the Bayesian approach of the proposed semi-supervised classifier OSC (see

Sec 3.1). Furthermore, there is no need to heuristically modify the loss function

to account for the new classes because the loss involves the model distribution

and not the prediction error. BSAL works completely online and is able to95

cope with the challenges associated with data streams, including the possible

emergence of new classes.

As online learning copes well with the memory and computation require-

ments, OSC-BSAL can be used in mobile application which offers a handy way

for the AL to query the annotators. The mobile device can apply OSC-BSAL on100

data streams coming from the mobile sensors or from other wearable and per-

vasive sensors. This example is a real world scenario where OSC-BSAL can be

used. However in this paper, OSC-BSAL is evaluated on benchmark datasets.

In our experimental setting, hundreds of sensors, wearable and distributed in the

environment, are deployed resulting in high-dimensional data. Hence, designing105

hand-crafted features is extremely hard and time-consuming. The variation of

the sensor network layouts in different homes makes the task even harder if

portability of the system is desired. we tackle this issue by pre-trainning a Con-

ditional Restricted Boltzmann Machine (CRBM) [25] to learn generic features

from unlabelled raw high-dimensional sensory input. CRBM has been success-110
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Figure. 1 General Architecture of CRBM-OSC-BSAL

fully applied in pattern recognition [9, 26, 27, 28, 29, 30, 31]. In this work, we

apply CRBM to extract generic features from the sensory input. Details about

CRBM, how it is trained and applied can be found in Appendix A. Figure 1

shows a simple sketch of the proposed architecture (CRBM-OSC-BSAL)

The rest of the paper is structured as follows: we discuss the related work115

and the motivation behind our work in Sec. 2. We describe the OSC-BSAL in

Sec. 3. Empirical evaluation is presented in Sec. 4. Section. 5 concludes this

paper.

2. Related Work and Motivation

Hand-crafted features have been the focus of most sensor-based HAR lit-120

erature [32, 33], in which distinctive features are created or selected to train

HAR systems. Statistical features such as mean, variance are utiliszed by [34,
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35, 36, 37, 38, 11] as distinctive features of the sensory input. Such features are

problem-specific and require the designer to understand the underlying problem

to select and weight the most effective features using the expensive trial and er-125

ror process. Any variation of the environment implies re-crafting the features,

which is inadequate.

On the contrary, DL can be used to learn discriminative features from the

data automatically and in a systematic way. DL learns different layers of fea-

tures from low-level generic features to high-level features. DL has made a130

tremendous impact on different fields such as computer vision and natural lan-

guage processing [39]. Recently, few studies have considered deep learning in

sensor-based AR [40, 41, 42, 43, 44]. However, all of these studies work offline.

The great majority of HAR research is based on offline learning algorithms,

in which the adaptation of the learner after the training is not possible. Recently,135

a few studies have targeted more challenging HAR settings where data comes

in the form of streams [45].

The authors in [46] used online learning for HAR where the data is considered

as a stream and where AL was applied to query activity labels when necessary.

However, the proposed approach requires a labelled training set. In fact, there is140

two phases: (1) offline training phase and (2) online recognition and adaptation

phase. In the offline phase, the model is built from a set of annotated sensory

data that represents different activities. In the online phase, the recognition

of unlabelled streaming data is performed. In this approach, the number of

activities is assumed to be fixed and initialisation phase is required.145

The authors in [47] proposed to address some of HAR challenges such data

annotation through active learning. However, instead of using online learning to

adapt the model when necessary, transfer learning is used. Models are trained

on different collected houses and persons where transfer learning is employed

to share the knowledge among these models. The authors also apply offline150

AL to obtain labels. However, any change is assumed to be represented in

the training data, but on a large scale where different houses and different

persons are covered. Hence, any change not occurring in the training data (e.g.,
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emergence of novel activities) cannot be handled.

A similar architecture to ours is proposed in [48], where a hierarchical non-155

parametric Bayesian model is plugged on top of a deep network. The deep

network learns low-level generic features, then the hierarchical non-parametric

Bayesian model learns high-level features that capture correlations among low-

level features. However, the model works offline, does not use AL and does not

process time-series data.160

The present paper goes beyond the sate-of-the-art methods by addressing

the challenges of HAR in the smart-home setting where

1. CRBM allows to capture features that are less sensitive to the subtleties

of sensory input. It learns generic features from the data in unsupervised

way making CRBM-OSC-BSAL self-adjustable165

2. OSC helps overcome dynamic changes within the same environment. It

allows OSC-BSAL to be self-adaptive. OSC works online and adapts to

change.

3. BSAL helps overcome hard and time-consuming activity annotation. It

allows OSC-BSAL to be self-exploring. BSAL is the first AL that directly170

reduces the expected loss online, while considering the challenges of data

streams.

4. The novel architecture combining CRBM, OSC and BSAL allows realistic

HAR system with faster learning in comparison with other methods.

We review Dirichlet process (DP) in Appendix B. Being the core of OSC, DP175

is used as a non-parametric prior in Dirichlet process mixture model (DPMM)

which, in contrast to the parametric prior, allows the number of components to

vary during learning.

3. Online Semi-supervised Active Learning Classifier

In this section, we develop the proposed approach. We start by developing180

the online semi-supervised classier (OSC). Then, we move to the stream-based

active learning algorithm (BSAL) which employs OSC.
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Figure. 2 Graphical model of OSC

3.1. Online Semi-supervised Classifier

The proposed online semi-supervised classifier (OSC) can be expressed as a

Dirichlet process mixture model (DPMM) with a new latent label variable yt185

(observed after querying the sample). Figure 2 shows the structure of OSC in

the form of a graphical model. π1,c and π2 are drawn from stick-breaking pro-

cesses GEM(α1) and GEM(α2) respectively; G0 is a Normal-Inverse-Wishart

distribution NIW (.|µ0,Σ0, k0, v0) with µ0 is the prior of the clusters’ means;

Σ0 controls the variance among the means; k0 scales the diffusion of the clusters’190

means and v0 is the degree of freedom of the Inverse-Wishart distribution.

The label yt is generated from a stick-breaking prior. While zt selects the

component generating xt, yt selects the stick-breaking component generating zt.

Label yt selects from different mixture models associated with different classes.

The model is updated as follows. If the data samples received are unlabelled,195

the whole model is updated such that the class variable is marginalized out.

Otherwise, only the mixture model associated with the same class as the sample

is updated with the new data sample. A particle filter method derived from [21,

22] is used to perform the online inference.

Following [21], we introduce a state vector Ht that summarizes the data200

seen up to time t. Hence, Ht = {zt,mt,nt, st} can replace all the statistics

used in OSC, where mt is the number of components; nt is a matrix with
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rows referring to the number of data samples labeled to the existing classes

and columns referring to the number of data samples assigned to the existing

components; and st is the sufficient statistics for all mixture components(i.e.,205

means and scatter matrices). The notations used in this section are summarized

in Appendix C.

Every time a new sample is received, OSC carries out three steps: prediction,

updating and re-sampling. While updating step differs according to whether the

data sample is labelled or not, prediction and re-sampling steps are applied in210

the same way for both cases. The 3 steps of OSC are described as follows:

3.1.1. Prediction:

Given the concentration parameters α1, α2 and the prior distribution pa-

rameters {µ0,Σ0, k0, v0}, we aim at computing the conditional probability of

the label given a data sample, p(yt|xt, Dt−1):

p(yt|xt, Dt−1) ∝ p(xt|yt, Dt−1)p(yt|Dt−1) (1)

where Dt−1 represents all data samples previously seen along with their labels

if provided. Details on how Eq. (1) is computed can be found in Appendix D.

The solution of Eq. 1 depends only on the elements of the state vector along215

with its posterior distribution (see Appendix D). Thus, we need to track this

posterior online by approximating it with a set of P particles. Upon the arrival

of a new data point, the particles are extended to include a new assignment zt

assuming that the previous assignments are known and fixed. Thus, the task is

to update the posterior of the extended particles at time t, p(Ht|Dt), given that220

the posterior at t − 1, p(Ht−1|Dt−1) is known. In order to prevent combinato-

rial explosion, we use the re-sampling technique proposed in [22] which retains

only P particles. Therefore, we approximate the posterior at time t using the

following updating and re-sampling steps:
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3.1.2. Updating:225

p(Ht|Dt) ∝
∫
Ht−1

p(Ht|Ht−1, yt,xt)p(yt,xt|Ht−1)p(Ht−1|Dt−1) (2)

Given the P particles along with their weights, p(Ht−1|Dt−1) =
∑P
i=1 w

(i)
t−1δ(Ht−1−

H
(i)
t−1), the update can be written as follow.

p(Ht|Dt) ∝
P∑
i=1

p(Ht|H(i)
t−1, yt,xt)p(yt,xt|H

(i)
t−1)w

(i)
t−1 (3)

The solution of the second term of Eq. (3) can be found in Appendix D (Eq. (D.3)

and Eq. (D.2)). Following the updating step, the number of resulting particles

for each H
(i)
t−1 becomes equal to the number of existing components m

(i)
t−1 + 1.

The new assignments zt lead to different configurations of the new particles.

Therefore,

p(H
(j)
t |H

(i)
t−1, yt,xt) = p(zt = j1|H(i)

t−1, yt,xt)

∝ p(xt|yt, zt = j1, H
(i)
t−1)p(zt = j1|yt, H(i)

t−1) (4)

where j = f(i, j1) and f(a, b) = 1
2 (a + b)(a + b + 1) + b is the Cantor pairing

function which uniquely encodes the assignment j1 and the particle number i

into a single natural number. By solving Eq. (4), we determine the weight of

the new particle w
(j)
t . Equation 4 is computed in Appendix D (the first term of

Eq. (4) is computed in Eq. (D.6), and the second term is computed in Eq. (D.8)).
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The elements of new state vector H
(j)
t are updated as follows:

H
(j)
t =



z
(j)
t = j1 j1 is an existing component

n
(j)
yt,j1,t

= λn
(i)
yt,j1,t−1 + 1

n
(j)
h,k,t = λn

(i)
h,k,t−1 ∀h 6= yt,∀k 6= j1, h ∈ Ct, k ≤ m(i)

t

su
(j)
j1,t

=
λn

(i)
:,j1,t−1

su
(i)
j1,t−1

+xt

n
(i)
:,j1,t

sc
(j)
j1,t

= λsc
(i)
j1,t−1 + n

(i)
:,j1,t−1su

(i)
j1,t−1su

(i)T
j1,t−1

−n(i)
:,j1,t

su
(i)
j1,t
su

(i)T
j1,t

+ xtx
T
t

z
(j)
t = m

(i)
t−1 + 1 j1 is a new component

m
(j)
t = m

(i)
t−1 + 1

n
(j)
yt,j1,t

= 1

n
(j)
h,k,t = λn

(i)
h,k,t−1 ∀h 6= yt,∀k ≤ m(i)

t−1, h ∈ Ct

su
(j)
j1,t

= xt

sc
(j)
j1,t

= 0

(5)

where λ is a memory factor which allows the components to adapt with change,

Ct is the set of the labels of all existing classes. If the label yt is unknown, we

consider it as a latent variable. The posterior p(Ht|Dt) in the update Eq. (3)

can be written as follows:

p(Ht|Dt) =
∑
yt

p(Ht|Dt−1,xt, yt)p(yt|Dt−1,xt) (6)

p(yt|Dt−1,xt) ∝ p(xt|yt, Dt−1)p(yt|Dt−1) (7)

Equation 7 is computed in Appendix D (the first and second terms of Eq. (7)

are computed in Eq. (D.3) and Eq. (D.2) respectively). The first term of Eq. (6)

is already computed in Eq. (3), where the label is assumed to be known. We

can see from Eq. (6) that for each new assignment zt, there is a mixture of

12



particles that depends on j and the different labels yt. We re-define the state

vector Ht to accommodate yt as hidden variable when it is unknown. Thus,

H ′t = {Ht, yt}, where the different particles are determined now by both zt and

yt,

H
′(j)
t = {H(j2)

t , yt = j3}

j = f(j2, j3) (8)

where j3 can be either an existing or a new class. To compute the weight and

the update of the new state vector, we follow the same trend as in Eq. (3),

Eq. (4) and Eq. (5).

p(H ′t|Dt) ∝
P∑
i=1

p(H ′t|H
′(i)
t−1,xt)p(xt|H

′(i)
t−1)w

′(i)
t−1 (9)

p(H
′(j)
t |H

′(i)
t−1,xt) = p(zt = j1, yt = j3|H ′(i)t−1,xt)

∝ p(xt|yt = j3, zt = j1, H
′(i)
t−1)p(zt = j1, yt = j3|H ′(i)t−1) (10)

After updating the P particles with all the possible new assignments zt and

yt, we end up with M combinations of the P particles with the new assignments,

along with the weights w
′(j)
t . So, we move to the next step which reduces the

number of created particles to a fixed number P .

3.1.3. Re-sampling:230

We follow the resampling technique proposed in [22] which discourages the

less likely particles (configurations), and improves the particles explaining the

data better. It keeps the particles whose weight is greater than 1/κ, and re-

samples from the remaining particles. The variable κ is the solution of the

following equation:
M∑
j=1

min{κw′(j)t , 1} = P (11)
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The weight of re-sampled particles is set to 1/κ, and the weight of the particles

greater than 1/κ is kept unchanged. All the re-sampled particles are ensured to

be re-sampled once.

To illustrate how the Re-sampling work, consider the following example. Set

P = 3, m = 5 and the wrights to be {0.4, 0.2, 0.1, 0.3, 0}. By solving Eq. (11),235

we get κ = 10/3. Thus, the samples with the weights {0.4, 0.3} are maintained

and we re-sample one particle from the remaining {0.2, 0.1, 0}

3.2. Active Learning Approach

We propose an AL algorithm that deliberately queries particular instances

to train OSC using as few labelled data instances as possible. In the context240

of HAR, the labels are the human activities, and the AL algorithm queries the

user (individual carrying out the activities) about some activities. Thus, exten-

sive queries will be annoying and must be avoided. The notations used in this

section are summarised in Appendix C. Note that Although the proposed AL

is independent of the online classification model, OSC’s use of non-parametric245

Bayesian prior over classes allows the AL to handle the concept evolution prob-

lem.

Most AL approaches are basically derived from the general approach of find-

ing queries that result of the largest reduction in the expected loss. Let Ω denote

the set of variables that can be fully random or include some random elements.

Let L refer to the loss function. The expected loss function that AL aims to

reduce can be expressed as follows:

R = EΩ[L(Ω̂,Ω)] (12)

where the hat over Ω (ie., Ω̂) refers to an estimated set of variables. Depend-

ing on the loss functions involved, AL can be divided to two main groups:

information-based and decision-based AL. If we take Ω as the set of vectors

consisting of observed set X and latent set Y elements, we can end up with the
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expected classification error:

R =

∫
x

L(p̂(y|x), p(y|x))p(x)dx (13)

Here, the loss function involves the prediction error. In AL, we request infor-

mation about certain samples. That is the learner queries the latent labels Y

of some subset of X ⊂ Ω. We introduce a binary set Q whose elements are250

attached to the vectors in the set Ω. If an element q ∈ Q = 1, the latent ele-

ments of the corresponding vector in Ω are queried. Equation (13) can be seen

as the core of most heuristic and non-heuristic decision-based AL. Many active

learning approaches seek to minimize an approximation of the expected error

of the learner Eq. (13) [24, 49, 50]. In our previous work [51, 52], we proposed255

an AL strategy that seeks to minimize Eq. (13) online, while considering the

challenges of data streams.

Assuming that there is a model generating the data. If Ω is taken to be the

set of the true model parameters ψ, then the loss is over the model parameters.

We obtain the following risk function:

R = Eψ[L(ψ̂,ψ)] (14)

Similar to Eq. (13), Eq. (14) can be seen as the core of most heuristic and non-

heuristic information-based AL. The authors in [53, 54] use the entropy of the

model as the loss function. In this paper, we propose a Bayesian stream-based260

AL (BSAL) inspired from information-based AL. BSAL is designed to cope

with the challenges of data streams (infinite length, evolving nature, emergence

of new classes). Information-based AL fits better the nature of the proposed

Bayesian semi-supervised classifier (OSC), where the uncertainty over the model

parameters is systematically expressed. Because information-based loss func-265

tions are over the model distribution, BSAL can easily deal with the challenges

of data streams. In fact, the task is only to take the decision whether to online

query or not, while OSC works online and accommodates novel classes. Thus,
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BSAL is completely compatible with OSC.

In the following, we discuss the offline AL strategy to minimize an approxi-

mation of Eq. (14), then we present our online AL strategy. The authors in [23]

propose an algorithm that selects queries in a greedy way in order to improve

the model accuracy as much as possible. Their original goal is to minimize the

loss L(ψ, ψ̂) incurred by using a single representation ψ̂ of the model instead

of the true model parameters ψ. As the true model parameters are unknown,

authors estimate them using the posterior of the Bayesian model parameters

p(ψ|X,Y ). Therefore, the risk associated with a particular ψ̂ with respect to

p(ψ|X,Y ) can be expressed as follows:

R(p(ψ|X,Y ), ψ̂) = Eψ∼p(ψ|X,Y )[L(ψ, ψ̂)] (15)

The point estimate ψ̂ that minimizes the risk is defined as the Bayesian point

estimate. By fixing ψ̂ to the Bayesian point estimate, the resulting risk depends

only on the model posterior. The authors in [23] adopted a pool-based AL

approach, where the samples that reduce the risk the most are selected. Because

the labels are unknown a priori, the expected risk, given the query, is computed

as follows:

R̂
(
p(ψ|X,Y ), ψ̂;Q = q

)
= EYS(Q)∼p(YS(Q)|X)[R(p(ψ|X,YS(Q)), ψ̂)] (16)

where clamping q to Q refers to the state of querying samples that correspond

to the elements in q which are equal to one. The function S(Q) returns the

indices of the elements in Q that are equal to 1 (i.e., the samples to be queried).

If S(Q) is empty, the expected risk in Eq. (16) becomes:

R̂
(
p(ψ|X,Y ), ψ̂;Q = q

)
= R(p(ψ|X), ψ̂) (17)

The goal of AL is to query the data samples that result in maximizing the
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difference between the risk (Eq. (15)) and the expected risk (Eq. (16)).

∆̂(X,Y |q) = R(p(ψ|X), ψ̂)− R̂(p(ψ|X,Y ), ψ̂;Q = q) (18)

Given a stream of samples, BSAL evaluates each sample at time t before

discarding it. Here, the querying random variable refers to whether or not the

input sample at time t is queried. The Data X and Y become the data seen so

far {Dt−1, xt, yt. Since in online active learning, we are sure that at time t no

samples within the data seen up to time t−1 Dt−1 will be queried, we condition

on Dt−1. Therefore, Equation (18) can be reformulated as follows:

∆̂(xt, yt|Dt−1, qt) = R(p(ψt|Dt−1,xt), ψ̂t)− R̂(p(ψt|Dt−1,xt, yt), ψ̂t; qt)

(19)

where:

R(p(ψt|Dt−1,xt), ψ̂t) = Eψt∼p(ψt|Dt−1,xt)[L(ψt, ψ̂t)] (20)

If the sample at time t is not queried (qt = 0), the current expected risk (second

term of Eq. (19)) is equal to the current risk (first term of Eq. (19)). Otherwise,

the current expected risk can be written as follows:

R̂(p(ψt|Dt−1,xt, yt), ψ̂t; qt = 1) = Eyt∼p(yt|Dt−1,xt)[R(p(ψt|Dt−1,xt, yt), ψ̂t)]

(21)

Intuitively, Eq. (19) measure the discrepancy between the risk, representing270

the model uncertainty computed from the data seen so far and the expected risk

with respect to yt. This expresses how much querying yt influence the model

uncertainty. Note that the DP prior used in OSC over the classes allows posing

distribution over novel classes. That is, the distribution is not only over the

existing classes and there is also a probability that the class of an input is novel275

without knowing its label. This allows BSAL to consider the change in OSC

uncertainty caused by input with uncertain class, whether existing or novel one.
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BSAL uses the KL divergence as the loss function. It turns out that by

using the KL divergence loss, the mean value of the parameters turns into the

Bayesian point estimate [23]. Similar to the Bayesian information theoretic AL

proposed in [55], we consider the loss of the predictive posteriors parameterized

by ψt and ψ̂t:

L(ψt, ψ̂t) =
∑
y

∫
x

p(x, y|Dt,ψt) log
p(x, y|Dt,ψt)

p(x, y|Dt, ψ̂t)
dx (22)

ψ̂t = Eψt∼p(ψt|Dt)[ψt] (23)

Our BSAL relies on our proposed Bayesian online semi-supervised classi-

fier (OSC). OSC’s parameters, ψ, involve the stick-breaking components, the

Gaussian components and the hidden configurations. We marginalize out the280

Gaussian and the stick-breaking components and keep the hidden configura-

tions. The Bayesian point estimate is approximated by the mode of the differ-

ent configurations induced by the particles. The details on how the discrepancy

between the current risk and the current expected risk expressed in Eq. (19) is

computed can be found in Appendix F.285

As BSAL is an online-based AL, it must assess the data on the-fly and query

those which incur highest risk reduction. The problem is how to decide whether

the incurred reduction is high or not. A dynamically adaptive threshold, τ ,

is used so as to request the labels of samples whose current expected risk sub-

tracted from their current risk (see Eq. (19)) breaches the threshold. This latter290

is adapted using a threshold adjustment step, s, following the Variable Uncer-

tainty strategy in [56]. Further illustration may be found in Alg. 1. The binary

input ALE in the algorithm activates/deactivates the active learning.

Another issue is the limited labelling resources. Hence, an optimal querying

strategy is needed. To this end, the notion of budget was introduced in [56]295

in order to estimate the labelling budget. Two counters were maintained: the

number of labelled instances ft = |XLt
| and the budget spent so far: bt =
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ft
|data seen so far| = ft

|Xt| .

As data arrives, we do not query unless the budget is less than a constant

Bd and querying is granted by the sampling model. However, over infinite time

horizon this approach will not be effective. The contribution of every query

to the budget will diminish over the infinite time and a single labelling action

will become less and less sensitive. The authors in [56] propose to compute the

budget over fixed memory windows of size wnd. To avoid storing the query

decisions within the windows, an estimation of ft and bt were proposed:

b̂t =
f̂t
wnd

(24)

where f̂t is an estimate of how many instances were queried within the last wnd

incoming data instances.

f̂t = (1− 1/wnd)f̂t−1 + Labt−1 (25)

where Labt−1 = 1 if instance xt−1 is labelled, and 0 otherwise. Using the for-

getting factor (1−(1/wnd)), the authors showed that b̂t is an unbiased estimate300

of bt.

In the present paper, this notion of budget is adopted in BSAL so that the

labelling rate is controlled. Note that in our experiments, we set wnd = 100 as

in [56].

Instead of fixing the precision hyper-parameters (also called concentration305

hyper-parameters) α1 and α2, we put hyper priors over them using G(a, b)

(gamma priors with shape a and scale b) and sample their values online following

the sampling approach in [57]. More details on the sampling routine can be

found in Appendix G.
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Algorithm 1 Steps of OSC-BSAL

1: Input: data stream, OSC hyper-parameters {µ0,Σ0, k0, v0, a, b} (see
Sec. 4.1), memory factor λ, maximum number of particles P , budget Bd,
ALE

2: initialize: set OSC precision parameters {α2, α1i}m2
i=1 to 1 (more details

in Sec. 4.1 and Appendix G), set the OSC first particle weight w
(1)
0 to 1,

threshold τ to 0.1, threshold adjustment step s to 0.1, wnd = 100, f̂t = 0
(Eq. (24)) and t = 0

3: while (true) do
4: t← t+ 1
5: extract low level features xt from the current data samples . (see

Sec. 4)
6: if ALE = 1 then . active learning is activated
7: if b̂t < Bd then . enough budget, Eq. (24)
8: a = ∆̂(xt, yt|Dt−1, qt = 1) . (see Eq. (19))
9: if a>τ then

10: Labt = 1
11: yt ← query(xt)
12: τ = τ(1 + s)
13: else
14: Labt = 0
15: τ = τ(1− s)
16: end if
17: else
18: Labt=0
19: end if
20: else
21: Receive (Labt)
22: if Labt = 1 then . instance xt label is known
23: yt ← reveal(xt)
24: end if
25: end if
26: if Labt = 0 then
27: predict the label of xt . (see Eq. (1))
28: update OSC model with instance xt . (see Eq. (5), Eq. (8) and

Eq. (9))
29: else
30: update OSC model with instance xt and label yt . (see Eq. (3) and

Eq. (5))
31: end if
32: sample new precision parameters {α2, α1i}m2

i=1 . (see Alg. 2
in Appendix G)

33: compute f̂t+1 and update b̂t+1 . (see Eq. (25) and Eq. (24))
34: end while
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4. Experiments310

In this section, we evaluate OSC-BSAL in two steps. In the first step, the

active learning (AL) strategy is deactivated (ALE = 0) while the classification

performance of OSC is evaluated on three datasets: Opportunity, WISDM and

SCMA datasets (see below). The data comes as a stream through the feature

extractor, then OSC classifies the currently performed activity and updates its315

particles set. To show the efficiency of the classification besides its fast learning

capability, we compare against static offline classification methods: Hoeffding

decision tree (DT) and support vector machine (SVM). We also compare against

the online method STAR [46] already discussed in Sec. II. In the second step,

the active learning strategy, proposed in Sec. 3.2, is activated (ALE = 1) to320

evaluate the whole framework OSC-BSAL on the same datasets. The classifica-

tion performance is measured according to the average accuracy (AA) which is

the correctly classified data samples divided by the total testing data samples.

We also compute the average class accuracy (ACA) which is the average of the

average accuracies across different activities (classes). This measurement mani-325

fests BSAL performance consistency across all activities by implicitly penalising

the accuracy when there are misclassifications of infrequent activities. Hence,

it illustrates the class discovery performance of BSAL.

The Opportunity (Opp) dataset was the basis of the activity recognition

challenge (http://www.opportunity-project.eu/challenge) proposed in the con-330

text of the European research project OPPORTUNITY [58]. Opp is a high-

dimensional HAR dataset labelled for modes of locomotion, gestures and high-

level activities. The data is acquired from four human subjects. In this paper,

we use a subset of the dataset corresponding to 3 subjects, denoted by Si and

focus on recognition of gesture and modes of locomotion in order to show OSC-335

BSAL high performance. Details of Opp are presented in Tab.1, where N is the

number of instances, d is the number of features/attributes, Nc is the number of

classes. Opp was collected from subjects while performing daily activities in a

sensor-rich environment of a room akin to an apartment with kitchen, deckchair,
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and outdoor access. 112 wearable and pervasive sensors with different sensing340

modalities were used. Each subject executed 4 motion activities and 17 ges-

tures (e.g., sitting, walking, standing, open fridge, clean table, move cup, etc.).

The task is to recognise the currently performed activity. Further details can

be found in [58]. To extract informative features from this data, we employ

a Conditional Restricted Boltzmann Machine (CRBM). Details about CRBM,345

how it is trained and applied on Opp dataset can be found in Appendix A.

The WISDM dataset is collected from user’s mobile phone accelerometer

sensor [36]. Six activities are performed by user while data collection, namely,

walking, jogging, sitting, standing, upstairs and downstairs. The dataset is col-

lected by different users and contains more than 1 million annotated accelerom-350

eter samples. The feature extractor outputs a total of 5424 samples by taking

10 seconds worth of accelerometer samples (200 records/lines in the raw file)

and transform them into a single example/tuple of 46 values. Most of these

features are simple statistical measures. Details of WISDM are presented in

Tab.1. Further details can be found in [36].355

Activity Recognition from a Single Chest-Mounted Accelerometer (SCMA)

dataset is collected from a wearable accelerometer mounted on the chest from

15 participants [59]. Seven activities are performed by the participants while

data collection such as Standing, Walking, Working at Computer, Talking while

Standing. In this paper, we use a subset of the dataset corresponding to 3360

subjects, denoted by Si. Details of SCMA are presented in Tab.1. For this

dataset, we do not use any feature extraction model. We apply OSC-BSAL

directly on the low dimensional features of the data.

All datasets were collected and saved in flat files. To simulate streams from

these files, the algorithm reads through the data in the same order it was col-365

lected. If BSAL decides to query a certain sample, this latter is sent along with

its label to the online classifier in order to update itself. Note that it is assumed

that the ground truth is available immediately after a query is made.

The following experiments demonstrate the role of each component of CRBM-

OSC-BSAL. We compare SVM and DT trained offline to OSC trained online370

22



Table. 1 Real AR Dataset propreties used for evaluating CRBM-OSC-BSAL

datasets N d Nc
Opp S2 133023 113 4 Locomotions and 17 Gestures
Opp S3 124320 113 4 Locomotions and 17 Gestures
Opp S4 105082 113 4 Locomotions and 17 Gestures
WIDSM 5424 46 6 Locomotions
SCMA S1 162502 3 7 Activities
SCMA S2 138002 3 7 Activities
SCMA S3 102342 3 7 Activities

with no prior knowledge about the data (blind). Results show that OSC out-

performs SVM and DT as well as online trained STAR [46] on non-stationary

data. We also show that the superiority of OSC over SVM and DT increases

with the degree of data non-stationarity. We demonstrate the impact of CRBM

by comparing CRBM-OSC to OSC. Results show that CRBM allows better per-375

formance, especially on high dimensional data. Comparing CRBM-OSC-BSAL

to CRBM-OSC demonstrates the ability of BSAL to improve the performance

while using much less data.

4.1. Classification performance on Opp data

In this set of experiments, we evaluate the classification performance of380

CRBM-OSC on Opp data while active learning (AL) is not considered. The

experiments are carried out on three subjects of Opp data with the goal of

recognising user’s modes of locomotion/gestures. CRBM parameters are set as

explained in Appendix A (see Tab. A.15). A hyper-prior can be put over the

hyper-parameters of the Normal-Inverse-Wishart prior on cluster parameters385

(G0) as in [60]. Alternatively, online non-parametric empirical Bayes can be

proposed to find a point estimate of G0 [61]. However, to keep the computation

simple, we chose these hyper-parameters by hand, based on prior knowledge

about the scale of the data. The prior mean u0 is set to 0. The co-variance

matrix Σ0 is roughly set to be large relative to the data. We set them to the390

identity matrix times the distance between the two farthest points in the data.

The degree of freedom, v0, must be greater than the number of dimensions d.
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We set it to d+ 2. The hyper-parameter k0 is empirically set to 0.01. We tested

OSC with different parameters k0 ∈ {1, 0.1, 0.01, 0.05, 0.001} on hold-out Opp

data and found that k0 = 0.01 yields to the best performance. The memory395

factor λ in Eq.(5) is empirically set to 0.95. Similar to k0, we tested different

memory factor (introduced in Eq.(5)) λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1}. We

noticed that impact of the memory factor is insignificant, even for very high

memory factor around 1 i.e., not using memory factor (See. Eq. (5)), OSC

still performs very well. This is due to the re-sampling strategy proposed in400

Sec. 3.1.3. That is, the particles with low probability will be discarded allowing

the algorithm to forget obsolete information and adapt to changes. However,

setting the memory factor to 0.95 yields the best performance.

4.1.1. Locomotion

In order to show the efficiency of the proposed online algorithm, we compare405

it to well known offline classification models. DT (hoeffding decision tree) and

SVM (support vector machines with polynomial kernel, degree 3) have been

efficiently applied for HAR in static environments [11]. We run two experiments

with DT and SVM using two different training settings. In setting 1, SVM and

DT are built from the datasets of all subjects excluding the one whose data410

is used for the evaluation. The results are presented in Tab. 2. In setting 2,

training and testing are done using the data of the same subject with two-

fold cross-validation; we split the data into two sets training and testing. The

samples in each set are selected using indices chosen randomly over the whole

data indices. We train and test then alternate the training and testing sets. This415

step is repeated 15 times where the results for each subject are averaged over

15*2 runs (see Tab. 3). We run SVM and DT with Weka 3.8 [62] (SVM and DT

use Weka default parameters). Although, DT and SVM are trained with more

data in setting 1, all the results shown in setting 2 are better. This variance

may be explained by the distinct motion styles of the subjects. We adopt setting420

2 in the upcoming comparison. Next, we train our model CRBM-OSC online

using setting 2 (see Tab. 3). It can be seen that CRBM-OSC performs better
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Table. 2 Classification performance for locomotion activities under setting 1

Subject Method AA Stand Walk Lie Sit ACA
S2 DT(%) 64.3 40 81.4 0 83.8 51.3

SVM(%) 64.7 29.7 97.8 1.2 84 53.2
S3 DT(%) 41.9 27 95.6 0 0 41.1

SVM(%) 73.6 84 59.7 0 68.4 53
S4 DT(%) 56.6 37.8 89.8 0 83.2 52.7

SVM(%) 72.5 92 10.8 96.5 96.3 73.9

Table. 3 Classification performance for locomotion activities under setting 2

Subject Method AA Stand Walk Lie Sit ACA
CRBM-OSC(%) 96 95.7 91.4 98.4 99.8 96.3

S2 DT(%) 89.5 89.8 78.9 89.7 96.5 88.7
SVM(%) 91.2 90.1 79.6 99.3 99.6 92.2
CRBM-OSC(%) 95.2 96.2 92.1 98.3 96.5 95.8

S3 DT(%) 83.6 86.1 74.8 97.9 89.3 87
SVM(%) 85 93.7 60.4 99.9 96.4 88.1
CRBM-OSC(%) 94.2 94.1 90.2 99.3 98.5 95.5

S4 DT(%) 87.2 87.8 81.1 96 91.9 89.2
SVM(%) 88 93.4 67.1 99.9 98.3 89.7
CRBM-OSC(%) 96 95.7 94 98.7 98.4 96.7

All DT(%) 83.3 94 56.6 96.9 88.6 84
SVM(%) 84.5 92 60.7 99.1 96.6 87.2

on all subsets of the data and for almost all activities. A reason for CRBM-

OSC superiority may be explained by the ability of the algorithm to cope with

dynamic changes in the individual activities. Based on this analysis and the425

previous one regarding the difference motion styles among the subjects, we can

expect that the performance superiority of CRBM-OSC will increase if training

is done on the datasets of all subjects. Thus, we run an experiment on the

datasets of all subjects together using setting 2 (see Tab. 3). It can be clearly

seen that CRBM-OSC outperforms SVM and DT by far when all-subject data430

is considered compared to the case where only one-subject data is used.

Note that the performance of CRBM-OSC is consistent across all activities

as its average class accuracy (ACA) is high. However, ACA is slightly better

than the average accuracy (AA) for all methods. This is due to the plenty of

available labels. In fact, the challenge lies in maintaining high ACA with few435
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Table. 4 Classification performance for locomotion activities

Subject Method AA Stand Walk Lie Sit ACA
CRBM-OSC(%) 96 95.7 91.4 98.4 99.8 96.3

S2 OSC(%) 93.52 98.7 77.8 99 89.7 91.3
CRBM-OSC(%) 95.2 96.2 92.1 98.3 96.5 95.8

S3 OSC(%) 94.3 99.1 82.2 98.1 97.7 94.3
CRBM-OSC(%) 94.2 94.1 90.2 99.3 98.5 95.5

S4 OSC(%) 92.6 98.9 74.9 96.5 98.2 92.1
CRBM-OSC(%) 96 95.7 94 98.7 98.4 96.7

All OSC(%) 93.8 80.3 98.2 88.6 97.1 91

labels. Such challenge can be met by BSAL (to be discussed in the next section).

In order to show the effect of the feature extractor, we train OSC online using

setting 2, where CRBM is not considered (see Tab. 4). Generally, CRBM-OSC

performs better in terms of average accuracy and average class accuracy. In ad-

dition, CRBM reduces the feature dimension from 113 to 10 which requires less440

computation and memory resources to process the streaming samples. We be-

lieve that with less discriminative low level features and more complex activities,

CRBM will play more prominent role.

4.1.2. Gestures

Like the previous section (Sec. 4.1.1), we compare the performance of DT445

and SVM under the two training settings. SVM and DT are run with Weka

3.8 [62] and the results for each subject are averaged over 15*2 runs. The

results obtained under both settings are presented in Tab. 5 and Tab. 6. Like

in Sec. 4.1.1, DT and SVM, trained with less data under setting 2, show better

performance than that of DT and SVM trained under setting 1. This variance450

confirms the assumption drawn in Sec. 4.1.1 that there are changes in the data

across different subjects. We will adopt setting 2 in the upcoming comparisons.

Next, we train our model CRBM-OSC online with two-fold cross-validation.

As in Sec. 4.1.1, the results for each subject are averaged over 15*2 runs (see

Tab. 6). CRBM-OSC average accuracy is better than SVM and DT’s one on455

all the datasets. In addition, CRBM-OSC average accuracies are the best for

the majority of the activities. Interestingly, the performance of CRBM-OSC
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Table. 5 Classification performance for gesture activities under setting 1

Subject Method AA Open Open Close Close Open Close Open Close Open Close Open Close Open Close Clean Drink Toggle ACA
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher Drawer1 Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch

S2 DT(%) 34 3.3 17.9 0 3.6 6.3 0 3.4 0.6 13.3 0 0 27.5 75.1 0 27.8 64.3 0 18.1
SVM(%) 40 7.2 1 5.7 59.3 11.2 5.3 24 60.5 9.8 0 25.8 69.5 72.8 7.6 24.6 61.1 5.5 26.5

S3 DT(%) 51.3 11.1 2.2 8.7 67.4 6.8 43.3 45.9 10.7 57.6 65 62.2 17 77.8 0.3 59.7 78.7 92.3 37.8
SVM(%) 40 18.5 7 0 66.1 1.1 1.1 28.3 0.7 12 16.7 0.2 3 92.9 0 64.2 67.1 93.8 27.8

S4 DT(%) 36.1 0 0 0 0 1.4 0 1.2 39.4 39.5 0.1 0.5 0 0 0 59.4 88.7 59.5 17
SVM(%) 45 1.6 60.6 1.5 56.5 40.9 33.4 24.9 42.2 0 36.3 36.7 59.9 62.2 46.5 6 63.6 94.6 39.3

Table. 6 Classification performance for gesture activities under setting 2

Subject Method AA Open Open Close Close Open Close Open Close Open Close Open Close Open Close Clean Drink Toggle ACA
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher Drawer1 Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch

CRBM-OSC(%) 95 93.6 96 94.7 94.8 93.6 96.1 93.6 90.1 92.1 94.9 93.6 91.6 93.4 91.3 95 97.1 93.4 93.8
S2 DT(%) 72.2 47.3 80.1 58.3 76.1 85.2 63.5 71.8 89.9 41.6 52.8 42.4 70.6 64.1 52 56.1 84 91.2 66.3

SVM(%) 95 91.8 82.3 83 94.4 95.9 74 90.5 99.2 90.9 94.7 81.4 82.7 98.4 93 97.6 99 97 90.9
CRBM-OSC(%) 94.4 93.3 95.4 92.3 92.3 94.6 94.2 93.9 94.2 94 95 93.2 92.5 93.9 95.2 92.5 96.2 92.8 93.9

S3 DT(%) 66.6 33.5 19.3 73.3 89.1 86.3 35.2 77.8 84.7 58.3 81 4.5 37.1 62.3 73.9 60.5 79 97.6 65.5
SVM(%) 90.3 90.9 77.6 80.9 88.9 88.9 71.4 88.6 98.2 85.5 83.6 77.1 87.3 91.8 78.2 90 98.7 99 86.9
CRBM-OSC(%) 94.5 93.6 93.9 94 93.3 93.7 94.2 92.5 92.3 93.2 95.5 93.9 93.4 94.8 92.7 93.4 96.7 93.2 93.8

S4 DT(%) 68.7 53.5 43.9 41.3 87.6 91.1 41.6 51 86.7 56.9 85.5 83.4 49 42.2 42.2 59.1 83.7 97.1 64.5
SVM(%) 91.8 93.2 91.4 82.6 85.4 91.1 83.1 79.7 98.5 88.9 89.6 86.4 87.6 90.2 92.5 84.6 99.5 99.5 89.6
CRBM-OSC(%) 94.9 92.5 93.9 94.6 94.1 94.6 94.7 93.3 93.5 93.2 94.7 94.7 93.7 94.8 95.2 93.6 93.9 97.2 94.3

All DT(%) 57.1 24.2 18.9 61.6 81.8 86.6 46.4 46.4 43 21.6 84.7 33.1 42.2 30 38.4 47.8 75.9 85.7 51.1
SVM(%) 84.5 79.3 74.1 64.9 82.2 82.9 66.2 75.8 94.3 70.3 76.3 73.2 80.4 79.7 75.7 82.9 97 92.1 79.3

increases when training is done on the datasets of all subjects. Hence, the anal-

ysis regarding the importance of adaptive learning is demonstrated for gesture

activities too.460

Unlike the case with the locomotion activities, we can notice that ACA is

slightly lower than the average accuracy (AA) for all methods. This can be

explained by the increase in the number of activities meaning that the same

number of labels is distributed on larger number of classes. Thus, the risk of

misclassifying the least frequent activities may increase. Noticeably, ACA values465

for SVM and DT decrease more significantly than that for CRBM-OSC. Such

behaviour may be explained by the fact that OSC is a semi-supervised learning

algorithm. That is, it uses both unlabelled and labelled data which curbs the

consequence of scarce labels for certain activities.

4.2. Classification performance on WISDM data470

In this set of experiments, we evaluate the classification performance of OSC

on WISDM data while active learning (AL) is not considered. OSCs’ parameters

are set the same way as in the previous experiments (see Sec. 4.1).
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Table. 7 Classification performance on WISDM under setting 1

Method AA Walking Jogging Upstairs Downstairs Sitting Standing ACA
DT(%) 70.7 78.4 92.6 22.1 22.3 92.3 64.7 62
SVM(%) 69 80.9 91.8 13.1 19 76.2 66 69.3

Table. 8 Classification performance on WISDM under setting 2

Method AA Walking Jogging Upstairs Downstairs Sitting Standing ACA
OSC (%) 88.1 95.2 93.4 69.3 64.9 86.5 75.9 80.9
DT(%) 74,8 88 93.1 17.7 22.2 93.8 79.3 65.68
SVM(%) 84.4 96.1 99.1 47 28.4 96.1 91.5 76.36

Because WISDM data is collected from 36 different users, activities are per-

formed with different styles. To show the personalisation impact on the data,475

we, similar to the previous section, run two experiments with DT and SVM

using two different training settings. In setting 1, SVM and DT are built from

the first 50% samples which involves different subjects from the last 50% sam-

ples used for the evaluation. The results are presented in Tab. 7. In setting 2,

training and testing are done with two-fold cross-validation. As in Sec. 4.1.1,480

the results are averaged over 15*2 runs (see Tab. 8).

All the results of SVM and DT shown in setting 2 are better than those

shown in setting 1. This variance demonstrates that there are changes in the

date caused by involving different users over time. We adopt setting 2 in the

upcoming comparison.485

Next, we train our model OSC online using setting 2 (see Tab. 8). It can be

seen that OSC average accuracy is the best. As on Opp data, the superiority

of OSC can be explained by the ability of the algorithm to cope with dynamic

changes. These changes occur in the activities of the same subject and mainly

across different subjects. Note that the performance of OSC is consistent across490

all activities as its average class accuracy (ACA) is the highest.

4.3. Classification performance on SCMA data

In this set of experiments, we evaluate the classification performance of OSC

on SCMA data while active learning (AL) is not considered. OSCs’ parameters

are set the same way as in the previous experiments (see Sec. 4.1).495
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Table. 9 Classification performance on SCMA under setting 2

Subject Method AA Working Standing Up, Walking Standing Walking Going Up Walking and Talking ACA
at Computer and Going up\down stairs \Down Stairs Talking with Someone while Standing

OSC (%) 99.99 99.99 99.79 99.95 99.99 99.84 99.89 99.99 99.92
S1 DT(%) 98.8 99.99 99.1 92.9 97.2 91.7 99.1 99.99 97.1

SVM(%) 93.87 99.7 10.1 60.7 94.3 75.3 30.2 99.89 67.1
OSC (%) 99 99.99 99.94 99.96 99.99 99.89 99.98 99.99 99.96

S2 DT(%) 99.6 99.99 98 98.2 99.9 99.99 99.7 99.99 99.39
SVM(%) 83.41 99.99 81.5 46.5 75.2 9.4 99.99 99.99 73.2
OSC (%) 99.98 99.99 99.98 99.79 99.98 99.92 99.92 99.99 99.93

S3 DT(%) 99.79 99.99 97.9 99 99.99 99.5 98.9 99.99 99.32
SVM(%) 93.55 99.99 89.2 19.3 99.99 62.3 12.9 99.3 69
OSC (%) 99.98 99.99 99.92 99.94 99.98 99.92 99.93 99.98 99.95

All DT(%) 75.69 96.3 12.8 42.5 75.7 15.1 12.8 83.3 59.17
SVM(%) 51.98 59.2 17.2 14.3 19.3 13.7 16.9 98.6 34.2

As in the case of Opp data, SCMA data is acquired from different subjects.

Hence, activities across the subjects are performed with different styles. Relying

on the comparisons done for Opp data and the similarity of the data collection

between Opp and SCMA, we skip the comparison of OSC performance between

setting 1 and setting 2 and adopt setting 2 in the upcoming comparison. There-500

fore, OSC is trained online using setting 2 (see Tab. 9).

The results in Tab. 9 show that OSC maintains the good performance shown

on Opp and WISDM datasets. As on Opp data, the superiority of OSC can

be explained by the ability of the algorithm to cope with dynamic changes

in the activities. Note that the performance of OSC is consistent across all505

activities as its average class accuracy (ACA) is the highest. Similar to Opp

data, the activity styles vary among the subjects. Thus, we can expect that the

performance superiority of OSC will increase if training is done on the datasets of

all subjects. Thus, we run an experiment on the datasets of all subjects together

using setting 2 (see Tab. 9). It can be clearly seen that OSC outperforms SVM510

and DT by far when all-subject data is considered compared to the case where

only one-subject data is used.

4.4. Active learning performance on Opp data

In this section, we evaluate the performance of the whole model including

the active learning strategy on Opp data. The evaluation of CRBM-OSC-BSAL515
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Table. 10 Classification performance for locomotion activities (5%)

Subject Method AA Stand Walk Lie Sit ACA
CRBM-OSC-BSAL(%) 93 88 90.1 93.2 99.3 92.7
CRBM-OSC(%) 96 95.7 91.4 98.4 99.8 96.3

S2 STAR(%) 74.9 82.5 50.1 89.9 47.3 67.5
DT(%) 89.5 89.8 78.9 89.7 96.5 88.7
SVM(%) 91.2 90.1 79.6 99.3 99.6 92.2
CRBM-OSC-BSAL(%) 86 88 81.5 98.3 84.2 88
CRBM-OSC(%) 95.2 96.2 92.1 98.3 96.5 95.8

S3 STAR(%) 68.6 87 44.3 86.1 7.2 56.2
DT(%) 83.6 86.1 74.8 97.9 89.3 87
SVM(%) 85 93.7 60.4 99.9 96.4 88.1
CRBM-OSC-BSAL(%) 91.4 91.8 85.4 92.9 97.9 92
CRBM-OSC(%) 94.2 94.1 90.2 99.3 98.5 95.5

S4 STAR(%) 71.1 84.2 43.6 90 30.3 62
DT(%) 87.2 87.8 81.1 96 91.9 89.2
SVM(%) 88 93.4 67.1 99.9 98.3 89.7
CRBM-OSC-BSAL(%) 93.6 93.6 90.8 96.5 97.6 94.6

All CRBM-OSC(%) 96 95.7 94 98.7 98.4 96.7
DT(%) 83.3 94 56.6 96.9 88.6 84
SVM(%) 84.5 92 60.7 99.1 96.6 87.2

is based on a prequential methodology: each time we get an instance, first we

test it, and if we decide to incur the cost of its label, then we use it to train the

classifier [56]. The results are average over 30 runs. The parameters are set as

in Sec. 4.1. Results obtained in the previous section (Tab. 3 and Tab. 6) are

used for performance comparison.520

4.4.1. Locomotion

We compare the results obtained in Sec. 4.1.1 (Tab. 3) to the ones of CRBM-

OSC-BSAL with few queried data samples, around 5% for each subject. We

also compare against the online method STAR [46] (already discussed in Sec. 2)

which also queries 5% of the processed data. The results are shown in Tab. 10.525

CRBM-OSC-BSAL shows better average accuracy (AA) than all competi-

tors excluding CRBM-OSC. However, the AL strategy BSAL has reduced the

number of labelled samples from 50% to around 5% while leading to an average
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(over all datasets) of arround 4.3% less accuracy compared to CRBM-OSC.530

Figure. 3 Labelling rate along the stream of subject 2 (S2)

Figure. 4 Labelling rate along the stream of subject 3 (S3)

CRBM-OSC-BSAL significantly outperforms STAR which also employs an

AL strategy to query 5% of the data. Moreover, CRBM-OSC-BSAL outperforms

SVM and DT even though the percentage of labels used for training is 45%
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Figure. 5 Labelling rate along the stream of subject 4 (S4)

higher. Similar to the results presented in Sec. 4.1, the performance of CRBM-

OSC-BSAL is more significant when training is done on the datasets of all535

subjects. Hence, the proposed AL is capable of maintaining high performance

when data evolves more substantially. Note that BSAL is able to maintain

consistent performance across all activities. Indeed, the average class accuracy

(ACA) is still high even though number of labels is 45% less than the one

for CRBM-OSC. However, we can notice that ACA is not as better than AA540

as it is for CRBM-OSC. Though, this is normal as the number of labels has

dramatically decreased. Therefore, it is a strong point of BSAL to keep the

ACA high (even higher than AA) with few labels.

In order to visualize the behaviour of BSAL, we draw the prequential la-

belling rate as the data streams pass though CRBM-OSC-BSAL (see Fig. 3,545

Fig. 4 and Fig. 5). To smooth the curve, a fading factor of 0.999 is used to

compute the learning rate. Some observations on BSAL behaviour can be de-

duced from Fig. 3, Fig. 4 and Fig. 5. First, BSAL tends to query the activities

appearing for the first time, then the labelling rate falls down. For instance, the

labelling rate across lying and sitting activities is high when the activities first550

appear. In the second appearance of the same activities, the labelling rate is not
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Table. 11 Classification performance for gesture activities (5%)

Subject Method AA Open Open Close Close Open Close Open Close Open Close Open Close Open Close Clean Drink Toggle ACA
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher Drawer1 Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch

CRBM-OSC-BSAL(%) 85.2 81.3 55.8 77.1 96 96.8 76.5 89.7 90.9 95.7 86.7 95 96.8 96.6 95.4 94.4 77.9 97.9 82.6
S2 CRBM-OSC(%) 95 93.6 96 94.7 94.8 93.6 96.1 93.6 90.1 92.1 94.9 93.6 91.6 93.4 91.3 95 97.1 93.4 93.8

DT(%) 72.2 47.3 80.1 58.3 76.1 85.2 63.5 71.8 89.9 41.6 52.8 42.4 70.6 64.1 52 56.1 84 91.2 66.3
SVM(%) 95 91.8 82.3 83 94.4 95.9 74 90.5 99.2 90.9 94.7 81.4 82.7 98.4 93 97.6 99 97 90.9
CRBM-OSC-BSAL(%) 91.1 87.6 84.2 72.7 95.8 94.1 80.1 88.6 92.3 93.7 88.7 84.5 93.9 95.4 88.2 95.1 93 94.7 89.5

S3 CRBM-OSC(%) 94.4 93.3 95.4 92.3 92.3 94.6 94.2 93.9 94.2 94 95 93.2 92.5 93.9 95.2 92.5 96.2 92.8 93.9
DT(%) 66.6 33.5 19.3 73.3 89.1 86.3 35.2 77.8 84.7 58.3 81 4.5 37.1 62.3 73.9 60.5 79 97.6 65.6
SVM(%) 90.3 90.9 77.6 80.9 88.9 88.9 71.4 88.6 98.2 85.5 83.6 77.1 87.3 91.8 78.2 90 98.7 99 86.9
CRBM-OSC-BSAL(%) 85.6 77.7 53.9 57.5 91.7 92 53.5 85.1 87.5 84.3 73 62.7 88.9 83 84.8 91.9 97 90.5 79.7

S4 CRBM-OSC(%) 94.5 93.6 93.9 94 93.3 93.7 94.2 92.5 92.3 93.2 95.5 93.9 93.4 94.8 92.7 93.4 96.7 93.2 93.8
DT(%) 68.7 53.5 43.9 41.3 87.6 91.1 41.6 51 86.7 56.9 85.5 83.4 49 42.2 42.2 59.1 83.7 97.1 64.5
SVM(%) 91.8 93.2 91.4 82.6 85.4 91.1 83.1 79.7 98.5 88.9 89.6 86.4 87.6 90.2 92.5 84.6 99.5 99.5 89.6
CRBM-OSC-BSAL(%) 89.6 82.4 82.4 66 64.8 95.4 93.4 73.1 86.8 87.9 91 84 80.5 90 92.3 87 93.9 98 80.9

All CRBM-OSC(%) 94.9 92.5 93.9 94.6 94.1 94.6 94.7 93.3 93.5 93.2 94.7 94.7 93.7 94.8 95.2 93.6 93.9 97.2 94.3
DT(%) 57.1 24.2 18.9 61.6 81.8 86.6 46.4 46.4 43 21.6 84.7 33.1 42.2 30 38.4 47.8 75.9 85.7 51.1
SVM(%) 84.5 79.3 74.1 64.9 82.2 82.9 66.2 75.8 94.3 70.3 76.3 73.2 80.4 79.7 75.7 82.9 97 92.1 79.3

Table. 12 Classification performance for gesture activities (10%)

Subject Method AA Open Open Close Close Open Close Open Close Open Close Open Close Open Close Clean Drink Toggle ACA
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher Drawer1 Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch

CRBM-OSC-BSAL(%) 97.2 86.5 81.1 87.8 98.8 98.1 91.9 95.3 96.2 97.8 97.9 98.2 98.7 98.5 95.4 97.7 99.6 100 95.3
S2 CRBM-OSC(%) 95 93.6 96 94.7 94.8 93.6 96.1 93.6 90.1 92.1 94.9 93.6 91.6 93.4 91.3 95 97.1 93.4 93.8

DT(%) 72.2 47.3 80.1 58.3 76.1 85.2 63.5 71.8 89.9 41.6 52.8 42.4 70.6 64.1 52 56.1 84 91.2 66.3
SVM(%) 95 91.8 82.3 83 94.4 95.9 74 90.5 99.2 90.9 94.7 81.4 82.7 98.4 93 97.6 99 97 90.9
CRBM-OSC-BSAL(%) 94 90.2 86.8 75.6 95.7 95.5 82.4 91 94 94.5 92.1 83.4 95.1 96.5 91 95.4 98.8 94.9 91.4

S3 CRBM-OSC(%) 94.4 93.3 95.4 92.3 92.3 94.6 94.2 93.9 94.2 94 95 93.2 92.5 93.9 95.2 92.5 96.2 92.8 93.9
DT(%) 66.6 33.5 19.3 73.3 89.1 86.3 35.2 77.8 84.7 58.3 81 4.5 37.1 62.3 73.9 60.5 79 97.6 65.6
SVM(%) 90.3 90.9 77.6 80.9 88.9 88.9 71.4 88.6 98.2 85.5 83.6 77.1 87.3 91.8 78.2 90 98.7 99 86.9
CRBM-OSC-BSAL(%) 94.2 88.2 86.9 82.3 96.3 95.1 84.8 93.9 93.9 93 89 85.7 96.1 94.5 96.2 94.8 98.9 94.4 92

S4 CRBM-OSC(%) 94.5 93.6 93.9 94 93.3 93.7 94.2 92.5 92.3 93.2 95.5 93.9 93.4 94.8 92.7 93.4 96.7 93.2 93.8
DT(%) 68.7 53.5 43.9 41.3 87.6 91.1 41.6 51 86.7 56.9 85.5 83.4 49 42.2 42.2 59.1 83.7 97.1 64.5
SVM(%) 91.8 93.2 91.4 82.6 85.4 91.1 83.1 79.7 98.5 88.9 89.6 86.4 87.6 90.2 92.5 84.6 99.5 99.5 89.6
CRBM-OSC-BSAL(%) 91.4 84.6 87.6 69 74 96 95.4 76.7 90.5 92.4 93.4 83.2 83.9 91.8 94.3 87.7 94.6 98.4 88

All CRBM-OSC(%) 94.9 92.5 93.9 94.6 94.1 94.6 94.7 93.3 93.5 93.2 94.7 94.7 93.7 94.8 95.2 93.6 93.9 97.2 94.3
DT(%) 57.1 24.2 18.9 61.6 81.8 86.6 46.4 46.4 43 21.6 84.7 33.1 42.2 30 38.4 47.8 75.9 85.7 51.1
SVM(%) 84.5 79.3 74.1 64.9 82.2 82.9 66.2 75.8 94.3 70.3 76.3 73.2 80.4 79.7 75.7 82.9 97 92.1 79.3

triggered. Second, long lasting activities are infrequently queried which main-

tains the performance over evolving streams. Third, we notice that sometimes

the labelling rate across standing activity suddenly grows. Such behaviour may

be caused by the gesture activities which are usually performed while the user555

is standing. Hence, BSAL expects change or emergence in the activities leading

to an increase in the labelling rate. Walking activity is peculiar because it is

the most frequent and prone to change more than the others. However, when it

lasts for considerable duration, labelling rate decreases.

4.4.2. Gestures560

We compare the results obtained in Sec. 4.1.2 to the ones of CRBM-OSC-

BSAL with few queried data samples, around 5% for each subject (see Tab. 11).

33



Table. 13 Classification performance on WISDM (10%)

Method AA Walking Jogging Upstairs Downstairs Sitting Standing ACA
OSC-BSAL (%) 87.8 92.3 92.9 72.8 62.2 86.2 81.6 81.3
OSC (%) 88.1 95.2 93.4 69.3 64.9 86.5 75.9 80.9
DT(%) 74,8 88 93.1 17.7 22.2 93.8 79.3 65.68
SVM(%) 84.4 96.1 99.1 47 28.4 96.1 91.5 76.36

Although, CRBM-OSC-BSAL uses only 5% labels for a relatively high num-

ber of activities, its AA for S3 is better than the one of SVM and DT which use

50% labels. SVM outperforms CRBM-OSC-BSAL for S2 and S4, but at the cost565

of high labelling (45% more labels). Nevertheless, CRBM-OSC-BSAL shows

better AA results when the datasets of all subjects are used. This highlights

BSAL’s ability to maintain high performance under more aggressive changes.

Predictably, CRBM-OSC-BSAL’s ACA drops in comparison with CRBM-

OSC’s ACA as the number of labels has dramatically decreased. In addition,570

the relatively large number of activities makes it harder to maintain consistent

high accuracy across all activities. Thus, we run another experiment with 10%

of the data samples queried (see Tab. 12). It can be seen that CRBM-OSC-

BSAL’s ACA surpasses the one of SVM and DT that are trained with 40%

more data. Furthermore, CRBM-OSC-BSAL’s ACA becomes comparable to575

CRBM-OSC’s. We can also notice that AA has improved and CRBM-OSC-

BSAL outperforms SVM and DT for all subjects and has almost the same AA

as CRBM-OSC trained with 40% more data.

4.5. Active learning performance on WISDM data

In this section, we evaluate the performance of OSC-BSAL On WISDM data.580

We take the same evaluation setting as in the previous section (see Se. 4.4). We

compare the results obtained in Sec. 4.2 (Tab. 8) to the ones of OSC-BSAL with

few queried data samples, around 10%. The results are shown in Tab. 13.

OSC-BSAL shows better average accuracy (AA) than all competitors exclud-

ing OSC. However, the AL strategy BSAL has reduced the number of labelled585

samples from 50% to around 10% while leading to an average (over all datasets)

of arround 0.3% less accuracy compared to OSC. OSC-BSAL outperforms SVM
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Table. 14 Classification performance on SCMA (10%)

Subject Method AA Working Standing Up, Walking Standing Walking Going Up Walking and Talking ACA
at Computer and Going up\down stairs \Down Stairs Talking with Someone while Standing

OSC-BSAL (%) 99.92 99.93 99.65 99.24 99.99 99.55 99.89 99.99 99.75
S1 OSC (%) 99.99 99.99 99.79 99.95 99.99 99.84 99.89 99.99 99.92

DT(%) 98.8 99.99 99.1 92.9 97.2 91.7 99.1 99.99 97.1
SVM(%) 93.87 99.7 10.1 60.7 94.3 75.3 30.2 99.89 67.1
OSC-BSAL (%) 99.94 99.99 99.87 99.71 99.99 99.99 99.97 99.99 99.93

S2 OSC (%) 99 99.99 99.94 99.96 99.99 99.89 99.98 99.99 99.96
DT(%) 99.6 99.99 98 98.2 99.9 99.99 99.7 99.99 99.39
SVM(%) 83.41 99.99 81.5 46.5 75.2 9.4 99.99 99.99 73.2
OSC-BSAL (%) 99.6 99.97 99.99 91.47 99.99 99.25 99.76 99.97 98.62

S3 OSC (%) 99.98 99.99 99.98 99.79 99.98 99.92 99.92 99.99 99.93
DT(%) 99.79 99.99 97.9 99 99.99 99.5 98.9 99.99 99.32
SVM(%) 93.55 99.99 89.2 19.3 99.99 62.3 12.9 99.3 69
OSC-BSAL (%) 99.88 99.97 99.89 99.14 99.99 99.7 99.8 99.6 99.73

All OSC (%) 99.98 99.99 99.92 99.94 99.98 99.92 99.93 99.98 99.95
DT(%) 75.69 96.3 12.8 42.5 75.7 15.1 12.8 83.3 59.17
SVM(%) 51.98 59.2 17.2 14.3 19.3 13.7 16.9 98.6 34.2

and DT even though the percentage of labels used for training is 40% higher.

Note that BSAL is able to maintain consistent performance across all activities.

Indeed, the average class accuracy (ACA) is the highest even though number of590

labels is 40% less than the one for OSC, DT and SVM.

4.6. Active learning performance on SCMA data

In this section, we evaluate the performance of OSC-BSAL On SCMA data.

We take the same evaluation setting as in the previous section (see Se. 4.4).

We compare the results obtained in Sec. 4.3 (Tab. 9) to the ones of OSC-BSAL595

with few queried data samples, around 10%. The results are shown in Tab. 14.

Similar to previous experiments, OSC-BSAL shows good performance compared

to the competitors knowing that only 10% of the data is labeled. Similar to the

results presented in Sec. 4.1, the performance of OSC-BSAL is more significant

when training is done on the datasets of all subjects. Hence, the proposed AL is600

capable of maintaining high performance when data evolves more substantially.
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5. Conclusion and future work

In this paper, we proposed a new learning model composed of a feature

extractor (CRBM), an online semi-supervised classifier (OSC) and an active605

learning algorithm (BSAL) to cope the challenges of human activity recogni-

tion from data streams in the smart-home setting. CRBM helps overcome the

weary features hand-crafting by learning generic features from unlabelled high-

dimensional sensory input. OSC online learns the human activities from stream

of generic features. BSAL queries the activities that are expected to bring610

crucial information for OSC. Experimental results on real-world activity recog-

nition datasets showed the effectiveness of the proposed model. It is worthwhile

to point out that the proposed model can be used for different applications

where there exists sequential dependency in the data.

In the future, we foresee four directions for research to improve the obtained615

results and provide more features: (i) different features extraction can be inves-

tigated such as Conditional Random Fields (CRFs). We will also seek to unify

the training of the feature extraction with OSC-BSAL and accommodate the

feature extractor pre-training step into the online setting. (ii) Improve the on-

line learning model to consider co-occurring activities, infer the activity length620

and performs segmentation. (iii) Investigating Bayesian approach to unify the

budget control the Bayesian AL. (iiii) Exploit the proposed model in new ap-

plications such as industrial maintenance.
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Appendix A. Conditional Restricted Boltzmann Machine

CRBM [25] is a non-linear generative model for time-series that uses an795

undirect model with binary latent variables, h, connected to visible variables,

v. Unlike Hidden Markov models (HMMs) which rely on a single discrete K-

state multinomial, CRBM allows for distributed binary representations for its

hidden states. For, example, to model N bits of information about the past

history, HMMs require 2N hidden states, while CRBM only needs N binary800

latent variables. Linear dynamical systems are models with distributed hidden

state, but, they cannot model the complex non-linear dynamics in the high-

dimensional sensory input.

CRBM is a temporal extension of restricted Boltzmann machines (RBM).

Typically, RBM uses binary units for both visible and hidden variables. But the

sensory input in our data is continuous; therefore, we use real-valued Gaussian

input units. CRBM has a layer of visible units which resembles to autoregressive

model and a layer of hidden units. The visible variables v and hidden variables

h in the current time slice receive directed connections from the visible variables

at the previous few time slices. Also, there are undirected connections between

layers at the current time slice like in RBM. Figure A.6 shows a CRBM example

with two layers, where the temporal order of the one at the bottom (r1) is 2 and

for the one in the top (r2) is 1. CRBM defines a joint probability distribution

over v and h, conditional on the past n observations and model parameters Φ:

p(v,h|{v}t−1
t−n,Φ) ∝ exp(−E(v,h|{v}t−1

t−n,Φ))

E(v,h|{v}t−1
t−n,Φ) =

∑
i

(vi − bi)2

2σ2
i

−
∑
j

hjbj −
∑
ij

φij
vi
σi
hj (A.1)

where σi is the standard deviation of the Gaussian noise for visible unit i. Like

in [25], it is set to one after rescaling the data to have zero mean and unit vari-805

ance. The dynamic biases, bi, bj , are affine functions of the past n observations.

The parameter φij is a weight between elements vi and hj . The undirected

connections between the hidden and visible variables in the current layer (time
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Figure. A.6 Feature Extractor Architecture (r1 = 2, r2 = 1)

Table. A.15 CRBM’s parameters

CRBM layers input dimension output dimension temporal order
layer 1 113 150 8
layer 2 150 200 0
layer 3 200 10 0

t) makes the inference easy because the hidden units become conditionally in-

dependent when the visible units are observed. The training is, therefore, easily810

done by minimizing contrastive divergence (for more details see [25]).

A crucial characteristic of CRBM is that we can add layers like in Deep

Belief Networks [63]. All layers in the CRBM architecture are trained similarly

but sequentially. As more layers are added, CRBM can model higher-level

features. In this paper, we use only two layers to retain the low-level inter-815

features correlations at a lower training computational cost.

Before running experiments, we set up CRBM by training it on the Opp data.

To ensure the independence between the online learning and feature extraction,

the CRBM model for each subject is built from unlabelled data of all other

subjects (all subjects except the one on which the current online learning is820

evaluated). We study the impact of different CRBM’s parameter settings. The

number of layers is fixed to 3 with the dimension of the last layer is set to 10
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(dim3 = 10). The effect of the CRBM parameters effect (number of layers,

dimensions and temporal orders) is studied and the parameters that give the

best performance are chosen. The first and second layers’ dimensions are set to825

dim1 = 150 and dim2 = 200 respectively, the temporal orders are set to r1 = 8,

r2 = 0 and r3 = 0 (see Tab. A.15). In order to demonstrate what CRBM has

learned about the structure of the data, we feed the trained CRBM with a data

segment consisting of 22000 samples from subject 3 (S3) and plot the results.

Figure A.7 is a gray-scale image showing the probability of the binary fea-830

tures extracted by the first layer. In Figure A.8, the features extracted by the

second layer is shown with a ribbon of different colours which illustrates some

class labels of the activities through time. We can notice a regular output pat-

tern for each activity. It can also be seen that the regularity of the features

obtained by the second layer (Fig. A.8) is sharper and less noisy than those835

obtained by the first layer (Fig. A.7). Hence, features become more discrimina-

tive. To visualize the data samples in the features space, we set the last layer’s

dimensions to 2 and plot the output in Fig. A.9. The data samples representing

standing activity often overlap with the other activities especially walking. A

potential explanation is that most transitions are from standing to walking. Be-840

sides, the gesture activities (not plotted) are usually performed while the user is

standing. Thus, the standing activity region in the feature space gets expanded

towards other activities’ regions.
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Figure. A.7 Layer 1

Figure. A.8 Layer 2
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Figure. A.9 Layer 3

Appendix B. Dirichlet process

DP is one of the most popular prior used in Bayesian non-parametric mod-845

elling. It was first use by the machine learning community in [64, 65]. In general,

stochastic process is probability distribution over a space of paths which describe

the evolution of some random value over time. DP is a family of stochastic pro-

cesses whose paths are probability distributions. It can be seen as an infinite-

dimensional generalization of Dirichlet distribution. In the literature, DP has850

been constructed with different ways, the most well-known constructions are:

infinite mixture model [65], distribution over distribution [66], Polya-urn scheme

[67] and stick-breaking [68]. For more details, interested reader is referred to [19].

Figure B.10 shows two graphical models, DP mixture model and the finite

mixture model with a number of clusters L which becomes an infinite mixture

model when L goes to ∞. Infinite mixture model is simply a generalization
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(a) DP mixture model (b) Finite mixture model

Figure. B.10 Graphical model

of the finite mixture model, where DP prior with infinite parameters is used

instead of Dirichlet distribution prior with fixed number of parameters. The

finite mixture model can be represented by the following equations:

π|α0 ∼ Dirichlet(α0/L, ..., α0/L)

zi|π ∼ Discrete(π1, ..., πL)

θk|G0 ∼ G0

xi|zi,θ ∼ F (θzi) (B.1)

F (θzi) denotes the distribution of the observation xi given θzi, where θzi is

the parameter vector associated with component zi. Here zi indicates which

latent cluster is associated with observation xi. Indicator zi is drawn from a

discrete distribution governed by parameter π drawn from Dirichlet distribu-

tion parametrized by α0. We can simply say that xi is distributed according

to a mixture of components drawn from prior distribution G0 and picked with

probability given by the vector of mixing proportions π. The model repre-

sented by Eq.(B.1) above is a finite mixture model, where L is the fixed number

of parameters (components). The infinite mixture model can be derived by

letting L→∞, then π can be represented as an infinite mixing proportion dis-

tributed according to stick-breaking process GEM(α0) [68]. Thus, Eq.(B.1) can
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be equivalently expressed according to the graphical representation as follows:

G|α0, G0 ∼ DP (G0, α0)

θi|G ∼ G

xi|θi ∼ F (θi) (B.2)

where G =
∑∞
k=1 πkδθi is drawn from the DP prior. δθi is a Dirac delta function

centred at θi. Technically, DP is a distribution over distributions [66], where

DP (G0, α), is parametrized by the base distribution G0, and the concentration

parameter α. Since DP is distribution over distributions, a draw G from it is a

distribution. Thus, we can sample θi from G. Back to Eq.(B.1), by integrat-

ing over the mixing proportion π, we can write the prior for zi as conditional

probability of the following form [69]:

p(zi = c|z1, ..., zi−1) =
n−ic + α0/L

i− 1 + α0
(B.3)

where n−ic is the number of data samples excluding xi that are assigned to

component c. By letting L go to infinity we get the following equations:

p(zi = c|z1, ..., zi−1)→ n−ic
i− 1 + α0

p(zi 6= zj for all j < i|z1, ..., zi−1)→ α0

i− 1 + α0
(B.4)

For an observation xi with zi 6= zj for all j < i, a new component is created855

with indicator zi = cnew. For more details about the process of obtaining the

prior distribution, the reader is referred to [69].
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Appendix C. Notations

Symbol Description
xt data input at time t
yt data label at time t
π a draw from stick-breaking process
α stick-breaking process hyper-parameter
G0 is a Normal-Inverse-Wishart distribution
zt an indicator of the component (cluster) generating xt
Dt the previously seen data samples up to time t along with their labels if provided
ni,j,t is the number of data samples labeled i and assigned to component j at time t
θ a component parameters
sj,t is the sufficient statistics (i.e., mean and scatter matrix) of component j at t
suj,t mean of data samples in component j at time t
cuj,t scatter matrix of data samples in component j at time t
Ht a state vector that summarizes the data seen up to time t
mt the number of components at time t
P maximum allowed number of particles

w
(i)
t weight of particle i at time t

λ memory factor
Ct the set of the labels of all existing classes at time t
Ω set of variables that can be fully random or include some random elements
L loss function
R Risk

R̂ expected Risk
Q set of binary variable
ψ model parameters
X set of data samples
Y set of data labels

∆̂ difference between the current risk and the current expected risk
ft number of labelled instances at time t
XLt set of labelled data samples seen up to time t
bt budget spent up to time t
Xt set of data samples seen up to time t
Bd a constant represents the maximum allowed budget
Labt a binary variable to indicate whether the data sample at time t is labelled or not
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Appendix D. Computation of Eq. (1)

p(yt|xt, Dt−1) ∝ p(xt|yt, Dt−1)p(yt|Dt−1) (D.1)

p(yt|Dt−1) ∝

nyt,:,t yt is an existing class

α2 yt is a new class

(D.2)

where nyt,:,t is the number of data samples labeled yt at time t regardless of the

components. The ’:’ denotes all the components.

p(xt|yt, Dt−1) =
∑
z1:t−1

p(xt|yt, z1:t−1, Dt−1)p(z1:t−1|yt, Dt−1) (D.3)

p(xt|yt, z1:t−1, Dt−1) =
∑
zt

p(xt|yt, zt, z1:t−1, Dt−1)p(zt|yt, z1:t−1, Dt−1) (D.4)

p(z1:t−1|yt, Dt−1) ∝ p(yt|Dt−1)p(z1:t−1|Dt−1) (D.5)

We use z1:t to denote the sequence {z1, z2, ..., zt}. The first term of Eq. (D.4)

can be computed as follows:

p(xt|yt, zt, z1:t−1, Dt−1) =

∫
θ

p(xt|θ, zt)p(θ|zt, z1:t−1, Dt−1) (D.6)

If zt refers to a new component, p(θ|zt, z1:t−1, Dt−1) becomes equivalent to the

prior distribution p(θ|G0). Otherwise, zt refers to an already existing compo-

nent. Then, p(θ|zt, z1:t−1, Dt−1) becomes equivalent to p(θ|szt,t−1, nzt,t−1, z1:t−1),

where szt,t−1 = {suzt,t−1, sczt,t−1} is the sufficient statistics (i.e., mean and

scatter matrix respectively) defined as.

suzt,t−1(z1:t−1) =

∑
zi=zt,i<t

xi

nzt,t−1

sczt,t−1(z1:t−1) =
∑

zi=zt,i<t

(xi − suzt,t−1)(xi − suzt,t−1)T (D.7)

where nzt,t−1 is the number of data samples which have been assigned to com-
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ponent zt until time t − 1. Equation (D.6) can be solved given the sufficient

statistics, the past assignments and the model hyper-parameters. More details

can be found in Appendix E. The second term of Eq. (D.4) can be written as

follows:

p(zt|yt, z1:t−1, Dt−1) = p(zt|{zi}yi=yt,i<t) (D.8)

Similar to Eq. (D.6), the solution is as follows:

p(zt|{zi}yi=yt,i<t) ∝

nyt,zt,t zt is an existing component

α1 zt is a new component

(D.9)

where nyt,zt,t is the number of data samples labeled yt and assigned to compo-860

nent zt at time t.

The second term in Eq. (D.5), p(z1:t−1|Dt−1), is the probability of the dif-

ferent configurations. Such configurations determine the different statistics rep-

resented by Ht. Thus, p(Ht−1|Dt−1) has the same probability as the posterior

p(z1:t−1|Dt−1). p(Ht−1|Dt−1) is outlined and developed in Eq. 2.865

Appendix E. Computation of Eq. (D.6)

• If zt refers to a new component:

p(xt|yt, z1:t, Dt−1) =

∫
θ

p(xt|θ)p(θ|G0) = tv1(xt|µ1,Σ1) (E.1)

where t refer to student’s t-distribution resulting from using a conjugate

prior (i.e., the Normal Inverse Wishart prior) over the normal distribution

parameter θ.

µ1 = µ0 (E.2)

Σ1 =
Σ0(k0 + 1)

k0(v0 − d+ 1)
(E.3)

v1 = v0 − d+ 1 (E.4)
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where d is the dimension of the data.

• If zt refers to an existing component, then:

p(xt|yt, z1:t, Dt−1) =

∫
θ

p(xt|θ)p(θ|szt,t−1(z1:t−1), nzt,t−1)

= tv2(xt|µ2,Σ2) (E.5)

where:

µ2 =
k0

k0 + nzt,t−1
µ0 +

nzt,t−1

k0 + nzt,t−1
suzt,t−1 (E.6)

Σ2 =
1

(k0 + nzt,t−1)(v0 + nzt,t−1 − d+ 1)

(
Σ0 + sczt,t−1+

k0nzt,t−1

k0 + nzt,t−1
(suzt,t−1 − µ0)(suzt,t−1 − µ0)T

)
(k0 + nzt,t−1 + 1) (E.7)

and

v2 = v0 + nzt,t−1 − d+ 1 (E.8)

Appendix F. Computation of Eq. (19)

After marginalizing out the Gaussian and the stick-breaking components,

ψt becomes equivalent to z1:t. Thus, the discrepancy between the current risk

and the current expected risk can be written as follows:

∆̂(xt, yt|Dt−1, qt) = R(p(z1:t|Dt−1,xt), ẑ1:t)− R̂(p(z1:t|Dt−1,xt, yt), ẑ1:t; qt)

(F.1)
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R(p(z1:t|Dt−1,xt), ẑ1:t) = Ez1:t∼p(z1:t|Dt−1,xt)[L(z1:t, ẑ1:t)]

=
∑
z1:t

p(z1:t|Dt−1,xt)L(z1:t, ẑ1:t) (F.2)

Given that the data instance at time t is queried (qt = 1), the current expected

risk can presented as follows:

R̂(p(z1:t|Dt−1,xt, yt), ẑ1:t; qt = 1) =
∑
yt

p(yt|Dt−1,xt)R(p(z1:t|Dt−1,xt, yt), ẑ1:t)

(F.3)

To compute Eq. (F.1), both Eq. (F.2) and Eq. (F.3) must be solved. Given

that the loss function in Eq. (F.2) is solved, the computation of Eq. (F.2) and

Eq. (F.3) is straightforward. Thus, we start by the loss function which can be

written as follows:

L(z1:t, ẑ1:t) = A−B (F.4)

where:

A =
∑
y

∫
x

p(x, y|Dt, z1:t) log
(
p(x, y|Dt, z1:t)

)
dx (F.5)

B =
∑
y

∫
x

p(x, y|Dt, z1:t) log
(
p(x, y|Dt, ẑ1:t)

)
dx (F.6)

A = A1 +A2 (F.7)

where

A1 =
∑
y

log
(
p(y|Dt, z1:t)

)
p(y|Dt, z1:t)

∑
z

p(z|y, z1:t, Dt)∫
x

∫
θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθdx (F.8)
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The integral over θ leads to a t-student distribution as shown in Eq. (D.6).

Hence,

A1 =
∑
y

log
(
p(y|Dt, z1:t)

)
p(y|Dt, z1:t) (F.9)

where the terms of Eq. (F.9) are already computed in Eq. (D.2).

A2 =
∑
y

p(y|Dt, z1:t)
∑
z

p(z|y, z1:t, Dt)

∫
x

∫
θ

p(x|z,θ)

p(θ|z,Dt, z1:t)dθ log

(∑
z

p(z|y, z1:t, Dt)∫
θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθ

)
dx (F.10)

Similarly, we compute B:

B = B1 +B2 (F.11)

B1 =
∑
y

log
(
p(y|Dt, ẑ1:t)

)
p(y|Dt, z1:t)

∑
z

p(z|y, z1:t, Dt)∫
x

∫
θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθdx (F.12)

B1 =
∑
y

log
(
p(y|Dt, ẑ1:t)

)
p(y|Dt, z1:t) (F.13)

B2 =
∑
y

p(y|Dt, z1:t)
∑
z

p(z|y, z1:t, Dt)

∫
x

∫
θ

p(x|z,θ)

p(θ|z,Dt, z1:t)dθ log

(∑
z

p(z|y, ẑ1:t, Dt)∫
θ

p(x|z,θ)p(θ|z,Dt, ẑ1:t)dθ

)
dx (F.14)
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Given that

Q1(x) =
∑
z

p(z|y, z1:t, Dt)

∫
θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθ

Q2(x) =
∑
z

p(z|y, ẑ1:t, Dt)

∫
θ

p(x|z,θ)p(θ|z,Dt, ẑ1:t)dθ

g(x) = log
Q1(x)

Q2(x)
(F.15)

A2 −B2 can be written as follows:

A2 −B2 =
∑
y

p(y|Dt, z1:t)

∫
x

Q1(x)g(x)dx =

∑
y

p(y|Dt, z1:t)
∑
z

∫
x

p(z|y, z1:t, Dt)t(x|z,Dt, z1:t)g(x)dx (F.16)

where t(x|.) refers to student’s t-distribution. We can approximate each term in

this sum with a second order Taylor series expansion of g(x) around the means

µz ≡ µ(z,z1:t,Dt) of the student’s t-distribution’s components:

g(x) ≈ ĝµz
(x) = g(µz) +∇g(µz)(x− µz) +

1

2
(x− µz)T∇2g(µz)(x− µz)

(F.17)

where ∇g and ∇2g are the gradient and the Hessian matrix of the second deriva-

tives. Hence, Eq. (F.16) can be written as follows:

A2 −B2 =
∑
y

p(y|Dt, z1:t)
∑
z

p(z|y, z1:t, Dt)

(
g(µz) +

1

2
tr
(
∇2g(µz)

vz
vz − 2

Σz

))
(F.18)

where vz and Σz are the degree of freedom and the covariance matrix of the

student’s t-distribution’s component determined by z. This approximation is

known as the multivariate delta method for moments [70]. Finally, the loss
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function in Eq. (F.4) can be written as follows:

L(z1:t, ẑ1:t) =
∑
y

p(y|Dt, z1:t)

[
log

p(y|Dt, z1:t)

p(y|Dt, ẑ1:t)
+

∑
z

p(z|y, z1:t, Dt)

(
g(µz) +

1

2
tr
(
∇2g(µz)

vz
vz − 2

Σz

))]
. (F.19)

The current risk in Eq. (F.2) can be easily computed by replacing the loss func-

tion with its solution in Eq. (F.19). Thus, the current expected risk in Eq. (F.3)870

can be computed by replacing the current risk with its solution. Hence, the

discrepancy between the current risk and the current expected risk in Eq. (F.1)

is solved.

Appendix G. Sampling precision hyper-parameters

The authors in [57] show that the precision parameter in a DP mixture model

α is conditionally independent of the data given the number of distinct compo-

nents m and the size of the data, n = eTne. Let α ∼ G(a, b), a gamma prior

with shape a and scale b which are both fixed to 1. The posterior distribution

of α can be written as follows:

p(α|m,n) ∝ p(α)p(m|α, n) (G.1)

According to [71], the likelihood in Eq. (G.1) may be written as:

p(m|α, n) = cn(m)n!αk
Γ(α)

Γ(α+ n)
(G.2)

where cn(m) = p(m|α = 1, n) does not involve α. In this case, Eq. (G.1) can be

expressed as mixture of two gamma posteriors [57].

(α|η,m) ∼ πηG(a+m, b− log(η)) + (1− πη)G(a+m− 1, b− log(η)) (G.3)

(η|α,m) ∼ B(α+ 1, n) (G.4)

πη
1− πη

=
a+m− 1

n(b− log(η))
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where B denotes the beta distribution, η is an auxiliary variable used in the875

sampling. To infer the distribution over α, Gibbs sampling iterations go as

follows; First η is sampled from Eq. (G.4) conditional on the most recent value

m and α. Second, α is sampled from Eq. (G.3) conditional on the already

sampled η and the same m. The number of components can be deduced from

the configuration variables.880

To apply this sampling approach online on OSC model, we must sample for

each class-specific mixture model, c, its corresponding, precision parameter α1c,

number of components m1c and auxiliary variable η1c. The set of parameters

related to the class distribution, α2, m2 and η2 must be sampled too. Further-

more, sampling must be done online. That is, once the data is processed, it is885

discarded. Thus, unlike offline Gibbs sampling, one set of precision parameters

{αnew2 , αnew11 , ..., αnew1m2
} is sampled in each iteration. The precision parameters

are independent given the class label. Hence, they can be sampled independently

using the same sampling routine described in [57].

Algorithm 2 Precision Parameters Sampling

1: function HypSamp({Hi
t , w

i
t}Pi=1, {α2, α1i}m2

i=1a, b)

2: Sample a particle: h ∼
∑P
i=1 w

(i)
t δ(Ht −H(i)

t )
3: Derive {m2,m11, ...,m1m2

} from h
4: Sample {η2, η11, ..., η1m2

}
(
Eq. (G.4)

)
5: Sample {αnew2 , αnew11 , ..., αnew1m2

}
(
Eq. (G.3)

)
6: Return {αnew2 , αnew11 , ..., αnew1m2

}
7: end function
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