Extended corner symmetry, charge bracket and Einstein’s equations - Archive ouverte HAL
Article Dans Une Revue Journal of High Energy Physics Année : 2021

Extended corner symmetry, charge bracket and Einstein’s equations

Laurent Freidel
  • Fonction : Auteur
Roberto Oliveri
  • Fonction : Auteur
Daniele Pranzetti
  • Fonction : Auteur
Simone Speziale

Résumé

We develop the covariant phase space formalism allowing for non-vanishing flux, anomalies, and field dependence in the vector field generators. We construct a charge bracket that generalizes the one introduced by Barnich and Troessaert and includes contributions from the Lagrangian and its anomaly. This bracket is uniquely determined by the choice of Lagrangian representative of the theory. We then extend the notion of corner symmetry algebra to include the surface translation symmetries and prove that the charge bracket provides a canonical representation of the extended corner symmetry algebra. This representation property is shown to be equivalent to the projection of the gravitational equations of motion on the corner, providing us with an encoding of the bulk dynamics in a locally holographic manner.

Dates et versions

hal-03224691 , version 1 (11-05-2021)

Identifiants

Citer

Laurent Freidel, Roberto Oliveri, Daniele Pranzetti, Simone Speziale. Extended corner symmetry, charge bracket and Einstein’s equations. Journal of High Energy Physics, 2021, 09, pp.083. ⟨10.1007/JHEP09(2021)083⟩. ⟨hal-03224691⟩
103 Consultations
0 Téléchargements

Altmetric

Partager

More