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Abstract—The performance of speaker recognition systems 

reduces dramatically in severe conditions in the presence of 

additive noise and/or reverberation. In some cases, there is only 

one kind of domain mismatch like additive noise or reverberation, 

but in many cases, there are more than one distortion. Finding a 

solution for domain adaptation in the presence of different 

distortions is a challenge. In this paper we investigate the 

situation in which there is none, one or more of the following 

distortions: early reverberation, full reverberation, additive noise. 

We propose two configurations to compensate for these 

distortions. In the first one a specific denoising autoencoder is 

used for each distortion. In the second configuration, a denoising 

autoencoder is used to compensate for all of these distortions 

simultaneously. Our experiments show that, in the co-existence of 

noise and reverberation, the second configuration gives better 

results. For example, with the second configuration we obtained 

76.6% relative improvement of EER for utterances longer than 12 

seconds. For other situations in the presence of only one 

distortion, the second configuration gives almost the same results 

achieved by using a specific model for each distortion. 

Keywords— additive noise, early reverberation, full 

reverberation, x-vector, denoising autoencoder 

I. Introduction 

In recent years, deep neural networks became the most 
commonly used approach for speaker modeling [1, 2]. 
Although DNN-based speaker recognition systems 
outperform their previous statistical systems such as i-vector, 
still their performance degrades in the presence of acoustic 
distortions, such as reverberation and additive noise. Using a 
huge amount of data makes the DNN based systems robust 
against noise and reverberation but in severe conditions the 
performance can degrade drastically [3]. Therefore, explicit 
denoising and dereverberation can make these systems more 
robust [4,5].  Approaches based on speech signal 
enhancement [6] and denoising techniques at the speaker 

modeling level are often proposed to reduce the impact of 
noise and reverberation on speaker recognition systems [7].  

In the previous work [4,7] we proposed several 
Denoising Autoencoders (DAE) to reduce the effect of 
additive noise in x-vector space. The proposed DAEs 
estimate the clean x-vector from the noisy version. In this 
paper we want to extend the application of proposed 
denoising techniques to other distortions like early and full 
reverberation. Another contribution of our work is 
proposing two configurations for five environments, where 
there is one or more of these distortions: additive noise, 
early reverberation, full reverberation. Using data 
augmentation with noise and reverberation in training the 
speaker embedding network and denoising techniques in 
signal level, feature level and speaker modeling level are 
common approaches to make the system robust against 
noise and reverberation.  It is important to specify that both 
strategies are important and none of them could be replaced 
by another one. Indeed, the proposed DAE tries to learn the 
relation between the x-vector affected by a given distortion 
and its clean version. Thus, it is a direct learning of the 
distortion effect, which would make the denoising system 
more efficient than multi-condition training [4]. The DAE 
uses more specific information about the distortion than 
what would be used in a data augmentation approach. 
Moreover, the DAE we propose is trained in x-vector 
space, which makes its training very quick, with respect to 
the x-vector extractor training. 

In this article the additive noise and reverberation are 
simulated. The artificial reverberation is applied using 
image model [8]. Obviously, the use of test data from a real 
environment is preferable. Unfortunately, we do not have 
such a database at the moment. However, the simulation 
model we used has proven that is effective in generating 
real data [9]. 

The paper is organized as follows. Section II reviews 
related works. Section III describes the two proposed 
configurations (specific and general DAE) for handling 
different distortions. Section IV is devoted to experimental 
setup, and Section V presents and discusses the results.  



II. Related works 

Despite significant advances, the performance achieved 
by speaker recognition systems degrades dramatically when 
they are used in real applications where channel mismatch as 
well as environmental additive noise and reverberation are 
present separately or simultaneously. Many efforts have 
been put into modeling and compensating these distortions 
throughout the years by working on different levels. 
Reducing the negative effect of noise and reverberation 
could be treated in signal level or higher-levels (i.e., speaker 
modeling level). 

In signal level, several works have been done to 
compensate for additive noise and/or reverberation. In [10] a 
system proposed for conditions in the presence of additive 
noise and reverberation. In this work, firstly the additive 
noise is removed through a binary masking estimated by a 
neural network. For reverberation the speaker model trained 
in reverberant condition. Also, some works are done at signal 
level to make the x-vector framework robust against noise 
and reverberation. In [11] LSTM and CNN networks are 
used to denoise the speech signal. The LSTM network is 
trained to reconstruct the clean log magnitude spectrum. The 
CNN network is used to denoise the short-time Fourier 
transform (STFT) magnitude spectrogram. The proposed 
LSTM with 20% to 30% relative improvement of EER, has 
given better results in comparison to other methods used in 
this research.  In [6] a denoising autoencoder is used for joint 
compensation of additive noise and reverberation in the x-
vector framework. In this research, the DAE reconstructs the 
clean version of the magnitude spectrum. In the best case a 
30% percent improvement of EER has been reported. In [12] 
several masking-based beamformers used for denoising and 
dereverberation. The MVDR Rank1 beamformer gave the 
best results for the real RIRs, and the GEVBAN has given 
the best results with simulated RIRs. A DNN that supports 
acoustic beamforming and dereverberation is used in the 
frontend of x-vector framework [13]. The joint training of 
this network and x-vector network has improved the 
performance of speaker recognition with 40% percent 
improvement of EER for simulated RIRs and 25% 
improvement for real RIRs. 

There are some works in speaker modeling level to 
compensate for a specific distortion. In [7], statistical i-map, 
and three derivations of denoising autoencoders presented to 
suppress the effect of additive noise in the x-vector domain. 
In [4] the importance of using denoising techniques 
alongside data augmentation was explored to make the x-
vector system robust against additive noise. The 66% relative 
improvement of EER in the x-vector domain shows that 
noise compensation in speaker modeling level is very 
effective for speaker recognition systems.   Siamese x-vector 
reconstruction was introduced in [5] to compensate for 
additive noise and sampling rate mismatch in the x-vector 
framework. It is shown that this technique is more effective 
to compensate sampling rate mismatch rather than additive 
noise. In the previous generation of speaker recognition 
systems (i.e., i-vector) the mapping from distorted to clean 

vectors is explored broadly.  i-MAP [14] and joint i-MAP 
[15] are two statistical techniques used for noise 
compensation in the i-vector framework. 

However, there is no specific research to compare the 
state-of-the-art techniques in signal level with speaker 
modeling level in the same experimental setup, the results 
reported by compensation techniques in speaker modeling 
level from previous works are more promising and working 
in speaker modeling level is easier than signal level. Also, 
the reviewed works done in speaker modeling level 
focused on one distortion. In the current paper we extend 
this approach for situations where there are different 
distortions.  

III. System configuration 

Our study will focus on 5 conditions and their 
combinations: Clean (D), additive Noise (N), Early 
reverberation (E), Full reverberation (F) and additive noise 
with Full reverberation (FN). 

The reverberation is the sum of sound reflections 
arrived at a single point inside an acoustical enclosure. 
Early reflections which are called early reverberation arrive 
between 50-100ms after the arrival of the direct signal. The 
full reverberation is the next echoes that arrives to listener 
with longer delays [16]. 

In the next sections, the DAE(N), DAE (E), DAE (F), 
DAE (FN), DAE (N+E+F+FN) stands for experiments that 
the input of denoising autoencoder is noisy x-vector data, 
early reverberated x-vector data, the full reverberated x-
vector data, the simultaneously noisy fully reverberated x-
vector data and finally a combination of x-vectors for all 
distortions. The output of the DAE is always the clean x-
vector data.   

In this paper we compare two approaches in handling 
multi-acoustic distortions. In the first approach, after the x-
vector network, a specific denoising autoencoder is used 
for each distortion. For clean x-vectors the scoring is done 
without passing them through a DAE. The details of this 
configuration are depicted in Figure 1. In this 
configuration, we assume that the type of distortion is 
known. We will show when the type of distortion is 
unknown, using a classifier can help to detect the kind of 
distortion automatically.  

In the second configuration depicted in Figure 2, the 
compensation for different distortions is done by using one 
single DAE. In this configuration like the specific 
compensation, there is clean speech, distorted speech with 
additive noise, early reverberation, full reverberation, 
additive noise and full reverberation. With this system, it is 
not necessary to have previous information about the kind 
of distortion. As it is shown in results, the denoising 
autoencoder learns to compensate all those distortions 
simultaneously. In the case of clean speech, we show that, 
without any change in the system and without having 



previous information about the environment, the denoising 
part does not have a negative effect on clean x-vectors. 

 

 
Figure 1. Using specific models for each distortion 

 

 
Figure. 2 General domain adaptation for different distortions  

 

A. Noise and reverberation data simulation 

To train the DAE for dereverberation or for denoising we 
need to have a set of x-vector pairs, distorted/clean. 
“Distortion” here corresponds to reverberation or additive 
noise. The reverberated version of the speech clips is 
obtained by convolving the original speech clips with room 
impulse responses (RIR) simulated with the 
pyroomacoustics1. The RIR were designed to simulate rooms 
whose dimensions are sampled randomly between 
[3m*4m*2.5m] and [6m*8m*3.5m]. The reverberation time 
for the rooms (RT$_60$) is drawn randomly between 
[200ms] and [600ms]. The microphone and the speech 
source are located at least 1m away from any wall. The 
microphone is at 0.5m height (to simulate a small robot on 
the floor) and the speech source height is drawn randomly in 
[1.6m, 1.9m] (to simulate a human standing). The distance 
between the speaker and the microphone is at least 1 meter. 
We generated 10000 RIR for training and 2000 RIR for the 

 
1 https://github.com/LCV/pyroomacoustics 

test. When considering only early reverberation the RIR is 
truncated to 50ms after the RIR first peak. When additive 
noise is present, the noise source clips are office noises 
collected from Freesound [17]. We collected 3275 clips for 
training and 1000 clips for the test. The training/test split is 
designed such that there is no overlap in terms of 
Freesound users between both the sets. The original noise 
clips are drawn randomly and convolved with a RIR from 
the same room as the speech clip. The noise source is 
located at least 1m away from any wall at a height of [1.6m, 
1.9m]. The noise files are added with random SNR between 
[0,10].  

IV. Experimental setup 

The x-vector network introduced in [1] was used to 
create x-vectors for train and test data. The x-vector 
network has been trained with Voxceleb1, Voxceleb2 [2] 
and one million utterances From Voxceleb 1 and Voxceleb 
2 augmented with different parts of Musan corpus (Noise, 
Babble, Speech) and real RIRs [18]. The x-vector extractor 
has been used to create clean, noisy and reverberant data to 
train DAE. The data simulation procedure is described in 
3.1.  

For each experiment firstly the reverberation and/or 
noise were added to Voxceleb2. Then pairs of 
distorted/clean x-vector were produced to train DAE. In the 
same manner, the data distorted for the test. In all cases the 
enrollment data is clean; because we assume that in real 
applications it is possible to have clean data for enrollment. 
In the experiments, we use deep stacked DAE introduced 
in [3]. The architecture (number of layers and neurons) is 
the same in all experiments. In the backend the cosine 
metric is used for scoring. 

The FABIOL corpus was used for test and enrollment. 
In FABIOL corpus there are 6992 files from 130 speakers. 
Form 130 speakers in FABIOL, for 100 speakers there is a 
small number of utterances. We used these speakers just in 
enrollment. The utterances belonging to the remaining 30 
speakers are randomly separated for the test and 
enrollment. In enrollment there are 3576 files and 3244 
files are used for the test. Because the duration of files in 
FABIOL corpus spans from very short to long, the test files 
are separated into seven groups for each two seconds. 

V. Results and discussions 

The results obtained in the presence of each distortion 
are summarized in Table 1. When we are in a clean 
environment without noise or reverberation, we show that 
the use of DAE(F+N) gives almost the same (sometimes 
better) results as the baseline system. This is an interesting 
property of the proposed approach.  If the x-vector belongs 
to the clean class, the scoring could be done directly. But 
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for general configuration presented in Fig 2, we don't care 
about the cleanness of the environment and even in the case 
of noise free and non-reverberant environments the test x-
vector will be passed through the DAE. When we apply the 
DAE trained on noisy x-vectors on clean x-vectors, the 
output is still almost identical to the input. It means that for 
noise and reverberation free environments the system could 
be used without any modification. 

In the case of additive noise, both specific models and 
general models were tested. As it is shown the results 
obtained by specific models are a little better. For example, 
for utterances longer than 12 seconds, the EER obtained by 
specific model is 1.91 but the EER obtained by general 

model is 2.23. For early reverberation and full 
reverberation distortions, the results obtained by general 
model for short segments are better than the specific model 
but the results obtained for longer utterances is almost the 
same. When there is additive noise and reverberation, in all 
cases the results achieved by the general model are better. 
For specific models the experiments are done directly 
without using a classifier. But to prove that it is possible to 
detect the type of distortion, we trained a feedforward 
neural network. The accuracy of the trained network is 
81%. Even if we had a distortion classifier with 100% 
accuracy, the results show that it's better to use a general 
DAE instead of using a specific DAE for each distortion. 

 

 

Table 1. The results obtained for different distortions (EER) 

Environment Duration (seconds) [0,2] [2,4] [4,6] [6,8] [8,10] [10,12] [12,] 

Dry signal (D) 

 

D 9.89 5.08 3.62 2.44 1.77 1.85 1.65 

DAE (FN) 9.01 5.06 3.31 2.40 1.75 1.85 1.65 

Additive noise (N) 

 

N 14.58 11.16 8.83 9.12 8.05 7.97 6.63 

DAE (N) 10.48 6.08 3.56 3.27 2.26 1.91 1.91 

DAE (N+E+F+FN) 10.75 6.93 4.45 4.47 3.53 2.77 2.23 

Early reverberation (E) 

 

E 18.60 10.54 7.08 4.58 3.98 4.16 4.02 

DAE (E) 13.08 6.48 4.15 2.50 2.23 2.31 2.29 

DAE (N+E+F+FN) 11.57 5.67 3.85 2.96 2.58 2.77 2.29 

Full reverberation (F) 

 

F 20.01 11.96 8.01 6.15 4.88 5.09 5.23 

DAE (F) 9.05 5.03 3.26 2.48 2.21 2.31 2.23 

DAE (N+E+F+FN) 9.29 4.86 3.62 2.49 2.21 2.31 2.05 

Additive noise and Full 

reverberation (FN) 

 

FN 27.32 24.34 20.77 18.68 19.38 19.93 17.61 

DAE (FN) 14.24 9.93 7.37 4.97 3.96 3.68 4.53 

DAE (N+E+F+FN) 13.66 9.73 6.52 4.54 3.61 3.24 4.09 

VI. Conclusion 

In this paper we proposed two configurations for robust 
speaker recognition in the environments where there are 
several distortions. The systems act efficiently in 
environments with early reverberation, full reverberation, 
additive noise, additive noise and reverberation. To solve 
this problem, we proposed two configurations. In the first 
configuration we used a specific DAE for each distortion. In 
the second configuration, one DAE is used to learn all of 
these distortions simultaneously. The second configuration 
is simpler and gives the same or even better results than 
specific compensation for each distortion. We also showed 
that the speaker recognition performance doesn’t decrease 
(with respect to the baseline) when the test data is clean, 
which is a nice property of the proposed denoiser.   
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