
HAL Id: hal-03224579
https://hal.science/hal-03224579

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LIEF: Learning to Influence through Evaluative
Feedback

Ramona Merhej, Mohamed Chetouani

To cite this version:
Ramona Merhej, Mohamed Chetouani. LIEF: Learning to Influence through Evaluative Feedback.
Adaptive and Learning Agents Workshop (AAMAS 2021), May 2021, London (virtual), United King-
dom. �hal-03224579�

https://hal.science/hal-03224579
https://hal.archives-ouvertes.fr

LIEF: Learning to Influence through Evaluative Feedback
Ramona Merhej

INESC-ID and Instituto Superior Tecnico, Portugal
ISIR, Sorbonne University, France

merhejramona@gmail.com

Mohamed Chetouani
ISIR, Sorbonne University, France

mohamed.chetouani@sorbonne-universite.fr

ABSTRACT
We present a multi-agent reinforcement learning framework where
rewards are not only generated by the environment but also by
other peers in it through inter-agent evaluative feedback. We show
that our method allows agents to effectively learn how to use this
feedback channel to influence their peers’ goals andmove from inde-
pendent or conflicting objectives to more coinciding and concurring
ones. We advance with this in the field of cooperative reinforce-
ment learning; not by aiding agents in increasing performance in
an already cooperative environment, but by giving them a tool to
transform antagonistic environments into cooperative ones.

KEYWORDS
Multi-Agent Reinforcement Learning; Evaluative Feedback; Oppo-
nent shaping; Opponent modelling; Learning to Influence; Optimis-
ing for the Future

1 INTRODUCTION
In Reinforcement Learning (RL) an agent learns a task through trial-
and-error from feedback received from its environment. Generally,
depending on the state and action of the agent, a feedback in the
form of a positive or negative reward is attributed. This feedback,
defined by a reward function, “is the most succinct, robust, and
transferable definition of the task” [17]. In Multi-Agent Reinforce-
ment Learning (MARL), several agents interact with each other and
with the environment to solve a common or disparate tasks (i.e.,
they have a common or disparate reward functions). In the general
case, defined as a Markov Game, both the reward function of an
agent as well as the transition function of the environment, can
have explicit dependencies on the joint action of all agents. The
expected return of an agent depends on the policy it follows as well
as the policies of all its peers [19]. We note however that, although
agents influence the performance of one another, they do not alter
the structure of the reward function itself.

Additionally, in the multi-agent setting, other more direct inter-
action mechanisms can be present between agents. Many MARL
algorithms integrate and allow communication between the agents.
Communication can take several forms. For example, agents may
communicate by sending messages [10], sharing intentions [13]
or experiences [4], advising actions [21] to one another etc. Inte-
grating such feedback has shown to improve performance [4, 10],
speed up learning [4, 10, 21], enhance coordination [13, 21] etc.
Nonetheless and again, in all of the above, this type of feedback
does not alter other agents’ task or reward function which remains
defined by the environment only.

However, in real-life situations, punishments and remunerations
are widely used. This additional reward function is generated by
the humans and not the environment itself. It is particularly seen

when the environment presents conflicting goals to its agents or
incentives for exploitation. Consider as an example the taxing sys-
tem, the healthcare system or other public goods. In all of these
examples, the systems themselves are unstable and entice exploita-
tion. Fines and sanctions are put in place by the state to modify
the dynamics and make exploitation and fraud less desirable and
encourage and stabilise socially beneficial behaviours. These mea-
sures incite people to diverge from what would have otherwise
been their optimal strategy. Remunerations are also a mean of in-
fluencing others’ behaviours. For instance, when the number of
users sending funds over the bitcoin blockchain exceeds the number
of transactions that can be processed, users encourage miners to
validate their transaction by remunerating them with higher trans-
action fees. Likewise, some business owners use cash, store credit,
discounts etc. to encourage their customers to recommend them
to other friends. Remunerations also appear in personal relations,
education or other similar interactions. Despite their effectiveness,
both sanctions and remunerations are costly to implement and the
benefits extracted from them need to outweigh their costs.

While cooperative behaviours in an opponent can sometimes
be encouraged without explicit evaluative feedback, e.g., using the
Tit-for-Tat strategy [1] for the iterated prisoner dilemma, such a
retaliating strategy is not available or optimal for all games. Con-
sider Public Good Games where agents contribute to a common
pool and receive in return a shared reward proportional to the col-
lected pool. Punishing a non-contributing agent by not contributing
oneself results in punishment for everyone instead of a targeted
one. Furthermore, in the bitcoin blockchain example, no retaliation
policy exists for the user that encourages miners to validate his
transaction. Additionally, in real-life situations, punishing or re-
warding through action selection instead of feedback can be more
challenging to implement. For instance, boycotting a company for
animal testing is more challenging to implement than fining such
policies (e.g., when the company holds a near-monopoly on the
market). Evaluative feedback is a universal form of punishment and
remuneration and has the advantage of being simultaneously easy
to target and simple to implement.

In our work, we present a Multi-Agent Reinforcement Learning
framework where agents learn to influence each other, not by action
selection or communication, but directly using costly remunera-
tions or punishments, that we denote by evaluative feedback. The
framework is useful when agents have conflicting goals. Rewarding
each other is a way of sharing preferences about the opponent’s
behaviours. Through mutual sharing of these preferences, we hope
that agents find arrangements and compromises that allow mutual
co-existence instead of mutual destruction. The new arrangements
emerge from the reshaped goals (i.e., the reshaped reward functions)
of every agent by its opponent. We propose Learning to Influence
through Evaluative Feedback (LIEF), an algorithm designed to learn

how to adequately use evaluative feedback to reshape an opponent’s
goal and transform it from a conflicting to a more conforming one.

We contribute to multi-agent reinforcement learning literature
by proposing a framework that introduces inter-agent evaluative
feedback on top of environment rewards. Using our model, agents
learn to reshape each other’s reward functions and goals to move
from conflicting environments to conforming and cooperative ones.
The novelty in our approach is that 1) opponent shaping is done
through reward shaping, 2) the punitive feedback strategies used
for opponent shaping are learned and not handcrafted and 3) no
apriori knowledge of the optimal opponent target policy is needed.

2 RELATEDWORK
The influence that agents can exercise on each other has been taken
into account in some MARL algorithms where agents adapt their
choices with respect to their opponent. Notably, the learning algo-
rithm of an opponent is sometimes integrated in one’s own learning
algorithm. One suggested method is gradient ascent with policy
prediction [25]. Here the strategy of the opponent is forecasted
based on the current policy parameters and the gradient is com-
puted taking this change into account. Learning with Opponent
Learning Awareness (LOLA) [8] on the other hand, differentiates
through the variations of the opponent to actively shape their learn-
ing and consequently, manages to reach cooperative equilibria in
some multi-agent settings. Stable Opponent Shaping (SOS) [14]
incorporates both policy prediction and opponent shaping which
increases stability while simultaneously escaping saddle points.

While the abovementioned algorithms, try to influence a gradient-
based learning opponent, Learning and Influencing Latent Intent
(LILA) [24] influences a handcrafted opponent that can select for
every episode to implement one of several pre-defined policies.
The set of pre-defined policies is small and comprises 2-3 policies.
The selection of the policy by the opponent at the beginning of
an episode is not random but depends on the previous interaction.
LILA models and predicts the opponent’s next policy choice and en-
sures that the current interaction results in a favourable opponent
policy in the next episode.

In the context of influence for long term future benefits, Prognos-
ticator [2] is an algorithm that allows an agent in a non-stationary
environment to forecast future performances and hence select to
minimise performance in some episodes if that results in a future
increase in performance. Here the future changes neither result
from a learning opponent, nor from a conditionally changing one
but from a smoothly varying environment.

All these enumerated works try to influence the dynamics of an
opponent or an environment by selecting influential actions. On
the other hand, in our work, we aim to influence an opponent’s
behaviour using directly rewards instead of regular actions.

Recovering or optimising a reward structure is at the center of
interest of many RL problems. Inverse Reinforcement Learning (IRL)
[18] for example, tries to recover the reward function that could
be a prior for a given optimal policy or set of trajectories. AutoRL
and Evolution Strategies (ES) have also been used to explore and
evolve different reward functions with the goal of finding the one
that facilitates the learning of a predefined task [3, 7]. Moreover, in
some adversarial RL problems [22, 26], an attacker aims to poisons

a learner’s reward function with the goal of enforcing a predefined
target policy on that learner.

Yet several differences are notable between these works and ours.
First, while we propose a reinforcement learning method to learn
how to reward an opponent, the problem in the above examples
is usually defined as a control problem and standard optimisation
techniques are used to extract the optimal solution. Second, while
the target policy is predefined for adversarial attacks and IRL, it is
never explicitly given in our framework.

To the best of our knowledge, the only other work that introduces
inter-agent evaluative feedback is a paper that studies the concept
of gifting [15] in common pool resource environments. The agents
however, using the classical reinforcement learning objective of
maximising episodic returns do not learn how to effectively gift
their peers and stop using this action when gifting is costly.

3 DEFINITIONS AND NOTATIONS
Our work concerns general 𝑛-player stochastic games defined by a
tuple ⟨S,A, 𝑃, 𝑟, `0⟩. Here, S is the set of states, `0 the initial state
distribution and A = Π𝑛

𝑖=1A𝑖 the Cartesian product of the sets
of actions of all individual players. At every timestep, each agent
selects from his set of actions an action 𝑎𝑖 yielding a joint action a =

{𝑎1, . . . 𝑎𝑛}. The system in state 𝑠 , then transitions to 𝑠 ′ following
the transition probability function 𝑃 (𝑠 ′ |𝑠, a) : S × A × S → [0, 1].
Finally, the reward function 𝑟 representative of the underlying tasks,
evaluates and distributes for every player 𝑖 , a reward according to
𝑟𝑖 (𝑠, a, 𝑠 ′) : S × A × S → R.

We extend this setting to allow for inter-agent evaluative feed-
back. In this model, agents do not only receive rewards from their
environment, but also directly from other peers. Therefore, we
endow every agent with an additional set of evaluative actions
U𝑖 and we denote byU, the Cartesian product of these setsU =

Π𝑛
𝑖=1U𝑖 . We suppose that such evaluative actions can be costly.

Every agent 𝑖 , now incurs a cost based on his selected action 𝑢𝑖
and receives evaluative feedback based on his peers’ selected ac-
tions u¬𝑖 . The costs are determined by a cost function 𝑐 such that
𝑐𝑖 (𝑠,𝑢𝑖 , 𝑠 ′) : S × U𝑖 × S → R and the peers’ feedback is calcu-
lated by the feedback function 𝑓 where for every agent 𝑖 we have
𝑓𝑖 (𝑠,𝑢¬𝑖 , 𝑠 ′) : S ×U¬𝑖 × S → R.

The original stochastic game represented by the tuple ⟨S,A, 𝑃, 𝑟, `0⟩
is now extended with an additional evaluative action setU and two
reward functions 𝑐 and 𝑓 representing respectively the cost of eval-
uating others and the additional feedback received. The resulting
dynamics are now described by the tuple ⟨S,A,U, 𝑃, 𝑟, 𝑐, 𝑓 , `0⟩.

4 METHODS
To solve the described problem, we equip every agent with two de-
coupled policies with different objectives: the classical game policy
and the feedback policy. The task or game policy of agent 𝑖 , denoted
by 𝜋𝑔

𝑖
, maps into the action space A𝑖 while the feedback policy 𝜋 𝑓

𝑖
maps into the action spaceU𝑖 . The objective of the game policy is a
classical RL objective i.e., solving a task by maximising the expected
return within an episode. Note however, that the task, modelled by
a reward function, is not only defined by the environment, but also
generated by the agent’s peers. The original task defined by 𝑟 is re-
shaped into the function 𝑟 + 𝑓 from the tuple ⟨S,A,U, 𝑃, 𝑟, 𝑐, 𝑓 , `0⟩.

The objective of the feedback policy is of a different nature. While
the game policy is concerned with maximising the returns within
an episode, the feedback policy tries to influence its opponent to
make future interactions more beneficial. We note that in a multi-
agent setting, the returns of one agent depend on all other agents’
actions. Therefore, the performance of a fixed agent can vary if its
opponent changes policies. We consider a future interaction to be
more beneficial for an agent, if keeping his own game policy fixed,
the opponents’ game policy update results in higher payoffs for said
agent. The algorithm we propose for this task is called Learning to
Influence through Evaluative Feedback (LIEF). Figure 1 depicts the
new extended game dynamics.

Figure 1: Extension of a stochastic game to incorporate inter-
agent evaluative feedback.

4.1 The Game Policy
In classical RL, an agent searches for an optimal policy to solve
a task assigned to it by its environment and defined by a reward
function. The game policy in our framework is analogous to the
classical RL policy. It assumes a stationary world and maximises
the expected episodic return. However, in our framework, feedback
is received simultaneously from the environment and other agents.
The expected episodic return, defined by 𝑟 + 𝑓 , is conditioned on
all agents’ game policies 𝝅𝑔 (that we parametrise with \𝑔) and on
the opponents’ feedback policies 𝝅 𝑓

¬𝑖 (parametrised with \ 𝑓).
Given an episode horizon 𝑇 , agent 𝑖’s game policy objective

function is defined as

𝐽
𝑔

𝑖
(\𝑔
𝑖
;𝜽𝒈

¬𝒊, 𝜽
𝒇
¬𝒊) = E𝜽𝒈 ,𝜽

𝒇
¬𝒊

[
𝑇∑
𝑡=0

𝛾𝑡𝑔 (𝑟𝑖,𝑡 + 𝑓𝑖,𝑡)
]

(1)

where 𝛾𝑔 is a discount factor.
Parameters \𝑔

𝑖
are updated using the update rule

\
𝑔,𝑘+1
𝑖

= \
𝑔,𝑘

𝑖
+ [𝑔∇\𝑔

𝑖
𝐽
𝑔

𝑖
(\𝑔
𝑖
;𝜽𝒈

¬𝒊, 𝜽
𝒇) (2)

where [𝑔 is the learning rate for updating the game policy and 𝑘
the optimisation step.

4.2 The Feedback Policy
On the other hand, the goal of the rewarding or feedback policy is
to shape the objective of the opponent to make it more compatible
with its own. To achieve this target, the feedback network tries to

Figure 2: Here LIEF predicts from current data, the changes
in the game policy of its opponent. These changes incur
changes in the expected rewards 𝑟2 received from the envi-
ronment and changes in the expected feedback 𝑓1 given to
agent 1 which in turn yields changes in the expected costs
𝑐2. LIEFmakes sure that his feedback policy ameliorates the
future of the agent, i.e., that his expected returns 𝑐2 + 𝑟2 in-
crease between the expected look-ahead step 𝑘 + 1 and the
current step 𝑘 .

maximise the variations in returns resulting from one opponent
optimisation step. The idea is detailed in Figure 2 and the associated
objective function of the feedback policy is given by

𝐽
𝑓

𝑖
(\ 𝑓
𝑖
;𝜽𝒈) =E

\
𝑓

𝑖
,\

𝑔

𝑖
,𝜽

𝒈
¬𝒊+Δ𝜽

𝒈
¬𝒊

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 𝑟𝑖,𝑡 + 𝛾𝑡𝑐𝑐𝑖,𝑡

]
− E

\
𝑓

𝑖
,\

𝑔

𝑖
,𝜽

𝒈
¬𝒊

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 𝑟𝑖,𝑡 + 𝛾𝑡𝑐𝑐𝑖,𝑡

] (3)

where 𝛾𝑟 and 𝛾𝑐 are discount factors for the reward functions 𝑟
and 𝑐 respectively. While the second term can be estimated from
experience, the first term corresponds to the future and needs to
be predicted. Using first order Taylor expansion we can replace the
first term of equation 3 by

E
\
𝑓

𝑖
,\

𝑔

𝑖
,𝜽

𝒈
¬𝒊

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 𝑟𝑖,𝑡 + 𝛾𝑡𝑐𝑐𝑖,𝑡

]
+ (Δ𝜽𝒈

¬𝒊)
𝑇∇𝜽𝒈

¬𝒊
E
\
𝑓

𝑖
,\

𝑔

𝑖
,𝜽

𝒈
¬𝒊

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 𝑟𝑖,𝑡 + 𝛾𝑡𝑐𝑐𝑖,𝑡

]
which yields the final objective function

𝐽
𝑓

𝑖
(\ 𝑓
𝑖
;𝜽𝒈) = (Δ𝜽𝒈

¬𝒊)
𝑇∇𝜽𝒈

¬𝒊
E
\
𝑓

𝑖
,𝜽𝒈

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 𝑟𝑖,𝑡 + 𝛾𝑡𝑐𝑐𝑖,𝑡

]
. (4)

We can now use a gradient ascent update rule

\
𝑓 ,𝑘+1
𝑖

= \
𝑓 ,𝑘

𝑖
+ [𝑓 ∇\ 𝑓

𝑖

𝐽
𝑓

𝑖
(\ 𝑓
𝑖
;𝜽𝒈) (5)

where [𝑓 is the learning rate for updating the feedback policy and
𝑘 the optimisation step.

We need now to evaluate the term ∇
\
𝑓

𝑖

𝐽
𝑓

𝑖
(\ 𝑓
𝑖
;𝜽𝒈). To simplify

notations, we useR𝑖 to refer toE\ 𝑓

𝑖
,𝜽𝒈

[∑𝑇
𝑡=0 𝛾

𝑡
𝑟 𝑟𝑖,𝑡

]
= E𝜽𝒈

[∑𝑇
𝑡=0 𝛾

𝑡
𝑟 𝑟𝑖,𝑡

]
and C𝑖 to refer to E

\
𝑓

𝑖
,𝜽𝒈

[∑𝑇
𝑡=0 𝛾

𝑡
𝑐𝑐𝑖,𝑡

]
. The product rule gives us

∇
\
𝑓

𝑖

𝐽
𝑓

𝑖
(\ 𝑓
𝑖
;𝜽𝒈) =

(
∇
\
𝑓

𝑖

Δ𝜽
𝒈
¬𝒊

)𝑇
∇𝜽𝒈

¬𝒊
(R𝑖 + C𝑖)

+
(
∇
\
𝑓

𝑖

∇𝜽𝒈
¬𝒊
(R𝑖 + C𝑖)

)𝑇
Δ𝜽

𝒈
¬𝒊 .

(6)

Using a similar derivation as in LOLA [8], that we do not detail
here, we have

Δ𝜽
𝒈
𝒋 =[𝑔∇\𝑔

𝑗
E
𝜽𝒈 ,𝜽

𝒇
¬𝒋

[
𝑇∑
𝑡=0

𝛾𝑡𝑔 (𝑟 𝑗,𝑡 + 𝑓𝑗,𝑡)
]

=[𝑔E𝜽𝒈 ,𝜽
𝒇
¬𝒋

[
𝑇∑
𝑡=0

𝛾𝑡𝑔 (𝑟 𝑗,𝑡 + 𝑓𝑗,𝑡)∇\𝑔
𝑗

𝑡∑
𝑙=0

log(𝜋𝑔
𝑗
(𝑎 𝑗,𝑙 |𝑠𝑙 ;\

𝑔

𝑗
))
]
(7)

∇
\
𝑓

𝑖

Δ𝜽
𝒈
𝒋 = [𝑔E𝜽𝒈 ,𝜽

𝒇
¬𝒋

[𝑇∑
𝑡=0

𝛾𝑡𝑔 𝑓𝑗,𝑡∇\𝑔
𝑗

𝑡∑
𝑙=0

log(𝜋𝑔
𝑗
(𝑎 𝑗,𝑙 |𝑠𝑙 ;\

𝑔

𝑗
))

· ∇
\
𝑓

𝑖

𝑡∑
𝑙=0

log(𝜋 𝑓
𝑖
(𝑢𝑖,𝑙 |𝑠𝑙 ;\

𝑓

𝑖
))
] (8)

∇\𝑔
𝑗
(R𝑖 + C𝑖) = E\ 𝑓

𝑖
,𝜽𝒈

[
𝑇∑
𝑡=0
(𝛾𝑡𝑟 𝑟𝑖,𝑡 + 𝛾𝑡𝑐𝑐𝑖,𝑡)∇\𝑔

𝑗

𝑡∑
𝑙=0

log(𝜋𝑔
𝑗
(𝑎 𝑗,𝑙 |𝑠𝑙 ;\

𝑔

𝑗
))
]

(9)

∇
\
𝑓

𝑖

∇\𝑔
𝑗
(R𝑖 + C𝑖) = E\ 𝑓

𝑖
,𝜽𝒈

[𝑇∑
𝑡=0

𝛾𝑡𝑐𝑐𝑖,𝑡∇\𝑔
𝑗

𝑡∑
𝑙=0

log(𝜋𝑔
𝑗
(𝑎 𝑗,𝑙 |𝑠𝑙 ;\

𝑔

𝑗
))

· ∇
\
𝑓

𝑖

𝑡∑
𝑙=0

log(𝜋 𝑓
𝑖
(𝑢𝑖,𝑙 |𝑠𝑙 ;\

𝑓

𝑖
))
]
.

(10)

4.3 Training Procedure
The feedback and game policy are trained alternately for a number
of 𝐾𝑓 and 𝐾𝑔 update-steps respectively.

The equivalent DiCE objective [9] of the feedback policy ob-
jective is constructed and the corresponding loss is used during
training tomediate the errors in estimating second order derivatives
of a surrogate loss.

The game policy can be trained using an actor-critic architecture
and the feedback policy with the REINFORCE algorithm.

A pseudo-code is given in Algorithm 1.

5 EXPERIMENTS AND RESULTS
We propose to test LIEF in two different scenarios. We begin with
an environment called Teacher-Student. Here, the student agent
receives no rewards from the environment and its only feedback
comes from the teacher. We make sure that, without the teacher, the
learning curve of the student is flat. Learning is purely directed by
the teacher agent which has to learn how to use evaluative feedback
to bring the student to accomplish a task.

In the second case, we test our framework on the iterated pris-
oner’s dilemma. In this game, mutual cooperation is more beneficial
than mutual defection. However, with the environment rewards
only, the point of mutual cooperation is unstable and naive learners

Algorithm 1: Learning to Influence through Evaluative
Feedback
Input: Learning rates [𝑔 and [𝑓 , discount factors 𝛾𝑔 , 𝛾𝑟 and

𝛾𝑐 , update-steps 𝐾𝑔 and 𝐾𝑓 , total updates 𝐾

Initialise: for agents 𝑖, . . . 𝑁 , policy parameters \𝑔
𝑖
and \ 𝑓

𝑖

for k=1,. . . 𝐾 do
for 𝑘𝑓 = 1, 2, . . . 𝐾𝑓 do

Rollout episode trajectory under 𝜋g and 𝜋 f

Update:
\
𝑓

𝑖
← \

𝑓

𝑖
+ [𝑓 ∇\ 𝑓

𝑖

𝐽
𝑓

𝑖
(\ 𝑓
𝑖
;𝜽𝒈) for 𝑖 = 1, . . . 𝑁

for 𝑘𝑔 = 1, 2, . . . 𝐾𝑔 do
Rollout episode trajectory under 𝜋g and 𝜋 f

Update:
\
𝑔

𝑖
← \

𝑔

𝑖
+ [𝑔∇\𝑔

𝑖
𝐽
𝑔

𝑖
(\𝑔
𝑖
;𝜽𝒈

¬𝒊, 𝜽
𝒇) for 𝑖 = 1, . . . 𝑁

Output :Policy parameters 𝜽𝒈 and 𝜽𝒇

eventually converge to a less optimal but stable defective point.
We test if, with inter-agent feedback, agents can modify the game
dynamics and stabilise the more beneficial and cooperative point.

5.1 Hyper-parameters
In all experiments, we train the feedback and game policy alter-
nately for 𝐾𝑓 = 35 and 𝐾𝑔 = 5 update-steps, using a batch size of
4096 episodes. All actors or critics are linear functions of the state
and all states are one-hot encoded vectors. The learning rates of
both actor and critic of the game policy are set to [𝑔 = 1 and we
use a discount factor 𝛾𝑔 = 0.8. The learning rate of the feedback
policy is set to [𝑓 = 0.1 and the discount factors are 𝛾𝑟 = 0.99 and
𝛾𝑐 = 0.9.

5.2 Teacher-Student Environment
We begin by testing LIEF in a simple Teacher-Student chain envi-
ronment depicted in Figure 3. A student, physically present in the
environment, can at every timestep, choose to either move left or
right. However, the environment is uninteresting to the student and
doesn’t provide him any rewards (𝑟𝑠 = 0∀ 𝑠 ∈ S). The teacher on
the other hand, would like the student to reach the rightmost cell in
the chain since that state yields a positive reward of 𝑟𝑡 = +1 to the
teacher. The goals of the agents are not at conflict but nevertheless,
uncorrelated. The teacher has to motivate the student somehow to
move right since without extrinsic intervention, actions right and
left would be equally desirable for the student.

The environment is a representation of situations where one
individual has an interest in accomplishing a task but lacks the skills
to do so. Another agent, with the necessary skills, has no personal
interest in getting the job done. Depending on the relationship
between the two individuals, the former needs to either motivate
the latter by paying him a remuneration for getting the job done or
punishing him for not getting the task done.

In our experiment, we provide the teacher with a binary punitive
action set U = {0, 1}. Both the teacher and the student observe
the state of the environment (i.e., the chain position of the student

Figure 3: Teacher-Student chain environment. The environ-
ment doesn’t motivate the student to move either left or
right (𝑟𝑠 = 0 for all states). However, the teacher has an in-
centive to bring the student to the right most cell where he
receives a reward 𝑟𝑡 = 1.

and whether the student selected action right or action left in the
previous timestep). The student can then select to either move right
or left while the teacher can select to either punish the student or
not. Not punishing, or selecting 𝑢 = 0, returns no feedback to the
student (𝑓 = 0) and incurs no cost on the teacher (𝑐 = 0). However,
choosing to punish, i.e., 𝑢 = 1, returns a negative feedback to the
student (𝑓 = −1) and is equally costly to the teacher (𝑐 = −1). Figure
4 illustrates the interactions and feedback flow in this setting.

Figure 4: Feedback loop of a MARL setting with additional
evaluative feedback flowing from a teacher to a student.

We set a fixed timestep of𝑇𝑒 = 4 per episode and run our experi-
ment with 10 different seeds. From the results plotted in Figure 5,
we can see that during feedback policy training, the teacher learns
to punish the student when the latter chooses the non beneficial
action of going Left (green line rises during the 35 feedback policy
update-steps). Consequently, during student learning, the feedback
policy of the teacher causes the student to increase the frequency
with which he chooses to go right (blue line rises). Nevertheless,
some shortcomings are visible in the algorithm. The teacher has
trouble completely cancelling punishments of actions in his favour
(the red line doesn’t decrease to zero). Deeper examination of this
cause and an improvement of the algorithm are needed. When
training the student without any feedback from the teacher, the
preference of the student for action Right or Left remains constant
throughout training (all rewards are zero and hence all gradients
are zero). The student’s preference for action Right in Figure 5 is
solely constructed by the teacher.

Figure 5: Teacher and Student policy dynamics. Vertical
lines delimit the zones where the teacher and student alter-
nate in learning. The teacher performs 35 update-steps after
which the teacher feedback policy is frozen and the student,
under said teacher policy, learns for 5 update-steps. The cy-
cle is repeated 5 times.

We note that our definition of Teacher-Student differs from that
commonly seen inMARL [5, 6, 11, 12, 20, 21] where both the teacher
and the student interact with the environment. There, the rewards
or feedback come exclusively from the environment. The teacher,
generally more skilled, is more of a guide to help the student achieve
a task defined by the environment. In our case, the teacher is not
more skilled than the student but lacks the means to perform a task
he’d like accomplished. He cannot, like in the classical Teacher-
Student case, give any demonstrations or examples to guide the stu-
dent. His goal is to construct a target goal for the student (through
evaluative feedback) that is compatible with his own goal.

5.3 Iterated Prisoner Dilemma
In a second experiment, we propose to test the efficacy of LIEF in an
antagonistic environment. We select for this purpose the iterated
prisoner’s dilemma with returns shown in Table 1.

Table 1: Prisoner’s dilemma reward table

Actions A2 - C A2 - D
A1 - C (−1,−1) (−3, 0)
A1 - D (0,−3) (−2,−2)

In the one-shot version of the game, the environment raises in
every player a preference to defect no matter the opponent’s strat-
egy. In fact, for a defecting opponent, defection results in one point
more than cooperation (-2 compared to -3). Similarly, for a coopera-
tive opponent, defection results in one point more than cooperation
(0 compared to -1). As a result, both players learn to defect and
converge to the bottom right cell of the table with an average of
-2 points per player. We note here that, both players can in fact
increase their returns by switching simultaneously to cooperation.
However, this point, although more beneficial, is unstable.

In the iterated version of the game, which is the one we adopt
for our experiment, agents play the game repeatedly against one

opponent. They are endowed with a memory and observe at every
timestep the actions taken by themselves and their opponent in the
previous timestep. Accessing this info, allows some strategies to
converge to cooperative behaviours such as the Tit-for-Tat [1] strat-
egy. In Tit-for-Tat, an agent punishes at timestep 𝑡 , an opponent
that defected at the previous timestep 𝑡 − 1. The punishment is im-
plemented as a retaliation and the agent reciprocates an opponent’s
defection at 𝑡−1with a defection at 𝑡 . Although effective, Tit-for-Tat
is not trivial to be found and naive reinforcement learners generally
converge to defective behaviours.

By introducing inter-agent feedback, agents can modify the re-
ward table and hence change the game dynamics. Instead of retalia-
tion, agents may use punishment to compel cooperative behaviours
from their opponents. If every agent manages to make action defect
less desirable to their rival (e.g., by punishing this action), they can
converge to cooperative behaviours without the risk of being ex-
ploited. Figure 6 shows the flow of the added inter-agent feedback
and the resulting costs on the agents. In our case, we use a binary
punitive action set U𝑖 = {0, 1} for each agent and the resulting
feedback and costs are such that 𝑓𝑖 (𝑢¬𝑖) = −3𝑢¬𝑖 and 𝑐𝑖 (𝑢𝑖) = −1𝑢𝑖 .

Figure 6: Inter-agent evaluative feedback

We set a fixed timestep𝑇𝑒 = 5 per episode and run the experiment
with 10 different seeds. The results are plotted in Figure 7.

While cooperation is usually difficult to sustain in the IPD, Figure
7 shows that agents converge to cooperative behaviours. We can
see that during the training of the feedback policy, the green lines,
indicating the rate with which agents punish a defective behaviour
increase while the red lines, indicating the rate at which they punish
cooperative behaviours decrease. As a result, during game policy
training, cooperative actions become more advantageous than de-
fective ones and players converge to total cooperation.

6 DISCUSSION AND CONCLUSION
We present a multi-agent reinforcement learning framework ex-
tended to incorporate inter-agent evaluative feedback. Leveraging
the fact that the reward function in RL is the fundamental definition
of a task, we allow agents, through this framework, to construct or
modify the tasks of their peers.

In the teacher-student case (see Section 5.2), the teacher, using
evaluative feedback, was constructed a target goal for the student

Figure 7: Behaviour and feedback dynamics of twomutually
rewarding LIEF agents in an Iterated Prisoner’s dilemma.

who originally had none. Moreover, LIEF did not construct a random
reward function, but one that is specifically aligned with his own.
The construction of a reward function is not a trivial question in RL.
Augmenting a sparse reward function to speed up learning is widely
studied in literature [16, 17, 23]. In this context, it’s interesting
to investigate the differences between rewards given by humans,
constructed systematically or learned by reinforcement learners.

In a more conflicting case, the iterated prisoner’s dilemma (see
Section 5.3), two LIEF agents were capable of mutually reshaping
each other’s reward functions to modify the whole game dynamics.
The agents, through evaluative feedback, managed to make coop-
erative actions more beneficial from their opponent’s perspective.
The mutual and simultaneous feedback, assured that both agents
cooperated and no one exploited the other. Here, more conflicting
environments can be tested, especially those in which retaliation
is not an effective tool to enforce cooperation but where evalua-
tive feedback may be (e.g., Public Goods Games and Common Pool
Resources).

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement No
76595.

REFERENCES
[1] Robert Axelrod. 1980. Effective choice in the prisoner’s dilemma. Journal of

conflict resolution 24, 1 (1980), 3–25.
[2] Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar

Mahadevan, and Philip Thomas. 2020. Optimizing for the future in non-stationary
mdps. In International Conference on Machine Learning. PMLR, 1414–1425.

[3] Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis.
2019. Learning navigation behaviors end-to-end with autorl. IEEE Robotics and
Automation Letters 4, 2 (2019), 2007–2014.

[4] Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. 2020. Shared Ex-
perience Actor-Critic for Multi-Agent Reinforcement Learning. arXiv preprint
arXiv:2006.07169 (2020).

[5] Felipe Leno Da Silva, Garrett Warnell, Anna Helena Reali Costa, and Peter Stone.
2020. Agents teaching agents: a survey on inter-agent transfer learning. Au-
tonomous Agents and Multi-Agent Systems 34, 1 (2020), 1–17.

[6] Anestis Fachantidis, Matthew E Taylor, and Ioannis Vlahavas. 2019. Learning to
teach reinforcement learning agents. Machine Learning and Knowledge Extraction
1, 1 (2019), 21–42.

[7] Aleksandra Faust, Anthony Francis, and Dar Mehta. 2019. Evolving rewards to
automate reinforcement learning. arXiv preprint arXiv:1905.07628 (2019).

[8] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter
Abbeel, and Igor Mordatch. 2018. Learning with opponent-learning awareness. In
Proceedings of the 17th International Conference on Autonomous Agents and Multi-
Agent Systems. International Foundation for Autonomous Agents and Multiagent
Systems, 122–130.

[9] Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric
Xing, and Shimon Whiteson. 2018. Dice: The infinitely differentiable monte carlo
estimator. In International Conference on Machine Learning. PMLR, 1529–1538.

[10] Jakob N Foerster, Yannis M Assael, Nando De Freitas, and Shimon Whiteson.
2016. Learning to communicate with deep multi-agent reinforcement learning.
arXiv preprint arXiv:1605.06676 (2016).

[11] Ercüment Ilhan, Jeremy Gow, and Diego Perez-Liebana. 2019. Teaching on a
budget in multi-agent deep reinforcement learning. In 2019 IEEE Conference on
Games (CoG). IEEE, 1–8.

[12] Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew
Riemer, Golnaz Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, and
Jonathan P How. 2019. Learning hierarchical teaching in cooperative multiagent
reinforcement learning. (2019).

[13] Woojun Kim, Jongeui Park, and Youngchul Sung. 2021. Communication in Multi-
Agent Reinforcement Learning: Intention Sharing. In International Conference on
Learning Representations. https://openreview.net/forum?id=qpsl2dR9twy

[14] Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktäschel, and Shimon
Whiteson. 2018. Stable opponent shaping in differentiable games. arXiv preprint
arXiv:1811.08469 (2018).

[15] Andrei Lupu and Doina Precup. 2020. Gifting in multi-agent reinforcement
learning. In Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems. 789–797.

[16] Bhaskara Marthi. 2007. Automatic shaping and decomposition of reward func-
tions. In Proceedings of the 24th International Conference on Machine learning.
601–608.

[17] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In Icml,
Vol. 99. 278–287.

[18] Andrew Y Ng, Stuart J Russell, et al. 2000. Algorithms for inverse reinforcement
learning.. In Icml, Vol. 1. 2.

[19] Ann Nowé, Peter Vrancx, and Yann-Michaël De Hauwere. 2012. Game theory
and multi-agent reinforcement learning. In Reinforcement Learning. Springer,
441–470.

[20] Shayegan Omidshafiei. 2018. Decentralized teaching and learning in cooperative
multiagent systems. Ph.D. Dissertation. Massachusetts Institute of Technology.

[21] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer,
Christopher Amato, Murray Campbell, and Jonathan P How. 2019. Learning to
teach in cooperative multiagent reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 6128–6136.

[22] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla.
2020. Policy teaching via environment poisoning: Training-time adversarial
attacks against reinforcement learning. In International Conference on Machine
Learning. PMLR, 7974–7984.

[23] Baicen Xiao, Qifan Lu, Bhaskar Ramasubramanian, Andrew Clark, Linda Bush-
nell, and Radha Poovendran. 2020. Fresh: Interactive reward shaping in high-
dimensional state spaces using human feedback. arXiv preprint arXiv:2001.06781
(2020).

[24] Annie Xie, Dylan P Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. 2020.
Learning Latent Representations to Influence Multi-Agent Interaction. arXiv
preprint arXiv:2011.06619 (2020).

[25] Chongjie Zhang and Victor Lesser. 2010. Multi-agent learning with policy pre-
diction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 24.

[26] Xuezhou Zhang, YuzheMa, Adish Singla, and Xiaojin Zhu. 2020. Adaptive reward-
poisoning attacks against reinforcement learning. In International Conference on
Machine Learning. PMLR, 11225–11234.

https://openreview.net/forum?id=qpsl2dR9twy

	Abstract
	1 Introduction
	2 Related Work
	3 Definitions and notations
	4 Methods
	4.1 The Game Policy
	4.2 The Feedback Policy
	4.3 Training Procedure

	5 Experiments and Results
	5.1 Hyper-parameters
	5.2 Teacher-Student Environment
	5.3 Iterated Prisoner Dilemma

	6 Discussion and Conclusion
	Acknowledgments
	References

