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Introduction

Usually, in set theory, an ordered crisp set (CS), which is denoted by , has its boundary known with certainty. However, in some practical applications, the boundary may become uncertain. To solve this problem, the concept of a thick set (TS) has been proposed in [START_REF] Desrochers | Thick set inversion[END_REF] and [START_REF] Desrochers | Simultaneous Localization and Mapping in Unstructured Environments, A Set-Membership Approach[END_REF]. A TS is defined by two bounds. The lower bound is a CS, which contains all the certain elements. The upper bound is also a CS, which represents a set of plausible (perhaps possible) elements. The difference between these two CSs denotes the uncertainty (ignorance). This difference is called the penumbra [START_REF] Desrochers | Thick set inversion[END_REF].

From the methodological perspectives, the TS bounds can be viewed as lower and upper approximations in rough-set theory [START_REF] Acharjya | Rough computing -A review of abstraction, hybridization and extent of applications[END_REF][54] [START_REF] Pawlak | Rough Sets: Theoretical Aspects of Reasoning About Data[END_REF] (see [START_REF] Acharjya | Rough computing -A review of abstraction, hybridization and extent of applications[END_REF] and [START_REF] Zhang | A survey on rough set theory and its applications[END_REF] for a survey on rough-set theory, its variations, and its applications). Indeed, in rough-set theory, a CS is approximated using a pair of lower and upper CSs. Therefore, given the lower approximation (objects fully classified as ) and upper approximation (objects possibly classified as ), the boundary region of can be constructed. Thus, the uncertainty is characterized by the boundary region, which is interpreted as a rough set (objects that can neither be classified as nor its complement). It consists of objects that are not inside or outside . The boundary region denotes the difference between the upper and lower approximations. If the boundary region is empty, is considered as CS. In rough-set theory, information is often presented as a data table whose columns are labeled by attributes, the rows are labeled by objects of interest, and the table entries are attribute values. In its design, if the concept of TSs can be close to that of rough sets, their finality and field of application differ. In rough-set theory, the approximation of a CS by a pair of lower and upper CSs is elaborated using an equivalence relationship (an indiscernibility relation) defined by a set of attributes. In the TS approach, because lower bound inf is included in upper bound sup , any CS that belongs to the 2 penumbra is greater or equal to inf and smaller or equal to sup . In this sense, a TS can be viewed as an interval of CSs, which is represented by lower and upper CSs and denoted as ⟦ ⟧ = ⟦ inf , sup ⟧. The penumbra, i.e., the difference between sup and inf , is a set of plausible but uncertain elements. Furthermore, in contrast to rough sets, the TS computations are implemented using interval-based arithmetic and solvers.

In the CS representation, the inclusion of an element to is certain, and that of an element that is outside it is impossible. The concept of gradual sets (GSs) has been proposed to remedy this lack of specificity [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF]. It allows representation of the progressive belonging through a degree λ, which takes its values in the interval [0,[START_REF] Acharjya | Rough computing -A review of abstraction, hybridization and extent of applications[END_REF]. This degree can be regarded as membership degrees of fuzzy sets, degrees of possibility, degrees of flexibility, etc. Thus, a GS can be regarded as a family of stacked CSs (λ), λ∈[0,1]. However, no nesting condition between CS (λ) is required. A GS is defined by an assignment function associated with each degree of pertinence or flexibility λ of its CS (λ). Therefore, the GS view enriches the representativeness of CSs by a vertical dimension. In situations where the constraint of monotonicity (consistency) is guaranteed, i.e., if λ1> λ2, then (λ1) ⊆ (λ2), and a GS becomes consonant and can be regarded as a type-1 fuzzy set (T1FS). In this case, CSs (λ), λ∈[0, 1] are λ-cuts. The literature is unanimous about the usefulness and importance of T1FSs, which have been the subject of countless works. However, some computations can lead to a family of stacked CSs, which are not nested according to the vertical λ dimension (e.g. [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF], [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF], [START_REF] Boukezzoula | Extended gradual interval (EGI) arithmetic and its application to gradual weighted averages[END_REF], [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF], and [START_REF] Lodwick | Interval linear systems as a necessary step in fuzzy linear systems[END_REF]). This situation provides GS its full meaning and its full usefulness. A discussion on the relationship between fuzzy sets and GSs can be found in [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF].

With regard to TSs, which are introduced to deal with uncertain boundaries of CSs, thick GS (TGSs) are natural extension of TSs when gradual inclusion is considered. This new concept is based on the combination of the TS [START_REF] Desrochers | Thick set inversion[END_REF] [START_REF] Desrochers | Simultaneous Localization and Mapping in Unstructured Environments, A Set-Membership Approach[END_REF] and GS [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF] notions. Therefore, a TGS is a family of stacked TSs ⟦ (λ)⟧ = ⟦ inf (λ), sup (λ)⟧, λ∈[0,1]. In a situation when the GS bounds inf (λ) and sup (λ) are consonant, they can be represented by T1FSs. In this framework, a TGS becomes a thick fuzzy set (TFS) and can be regarded as a type-2 fuzzy set (T2FS). Hence, the penumbra can be interpreted as the footprint of uncertainty (FOU) in the T2FS representation [START_REF] Mendel | Type-2 Fuzzy Sets Made Simple[END_REF] [START_REF] Mo | Footprint of uncertainty for type-2 fuzzy sets[END_REF].

T1FSs cannot effectively model uncertainties [START_REF] Mendel | Type-2 Fuzzy Sets Made Simple[END_REF]. In contrast to T1FSs, T2FSs can address uncertainties because their representation integrates two T1FSs. A T2FS is completely defined by two lower and upper T1FSs and is subjected to the inclusion constraint between them, i.e., lower T1FS ⊂ upper T1FS. In the T2FS representation, the FOU represents the blurring of a T1FS [START_REF] Mendel | Type-2 Fuzzy Sets Made Simple[END_REF] and is delimited by the bounding lower and upper T1FSs. Therefore, the notion of uncertainty is introduced using the FOU concept. Over the past 30 years, interest in T2FSs has significantly increased owing to the works of Mendel et al. (e.g., [START_REF] Mendel | Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions[END_REF], [START_REF] Mendel | Comments on "Interval Type-2 Fuzzy Sets are Generalization of Interval-Valued Fuzzy Sets: Towards a Wide View on Their Relationship[END_REF], [START_REF] Mendel | α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications[END_REF], and [START_REF] Mendel | Interval type-2 fuzzy logic systems made simple[END_REF]), Castillo et al. (e.g., [START_REF] Castillo | A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems[END_REF], [START_REF] Castillo | Generalized type-2 fuzzy granular approach with applications to aerospace[END_REF], and [START_REF] Castillo | Type-2 Fuzzy Logic Theory and Applications[END_REF]), and many others. The undeniable potentialities of T2FSs have been demonstrated in various scopes, such as automatic control [START_REF] Castillo | A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems[END_REF] [START_REF] Castillo | Generalized type-2 fuzzy granular approach with applications to aerospace[END_REF] [START_REF] Melin | An approach for parameterized shadowed type-2 fuzzy membership functions applied in control applications[END_REF], multi-criteria decision making [START_REF] Boukezzoula | A decision-making computational methodology for a class of type-2 fuzzy intervals: An interval-based approach[END_REF][39] [START_REF] Qin | A multiple attribute interval type-2 fuzzy group decision making and its application to supplier selection with extended LINMAP method[END_REF], aggregation operators [START_REF] Torres-Blanc | Aggregation operators on type-2 fuzzy sets[END_REF] [START_REF] Wu | Aggregation Using the Linguistic Weighted Average and Interval Type-2 Fuzzy Sets[END_REF], image processing, and pattern recognition [START_REF] Golsefid | Multi-central general type-2 fuzzy clustering approach for pattern recognition[END_REF] [START_REF] Lopez-Maestresalas | Hyperspectral imaging using notions from type-2 fuzzy sets[END_REF]. T2FSs have demonstrated superior performance in many applications [START_REF] Wu | Recommendations on designing practical interval type-2 fuzzy systems[END_REF]. However, in some practical situations, the resulting uncertain quantities cannot be represented by T2FSs because their lower and/or upper bounds are not T1FSs but are instead GSs [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF][8] [START_REF] Lodwick | Interval linear systems as a necessary step in fuzzy linear systems[END_REF]. Consequently, the TGS concept finds its usefulness and its theoretical foundation to challenge this problem of uncertainty representation.

The motivation of the present study is twofold. The first motivation is to propose a tool to represent and compute some uncertain quantities that cannot be totally determined by CSs, T1FSs, GSs, and/or T2FSs. Therefore, we demonstrate a new methodology to manipulate uncertain GSs via TGSs using interval arithmetic and interval solvers. Furthermore, under the consistency constraint, a GS can be interpreted as a T1FS, and a TGS can be regarded as a T2FS. The proposed approach maintains the flexibility of the set-membership approaches and interval-arithmetic methods as major objectives. The second motivation is to validate the potentialities, usefulness, and feasibility of the TGS concept through not only simulated applications such as solving fuzzy systems of equations (SoEs) and fuzzy regression problems but also using a real-world application where the objective is to model the zone explored by an underwater robot in an uncertain environment.

Section 2 presents the concepts and definitions of CSs, TSs, GSs, and TGSs and emphasizes their links to T1FSs and T2FSs. A simple example is used in this section to illustrate the concepts and processing. In Section 3, applications of the TGS approach to solve fuzzy SoEs and uncertain fuzzy regression are provided. Section 4 presents a real-world application of the TGS concept using an underwater robot. Finally, concluding remarks are presented in Section 5.

Concepts and definitions

Illustrative example

The concepts and definitions presented in this section are illustrated using a simple example of an autonomous vehicle that moves on a two-dimensional (2D) path. Its position is x = (x1, x2). The vehicle communicates with a transmitter located at position m = (m1, m2). When the vehicle is at a distance of less than 20 m to the transmitter, it detects its signal and can communicate with it. In this case, communication zone Z is a circle with center m and radius of 20 m, which is expressed as

{ 20} = -≤ Z x x m . ( 1 
)
Fig. 1 shows the communication zone for m = (1, 3). When the vehicle is outside Z , i.e., it is in Z , communication between the vehicle and transmitter is impossible. This basic condition will be explained further in the next subsections in relation to each new concept. 

CSs, crisp intervals (CIs), and boxes

Let be a crisp subset (often called CS for ease) of . n CS simply represents the union of its contained singletons x = (x1, …, xn). The characteristic function of , :

{0,1} n µ → X , is expressed as 1 if , ( ) 0 if . µ ∈  =  ∉  X X X. x x x (2) 
The elementary operations between two CSs X and , Y such as the intersection, union, and difference, are respectively expressed as follows:

{ | }, { | }, \ { | } , a a a a a a a a a ∩ = ∈ ∧ ∈   ∪ = ∈ ∨ ∈   = ∈ ∧ ∉ = ∩  X Y X Y X Y X Y X Y X Y X Y. \ (3)
where ∧ and ∨ refer to the logical "and" and "or" operators, respectively, and Y represents the complement of Y.

A crisp interval (CI) [x] is a closed compact and bounded CS of

such that [ ] [ , ] { | } x x x x x x x - + - + = = ∈ ≤ ≤ . A CI vector [x] (x in bold
) is called a box and is defined as the Cartesian product of n closed CIs, i.e., 

i i i n x x x i n x x x - + = = = × × × K K x . ( 4 
)
For example, Fig. 2 shows a 2D box, with [ ] [ ]

x x = × x Fig. 2. 2D box 1 2 [ ] [ ] [ ] x x = × x .
2.3 TSs, thick intervals (TIs), and thick boxes (TBs)

Definitions

Let ( ( ), ) n ⊂ P be the power set of n equipped with inclusion order relationship ⊂. Set ( ) n P is a complete lattice with respect to ⊂ (please refer to [START_REF] Desrochers | Thick set inversion[END_REF] and [START_REF] Desrochers | Simultaneous Localization and Mapping in Unstructured Environments, A Set-Membership Approach[END_REF] for more details). TS ⟦ ⟧ of n is an interval of ( ( ), )

n ⊂ P such that { } inf sup inf sup . , ( ) | n ∈ = = ⊂ ⊂ X X X X X X X P (5)
TS ⟦ ⟧ is a sublattice of ( ( ), ) n ⊂ P [START_REF] Desrochers | Thick set inversion[END_REF][19] with lower and upper bounds inf and sup , respectively (see Fig. 3). Therefore, if ∈⟦ ⟧ and ∈⟦ ⟧, then ∩ ∈⟦ ⟧, and ∪ ∈⟦ ⟧. If inf = sup = , then ⟦ ⟧ is a CS of n , i.e., a singleton in ( ) n P .

Fig. 3. Representation of TS ⟦ ⟧.

In contrast to CSs where only two logic values are used, in the TS representation, three logic values are necessary: "0" (False), "?" (Perhaps), and "1" (True). The fundamental logical operations such as "and," "or," and "not" can be implemented using Kleene's ternary logic [START_REF] Kleene | Introduction to metamathematics[END_REF] [START_REF] Malinowski | Kleene logic and inference[END_REF] (see Fig. 4). Similar to a CS, the characteristic function of TS ⟦ ⟧, : {0,?,1}

n µ → X , is defined as inf sup 1 if , ( ) 0 if , ? otherwise. µ  ∈  ∉    a x x x X X X (6) 
Fig. 4. Operations and, or, and not using the Kleene's ternary logic.

Equation ( 6) is an extension of the conventional characteristic function of a CS, as expressed in (2), of the TS case. In this context, the characteristic functions of TSs can be combined using the Kleene's ternary operators. The arithmetical and logical operators among CSs can be extended to TSs [START_REF] Desrochers | Thick set inversion[END_REF][19] [START_REF] Jaulin | Solving set-valued constraint satisfaction problems[END_REF]. For example, the intersection, union, and difference operators are respectively expressed as

inf inf sup sup inf inf sup sup inf sup sup inf , , , , \ \ , \ 
. 

 ∩ = ∩ ∩   ∪ = ∪ ∪   =   X Y X Y X Y X Y X Y X Y X Y X Y X Y (7) 
sup sup sup 1 2 [ ] [ ] [ ] [ ], [ ] [ ] [ ] [ ]. n n x x x x x x      = × × × = × × × K K x x (8)
Fig. 5. Representations of TI and TB.

Illustration

Because of the possible presence of obstacles and disturbances induced by other networks, the autonomous vehicle locates the transmitter position with uncertainty, which is represented by a 2D box [m] = [m1]× [m2]. We need to note that this representation by a box is relatively poor. However, it will be enriched later. Thus, two nested communication zones can coexist. The first one is defined by all positions x of the vehicle where communication with the transmitter is certain regardless of its location m in [m]. The second one, which encompasses the first one, is the zone where the communication with the transmitter is plausible, i.e., at least one location m in [ ] m exists where communication between the vehicle and transmitter is possible. If each zone is represented by a CS, their difference represents the uncertainty (ignorance) and is interpreted as the zone where communication between the vehicle and transmitter is plausible but not certain (perhaps possible). Let ⊂ × A X M be the constraint

4 4 2 2 1 1 2 2 {( , ) | 20} {( , ) | ( ) ( ) 400} x m x m = ∈ - ≤ = ∈ - + - ≤ A x x x m m m . (9) 
Constraint ( 9) is a four-dimensional CS that defines all positions 

ℤ inf ⊂ ℤ ⊂ ℤ sup where sup inf { | [ ], 20}, { | [ ], 20}. = ∃ ∈ - ≤ = ∀ ∈ - ≤    x x x x Z Z m m m m m m ( 10 
)
CS ℤ inf represents a certain zone, which consists of all points x in 2 , where communication between the vehicle and transmitter is certain regardless of its location m in [m]. CS ℤ sup corresponds to the zone where communication between the vehicle and transmitter is plausible. Outside ℤ sup , communication is impossible. CS ℤ sup \ℤ inf represents the penumbra, which is an uncertain zone where communication is plausible but uncertain. The communication zone can be expressed as TS ⟦ℤ⟧ = ⟦ℤ inf , ℤ sup ⟧. The bounds ℤ inf and ℤ sup can be computed from the projections on Ξ of the intersection of A with Cartesian [START_REF] Castillo | Generalized type-2 fuzzy granular approach with applications to aerospace[END_REF] where the bar symbol indicates the complement of the set under the bar.

product [ ] × X m sup inf proj ( [ ]), proj ( [ ]), = × = ×      I I X X X A X Z A Z m m
For the sake of simplicity in representation, we consider the case where m2 is constant, e.g., m2 = 0, and can be omitted. Thus, we let [m] = [m1] = [-10, 10]. In this case, constraint (9) becomes

3 2 2 1 1 1 2 {( , ) ( -) 400} m x m x = ∈ + ≤ A x . ( 12 
)
This constraint is a cylinder in space (x1, x2, m1). Efficient computation of ℤ inf and ℤ sup can be performed using the method proposed in [START_REF] Jaulin | Interval methods for nonlinear identification and robust control[END_REF]. The main idea is to use interval computation to determine whether or not the projections of 

box [ ] [ ] × ⊂ × X M x m belong to ℤ inf or ℤ sup .
i i i i i i i i i i i i i i = = =  × = × =   × × × =   I I I I I U U U U U I I X X X X X Z X X Z Z A X A X A X Z A A m m m m m (13)
Fig. 7 shows how ℤ inf and ℤ sup are obtained when [ ] m is split into two parts, i.e., 

i j i j x × = × U X m m . ( 14 
)
The paving algorithm proposed in [START_REF] Chabert | Contractor programming[END_REF] leads to efficient computations using the interval-based solver PyIbex (https://www.ensta-bretagne.fr/desrochers/pyibex/docs/pyibex/). PyIbex is a set of Python modules for solving nonlinear problems using interval-arithmetic tools. For practical implementation of the PyIbex interval-based solver, ( 13) is transformed into equations using logical quantifiers. Thus, we obtain

sup inf { [ ], 20} proj {( , ) | 20}, { [ ], 20} { [ ], 20}, proj {( , ) | 20}. | | | = ∃ ∈ -≤ = -≤ = ∀ ∈ -≤ = ∃ ∈ -> =        -> x x x x x x x x x x X X Z Z m m m m m m m m m m m m m (15)
CS sup Z is a plausible zone and is associated with existential quantifier ∃, whereas CS inf Z is a certain zone and is associated with universal quantifier ∀.

Fig. 7 shows the solution provided by the solver and represented by the visualization system VIBes (http://codac.io/manual/07-graphics/01-vibes.html) Communication zones inf Z and sup Z when m1 = [-10, 10] and m2 = [0, 0] = 0 (i.e., [m] = [-10, 10]×[0, 0]) are shown in Fig. 8 with and without a paving illustration. In the following study and for reasons of visibility, paving is often not shown in the figures. Equation ( 12) in 3 is used for ease in explanation and representation. Nevertheless, the principle is general and can be applied to the initial constraint in 4 , as expressed by ( 9 

GSs, T1FSs, and gradual boxes (GBs)

Definitions

Let L be a complete distributive lattice with top "1" and bottom "0." In this study, L is considered as totally ordered and is taken as a unit interval. As discussed in [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF], the elements of L can be regarded as membership degrees for fuzzy sets and degrees of pertinence or of flexibility, among others. Let X be a CS. A GS G of X is defined using an assignment function G A from (0, 1] to 2 , i.e., λ (0,1]:

(λ) (λ) ∀ ∈ = X A G . ( 16 
) In this study, the domain of λ is extended to [0, 1], i.e., (0) X is defined. Equation [START_REF] Chuang | Extended support vector interval regression networks for interval input-output data[END_REF] indicates that the assignment function assigns to each degree λ a CS (λ) X of n . Therefore, the arithmetical and logical operators initially defined in CSs can naturally be extended to GSs. Furthermore, at each degree λ, the characteristic function of (λ), i.e., λ : {0,1}

n µ → ( ) X
, for all λ∈[0, 1], is defined by

λ 1 if (λ), ( )= 0 if (λ). µ ∈   ∉  ( ) x x x X X X (17) 
Equation ( 17) is simply an extension of ( 2) with a gradual case where a vertical dimension λ is added to represent the gradual inclusion. In a gradual framework, the images of the assignment function are not necessarily nested [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF]. Therefore, a GS is regarded as a stack of CSs that are not necessarily nested. Furthermore, the monotonicity (consistency) condition

1 2 1 2 2 1 ( ) ( ) λ , λ [0,1], λ λ λ λ ⊆ ∀ ∈ ≤ ⇒ X X , (18) 
which is required for T1FSs, is relaxed (not imposed) for GSs. Three examples of 2D GSs with their assignment functions 1(λ), 2(λ), and 3(λ) are shown in Fig. 10.

In the remainder of this paper, for simplicity of notation and when no confusion occurs, a GS is directly denoted by its assignment function (λ), λ∈[0, 1]. Furthermore, a CS is considered a special case of a GS with a constant assignment function. Because a box is a particular case of a CS, a GB is a particular case of a GS. For instance, a 2D GB is shown in Fig. 11 with its assignment function (λ), i.e., at each level λ, (λ) is a box. For reasons of homogeneity with the box notation, GBs can be represented by the well-known bracket notation. In this case, GB, with its assignment function (λ) X , can be denoted by [x(λ)] (x in bold). Notation [x(λ)] can be regarded as an assignment function that assigns a box for any degree λ. More generally, GB [x(λ)], λ∈[0, 1] is defined as

1 2 [ (λ)] [ (λ)] [ (λ)] [ (λ)]
, where [ (λ)] [ (λ), (λ)] for 1, , .

n i i i x x x x x x i n - + = × × × = = K K x ( 19 
)
By comparing ( 19) and ( 4), we can confirm that a GB is simply a box parameterized by λ. Furthermore, a one-dimensional (1D) GB is a gradual interval (GI) that is represented by [

x(λ)] = [x -(λ), x + (λ)] [7][27].

GSs and T1FSs

A T1FS can be represented either by a membership function or by a family of nested CSs, which is called λ-level sets (λ-cuts). According to the representation theorem [START_REF] Negoita | Applications of Fuzzy Sets to Systems Analysis[END_REF][58], any T1FS, which is denoted by $ X , can be decomposed into a family

λ { (λ)} , λ [0,1] ∈ X{
of its λ-cuts under the constraint of monotonicity, i.e., [START_REF] Desrochers | Thick set inversion[END_REF]. Hence, a λ-cut on a T1FS is CS (λ), λ∈[0, 1], and the membership function of T1FS $ X is obtained from the characteristic function of CSs by

λ [0,1] (λ) ( ) sup λ ( ), n µ µ ∈ = ∀ ∈ x x x X X . ( 20 
)
When the consistency condition, i.e., [START_REF] Desrochers | Thick set inversion[END_REF], is guaranteed, a GS becomes a T1FS, where the assignment-function concept in GSs is substituted by the λ-cut principle in T1FSs. In this case, the membership function of a T1FS can be deduced from that of a GS using the assignment function and vice versa [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF]. If a T1FS is a particular case of a GS, the reciprocal is false insofar as no monotony constraint is associated with the GS. For the others, a GS, where the consistency condition is followed, is called a consonant GS (or a T1FS). A non-consonant GS, which cannot be represented by a T1FS, is called a pure GS.

An interval-valued T1FS (IV-T1FS), also called a fuzzy interval or an interval-valued fuzzy number [START_REF] Dubois | Fuzzy interval analysis[END_REF][27] [START_REF] Suo | On n-polygonal interval-value fuzzy sets and numbers[END_REF], is a particular case (1D representation) of a T1FS and can be regarded as a consonant GI [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF] [START_REF] Boukezzoula | Extended gradual interval (EGI) arithmetic and its application to gradual weighted averages[END_REF]. For compatibility reasons with the interval notation, an IV-T1FS is often denoted by its λ-cuts

[x(λ)], λ∈[0, 1]. Each λ-cut is CI [x(λ)] = [x -(λ), x + (λ)].
An IV-T1FS vector is defined by the Cartesian product of n IV-T1FSs. In this study, an IV-T1FS vector is called a box-valued T1FS (BV-T1FS) and is defined by its λ-cut representation, namely, [START_REF] Desrochers | Simultaneous Localization and Mapping in Unstructured Environments, A Set-Membership Approach[END_REF], under the consistency constraint, i.e., a BV-T1FS is a consonant GB.

Illustration

The position of the transmitter remains uncertain but is now instantiated in boxes with the associated degrees of confidence. Thus, representing uncertain information, e.g., a transmitter is located in [m] with a confidence of 50%, is made possible. These confidence levels may depend on the weather and some environmental factors. As mentioned in [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF], [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF], and [START_REF] Fortin | Gradual numbers and their application to fuzzy interval analysis[END_REF], the idea of moving from a Boolean to a gradual context through a degree, which takes its values in the interval [0,1], makes illustrating the notion of progressive uncertainty possible. Therefore, the notion of progressivity in belonging to box [m] enriches its representativeness and improves its specificity. The uncertain transmitter position can be represented by 2D GB [m(λ)], λ∈[0, 1], which can be interpreted as a 2D distribution of possibility. At each level λ, the transmitter is located in box [m(λ)], and the communication zone is a TS. 2.5 TGSs, T2FSs, and thick GBs (TGBs)

Definitions

In an uncertain environment, because the concept of CSs has been extended to GSs, the concept of TSs can also be extended to TGSs. Therefore, a TGS, which is described by its assignment function ⟦ (λ)⟧, can be defined as an interval of two GSs, namely, lower GS inf (λ) and upper GSs sup (λ), such that

inf sup inf sup (λ) (λ), (λ) ={ (λ) ( ) | (λ) (λ) (λ)}, λ [0,1] n = ∈ ⊂ ⊂ ∀ ∈ X X X X X X X P . (21) 
For each level λ∈[0, 1], ⟦ (λ)⟧ is a TS. In this case, the characteristic function of ⟦ (λ)⟧, namely,

λ : {0,?,1} n µ → ( ) X , for all λ [0,1] ∈ , is expressed as inf sup λ 1, if (λ), ( ) 0, if (λ), ?, otherwise. µ  ∈  = ∉    ( ) x x x X X X ( 22 
)
Equations ( 21) and ( 22) are extensions of ( 5) and ( 6) to the gradual case, respectively, where all CSs are replaced by GSs, which are parameterized by λ.

By analogy to a GB, a TGB can be envisioned and regarded as a particular case of a TGS. For example, TGB ⟦ (λ)⟧, λ∈[0, 1], is shown in Fig. 13. We can observe that at each level λ, ⟦ (λ)⟧ is a TB. Furthermore, a thick GI (TGI) [START_REF] Boukezzoula | Thick gradual intervals: An alternative interpretation of type-2 fuzzy intervals and its potential use in type-2 fuzzy computations[END_REF] is a 1D TGB. Another view (based on left and right GIs) that is specific to TGIs in the interval-arithmetic context has been proposed [START_REF] Boukezzoula | Thick gradual intervals: An alternative interpretation of type-2 fuzzy intervals and its potential use in type-2 fuzzy computations[END_REF]. Here, TGIs are considered as GSs and are treated via a setmembership formalism. Even if the two representations are different, they lead to the same results.

In the TGS formalism, no monotonic constraint is imposed for GSs inf (λ) and sup (λ). In all circumstances, if inf (λ) = sup (λ),TGS ⟦ (λ)⟧ becomes GS (λ).

TGSs and T2FSs

In the TGS representation, if GS bounds inf (λ) and sup (λ) are consonant, i.e., they are represented by T1FSs. Then, a TGS becomes a TFS. Therefore, a TFS can be defined by a system (a family) of nested TSs {⟦ (λ)⟧}λ; λ∈[0,1] of its λ-cuts under the following monotonicity constraint:

inf inf sup sup 1 2 2 1 1 2 2 1 2 1 λ λ (λ ) (λ ) λ λ (λ ) (λ ) and (λ ) (λ ) ≤ ⇒ ⊆ ⇔ ≤ ⇒ ⊆ ⊆ X X X X X X . (23) 
Therefore, TFS ⟦ $ X ⟧, which is considered as a family of λ-cuts, has its thick membership function defined by inf sup

λ [0,1] λ [0,1] λ [0,1] λ λ λ ( ) sup ( ) sup ( ), sup ( ) , . λ λ λ n µ µ µ µ ∈ ∈ ∈ = = ∀ ∈ ( ) ( ) ( ) x x x x x X X X X (24) 
From ( 24), we can state that a TFS is represented by an interval of T1FSs. In cases when inf (λ) = sup (λ) = (λ), TFS becomes a T1FS. Furthermore, because TFS is composed of two T1FSs (lower and upper T1FSs) under constraint inf (λ) ⊂ sup (λ), ∀λ∈[0,1], this condition implies that a TFS can be regarded as a special case of a T2FS. The lower bound represents a T1FS, which is certain. The T1FS upper bound delimits all plausible T1FSs. The uncertainty is exhibited by penumbra sup (λ)\ inf (λ), ∀λ∈[0,1]. This penumbra concept in the TFS representation can be regarded as the FOU phenomenon in the T2FS representation [START_REF] Mendel | Type-2 Fuzzy Sets Made Simple[END_REF] [START_REF] Mo | Footprint of uncertainty for type-2 fuzzy sets[END_REF].

A thick IV-T1FS (TIV-T1FS) x is a special case of a TFS, i.e., a 1D TFS, and is represented by its membership function

inf sup λ [0,1] λ [0,1] ˆ[ (λ )] [ (λ)] ( ) sup ( ), sup ( ) , λ λ x x x x x x x µ µ µ ∈ ∈ = ∀ ∈ . ( 25 
)
Therefore, a TIV-T1FS is an interval with lower and upper IV-T1FSs. A TIV-T1FS vector is called a thick BV-T1FS (TBV-T1FS) and is defined by the Cartesian product of n TIV-T1FS. We need to note that a TIV-T1FS is a particular case of a TGB and can be interpreted as an intervalvalued T2FS (IV-T2FS) [START_REF] Dymova | An interval type-2 fuzzy extension of the TOPSIS method using alphacuts[END_REF][26] [START_REF] Hamrawi | Type-2 Fuzzy Alpha-Cuts[END_REF][59] [START_REF] Tolga | Finite-interval-valued Type-2 Gaussian fuzzy numbers applied to fuzzy TODIM in a healthcare problem[END_REF].

Illustration

The transmitter location is now represented by GB [m(λ)]. The communication zone becomes a TGS ⟦ℤ(λ)⟧, λ∈[0, 1], which is shown in Figs. 14 and15 for three chosen values of λ (0, 0.5, and 1). Nevertheless, the proposed computational method applies irrespective of the value of λ in [0, 1].

The colors in Fig. 15 are only used to differentiate the λ levels. The case of λ = 0 corresponds to the situation presented in Section 2.3.2, and for each λ level, the communication zone is computed using the same methodology. Furthermore, the case of λ = 1 refers to the situation presented in Section 2.1 where the location of the transmitter is crisp and known with certainty. According to these results, we can confirm that if the location of the transmitter is uncertain, the communication zone is a TS. However, if its location is crisp, the communication zone is a CS (see Fig. 14), i.e., ℤ sup (1) = ℤ inf (1) = ℤ(1). In this application, we can confirm that ℤ sup (1) ⊂ ℤ sup (0.5) ⊂ ℤ sup (0) [see Fig. 15(a)]. More generally, we can verify that the monotonicity (consistency) condition, i.e., [START_REF] Desrochers | Thick set inversion[END_REF], is observed for ℤ sup (λ). In this case, upper bound ℤ sup (λ) can be regarded as a T1FS. This situation of monotonicity (consistency) is a special case of the GS representation. More generally, no constraint of monotonicity is imposed on the GS and TGS representations. In contrast to ℤ sup (λ), GS ℤ inf (λ) does not obey constraint [START_REF] Desrochers | Thick set inversion[END_REF], i.e., ℤ inf (1) ⊄ ℤ inf (0.5) ⊄ ℤ inf (0). In reality, we rather have the opposite condition, i.e., ℤ inf (0) ⊂ ℤ inf (0.5) ⊂ ℤ inf (1) [see Fig. 15(b)]. Therefore, ℤ inf (λ) is a pure GS and cannot be represented by a T1FS. Thus, ⟦ℤ(λ)⟧, λ∈[0, 1], is a TGS and cannot be interpreted as a T2FS. 

X

, is defined by { } ,

i i i i i i ∈Ω ∈Ω ∈Ω = I U X X X & . ( 26 
)
The & operator makes possible extension of the operators initially proposed for CSs to TSs [START_REF] Desrochers | Thick set inversion[END_REF] [START_REF] Desrochers | Simultaneous Localization and Mapping in Unstructured Environments, A Set-Membership Approach[END_REF]. Indeed, given an operator { , , \,...} • ∈ ∩ ∪ , its extension to TS is expressed as

| , , { } • = ∃ ∈ ∃ ∈ = • X Y T X X Y Y T X Y & . ( 27 
)
Equation ( 27) states that the result of an operation among TSs is defined as smallest TS computed from the operands. Knowing that at each λ level, a TGS is a TS, the operations on TGSs can be computed as operations on TSs. For instance, according to the monotony property of the intersection, union, difference, and addition operators, we have

inf inf sup sup inf inf sup sup inf sup sup inf inf inf sup sup (λ) (λ) (λ) (λ), (λ) (λ) (λ) (λ) (λ) (λ), (λ) (λ) (λ) \ (λ) (λ) \ (λ), (λ) \ (λ) (λ) (λ) (λ) (λ), (λ) (λ )  ∩ = ∩ ∩  ∪ = ∪ ∪   =   + = + +  X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y . ( 28 
)
These operations are simply operations among TSs that are parameterized by λ. More generally, for a given function f from n to m , the image of TS ⟦ (λ)⟧= ⟦ inf (λ), sup (λ)⟧ by f is evaluated by

inf sup { } ( (λ) ) ( (λ)) | (λ) (λ) ( (λ)), ( (λ) 
) = = ∈ f f f f X X X X X X & . ( 29 
)
The image of a TS ⟦ (λ)⟧ by f is also a TS in which its bounds are the images by f of the bounds of ⟦ (λ)⟧. This extension of functions allows the propagation of TSs and TGSs in linear and nonlinear models where the inputs, outputs, states, and/or parameters can be represented by TGSs.

Illustration

Let us reconsider the application of an autonomous vehicle and assume that three uncertain transmitters exist. The location of these transmitters is given by 2D GBs [START_REF] Hamrawi | Type-2 Fuzzy Alpha-Cuts[END_REF] We need to note that the proposed method can be applied regardless of the number of transmitters and their locations. Gradual zones ℤ inf (λ) and ℤ sup (λ) are computed as
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Equation ( 31) is simply a version of (15) in the presence of three transmitters instead of one. Thus, the communication zone is the intersection among the three zones where each one is obtained for a transmitter. TSs that represents the uncertain communication zone for λ = 0, 0.5, and 1 is shown in Fig. 16. The superposition of CSs ℤ inf (λ) and ℤ sup (λ) (each of them separately considered) leads to that shown Fig. 17. We need to note that the method applies regardless of the value of λ. Fig. 17 shows that ℤ inf (λ) and ℤ sup (λ) are pure GSs (no monotonicity constraint is imposed). Consequently, communication zone ⟦ℤ(λ)⟧ is a TGS. Fig. 17. Zones ℤ inf (λ) and ℤ sup (λ) for λ = 0, 0.5, and 1 (using three transmitters).

As presented in Section 2.5.3, at each level λ, the uncertain location of the transmitters induces a TS. The uncertainty (ignorance) is exhibited by penumbra ℤ sup (λ)\ℤ inf (λ), which is shown in orange colors in Fig. 16. In contrast, when the transmitters are located with precision, i.e., λ = 1, the communication zone is a CS, where ℤ inf (λ) = ℤ sup (λ).

Applications of TGSs

In this section, applications for solving fuzzy SoEs and fuzzy regression are provided to illustrate the usefulness and interest of the TGS concept. Many other applications of the TGS approach can be envisioned in uncertain control and modeling and uncertain optimization, among others.

Solving fuzzy SoEs

For the sake of simplicity, linear fuzzy SoEs are considered. However, the method can be applied in whatever equation forms. Furthermore, for ease in three-dimensional (3D) illustration, only SoEs with two variables are considered. However, the method remains applicable regardless of the number of variables.

Solving 

] [ (λ)] , λ [0,1], × = ∀ ∈ x A b ( (λ) 
) 32 
where
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Conceptually, fuzzy SoEs, i.e., [START_REF] Huang | A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle[END_REF], have often been approached as interval SoEs via the concept of λ-cuts [2][3] [START_REF] Friedman | Fuzzy linear systems[END_REF]. Solving SoEs that involve CIs and IV-T1FSs has been investigated for quite a long time (e.g. [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF], [START_REF] Allahviranloo | On the algebraic solution of fuzzy linear systems based on interval theory[END_REF], [START_REF] Dymova | A method for solving systems of linear interval equations applied to the Leontief input-output model of economics[END_REF], [START_REF] Friedman | Fuzzy linear systems[END_REF], [START_REF] Horcik | Solution of a system of linear equations with fuzzy numbers[END_REF], [START_REF] Popova | Outer enclosures to the parametric AE solution set[END_REF], [START_REF] Rzezuchowski | Solutions of fuzzy equations based on Kaucher arithmetic and AE-solution sets[END_REF], [START_REF] Shary | A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity[END_REF], and [START_REF] Shary | Weak and Strong Compatibility in Data Fitting Problems Under Interval Uncertainty[END_REF]). Although significant advances have been achieved in solving these fuzzy SoEs, two important considerations deserve special attention. The first consideration concerns the algebraic solution of [START_REF] Huang | A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle[END_REF]. The second consideration is related to the meaning and significance associated with this solution, more particularly the united and tolerable solutions. These two considerations are addressed using the following two applications.

Example 1

Generally, the algebraic solution of (32) corresponds to the exact solution (sometimes called the formal solution) [2][25]. This solution is usually too restrictive and sometimes even fails to exist. Generally, embedded approaches according to the Kaucher interval arithmetic [START_REF] Kaucher | Interval analysis in the extended interval space IR[END_REF] are used to solve these SoEs [START_REF] Friedman | Fuzzy linear systems[END_REF] [START_REF] Rzezuchowski | Solutions of fuzzy equations based on Kaucher arithmetic and AE-solution sets[END_REF]. Therefore, when they exist, the solutions are computed at each level λ. However, the resulting solutions can sometimes be non-nested according to the vertical λ dimension. In this case, although the parameters of (32) are IV-T1FSs, the resulting solutions can be purely gradual quantities and cannot be regarded as fuzzy quantities [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF][8][27] [START_REF] Lodwick | Interval linear systems as a necessary step in fuzzy linear systems[END_REF].

Let us consider the 2 × 2 fuzzy linear SoEs, which have been considered in [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF], as a counterexample of the fuzzy approach proposed in [START_REF] Friedman | Fuzzy linear systems[END_REF] with the following parameters: 

[ (λ)] , [ (λ)] and [ (λ)] b x b x a a a a - =         = = =                 x A b , ( 33 
)
where
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In [START_REF] Jaulin | Interval methods for nonlinear identification and robust control[END_REF] The algebraic solution of the fuzzy SoEs, i.e., [START_REF] Jaulin | Interval methods for nonlinear identification and robust control[END_REF], which is addressed in [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF], is expressed as
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-- x - and 2 (λ)
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x + are non-decreasing and non-increasing, respectively, i.e., the consistency condition, namely, (18), is not followed. 19(c) shows that when a sampling step size of 0.05 on λ is used, the stacking of boxes [x(λ)] according to λ cannot be interpreted as a BV-T1FS but as a pure GB. Therefore, boxes [x(λ)], λ ∈[0, 1] are not always nested according to the λ dimension, i.e., the monotonicity (consistency) condition, namely, (18), is not satisfied. Although the parameters of fuzzy SoEs, namely, [START_REF] Jaulin | Interval methods for nonlinear identification and robust control[END_REF], are IV-T1FS (a BV-T1FS), the solution is not a BV-T1FS and cannot be regarded as a fuzzy set. Fig. 19. Representation of the solutions of fuzzy SoEs [START_REF] Jaulin | Interval methods for nonlinear identification and robust control[END_REF].

In this case and as stated in [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF], a fuzzy solution of (33) does not exist, and the solution proposed in [START_REF] Friedman | Fuzzy linear systems[END_REF] cannot be considered as a fuzzy solution. Therefore, we can state that the solution given in [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF] is a GB, which is a particular case of a GS. In this context, the GB and GS concepts provide a new outlook for interpreting the solutions of fuzzy SoEs when the results are not fuzzy quantities.

Let us reconsider the SoEs, namely, [START_REF] Jaulin | Interval methods for nonlinear identification and robust control[END_REF], where the parameters of [b(λ)] are no longer IV-T1FSs but IV-T2FSs. Each IV-T2FS [ (λ)] i b [START_REF] Boukezzoula | A decision-making computational methodology for a class of type-2 fuzzy intervals: An interval-based approach[END_REF]. In this case, SoEs, i.e., [START_REF] Jaulin | Interval methods for nonlinear identification and robust control[END_REF], become [ ( )] [ ( )
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IV-T2FS SoEs, i.e., [START_REF] Keyanpour | Solution Algorithm for a System of Interval Linear Equations Based on the Constraint Interval Point of View[END_REF], can be viewed as lower and upper IV-T1FS SoEs in the form of [START_REF] Jaulin | Interval methods for nonlinear identification and robust control[END_REF]. IV-T2FSs are shown in Figs. 20(a) and (b). We can state that a λ-cut on each IV-T2FS is a TI, i.e., inf sup

(λ) [ (λ)],[ (λ)] , 1, 2. i i i b b b i = = (37) 
Therefore, each IV-T2FS can be interpreted as a TIV-T1FS, which is expressed as

inf sup λ [0,1] λ [0,1] [ (λ )] [ (λ )] sup λ ( ),sup λ ( ) , 1, 2. i i b b i µ µ ∈ ∈ = x x (38) 
Furthermore, at each level λ, IV-T2FSs can be regarded as a TB in plane (b1, b2), i.e., inf sup . The stacking of these TBs according to λ leads to TBV-T1FS, which is shown in Fig. 20(c), using a sampling step size of 0.05 on λ. By applying the approach proposed in [START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF], the lower and upper algebraic solutions of (36) are [ ( )] At each level λ, the solutions can be expressed as TIs ⟦ (λ)
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As shown in Figs. 21(a) and (b), we can state that if ⟦x2(λ)⟧ can be considered as an IV-T2FS, ⟦x1(λ)⟧ cannot be represented by an IV-T2FS because its lower bound is not an IV-T1FS. Moreover, at each λ, these solutions can be represented by a TB ⟦x(λ)⟧ = ⟦x1(λ)⟧×⟦x2(λ)⟧ in plane (x1, x2). Fig. 21(c) shows that when a sampling step size of 0.05 on λ is used, the stacking of TBs ⟦x(λ)⟧ cannot be interpreted as a TBV-T1FS but as a TGB. Although the parameters of the fuzzy SoEs, i.e., [START_REF] Keyanpour | Solution Algorithm for a System of Interval Linear Equations Based on the Constraint Interval Point of View[END_REF], are IV-T2FSs (a TBV-T1FS), the solution is not a TBV-T1FS and cannot be considered as a T2FS. In this context, the TGB shown in Fig. 21(c), which is a particular case of a TGS, can be used to interpret some uncertain type-2 fuzzy SoEs whose solutions are not T2FSs. 

Example 2

As presented in Example 1, the algebraic solution of fuzzy SoEs is restrictive or even empty. Therefore, solving (32) using an embedded approach can turn out to be unrealistic (improper IV-T1FSs, for example). Another way of solving [START_REF] Huang | A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle[END_REF], which represents a dominant approach in the literature, is based on treating the SoEs as a set of crisp SoEs whose parameters belong to the corresponding IV-T1FSs (inclusion problem). In this case, at each λ-level, SoEs are considered as interval SoEs [START_REF] Allahviranloo | On the algebraic solution of fuzzy linear systems based on interval theory[END_REF] 

Therefore, (41) interprets ( 32) not as a strict equality between the left-and right-hand sides but as a family of crisp SoEs A × x =b of the same structure with A∈[A(λ)] and b∈[b(λ)] [START_REF] Shary | An Interval Linear Tolerance Problem[END_REF]. In solving [START_REF] Huang | A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle[END_REF], the popular ideas are the concept of a united set solution (USS) and a tolerable set solution (TSS) [START_REF] Dymova | A method for solving systems of linear interval equations applied to the Leontief input-output model of economics[END_REF][56][63] [START_REF] Shary | Weak and Strong Compatibility in Data Fitting Problems Under Interval Uncertainty[END_REF]. USS is formalized using universal quantifier (∀) and is defined as

USS (λ) { | [ (λ)], [ (λ)], } n = ∈ ∃ ∈ ∃ ∈ × = x x X A A b b A b . ( 42 
)
Equation ( 42) can be written as [START_REF] Shary | Weak and Strong Compatibility in Data Fitting Problems Under Interval Uncertainty[END_REF] USS (λ

) { | [ (λ)], [ (λ)]} n = ∈ ∃ ∈ × ∈ x x X A A A b . ( 43 
)
The solution, i.e., [START_REF] Malinowski | Kleene logic and inference[END_REF], refers to understanding what the solution of the fuzzy SoEs, i.e., [START_REF] Huang | A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle[END_REF], is. This USS is a set of solutions such that at least one A∈[A(λ)] exists in which left-hand side A × x falls into right-hand side [b(λ)]. Another solution, which is called TSS, ensures strong compatibility between the parameters and data [START_REF] Shary | Weak and Strong Compatibility in Data Fitting Problems Under Interval Uncertainty[END_REF]. TSS is rarely treated in a fuzzy context. It is formalized using existential quantifier (∃) and refers to the set of solutions in which left-hand side A×x falls into righthand side [b(λ)] for any A∈[A(λ)]. TSS is expressed as

TSS (λ) { | [ (λ)], [ (λ)], } n = ∈ ∀ ∈ ∃ ∈ × = x x X A A b b A b . ( 44 
) Equation ( 44) can be reformulated as 20 TSS 

(λ) { | [ (λ)], [ (λ)]} n = ∈ ∀ ∈ × ∈ x x X A A A b . ( 45 
)
These two solutions can be combined and lead to a new interpretation of the solution of the fuzzy SoEs, namely, [START_REF] Huang | A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle[END_REF]. Indeed, because the parameters in the left-and right-hand sides of (32) are uncertain, the set of solutions should also be uncertain. Therefore, for each level λ, the set of solutions is not CS but an uncertain set that can be represented by TS ⟦ (λ)⟧ = ⟦ inf (λ), sup (λ)⟧. The bound inf , which coincides with TSS, is considered as a set of certain solutions. The bound sup , which refers to USS, is considered as a set of plausible solutions. Difference sup \ inf represents plausible but uncertain solutions. The stacking of TSs ⟦ (λ)⟧ leads to a TGS. If the monotonicity constraint, i.e., [START_REF] D'urso | A least-squares approach to fuzzy linear regression analysis[END_REF], is guaranteed, TGS becomes a TFS, i.e., a T2FS. In the case when [A(λ)] is a crisp matrix, the TGS is reduced to a GS (TFS to T1FS, respectively).

Let us consider the 2 × 2 fuzzy linear SoEs where the elements of [A] and [b] are IV-T1FSs, which are defined by [START_REF] Castillo | Generalized type-2 fuzzy granular approach with applications to aerospace[END_REF] 12
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At λ = 0, ( 46) corresponds to the popular interval linear SoEs, which are repeatedly used by many authors (e.g. [START_REF] Dymova | A method for solving systems of linear interval equations applied to the Leontief input-output model of economics[END_REF], [START_REF] Horcik | Solution of a system of linear equations with fuzzy numbers[END_REF], [START_REF] Keyanpour | Solution Algorithm for a System of Interval Linear Equations Based on the Constraint Interval Point of View[END_REF], [START_REF] Lodwick | Interval linear systems as a necessary step in fuzzy linear systems[END_REF], [START_REF] Tabar | Solving interval linear programming problems with equality constraints using extended interval enclosure solutions[END_REF], and [START_REF] Shary | A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity[END_REF]). The set of solutions of ( 46) provided in [START_REF] Horcik | Solution of a system of linear equations with fuzzy numbers[END_REF], [START_REF] Keyanpour | Solution Algorithm for a System of Interval Linear Equations Based on the Constraint Interval Point of View[END_REF], [START_REF] Lodwick | Interval linear systems as a necessary step in fuzzy linear systems[END_REF], and [START_REF] Tabar | Solving interval linear programming problems with equality constraints using extended interval enclosure solutions[END_REF] (for λ = 0) is a CS, which is shown in Fig. 22(a). This solution corresponds to USS produced by interval solvers such as the Intlab solver [START_REF] Keyanpour | Solution Algorithm for a System of Interval Linear Equations Based on the Constraint Interval Point of View[END_REF] [START_REF] Tabar | Solving interval linear programming problems with equality constraints using extended interval enclosure solutions[END_REF] (see http://www.ti3.tuharburg.de/intlab/). Furthermore, we can state that this solution is not a box even though elements [A(0)] and [b(0)] are CIs. The stacking of CSs (λ) leads to consonant GS (T1FS), as shown in Fig. 22(b), when a sampling step size of 0.1 on λ is used. This type of result is generally presented in solving fuzzy SoEs according to USS [START_REF] Horcik | Solution of a system of linear equations with fuzzy numbers[END_REF]. Our approach differs from those conventionally proposed in the literature. Therefore, at each level λ, the solution of ( 46) is not CS (λ) but TS ⟦ (λ)⟧ = ⟦ inf (λ), sup (λ)⟧. By stacking TSs ⟦ (λ)⟧ according to the λ dimension, the solution is not a GS but a TGS. The certain and plausible solutions are shown in Fig. 23 
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Solutions sup (λ) and inf (λ) are equivalent to the USS and TSS solutions proposed in [START_REF] Dymova | A method for solving systems of linear interval equations applied to the Leontief input-output model of economics[END_REF] and [START_REF] Shary | A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity[END_REF], respectively. We can verify that GSs sup (λ) and inf (λ) obey the monotonicity condition, namely, [START_REF] Desrochers | Thick set inversion[END_REF], and they can be considered as T1FSs. In this case, TGS shown in Fig. 23(b) is a TFS and can be interpreted as a T2FS. Fig. 23. TS and TGS solutions of SoEs, i.e., [START_REF] Mendel | Type-2 Fuzzy Sets Made Simple[END_REF].

Uncertain fuzzy regression

In the literature, fuzzy regression has often been approached using a parametric paradigm where the estimation of the fuzzy parameters remains a major objective. Fuzzy regression is usually addressed using IV-T1FS models where the inputs, outputs, and parameters are represented by IV-T1FSs (e.g., [START_REF] Bisserier | A Revisited Approach for Linear Fuzzy Regression Using Trapezoidal Fuzzy Intervals[END_REF], [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF], [START_REF] Chen | A new approach to formulate fuzzy regression models[END_REF], [START_REF] Diamond | Fuzzy Least Squares[END_REF], and [START_REF] D'urso | A least-squares approach to fuzzy linear regression analysis[END_REF]). In this framework, the fuzzy regression can be considered as a generalization of the interval regression in which the CI specificity is enriched through the vertical λ dimension. This finding is consistent with the works published in the literature where fuzzy regression has been generally addressed as an interval regression using the concept of λ-cuts (e.g., [START_REF] Bisserier | A Revisited Approach for Linear Fuzzy Regression Using Trapezoidal Fuzzy Intervals[END_REF], [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF], [START_REF] Chen | A new approach to formulate fuzzy regression models[END_REF], [START_REF] Diamond | Fuzzy Least Squares[END_REF], and [START_REF] D'urso | A least-squares approach to fuzzy linear regression analysis[END_REF]). Therefore, fuzzy regression uses two dimensions (horizontal and vertical). The horizontal dimension is similar to that used in the interval regression. The vertical dimension is related to the relevance degrees and is limited to the unit interval [0, 1] (λ-cuts).

Although significant advances have been achieved using fuzzy-regression approaches, two important considerations deserve more attention. The first consideration is related to the horizontal dimension and focuses on how to handle inputs depending on whether they are crisp or uncertain. Furthermore, in the fuzzy-regression literature, different types of data have been considered, i.e., crisp inputs/uncertain outputs (CI/UO) and uncertain inputs/uncertain outputs (UI/UO) [START_REF] Boukezzoula | A Midpoint-Radius approach to regression with interval data[END_REF][7] [START_REF] Cerny | Possibilistic linear regression with fuzzy data: Tolerance approach with prior information[END_REF][21] [START_REF] D'urso | A least-squares approach to fuzzy linear regression analysis[END_REF]. However, both situations are approached using the same formalism, which results in the same nature, i.e., the parameters are CIs (IV-T1FSs). Nevertheless, when certain and plausible reasoning are considered, the CI/UO and UI/UO data involve two different situations and do not lead to the same results in the parameter-estimation problem. This phenomenon is illustrated in Application 3. The second consideration refers to the vertical dimension. Therefore, if the estimation problem is addressed without any constraint of consistency between the λ levels, the results can be not nested according to the λ dimension and cannot be regarded as fuzzy quantities. This situation is illustrated in Application 4. For simplicity of illustration, the model is considered as linear. However, the approach is applicable regardless of the nonlinear form of the regression model.

Example 3

Let us consider the availability of a linear model ( , )

x p

M

, where p = (p1, p2) is the vector of the parameters, which can fit input data x and output data y, i.e., (48) Let this model be uncertain with CI inputs [xi] and CI outputs [yi]. A part of the CI input-output data set used in [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF] and [START_REF] Chuang | Extended support vector interval regression networks for interval input-output data[END_REF] is considered (see Table 1).

Index Interval Input [xi] Interval Output [yi] Index Interval Input [xi] Interval Output [yi] 1
Table 1: CI inputs and CI outputs.

In fuzzy and interval regressions, the parameter-estimation problem is traditionally approached by minimizing an objective function (with or without a penalty term and sometimes under constraints). The vector of the parameters that minimizes this objective function is viewed as the optimal one. In this framework, possibilistic and least square approaches [START_REF] Diamond | Fuzzy Least Squares[END_REF][68] are the most dominant in the literature (see [START_REF] Chukhrova | Fuzzy regression analysis: Systematic review and bibliography[END_REF] for a good survey). In contrast to the conventional fuzzy and interval regression approaches, our approach is not based on the minimization of an objective function. Therefore, instead of determining a single optimal vector of parameters, the proposed approach aims at determining the set of all feasible vectors of parameters. Once the set of all possible parameters has been determined, practitioners can choose a vector of parameters based on a desired criterion. Therefore, our objective is to determine the set of all feasible parameters such that for inputs xi in [xi], the outputs produced by M are in [yi], i.e., M(xi, p)∈[yi]. To highlight the influence of uncertain inputs, we first assume that the inputs are crisp and given by their midpoints, i.e., the midpoint of [xi]. In this case, the set of all feasible parameters is a CS, which is expressed as
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The set of parameters ℙ in plane (p1, p2), which is obtained using the PyIbex solver, and its approximation by box [p] is shown in Fig. 24. Furthermore, if the CI regression approaches were used, to avoid missing feasible parameters, box [p], which is shown in Fig. 24(b), can be obtained. This box is an approximate solution to the parameter-estimation problem and generates a loss of information. Now, because of the uncertainties stored in the inputs (CIs), the set of parameters is no longer CS ℙ but TS ⟦ℙ⟧ = ⟦ℙ inf , ℙ sup ⟧, where ℙ inf and ℙ sup are expressed as follows: M(xi,p)∈[yi]. CSs ℙ inf and ℙ sup are computed by a projection method using the PyIbex solver, as previously detailed. TS ⟦ℙ⟧ = ⟦ℙ inf , ℙ sup ⟧ in plane (p1, p2) is shown in Fig. 25(a). Although the inputs are uncertain (CIs), the CI regression leads to a set of parameters in the form of box [p], i.e., a CI for each parameter p1 and p2.
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For comparison purpose, when the possibilistic interval regression proposed in [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF] is used, the set of parameters is box [p] = [-1.99, -0.866]×[ -3.162, -1.67] [see Fig. 25(a)]. This result does not introduce any specificity because of the uncertain inputs and represents only an approximation of the set of parameters. Usually, approximating uncertain solution ⟦ℙ⟧ = ⟦ℙ inf , ℙ sup ⟧ is always possible using TB ⟦p⟧ = ⟦[p inf ], [p sup ]⟧, as shown in Fig. 25(b). However, this approximation implies a loss in information. Fig. 25. Representation of TS ⟦ℙ⟧ in plane (p1, p2) and its approximation using TB ⟦p⟧.

Example 4

Let us consider again the linear model, i.e., [START_REF] Mendel | α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications[END_REF]. Let us assume that this model remains uncertain with fuzzy inputs/outputs that are represented by IV-T1FSs. A process is realized where at fuzzy input [xi(λ)], a fuzzy output [yi(λ)] is collected. This process is repeated five times. The data are listed in Table 2 where the inputs are triangular IV-T1FSs and the outputs are trapezoidal IV-T1FSs. Because of the uncertainties stored in the inputs, at each λ level, the set of parameters is no longer CS ℙ(λ) but TS ⟦ℙ(λ)⟧=⟦ℙ inf (λ), ℙ sup (λ)⟧, where ℙ inf (λ) and ℙ sup (λ) are expressed as
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(λ) ( (λ), (λ)) p p = p . For instance, TSs ⟦ℙ(λ)⟧ = ⟦ℙ inf (λ), ℙ sup (λ)⟧ for λ = 0 and λ = 1 in plane (p1, p2) are shown in Fig. 26. Furthermore, our method can be applied regardless of the value of λ. According to these results, we can state that if the inputs are uncertain (fuzzy), the set of parameters is a TS [see Fig. 26(a)]. However, if the input is crisp (at λ = 1 because the inputs are triangular IV-T1FSs), the set of parameters is a CS, i.e., ℙ inf (1) = ℙ sup (1) = ℙ(1) [see Fig. 26(b)]. The superposition of CSs ℙ inf (λ) and ℙ sup (λ) (each is separately considered) leads to that shown in Fig. 27. The stacking of TSs ⟦ℙ(λ)⟧ leads to TGS, which is shown in Fig. 28, using a sampling step size of 0.1 on λ. Fig. 27 shows that GS ℙ sup (λ) satisfies the consistency condition, namely, [START_REF] Desrochers | Thick set inversion[END_REF], and can be regarded as a T1FS. In contrast, GS ℙ inf (λ) is pure GS and cannot be represented by a T1FS [see Fig. 27(a), where GSs are illustrated for three values of λ]. In this case, TGS shown in Fig. 28 cannot be considered as a T2FS because the lower bound is not a T1FS. 

Application to a real-world underwater robot

In this section, an application of the TGS concept is provided through a real experiment using the Daurade underwater robot (see Fig. 29 for Daurade and its main characteristics). The Daurade robot was built by ECA robotics and used by Direction Générale de l'Armement-Techniques Navales-French Army and Service Hydrographique et Océanographique de la Marine to perform Rapid Environment Assessment (REA) missions. REA is designed to survey the environmental conditions of a particular location to identify any existing or potential dangers. The objective of this application is to determine the zone explored by the Daurade robot in an uncertain environment. The Daurade mission is related to the counter-mine warfare context where the objective is to map the seafloor using acoustic sensors. The main objective of the REA missions is to determine if the area of interest has been completely explored. Therefore, Daurade is equipped with a side scan sonar (Klein 5500), which is used to detect potential mines. Owing to this sonar, data are recorded on a line perpendicular to the path of the sensor, and images are formed by drawing these lines side by side. The portside lateral sonar antenna corresponds to a 1m black segment at the bottom left of the robot. The approach proposed in this paper is used to validate that the zone to be explored is totally covered. For safety reasons, the application aims at covering the total seafloor that is visible by sonar, which considers all uncertain trajectories of the robot. The uncertainty of the trajectories is induced by some disturbances such as noise sensors in a hostile environment, ocean currents, and weather conditions.

Daurade is an autonomous underwater vehicle (AUV). An AUV is a type of intelligent robot that works in underwater conditions [START_REF] Huang | A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle[END_REF]. Daurade is equipped with an embedding localization system. Therefore, in its navigation under the surface, Daurade does not receive any electromagnetic waves. In this case, global-navigation-satellite systems, which are often used in terrestrial and aerial applications, cannot be applied in the underwater situation. In the present study, during a navigation mission, the depth is assumed to be fixed, and the position of Daurade is given by its 2D horizontal coordinates x = (x1, x2). This position is delivered through an embedded system that integrates an inertial navigation system (INS) coupled with a Doppler Velocity Log (DVL) sensing speed. Once under water, no GPS data are available, and the estimated position of the robot drifts with time. Therefore, because of disturbances, Daurade is subjected to drifting effects on its speed and consequently its position.

Application context

The application proposed in this paper is a mission of 46 min, which has been performed in the Roadstead of Brest (Brittany, France) using Daurade. It realizes a classical survey pattern composed of a set of parallel tracks at a depth of approximately 10 m. At the beginning of the mission, the robot position is exactly known owing to GPS localization. Initial condition x(0) is assumed equal to (0, 0). Coordinates (0, 0) for (x1, x2) are considered as our navigation origin.

The Daurade robot is controlled to follow the ideal 2D desired trajectory shown in Fig. 30(a) (solid line). In this case, when the robot dives under the surface, it does not receive electromagnetic waves anymore, and GPS cannot be considered. Daurade can estimate its successive positions using INS, which is coupled to a DVL sensing speed. However, because of some disturbances (noise sensors, ocean currents, and weather conditions), the robot is subjected to some drifting effects on its speed, its heading, and consequently its position. For instance, an experiment process has led to the trajectory shown in Fig. 30(a) (dashed line). Therefore, uncertainties (errors) in the robot trajectory are induced by the speed-and headingdrift effects. For instance, when a drift on the speed of up to ±0.2% is considered, the 2D robot trajectory shown in Fig. 30(a) (solid line) becomes uncertain and can be represented by a 2D tube [START_REF] Rohou | Guaranteed Computation of Robots Trajectories[END_REF] [see Fig. 30(b)].

The 2D tube shown in Fig. 30(b) represents all possible trajectories of the robot when the speed error is within the interval [-0.2%, +0.2%]. In this framework, for any considered operating conditions that are compatible with a speed drift of ±0.2%, this tube certainly follows the true trajectory. Because the position of Daurade is obtained by integration of its speed, the uncertainty of the trajectory can normally increase over time. We must note that trajectories in the tube that are not realizable by the robot may exist.

A tube over domain [t0, tf] can be regarded as a family (envelope or interval) of dynamic trajectories x(⋅) [START_REF] Rohou | Guaranteed Computation of Robots Trajectories[END_REF]. The dot notation (⋅) is used to distinguish between a whole trajectory x(⋅) from a local evaluation x(t). Therefore, a tube that is denoted as

[x](⋅) = [x -(⋅), x + (⋅)] is an interval of trajectories x(⋅) such that 0 ( ) ( ), [ , ] f t t t t t - + ≤ ∀ ∈ x x ( 52 
)
An example of a 1D tube [x](⋅) is shown in Fig. 31 with its interval bounds and an arbitrary possible trajectory x(t). 

Trajectory uncertainty formalization

First, only the speed drifts are considered. The other drifts will be discussed later. Therefore, to determine the uncertainties related to the speed drift, experiments are performed under adverse (pessimistic) and favorable (optimistic) operating conditions. In the pessimistic case, a drift of up to ±1% on the robot speed is observed. In the optimistic case, the speed drift is limited to ±0.2%. In the pessimistic case, the speed data are most imprecise but contain the highest degree of certainty, i.e., a degree of confidence 1-λ = 1 (level λ = 0). However, the optimistic situation indicates that the data are most precise but contains the highest degree of uncertainty. This case refers to λ = 1 (zero confidence level). For simplicity of implementation, the evolution between levels λ = 0 and λ = 1 is assumed to be linear. This assumption is only an approximation, and supplementary information can be used to improve this assumption. Therefore, the uncertainty related to the speed drift (speed error) is characterized by a distribution of possibility which is represented by trapezoidal IV-T1FS [START_REF] Bisserier | A Revisited Approach for Linear Fuzzy Regression Using Trapezoidal Fuzzy Intervals[END_REF]: [ (λ)] [ 0.01 0.008λ, 0.01 0.008λ]

speed E = - + - (53) 
IV-T1FS [Espeed(λi)], which is shown in Fig. 32, can be considered as a set of nested confidence intervals. The degree of necessity for CI [Espeed (λi)] to contain the value of Espeed is N([Espeed(λi)]) = 1-λi. Therefore, the confidence interval [Espeed (λi)] is interpreted as follows: "I am certain to a (1-λi) degree that Espeed is in [Espeed(λi)]." We can easily show that degree of possibility Π([Espeed (λi)]) = 1. More generally, a set of nested confidence intervals [Espeed(λi)] with degrees of certainty (1-λi) is equivalent to a distribution of possibility. For each level λ, [Espeed(λ)] is an interval, and the 2D horizontal robot coordinates depend on λ and is denoted by The initial condition is always assumed to be equal to (0, 0) irrespective of the value of λ. For example, 2D tubes trajectories [xλ](⋅) induced by the speed drift at λ = 0, 0.5, and 1 are shown in Fig. 33. By integrating dimension λ∈[0, 1], the stacking of the tubes leads to a gradual tube, which is shown in Fig. 33(d), when a sampling step size of 0.2 on λ is used. This gradual tube can be considered as an object that integrates all possible tube trajectories according to confidence degree λ.

Uncertain explored zone induced by speed drifts

The objective presented in this section is the characterization of the explored (visible) zone when the robot evolves in a gradual tube. The purpose of the characterization of this zone is to detect the presence of dangerous objects such as underwater mines. During its navigation, the robot is equipped with a scanner to observe a part of its environment. When a degree of confidence is specified (a given value of λ), a subset of the seafloor exists at each time, which is denoted by

2 λ ( ( )) , t ⊂ x V
that is visible by the robot (at each time, the visibility zone can be considered as a disk around the robot position). When the robot trajectory is crisp, the explored zone can be considered as CS ℤ, which is expressed as

λ 0 ( ( )) t t ≥ = U x Z V . ( 54 
)
Equation ( 54) refers to the union of all disks around the dynamic robot position. Conventionally, the robot trajectory is considered as crisp. However, this crisp trajectory rarely corresponds to the observed reality because of the drifts in the robot position. In this case, the characterized navigation zone does not reflect reality, and no reliability can be associated with it. However, and in contrast to the conventional approaches, all possible trajectories are considered in our approach. Thus, because of the uncertainty in the trajectory (the robot is assumed to evolve in the tube), the explored zone becomes an uncertain set, i.e., TS ⟦ℤ(λ)⟧ = ⟦ℤ inf (λ), ℤ sup (λ)⟧, whose bounds are computed using (λ) (λ)
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In [START_REF] Pawlak | Rough Sets: Theoretical Aspects of Reasoning About Data[END_REF], ℤ inf (λ) is called the certainly explored zone (lower bound). It corresponds to the set of all points in the seafloor that have certainly been observed by sonar irrespective of the position of the robot in its tube (for all feasible trajectories). In the same manner, ℤ sup (λ), which represents the explored plausible zone (upper bound), refers to the set of all points in the seafloor that have been observed by sonar for some feasible trajectories and unobserved by it in some other feasible trajectories. Moreover, the points that are outside ℤ sup (λ) are certainly not observed by the sonar. Points in penumbra ℤ sup (λ) \ℤ inf (λ) are possibly (but not certainly) observed by the sonar. Tube [x0](⋅) shown in Fig. 33 indicates the least precise but the most certain observation. In contrast, tube [x1](⋅) is the most precise but the least certain observation. Therefore, the confidence degree associated with each tube [xλ](⋅) is (1-λ). By separately considering certain zone ℤ inf (λ) or plausible zone ℤ sup (λ), each of these zones is a CS at each level λ. For example, ℤ inf (0) and ℤ sup (0) are shown in Fig. 34. Furthermore, in the absence of uncertainty where the robot trajectory is known, the explored zone becomes a unique CS, i.e., ℤ inf = ℤ sup = ℤ.

The stacking of CSs ℤ sup (λ) and ℤ inf (λ) according to the λ dimension (each of them separately considered) leads to GSs shown in Fig. 35. We can state that these GSs obey the monotonicity (consistency) condition, i.e., [START_REF] Desrochers | Thick set inversion[END_REF], and can be regarded as T1FSs. Furthermore, for a given level λ, merging two lower and upper CSs ℤ inf (λ) and ℤ sup (λ) into a single entity results in an uncertain explored zone, which is represented by TS ⟦ℤ(λ)⟧ = ⟦ℤ inf (λ), ℤ sup (λ)⟧. For example, the resulting TSs at λ = 0, 0.5, and 1 are shown in Figs. 36(a)-(c), respectively.

Moreover, TGS shown in Fig. 36(d) is obtained by the stacking of TSs according to the λ dimension when a sampling step size of 0.1 on λ is used. This result could also have resulted from the fusion of GSs shown in Fig. 35 in a unique entity, i.e., TGS. In this case, because lower and upper GSs are T1FSs, the TGS is a TFS, which can be considered as a T2FS.

Without going into some details, which are protected for confidentiality reasons, the usefulness of this approach fits into a risk decision-making strategy in an uncertain environment where zones ℤ sup (λ) and ℤ inf (λ) can be considered as the higher and lower bounds of uncertainty in the decision process. Therefore, a TGS can be considered as a cartography which associates with each degree λ, a certain (safest) zone ℤ inf (λ), and a plausible safe zone ℤ sup (λ). Thus, decision makers use some degree of confidence in formulating their decisions on the safety of the submarine navigation (exploration) zone. Because ℤ sup (λ) and ℤ inf (λ) are T1FSs, the certainty and reliability of the decision can be quantified using the possibility theory [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF]. Therefore, for chosen degree λi, which depends on the operating conditions (weather, sea currents, etc.), the degree of necessity for ℤ inf (λ) is 1-λi. For instance, a decision maker can affirm that "I am certain to a (1-λi) degree that certain zone ℤ inf (λ) is safe." The same remark can be made on plausible zone ℤ sup (λ). From the methodological perspective, we must note that the difference that can be achieved between TGSs and GSs is similar to the difference that can be obtained between T2FSs and T1FSs. Furthermore, in the TGS representation, no consistency constraint is imposed for GSs. Therefore, TGSs can be used to represent some uncertain quantities that are impossible to represent by T2FSs. This point will be illustrated in the next section. 

Uncertain explored zone induced by speed and heading drifts

In addition to the speed drifts shown by IV-T1FS in Fig. 32, we will consider the heading drifts. To determine the uncertainty according to the heading drifts, the same methodology presented in Section 4.2 is adopted where pessimistic and optimistic operating conditions are considered. In the pessimistic situation, a drift of up to ±1.5% has been observed on the robot heading. In the optimistic case, the heading drift is limited to ±0.3%. In this case, the uncertainty (error) related to the heading drifts is represented by trapezoidal IV-T1FS, i.e., [ (λ)] [ 0.015 0.012λ, 0.015 0.012λ]

heading E = - + - . ( 56 
)
For each level λ, the underwater robot trajectory is in its tube. This induces an uncertain zone that is represented by a TS, as shown in Fig. 37, at λ = 0, 0.5, and 1. 38, which shows that the double uncertainty (speed and heading uncertainties) implies a large width of the tubes and, consequently, a significant overlap in the trajectories. The stacking of these TSs leads to TGS, which is shown in Fig. 37(d). According to these results, we can verify that if ℤ sup (λ) is nested according to λ, ℤ inf (λ) is not nested, and it does not obey the consistency constraint [see Fig. 39(b)]. Therefore [and as shown in Fig. 39(a)], we can observe that ℤ inf (1) ⊄ ℤ inf (0). This non-nesting phenomenon provides the GS and TGS concepts their full meanings. In this case, the TGS, which is shown in Fig. 37(d), is an uncertain quantity that cannot be represented by a T2FS.

In this context, TGS shown in Fig. 37(d) can always be considered as a cartography that associates with each degree λ, a certain safe explored zone ℤ inf (λ), and a plausible safe explored zone ℤ sup (λ). However, the quantification of uncertainty using the possibility theory requires GSs to be represented by T1FSs that are considered as distributions of possibility. Therefore, in a pure gradual framework, the uncertainty cannot be quantified using the possibility measures but in terms of belief functions [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF]. For example, masses of belief m(ℤ inf (λi)) can be associated with ℤ inf (λi), λi∈[0, 1], which are considered as focal elements. In this case, for a degree λi, the belief function (Bel) represents the sum of the masses that necessarily imply ℤ inf (λ). The plausibility measure (Pl) refers to the sum of the masses that do not necessarily contradict ℤ inf (λ). The Bel measure evaluates up to what extent it is certain that the information represented by m(ℤ inf (λi)) implies that a point in the seafloor ∈ℤ inf (λ). The Pl measure evaluates up to what extent the information represented by mass m(ℤ inf (λi)) does not contradict the proposition: a point in the seafloor ∈ℤ inf (λ). In this case, for a given level λi, the safety probability of ℤ inf (λ) is in the interval bounded by the Bel and Pl measures. The same reasoning can be used on ℤ sup (λ). For more details, see [START_REF] Boukezzoula | From fuzzy regression to gradual regression: Interval-based analysis and extensions[END_REF] on how uncertainty is quantified using the possibility and belief-function theories in a gradual context.

Conclusion

In this paper, a new concept of TGSs is proposed. A TGS originates from the GS and TS concepts. TGS ⟦ (λ)⟧ = ⟦ inf (λ), sup (λ)⟧ is an interval of GSs, which is delimited by two lower 34 inf (λ) and upper sup (λ) GS bounds. One originality of this approach is that it can represent uncertain quantities that are not easily represented by CSs, T1FSs, GSs, and/or T2FSs. Another originality is the provision of a new representation of uncertain GSs. Furthermore, logical and arithmetical operations on uncertain GSs can be implemented using the TGS formalism. The potential applicability of this approach has been validated using application examples in solving fuzzy SoEs, fuzzy regression contexts, and real-world application using an underwater robot. Furthermore, the proposed method can be applied to more complex real-world applications in several domains such as in uncertain linear and nonlinear control and uncertain linear and nonlinear optimization problems, among others. In their philosophy of representation, GSs and TGS are linked to T1FSs [START_REF] Dubois | Gradual elements in a fuzzy set[END_REF] and T2FSs [START_REF] Mendel | Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions[END_REF][50], respectively. Therefore, under some conditions, a GS can be considered as a T1FS. Similarly, a TGS can be considered as a particular case of a T2FS. In a short term, work will be devoted to a deep analysis and comparison between TGS and T2FSs. Therefore, from the methodological perspectives, the TGS and T2FS concepts are not contrary but rather complementary. Another interesting objective is to deploy TSs and TGSs in fuzzy optimization problems, synthesis of uncertain controllers, and stability study of control structures. For instance, by assuming a dynamical system, if we consider a controller and a Lyapunov function to study the stability of a closed control loop, we can possibly quantify the zones of instability, certain stability, and plausible stability. In the long term, we will focus on the development of methodologies that are capable of explaining existing links between multigranulation rough sets [START_REF] Lu | Type-2 fuzzy multigranulation rough sets[END_REF], T2FSs, and TGSs so that they can be integrated to solve complex learning, decision, and control problems. In this context, special attention will be provided to fuzzy and gradual deep-learning methods. To achieve more accurate results, this perspective will require a decade of research and development.
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 1 Fig. 1. Crisp communication zone for m = (1, 3).

A

  TI is a special case of a TS such that ⟦x⟧ = ⟦[x inf ], [x sup ]⟧, [x inf ] ⊂ [x sup ] [see Fig. 5(a)]. If [x inf ] = [x sup ] = [x], TI ⟦x⟧ becomes a CI, i.e., ⟦x⟧ = [x]. Another representation of TIs that is based on the left and right CIs has been proposed [6]. These two representations are equivalent. A TI vector ⟦x⟧ = ⟦[x inf ], [x sup ]⟧ (x in bold) is known as a TB. Because [x inf ] and [x sup ] are boxes of n , they can be expressed as the Cartesian product of n CIs [see Fig. 5(b) for a 2D TB], i.e.,
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 66 Fig. 6. Illustration of the projection principle.
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 17 Fig. 7. Projection illustration for computing ℤ inf and ℤ sup . We must note that inf Z , which is shown in Fig. 6(b), is the intersection of inf 1 Z and inf 2 Z shown in Fig. 7 because inf inf inf 1 2 = I Z Z Z according to (13). In the same manner, sup Z , which is shown in Fig. 6(b), is the union of sup 1 Z and sup 2 Z

  ), i.e., when (m1, m2) belongs to 2D box [m]. The results obtained for [m] = [-1, 3]×[1, 5] are shown in Fig. 9.
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 8 Fig. 8. Results of ℤ inf and ℤ sup using PyIbex for [m] = [-10, 10] × [0, 0]) .
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 9 Fig. 9. Uncertain communication zone illustration for [m] = [-1, 3] × [1, 5].
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 10 Fig. 10. Three 2D GSs.
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 11 Fig. 11. 2D GB (a discrete representation with a sampling step of 0.2 on λ).

  Fig. 12 shows gradual box [m(λ)] = [-1+2λ, 3-2λ]× [1+2λ, 5-2λ] for λ = 0, 0.5, and 1. Therefore, box [m(0)] = [-1, 3]×[1, 5] corresponds to the most uncertain location of m, and [m(1)] = [1, 1]×[3, 3] = (1, 3) refers to its most precise (crisp) position.
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 12 Fig. 12. Discrete representation of GB [m(λ)] for λ = 0, 0.5, and 1.
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 13 Fig. 13. Discrete representation of 2D TGS (TGB) with a sampling step of 0.2 on λ.
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 14 Fig. 14. Communication zone ⟦ℤ(λ)⟧ for λ = 0, 0.5, and 1.
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 15 Fig.[START_REF] Chen | A new approach to formulate fuzzy regression models[END_REF]. GSs ℤ inf (λ) and ℤ sup (λ) for λ = 0, 0.5, and 1.
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 16 Fig.[START_REF] Chuang | Extended support vector interval regression networks for interval input-output data[END_REF]. Communication zone ⟦ℤ(λ)⟧ for λ = 0, 0.5, and 1 (using three transmitters).

  a very long history. This problem has been extended to the fuzzy case where the parameters are often represented by IV-T1FSs[START_REF] Allahviranloo | A note on 'fuzzy linear systems[END_REF][28][START_REF] Landowski | Method with horizontal fuzzy numbers for solving real fuzzy linear systems[END_REF][START_REF] Lodwick | Interval linear systems as a necessary step in fuzzy linear systems[END_REF]. For example, linear SoEs whose parameters are IV-T1FS are often denoted by its λ-cut representation, i.e., [
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 18 Fig. 18. Representations of IV-T1FSs [b1(λ)] and [b2(λ)] and BV-T1FS [b(λ)].

  ) Solutions [x1(λ)] and [x2(λ)] are shown in Figs. 19(a) and (b), respectively. We can state that if [x2(λ)] is an IV-T1FS, [x1(λ)] is a pure GI and cannot be represented by an IV-T1FS. Therefore, profiles 2 (λ)

  Furthermore, at each level λ, solutions [x1(λ)] and [x2(λ)] can be represented by box [x(λ)] = [x1(λ)]×[x2(λ)] in plane (x1, x2).Fig.

  ], if 0 λ 0.5, λ [4λ 7, 1 2λ], if 0.5 λ 1, [6λ 10, 1 6λ], if 0 λ 0.5, λ [2λ 8, 2 4λ], if 0.5 λ 1.
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 4020 Fig. 20. Representations of IV-T2FSs and TBV-T1FS.
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 21 Fig. 21. 2D and 3D representations of the BV-T1FS. Algebraic solution of the system, i.e. (36).

  [START_REF] Lodwick | Interval linear systems as a necessary step in fuzzy linear systems[END_REF][62][START_REF] Shary | Outer Estimation of Generalized Solution Sets to Interval Linear Systems[END_REF][66], i.e.,

Fig. 22 .

 22 Fig. 22. Solution of SoEs, i.e., (46), using Intlab solver

  (a) for λ = 0. It is computed using the same methodology detailed in Sections 2.3.2 and 2.6.2, i.e.,
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 24 Fig. 24. Representation of CS ℙ in plane (p1, p2) and its approximation by box [p]. CS ℙ inf represents a set of certain parameters, i.e., ∀ xi∈[xi], M(xi, p)∈[yi], and CS ℙ sup refers to a set of plausible (possible) parameters, i.e., ∃xi∈[xi], M(xi, p)∈[yi]. CSs ℙ inf and ℙ sup are computed by a projection method using the PyIbex solver, as previously detailed. TS ⟦ℙ⟧ = ⟦ℙ inf , ℙ sup ⟧ in plane (p1, p2) is shown in Fig. 25(a). Although the inputs are uncertain (CIs), the CI regression leads to a set of parameters in the form of box [p], i.e., a CI for each parameter p1 and p2. For comparison purpose, when the possibilistic interval regression proposed in [7] is used, the set of parameters is box [p] = [-1.99, -0.866]×[ -3.162, -1.67] [see Fig. 25(a)]. This result does not introduce any specificity because of the uncertain inputs and represents only an approximation of the set of parameters. Usually, approximating uncertain solution ⟦ℙ⟧ = ⟦ℙ inf , ℙ sup ⟧ is always possible using TB ⟦p⟧ = ⟦[p inf ], [p sup ]⟧, as shown in Fig. 25(b). However, this approximation implies a loss in information.

Fig. 26 .

 26 Fig. 26. TSs ⟦ℙ(λ)⟧ for λ = 0 and λ = 1 in plane (p1, p2).
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 27 Fig. 27. GSs ℙ inf (λ) and ℙ sup (λ) for λ = 0, 0.5, and 1.
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 28 Fig. 28. TGS ⟦ℙ(λ)⟧ using a sampling step size of 0.1 on λ.
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 29 Fig. 29. Daurade underwater robot and its characteristics.
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 30 Fig. 30. Daurade trajectories. (a) 2D Crisp trajectories. (b) 2D tube trajectory (uncertain trajectory).

Fig. 31 .

 31 Fig. 31. Representation of a 1D tube. Because uncertain real parameters x are represented by intervals [x] and uncertain vectors x are represented by boxes [x], the uncertain trajectories are represented by tubes [x](⋅). A trajectory x(⋅) belongs to tube [x](⋅) if ∀ t∈[t0, tf], x(⋅)∈[x](⋅).

  In this case, the robot trajectory is uncertain and is represented by tube [xλ](⋅) [see Fig.33)].
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 3233 Fig. 32. IV-T1FS representing speed error [ (λ)] speed E .
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 34 Fig. 34. Lower and upper explored zones ℤ inf (0) and ℤ sup (0).
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 35 Fig. 35. Discrete representation of GSs ℤ inf (λ) and ℤ sup (λ) using a sampling step size of 0.1 on λ.

Fig. 36 .

 36 Fig. 36. TSs and TGS representations (according to the speed drifts).

Fig. 37 .

 37 Fig. 37. TSs and TGS representations (due to the speed and heading drifts). Furthermore, 2D tube trajectories [xλ](⋅) induced by the speed and heading drifts at λ = 0 and λ = 1 are shown in Fig.38, which shows that the double uncertainty (speed and heading uncertainties) implies a large width of the tubes and, consequently, a significant overlap in the trajectories. The stacking of these TSs leads to TGS, which is shown in Fig.37(d). According to these results, we can verify that if ℤ sup (λ) is nested according to λ, ℤ inf (λ) is not nested, and it does not obey the consistency constraint [see Fig.39(b)]. Therefore [and as shown in Fig.39(a)], we can observe that ℤ inf (1) ⊄ ℤ inf (0). This non-nesting phenomenon provides the GS and TGS concepts their full meanings. In this case, the TGS, which is shown in Fig.37(d), is an uncertain quantity that cannot be represented by a T2FS.In this context, TGS shown in Fig.37(d) can always be considered as a cartography that associates with each degree λ, a certain safe explored zone ℤ inf (λ), and a plausible safe explored zone ℤ sup (λ). However, the quantification of uncertainty using the possibility theory requires GSs to be represented by T1FSs that are considered as distributions of possibility. Therefore, in a pure gradual
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 38 Fig. 38. Daurade tube trajectories due to the speed and heading drifts.
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 39 Fig. 39. Representation of ℤ inf (λ).

  

  

  

  It is based on the set properties of ℤ inf and ℤ sup when [m] is split into several parts, i.e., [ ] [ ]
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  5, and 1. Combination and fusion of TGSs 2.6.1 Definitions Let us consider a collection of CSs { i}i∈Ω. Smallest TS, which is denoted by { }
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		14

Table 2 :

 2 Triangular fuzzy inputs and trapezoidal fuzzy outputs.