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Abstract

Nowadays, data-driven approaches are a good way to estimate very efficient black box models for different engineering systems.
This class of model is well recognized by its outstanding performances to describe the overall behavior of one system based on
its input-output relationships without any physical knowledge. In the context of building modeling, this approach is particularly
well suited to predict future temperatures or energy consumption in a building. This paper presents an innovative method that
uses input-output data to establish reliable and suitable thermal behavior models for residential buildings, especially for existing
buildings where only measurements are available and no numerical models are at the disposal of the facility managers. The main
paper contributions consist in the design of a new methodology based on the adaptation of a switched model estimation technique
and in its validation to model accurately building thermal behaviors. The paper describes different stages needed to reproduce
faithfully complex behaviors : data collection, PieceWise affine Auto-Regressive eXogenous (PWARX) identification technique,
sensitivity analysis... It also explains how the procedure and the data-driven estimation algorithm are efficient in extracting sub-
model parameters and sequence that give an outstanding ability to reproduce thermal dynamics of buildings, requiring the only
collection of available data. The effectiveness of our methodology is discussed through experiments on different buildings located
in the North of France. Indeed, through a comparative study between the piecewise ARX model and other existing models such as
nonlinear ARX, indexed ARX and ARX models, the PWARX model gives good results in terms of indoor temperature estimation
with 78.48% accuracy.
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1. Introduction are often obtained through energy simulation software

) ) ) like EnergyPlus [4], TRNSYS [10], etc;
Control of energy consumption continues to be the primary

concern in all areas of research [9; 11; 16]. Indeed, the op- e black box models which use only measured input/output
timization of energy consumption allows for improving the data and statistical estimation methods (e.g. [24; 26]);
energy performance of the building. Furthermore, to design
a set of optimal control, a thermal dynamics modeling step is
necessary [20]. However, this task is complicated due to var-
ious factors influencing the thermal behavior, particularly by
[19]: (i) climate, (ii) building envelope, (iii) building services
and energy systems, (iv) building operation and maintenance,
(v) occupant activities and behavior and (vi) indoor environ-
mental quality provided.

Having an accurate thermal model plays a vital role in im-
proving prediction and evaluating energy performance. In the
literature, three main categories of modeling approaches have
been considered [32]:

e grey box models, a mix of the first two categories above.
They use input/output data as well as some a priori
knowledge on the system. A popular grey-box model is
the equivalent RC networks [24; 34; 36].

A comparative study between these different models was done
in [1]. The main conclusions of this study are that: (i) the use
of white box model often requires important set-up and com-
putation time; (ii) it also involves a large number of inputs
to define the model, such as the composition of the building
envelope for example [13]. In some studies, it is difficult,
if not impossible, to recover this input [30]. To overcome
this problem, data-driven methods have emerged in building
framework. We find from the literature that the most com-
monly used data-driven techniques for building thermal mod-
eling and energy performances prediction are based on the
ARX (AutoRegressive eXogeneous) model [21; 31]. How-
ever, despite its performances, such as quick implementation,

e white box models which are based on physical knowl-
edge of the system and thermal balance equations. These
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a good accuracy..., this model has important limits, mainly due
to the estimation of a unique thermal model. A unique model
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may not consider dynamic changes due to usages, equipment
configurations or external factors, such as wind and solar ra-
diation, that influence the thermal dynamics of the building.
Today, we can find several data-driven models derived from
the ARX model. One can read the following references for
further information [2; 15; 17; 22; 27; 29; 37]. Each of them is
mainly differentiated by the parameter estimation techniques
and the structure of the model. For instance, in [22], the au-
thors tested the Fractional order Auto-Regression with eXoge-
nous variable (FARX) model on building integrated energy
systems. The model has been validated using the input-output
data retrieve of a residential building simulated with software
IES<VE>. As a result, it has been shown that the FARX
model gives better accuracy than ARX one. Also, the results in
[27] and [35] show that the Non-linear ARX (NARX) model
performance was significantly greater than the one of ARX
model. However, each technique has its own advantages and
inconveniences, and one of our motivation is to discuss on how
to recover the best data-driven model structure for simulating
the thermal behavior of the building. Issues that one may re-
mark into the following papers [33; 37] and [1; 22].The first
response to this discussion has been presented in [17] where
the best prediction method includes a combination of two sep-
arate time-indexed ARX models to improve the prediction ac-
curacy of the cooling load over different forecasting periods.
In the following, we will also contribute to this discussion by
making a comparison of existing ARX-derived techniques.

1.1. Paper contribution

In this paper, a black-box identification approach by means
of a PieceWise affine auto-Regressive eXogenous (PWARX)
model will be developed in the framework of building ther-
mal modeling. This new methodology takes profit from recent
advances in the hybrid system identification community. Hy-
brid and PWARX systems are heterogeneous dynamic systems
that combine simultaneously continuous and discrete dynam-
ics. These systems are helpful to introduce expert knowledge
in the data-driven models, especially when various behaviors
or uses have to be explained. They can be represented by
switching models, i.e. by a set of continuous-submodels in-
dexed by a discrete mode or a specific building management
system setting. However, the idea of using partially observed
regime switching models for building thermal modeling has
not received satisfactory solutions apart from a few attempts
which do not combine real world learning applications such
as: missing data, dependent time series and noisy observa-
tions, see [14; 28]. Also, these works mainly highlight the
necessity of using different models to represent different sorts
of dynamics in a building. It was argued too in [2] and has
been proved in the context of the prediction of buildings en-
ergy consumption into [3]. Then, the purpose of this paper will
be to highlight the interest of using PWARX systems to model
building thermal dynamics, in its 3 aspects: presentation of its
scientific foundations, with regard to conventional ARX tech-
niques; discussion around its interest to give explanations on
different thermal dynamics; experimental comparison of the
results obtained with different state-of-the-art methods.

Besides, this paper also discusses the selection of suitable
inputs to define the best model structure. This will be done
by performing sensitivity analysis and testing several config-
urations.  This step aims to state on the influence of each
input on the accuracy of the model and on the quality of iden-
tified parameters. Thus, the PWARX model should be able to
explain the true thermal and energy behaviors of the building
by identifying the use scenarios. Finally, the effectiveness of
our methodology will be shown by presenting thermal mod-
eling results for different building architecture located in the
north of France. In particular, we assess the performance of
our model through a comparative study between the piecewise
ARX model and other existing models such as nonlinear ARX,
indexed ARX and ARX models.

1.2. Paper outline

The rest of the paper is organized as follows. The formal
definitions of the ARX model and its derivatives, as well as
PWARX model are introduced in Section 2. The system iden-
tification technique used to identify and validate the PWARX
model is detailed in Section 3. To illustrate the effectiveness
of the proposed method, experimental results obtained from a
student residential are provided in Section 4. Finally, conclu-
sions and further works are given in Section 5.

2. Background

2.1. ARX model

Let us first consider an ARX model, using an input/output
(v, u) representation, writing as follows:

() = —ary(t=1)= - =ay Y(t=na)+bu(t=1)+- - -+by,u(t—ny)+e()

(H
where n, and n, are the model order, a; and b; are the model
coefficients, and e(f) € R™ is a white noise process. In other
terms, the ARX model can be defined by the following rela-
tions:

A(2)y(t) = B(2)u(t) + e(?) 2

with
ARQ) = 1+aiz' +--+a,z ™ 3)

and
B@)=biz 4+t by ™ 4)

where z is a backward shift operator.
So, for available input measurements, we can estimate the
output () at each time ¢ by the ARX model as follows:

(@) = Bu(n) + e(t) + (1 = AQ)y(0). &)

Finally, in compact form the estimate of the output can be writ-
ing as:
30 = ¢ (10 (6)

with

o) = [yt = 1)yt —ny) ut—1)-ut-n)"  (7)



and

6= lay---ay, by---by]1". ®)

In these equations, ¢ represents the regression vector and 6
the parameter vector. In the context of the design of a building
thermal model, y generally represents the indoor temperature,
and u represents the measured factors that influence the tem-
perature evolution.

Taking the thermal ARX model example in [5], the indoor
thermal behavior (7;) depends on the following inputs: the
outdoor air temperature (7,), solar gains (Ra), internal gains
(Q,) and thermal gains (Qy). Thus, the relationship between
the input-output is expressed by:

Ng

Ti(t) == > a;Tit = )+ ) (b1, Tolt = 1) + b, Ra(t = 1)

=

np

r=1

+ b3, On(t = 1) + bayp Qu(t = 1) + v(1)). €))

2.2. NARX model

NARX is a nonlinear auto-regressive network with exoge-
nous inputs. It has a recurrent dynamic nature and is com-
monly used in time-series modeling [6]. The formal definition
of the NARX model is given by the following expression [8]:

Y0 = f(u@=1) - ut=ny) ya=1)---y(t-n,)]) + e() (10)

where y is the output variable, u is the deterministic externally
variable, and f represents the nonlinear function. n, and n,
represent the model order. Thus, the next value of the output
signal depends on its previous values and those of the input
signal (exogenous input) [6].

Basically, a NARX model can be implemented by using a
feed-forward neural network to approximate the function f.
This network can be used for nonlinear filtering of noisy sig-
nals or for predicting future behavior [23]. Moreover, it con-
verges faster, and is less susceptible to variations and depen-
dencies. It has typically better generalization abilities than
other networks [15].

As an example, let us consider the NARX structure de-
scribed in [15]. It uses as output the indoor temperature (77;)
and as input variables the outdoor air temperature (7,), solar
gains (Ra), internal gains (Q,) and thermal gains (Qj). They
are necessary to predict the internal temperature as follows:

Tilt) = f(ITit = Voo, Tilt = na); To(t = me), -+, Tot = mg =
Ra(t —ny),- - ,Ra(t — ng — np); Qn(t — ng), -+, Ot — ny
Qult =), -+, Qult = e = mp)]) + v(1), (an

2.3. Indexed ARX model

Several researchers introduce a more efficient ARX model
by including physical understanding of the building in the
model structure. This kind of model is called indexed ARX
model. This model is more accurate than typical regression
models and more efficient, in terms of computation time for
instance. So, the ARX model is indexed with respect to dif-
ferent time intervals, different modes or configurations and

np);

—np);

different inputs to improve accuracy and efficiency. The (n-
g-m)-indexed model is then defined as a ARX model while
considering for example n past times for the output (y :
{y(®),y(t — 1),....y(t — n)}), a ¢ modes or configurations and
m input numbers (u : {uy,uy, ..., u,,}). The input-output rela-
tionship can be written by the following expression:

YO =—agyt—1) = —a,y(t = n) + by gu (1)
+ ot by g () + e(2).

12)

Practically, a 4-3-5 ARX indexed model has been defined in
[27] by the following configurations: the load prediction Load
as output and temperature 7,, humidity H,, solar radiation Ra,
wind speed W, and people occupancy O, as inputs, can be
written as follows:

Load(t) =by 4T,(t) + by gH,(t) + b3 ;Wa(t) + by yRa(t) + bs ;0. (t)
+ayqLoad(t — 1) + a> yLoad(t — 2) + a3 yLoad(t — 3)
+ agqLload(t —4) + as . (13)

Remark 1. Here three modes describe respectively : the
daytime (8 AM to 9 PM), the transition time (6 AM to 8 AM),
and the nighttime (9 PM to 6 AM).

2.4. PWARX model

PieceWise affine ARX model is a special class of non-linear
models, obtained by splitting the state-input domain into a fi-
nite number of polyhedral regions. It can model a large num-
ber of physical processes such as residential building systems
with several inherent operating modes or configurations. The
general structure of a PWARX model is:

y(@) = f(e(0) + e(?) (14)
with f as a piecewise affine map of the following form:
0T p(t) if o(r) =1
fle®) = s5)

0o it o) =g,

T
where ¢ = [<pT 1] is the extended regression vector. o () is
the switching rule defined by:

o) =i iff p(t) eR;, fori=1,---,q; (16)

and {9,'};7:1 are the parameter vectors that define the sub mod-
els. {i}{i}?:l represent a complete partition of the region R C
R", with n = n.n, + (n, + 1), and each region is a convex

polyhedron with:

R ={peR": Hig < 0} (17)

where H; and 0 are respectively a matrix of appropriate di-
mensions defining the limit of the region partitioning the set
of regression vector and the null vector. To complete and give
more details about the definition given above, figure 1 shows
the partitioning into {iRi}?zl region of the regression space ac-
cording to scenario described by each parameter vector {0;};.11
(see [12] for more details).
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Figure 1: Representation of a PWARX system with 3 sub-models [12].

So PWARX model is defined by a set of ARX sub-models
that help to analyze and predict the various thermal behaviors
of the building. Each sub-ARX model is assumed to describe
one mode or configuration [12].

Basically, the physical presentation of thermal behavior of

indoor air by considering the ¢”" mode and with m input vari-
ables is defined by:

Ny m n

T) = ) ajTit= )+ ) > b=, (18)

j=1 v=l j=1

and in terms of outdoor air temperature (7,), outdoor humidity
(H,), solar radiation (Ra) and heating power (Pw), it can be
presented as:

ng np

Ti(t) = Z a; Tt - j)+ Z (b To(t — 1) + b2 Ho(t — 1)

j=1 =1

+ b, ,Pw(t — r) + b} Ra(t — r)). (19)

So, based on the input/output pair generated by the system
described by relation (18), the identification of the PWARX
model consists in (i) determining the number of sub-models in
order to have the best fitting between the measured and esti-
mated output, (ii) associating the data of each affine sub-model
respectively, (iii) and finally, estimating each parameter vector
0; associated with these sub-models. Details about this identi-
fication procedure is given in the following section.

3. PWARKX thermal model identification methodology

Iin this paper, we present an original data-based method to
identify and estimate a set of models that are able to reproduce
the variety of building thermal behaviors (Figure 2). So, to es-
timate all parameters of the PWARX model, we adopt an iden-
tification procedure defined by the following steps. Firstly, we
design the experiment and the system necessary to collect the
data. Then, we acquire some measurements from different

room parts, without requesting specific usages or function-
ing conditions. Our case study consists of student residential
buildings located in Douai (France). Different scenarios will
be considered during the measurement campaigns, such as the
orientation (rooms situated at East/West), a different heating
sequence and various periods of acquisition in the objective to
provide sufficient data for discussing on the validation of our
new methodology.

Secondly, we proceed to the determination of the model
structure by a sensitivity study according to several parame-
ters. Indeed, the sensitivity analysis makes it possible to iden-
tify the parameters of influence of the model for the predic-
tion and to choose well (or validate) the model structure for
a maximum precision and a minimum computation time in
the context of building thermal modeling. The main objec-
tive of this study is then to give a good approach to estimate
switched thermal dynamics and then to reproduce complex
building thermal behaviors based on a data-driven modeling.
Details are given in the next paragraphs.

3.1. Smart metering

Our objective is to compute a thermal model for a building
without any particular prior knowledge on the system. To this
end, more extensive and uniform data is required, to provide
more general information about the thermal behavior of each
building studied. Thus, a smart supervisory, control and data
acquisition (2SCADA) system is designed. Figure 3 illustrates
its overall architecture. The system is based on wireless sen-
sors (developed by CLEODE™company) that allow measur-
ing the indoor and outdoor temperature (7, T,), relative hu-
midity (H;, H,), solar radiation and diffuse solar radiation in
the building (R,, Ry:).

Figure 4 shows examples of different trends for the indoor
and outdoor temperature (on the top), and the indoor and out-
door humidity (on the bottom). Each sensor is defined with a
sampling time equals to Ty = 2.4min.

Complementary to the smart-metering system, a control
system is used to control (ON/OFF) the heating operation for
a few scenarios. Table 1 below defines each sensor character-
istics used for collecting data. These components are based
on wireless system network (WSN) technology which is to-
day the most popular technology used in smart-metering sys-
tems. Moreover, many WSN platforms have been developed
[71, ZigBee/IEEE 802.15.4 protocols are often part of them.
These protocols are a global hardware and software standard
designed for WSN requiring high reliability, low cost, low
power, scalability, and low data rate [25].

The data are collected, using the smart-metering and the
control systems, in order to analyse and predict the thermal
behaviors of the building for several non-defined operating
modes.

3.2. Estimation of the PWARX model

Here, we justify the choice to model the building thermal
behavior as a switching system by its ability to detect changes
in thermal dynamics resulting from a given operating mode,
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Figure 3: Global architecture of data collection system

in particular an operation associated with the heating system,
human activities, weather conditions, etc. Thus, we can im-
plement a set of sub-models that reproduces more faithfully
the reality, by comparison with the standard ARX model.

The procedure used to estimate the different parameters of
each sub-model is described into four steps. The first one is
the initialization step. Knowing that the number of sub-models
is a priori not known, this step allows to proceed to the cre-
ation of A singleton classes with the A regression available
data. The second step is the re-affectation of data followed by
estimating parameters of each sub-model. Let notice that this
step consists mainly in grouping the regression data (initially
divided into A classes) into a minimum number of disjoint
classes. The third one is a verification step that is necessary
for the stabilization of the data classification. And the last one

is the validation phase of the model by applying a structural
analysis. Each step is recovered and detailed in the following
paragraphs.

A- Initialization. In this part, the number of sub-models is set
to max(q) = A, i.e. A classes are obtained, C = {Cy, -+ ,Ca}.
Each class corresponds to one sub-model defined by the pa-
rameter vector 6; as shown in figure 1. The initial value of
each parameter vector per class is noted by 67, - - ,9?\. So,
to compute @?, we use the data x(i) of the class C; and its ¢
nearest neighbor (c-nn) and finally apply the least-square esti-
mation technique.

Thus, for an input/output data {((?), y(t))}i\i1 generated by
the affine model (18), the parameter vector 6; is computed by
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Figure 4: Example of collected data during one week: Temperature and hygrometry curves

Table 1: Wireless sensor characteristics

Measured parameter Measuring range Accuracy Type of sensor Units
Temperature —40 to 125°C +0,4°C (max), at —10 to 85°C Thermistor [°C]
Heat flux 0 — 2000W/m? 40uV/(W/m?) HFP [W/m?]
Relative humidity 0 to 100% +3%(max), at 0 — 80% Capacitive polymer [%]
Solar radiation 1 — 65536Lux +100Lux Light sensor [Lux] to [W/m?]
Electrical power up to 3500W up to 16A on 220V Power meter (W]

least square technique while minimizing:

N:
1 1
V() = — 1) -6l e(1)* 20
) M;M),w» (20)
where N; is the sample number.

B- Data re-affectation and model estimation. The aim is to
reduce the number of clusters by reclassifying each data point
and to estimate the parameters of each sub-model. To do that,
we try to minimize the Euclidean distance (Figure 6) between

each pair of data (x(7), x(j)) by:
d! = |Ix(i) - x(j)l @1

as well as the error between the measured output and the out-
put of each sub-model is minimal. Moreover, data x(i) is
ranked according to the regression vector and the measured
output as the following expression:

x(i) = [p()', y1". (22)

Thus, the re-affectation of data x(i) is done relative to their
nearest neighbors (c-cnn). Formally, data will migrate towards
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Figure 5: Data re-affectation into three affine sub-classes in the regression
space [12].

the most representative clusters according to a specific deci-
sion rule:

W' = exp(=as Ix(i) = x(DI = Boiy () — 05, @) (23)

with @g( 0 is the parameter vector corresponding to the class
Cs(j)- @s(j) and Bs(; are positive parameters. Thereafter, we
need to update the class number C = {Cy,- -, C3} where g <
A. And, to decide on the re-affectation of the data x(i) to the
remaining class g, we use the membership criterion of x(i) to
the class C,, defined by:

Zjitelraine,) ¥
S

where g determine the persistent number of class in order
to have the best fitting between the measured and estimated
output. Let notice that P(x(7) € C,) = 1 if the elements
of I'(x(7)) € C, and P(x(i) € C,) = 0 if the element of
T(x(i) ¢ Cp [12].

P(x(i) € Cp) = »pell,---.q0 (24

C-Convergence criterion. The convergence is done by com-
paring the earlier parameter vectors §) = [@({), B ,9?] and
the posterior parameter vectors #"+! following:

| <v (25)

where r is the index of the iteration and v is an arbitrary thresh-
old defined by the user. Generally, one use v = 107,

0(r+1) _ 9(7)

D- Sensitivity analysis. A study of the influence of each input
onto the model structure is presented in this article by compar-
ing the FIT criterion value for different configurations. The
FIT represents the similarity between the measured output y
and the output y predicted by the model. It is given by the
following equation:

15—yl

FIT = (1 - 4
Ily — ¥l

) X 100% (26)

where y and J are respectively the mean and the estimate of the
measures y(f). Once a model with a satisfactory FIT has been
estimated, it is possible to evaluate the influence of each pa-
rameter on the model and on the prediction accuracy. To this
end, we analyze the sensitivity of each parameter by identify-
ing and characterizing the: (i) input uncertainties, (ii) model
orders, and (iii) class number.

Brief, this analysis allows us to appreciate the contribution
of each input variable onto the FIT. This contribution is com-
puted by using the following influence index defined by:

pi
W= < =~ X 100%, 27)
i=1 Pi
where p; is the contribution estimated of each input obtained
from the computation of FIT. This last is the estimation of
the FIT subject to the influence of inputs considered for the k"
model structure.
It can be expressed by:

Ni m
FIT, = Z Z &i(k)pui(t), for each model structure k (28)

=1 i=1
with

1 if the i’ input is considered for the model

&i(k) = structure k,

0 otherwise.

(29)
Concerning the other terms, u;(f) represents each input vari-
able used for the identification of PWARX model. Model
structure k is then the configuration considered, in terms of
input number, to estimate thermal model parameters. For in-
stance scenario where only two inputs between m are consid-
ered.

Given the influence index W,,; for each input signal, we can
realize an immediate analysis of how much the uncertainty on
the measurements can affect the indoor air temperature predic-
tion. Thus, this procedure should allow to properly structure
the model in terms of input data in order to increase the accu-
racy of the model and reduce the calculation time.

4. Experimental results and discussion

4.1. Case studies

To show the effectiveness of our methodology, experiments
on the Lavoisier student residential building, located in Douai,
in the north of France (Figure 6) have been made. The total
area of the building is approximately 3500 and it is subdi-
vided into 2 sub-building parts. The first part is composed by
4 floors and the second one by 5 floors. Each floor has respec-
tively for each sub-building 10 and 32 rooms of 11m? with a
double glazed window size (135¢m X 110cm). Notice that for
this building, the envelop is composed by brick walls with a
thickness 22c¢m and a glass wool insulation with a thickness
14cm.

So, we launched experiments on the second sub-building
during this study. Herein, half of the rooms are located in
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Figure 6: (a) Lavoisier student Residence in Douai (b) Lavoisier student Residence 3D model

the east side and the other half are located in the west side.
To recover a persistent database for identifying the underly-
ing causal thermal model of the building, several experiment
scenarios have been taken into account: two different orienta-
tions “East-West”, heating sequence and different floor levels
(1*" and 3" floors). In addition, rooms operate on different
thermal excitations driven by a heating system supply and are
influenced by natural solar radiation. Precisely, the heating
supply will be controlled on two different sequences such as a
controlled sequence and a random heating sequence.

Also, the same experimental protocol was renewed for Con-
dorcet student residence located in Douai (Figure 7). The dif-
ference of two buildings is mainly the envelop. Indeed, for
Condorcet we have a block wall with a thickness 20cm com-
bined with polystyrene insulation with thickness 10cm. These
two buildings are considered with the aim of validating the
model for its ability to reproduce the building thermal behav-
iors faithfully only using a data collection.

So, for each scenario we evaluate the thermal environment
thanks to different sensors and actuators placed in each room
as it is illustrated onto Figure 8 above (example for west ori-
ented room). Once again, readers can refer to Table 1 for sen-
sor and actuator characteristics. Moreover, the location of the
temperature sensors makes it possible to measure the indoor
air temperature of the irradiated zone (7;;) and the shaded
zone (T;») for the two orientations (i.e. East-West), that we
add the solar radiation sensor (noted Lux,,, and Lux;,, on the
figure), the heating power consumption measure (noted Ch;
and Ch, on the figure), the outdoor humidity and temperature
(H, and T,).

Besides, during the measurement campaigns each col-
lected data associated with each scenario is saved in a
database in CSV format. This is possible thanks to an
in-house developed application based on LABVIEW™and
NetBeans™ software’s. The historical data is used after that
to identify the PWARX-thermal model according to the ex-
perimental planning detailed after.

4.2. Experimental design

During this experience we would firstly like to compare two
rooms of the Lavoisier residence according to its orientation

(i.e. east and west). This stage aims to find a model that val-
idates the indoor thermal behavior, for these two orientations
under the same conditions.

4.2.1. East side

The experimental study was made from February 07" - 12/
February, 2018. The evolution of the outdoor temperature
varies between 0 and 10°C for an outdoor humidity ranging
between 70 and 100% as indicated respectively in Figure 9a
and 9b. Moreover, Figure 10a and 10b show the evolution
of indoor air temperature (black solid line) for two different
sensor positions (7;; and Tj) and the heating power demand
(black dot line), during the period defined before. The tem-
perature varies between 19 and 25°C and the electrical power
consumed between 0 and 1400W.

In the other hand, the solar radiation received on the east
wall and the radiation incident on the room is shown in figure
11a and 11b. We can see that solar radiation received by the
wall reaches a maximum value of 11.5W/m?2, while the inci-
dent solar radiation on the floor is approximately 0.45W/m?.
And finally, two scenarios are considered in this study: the
first one is the free evolution scenario (i.e. without heating
supply), and the second one consists to apply a random acti-
vation of the heating source. This is renewed also for the west
side.

4.2.2. West side

For the same period, i.e. from 07-02-2018 to 12-02-2018,
the solar radiation received on the west wall reaches a max-
imum value of 95W/m? while the solar radiation received on
the floor takes a maximum value of 42.5W/m? (see Figure 12).
Moreover, Figure 13 below shows that the indoor air tempera-
ture of the shaded area varies between 19 and 26°C, however
for the irradiated area, the indoor temperature varies between
19 and 31°C, which generates a difference of 7°C between the
two positions.

4.2.3. Analysis for different heating sequences

In this part, experiments are made from 13/02 to 17/02, with
the following conditions: (i) two west oriented rooms respec-
tively at the 1* and 3" floor are considered, (ii) weather con-
ditions are the same in terms of outside temperature, outdoor
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Figure 12: (a) Solar radiation. (b) Solar radiation on the floor

humidity and solar radiation, (iii) two distinct modes of heat-
ing system functioning are launched.

As example, we can observe in Figure 14, the west side re-
ceives a solar radiation power which rises to 90W/m?. On the
other hand, to meet the third condition cited before, the 3¢

10

floor heating system is controlled in a random manner, which
causes a random variation of the indoor thermal behavior (Fig-
ure 16b). While, the room on the 1% floor evolves with two
different scenarios: free evolution (i.e. heating system OFF)
and heating system activated (Figure 15b).
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Figure 15a shows that the indoor temperature for the first ranging between 2 and 10°C. On the other hand, the interior
stage varies between 20 and 31°C for an outside temperature temperature for the third stage varies between 19 and 26°C as

11



Indoor vs Outdoor temperature

Temperature [°C]
&

o
f‘w
L nm'm 4 o
5P T /
AR
o .
2 25 39 A\
2% o2 T 02162 g2 20 ﬁl‘ﬂ 2028 16102 150 17102 09%
Date/Hour
(@)

2500 2

2000 [~

1500 [~ ‘

: “
5

0 1
13/02 22:02 14/027:25 14/0216:39 15/022:03 15/02 20:28 16/02 15:00 17/02 00:21

Date/Hour

(b)

I
®

I
o

Power [W]
Scenario

Iy
IS

<}
s
I
N

Figure 16: (a) Indoor air temperature for the 3™ 4 floor. (b) Heating scenario for the 3" 4 floor.

shown in Figure 16a.

4.3. PWARX-thermal model validation

The objective of this part is to propose a model validation
process in order to present the precision of estimated parame-
ters and to evaluate how the choice of hyper-parameters (that
define the model structure) could influence the results. For
example, in [27], authors have taken only the outside temper-
ature as inputs using an order number equals to n, = n, = 4.
In contrast, authors of [33] used the outdoor temperature, out-
door humidity, solar radiation and wind speed as inputs for
the same order number n, = n, = 4. However, the choice
of initial model structure hyper-parameters was not justified
in most of related works. Approach for analyzing and vali-
dating the structure of the model will be presented in the next
paragraphs.

4.3.1. Sensitivity analysis

Sensitivity analysis is used to determine which is the best
structure for the model to faithfully reproduce the thermal be-
havior on a variety of measurement campaigns. Thus, the
structural analysis serves to regulate the algorithm by mak-
ing an analysis on the hyper-parameters such as n,, np, class
number (C) and the input choices.

The determination of the inputs and their influence on the
structure of the model are first presented in this section. To this
end, we estimate a model derived by following configurations:

ng = 2, npy = 2, ny = O,C = ZOO,ﬁQ = 05, Yo = 0.5.

¢ Inputs measured: Outdoor temperature (7,), outdoor hu-
midity (H,), solar radiation (Ra), heating power (Pw).

e Output measured: Indoor Temperature 7.

By varying the system order n, and n, in Table 2, we can
see several model structures (1 to 4) and the FIT values ob-
tained with each of them. We observe that the best estimation
is reached when n, and n, correspond to an order of 5 with a
FIT equals to 78.48%. This is achieved with T,, H,, Ra and
Pw as inputs. The influence of each input on the accuracy of
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Model Model structure Inputs selected FIT
ng, np C
1 2 2 200 T,, Hy,Ra, Pw | 71.41%
2 3 3 200 T,, H,,Ra, Pw | 64.70%
3 4 4 200 T,, H,,Ra, Pw | 51.60%
4 5 5 200 | T,,H,, Ra, Pw | 78.48%
44 5 5 200 T, H,, 15.27%
dp 5 5 200 Ra, Pw, 55.68%
4c 5 5 200 T, H,,Ra 24.61%
4p 5 5 200 Ra, H,, Pw 70.38%

Table 2: Best fitting per model structure: (Top) according to system order,
(Bottom) according to selected inputs for the 47 model

this model (resp. accuracy of the parameters) has been also
investigated. Results in the bottom part of Table 2 show the
impact of inputs on the FIT’s value. We can note that the FIT
decreases or increases according to the inputs selected. The
worst model corresponds to a structure composed only of T,
and H, (FIT=15.27%). By adding the solar radiation to this
structure, the FIT increases and becomes 24.61%. The model
structure with Ra and Pw as inputs gives a better FIT com-
pared to the model structure with 7, and H, with a difference
of 40.41%. By adding the outdoor humidity to this structure,
the FIT increases and becomes 70.38%.

To summarize, Figure 17 represents the effect of the system
orders n, and n,, (varying from 2 to 5) and c-nearest-neighbors
¢ (varying from 100 to 300). The results show that, with all
inputs, the best model corresponds to n, = n, = 5 and ¢ = 200
neighbors.

On the other hand, Figure 18 and 19 show a comparison
between the model structures ” 4p, 44 and 4" as defined in
table 2 (indoor estimated temperature by red solid line, indoor
measured temperature by black solid line). Results indicate
that solar radiation and heating power are essential in order
to estimate models with accuracy and precision. The absence
of the heating power as input (Model 4.) reduces the FIT by
53.87% compared to model 4 (Figure 18b), while the absence
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of the solar radiation and heating power (Model 4,) reduces
the FIT by 63.21% compared to model 4 (Figure 18a). We
have also noted that the absence of the outdoor temperature
(Model 4p) reduces the FIT by 8.1% compared to model 4 as
shown in Figure 18b.

Figure 20 shows the influence index of each input variable
on the model structure. It is mainly based on the sensitivity
analysis conducted before and computed in order to classify
the set of inputs (see equation (27)). The results show that
the heating power (Pw) is the most influential input with a
relative influence index of 70%. This is due particularly to the
impact of the heating power on the indoor thermal behavior.
For the next, we remark that solar radiation (Ra) affects with
an influence index of 20%. Let note that the thermal response
time of solar radiation is greater than of heating power. Then,
the indoor thermal behavior is influenced by the diffuse solar
radiation which depends on the building orientation, glazing
type and weather conditions. At the end, outside humidity
(H,) and temperature (T,) are less influential, with computed
indexes of 8% and 4% respectively.

To conclude this analysis, modeling in efficient way the
thermal behavior of the building requires at least the heating
power and the solar radiation as inputs of the model. The other
terms can be used simply to add further information to the
model.

4.3.2. PWARX and ARX derived models

This section presents the validation of the PWARX-thermal
model by comparing it with ARX and its derived models. We
choose the PWARX structure model equivalent to the model
type number 4 (see Table 2). Moreover, for the building inves-
tigated, the algorithm estimates 3 operating modes describ-
ing the thermal behavior of the building. Figure 21 shows
the estimated switching evolution of these operating modes

13

(black dashed line) based on data collected from the east-
facing room.

Precisely, three operating modes (i.e. discrete state) were
detected with respect solar radiation (Ra) and the use of the
heating system (Pw); which is simply the logical consequence
of results obtained during the sensitivity analysis above. For
instance, the first sub-model < SM1 > (resp. first operat-
ing mode) corresponds to the activation of the heating system
(ON). The second sub-model < S M2 > (resp. second operat-
ing mode) defines the situation where heating system is (OFF)
and solar radiation is greater than 2.19W/m2, while the third
sub-model < S M3 > (resp. third operating mode) corresponds
to the situation where heating system is (OFF) and solar radia-
tion less than 2.19W/m?. This is summarized in table 3 below.

Modes Pw Ra
Mode1 | ON | - W/m?
Mode 2 | OFF | ;2.9 W/m?
Mode 3 | OFF | ;2.9 W/m?

Table 3: Switching conditions

Furthermore, we can see on Figure 21, the validation of
these switching conditions by comparing the estimated oper-
ating modes (black dashed line) with the predicted (red dot
line) by the rules defined in table 3. And finally, each vector
of parameters associated with each operating mode is given in
Table 4, as numerical application example for the PWARX-
thermal model identified. Basically, for the ¢” mode and with
m input variables, we have:

ny m n
Ti() = ) aigTit = j)+ Y D bjgult=j.  (30)
=1 v=1 j=1
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Parameter SM1 SM?2 SM3

arameters sub-model 1 | sub-model 2 | sub-model 3
a 1,1562 1,2750 0,8826
a -0,1606 -0,2917 0,1128
b -0,0031 0.0001 0,0040
b1 0,0031 0,0014 -3,9678e-05
by -0,0017 0,0016 -0,0261
by 0,0019 -0,0016 0,0189
b3 2,5085e-06 5,8055e-05 0,0326
b3 -8,9926e-07 | -5,4697e-05 -0,0201
by 3,3243e-05 3,4460e-05 3,3891e-05
ba 4,1579e-05 3,2496e-05 4,3921e-05

\ e 0,0364 0,3707 \ 0,7884 \

Table 4: Each behavioral model parameters.

As an example, let us considerate the following numerical rep-
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resentation for mode g = 1 (resp. S M1):

Ti(t) = — 1.1562T(t — 1) + 0.1606T;(t — 2) — 0.00317,,(t — 1)
+0.00317,(t — 2) — 0.0017H,(t — 1) + 0.0019H,,(t — 2)
+2.508¢—06Ra(t — 1) — 8.99¢e—07Ra(t — 2)
+3.32e=05Pw(t — 1) + 4.15e=05Pw(t — 2) + 0.03

(3D

Moreover, regarding Figure 22, one can see the compari-
son of performance of the PWARX-thermal model with other
ARX-derived models. The two bottom sub-figures in Fig-
ure 22 illustrate the estimation of the indoor temperature with
ARX model (green solid line) and indexed-ARX (black solid
line) one, compared with the measurements (black solid line).
We remark here, on the one hand, that the building thermal
behavior is not well recovered by the ARX model, and on the
other hand, the operating points defined for the indexed-ARX
model described in [27] are not really suitable to explain build-
ing configurations.

So, by confronting with PWARX model, the NARX model
can give good results (Figure 22 — top and left part) in terms
of indoor temperature estimation (pink solid line), compared
with the measurements (black solid line). However it remains
a challenging task to interpret without proper knowledge of
the internal structure of the model. In other terms, it is dif-
ficult for building experts for instance to understand physical
phenomena, especially when various behaviors or uses have to
be explained. As we can see, PWARX-thermal model makes
possible the understanding of the system behavior in a much
more intuitive and easy way than other models.

Finally, Table 5 gives a numerical quantification of the per-
formance of each model based on the FIT criteria. The re-
sults confirm that the PWARX model structure is the best for
prediction purposes, being able to estimate accurately the real
temperature according to different scenarios or configurations,
influencing the thermal behavior of the building.
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Model
FIT

ARX
21.41%

Indexed ARX
34.93%

NARX
73.55%

PWARX
78.48%

Table 5: Performance comparison between PWARX model and ARX-derived
models

4.3.3. Impact of the orientations and floor levels

The parameter’s estimation of the PWARX model was made
with the measurement campaign from February 07 - 12
February, 2018, for the east orientation and using training data
as presented in section 4.1. In this section, we want to validate
our model with other scenarios, firstly by considering data col-
lected from west oriented room for the period February 14" -
17" February, 2018. Figure 23 shows the indoor temperature
estimation results (red solid line) with a FIT = 60.02%. Thus,
we observe with satisfaction that the structure of the estimated
model is adapted to east and west orientations.

In the next, the same PWARX-thermal model was tested
with data collected from the room on the 3" floor and located
in the west-facing, from February 14 to 17", 2018. The ther-
mal behavior of this room is mostly different compared to the
reference room one due to the orientation, floor level, heat-
ing scenarios and weather conditions. Once again the result in
Figure 24 shows there is good agreement between the experi-
mental measure (black solid line) and the prediction (red solid
line) with a FIT = 77.66%.

4.3.4. PWARX-thermal building methodology tested on an-
other building

Authors of [18] mentioned in their study, the same sets of
ARX model inputs may not apply directly to a different build-
ing type and location due to measurement properties. From
this context, hereafter we verified if the reference PWARX
model structure estimated for Lavoisier building can repro-
duced the indoor thermal behavior of two east-west oriented
rooms, parts of Condorcet building. The purpose of this step
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Figure 22: Indoor air temperature validation: Comparison between PWARX, NARX, ARX and Indexed-ARX models.
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Figure 23: Validation of Temperature (West Side), FIT = 60.02% (14-02 / 17-02).

is to show that the reference model structure may also be suit- respectively for rooms in east and west side, can be estimated
able for any building’s archetype. Besides, it is important to by the PWARX model with a FIT of 57.40% and 77.66% for
note that the thermal behavior conditions are not also similar both rooms. These results are acceptable and in line with con-
due to different heating scenarios and weather conditions. figurations given before.

So, Figure 25 below gives us any ideas on indoor temper-
ature dynamics. Indeed, herein the indoor thermal behavior,
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Figure 25: (a) Validation of Temperature (East Side), FIT = 57.40% (14-02/17-02). (b) Validation of Temperature (West Side), FIT = 77.66% (09-02/12-02)

4.3.5. Comparison between models and evaluation of thermal
behavior similarities

Figure 26 below shows the comparison procedure that could
be implemented in order to compare the thermal behaviors of
different rooms or buildings, using our PWARX methodology,
in general manner. In fact, this procedure consists in testing a
reference PWARX-thermal model on other measurements de-
rived for other rooms to be compared. In this example, five
rooms belonging to both the Condorcet and Lavoisier resi-
dences are used, one as a referenced model (Room 1) and 4
others to be compared. The objective is to analyse the abil-
ity of the reference model to recover another thermal behavior
identified, based on a particular case study (examples: heat-
ing mode, orientation, weather conditions), but also to detect
possible true different thermal dynamics. Briefly, it will al-
low us to verify the similarity of the thermal behavior of each
room with respect to the reference room from Lavoisier build-
ing (noted here Room 1). The FIT’s difference between the
Room 1 and the other rooms will be considered as a similarity
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rate (S R) and makes it possible to quantify the thermal behav-
ior discrepancy. This last can be computed by the following
expression:
SR =100 = (FIT 00m, — FIT 00m;), With i=2,...,5. (32)
where FIT,yom, 1s computed using the measurements col-
lected on room i and the PWARX model estimated on room
1. The FIT results in Table 6 show that Rooms 1 and 5 prob-
ably have the same behavior (similarity rate equal to 99.18%
as shown in Figure 27). Of course, both rooms are located in
two different residences (Condorcet, Lavoisier) but this can be
explained by the fact they are in the same orientation and level
floor, and have also the same heating equipment. Furthermore,
the comparison between Room 1 and Room 2 shows the floor
level difference impacts on the thermal behavior of the rooms.
For this case, the similarity of the thermal behavior of both is
around 81.54%, as illustrated in Figure 27.
Now, if we consider the thermal behavior of the Rooms 1
and 4, it is not really similar related to the orientation. Indeed,



Model

A 4

Room 1 (Lavoisier)

Similarity rate

Room 3
(Condorcet)

Room 2
(Lavoisier)

Room 5
(Condorcet)

Room 4
(Condorcet)

Figure 26: Thermal behavior comparison procedure.

Scenarios
Test on data collected from: Orientation ‘ Fleating mode ‘ Floor FIT
Room 1 (Lavoisier) East Random 3rd 78.48%
Room 2 (Lavoisier) West Random 1% 60.02%
Room 3 (Condorcet) East Controlled 1% 49.15%
Room 4 (Condorcet) West Random 3rd 57.40%
Room 5 (Condorcet) East Random 3rd 77.66%

Table 6: Cross-validation results

the data collected from Room 4 have lower solar energy val-
ues than those from Room 1. As a result, the similarity rate
decreases significantly and reaches 78.92% (see Figure 27).
Finally, Room 3 can be considered as the worst case for this
validation. In fact, as the heating operating equipment and
floor level are different from the initial scenario, the similar-
ity rate obtained is around 70.67% compared to the reference
Room 1. Overall proportionality of the similarity rate is illus-
trated in Figure 27.

Similarity rate

99,18%

m Room 2
Room 3
Room 4

Room 5

70,67%

78,92%

Figure 27: Similarity rate.

In summary, experimental data allows to interpret easily the
thermal behavior of different rooms (resp. buildings). In other
terms, it is possible to compare each room (resp. building) to
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another reference one by deducing in particular the orientation
and/or the floor level are/is different or similar of the reference
for instance. On the other hand, we can use the similarity rate
value to state if a reference model is suitable to also explain
the thermal behavior of any building’s archetype, even if the
configurations are not identically exact due to different heating
scenarios and/or weather conditions.

5. Conclusions

In this paper, we present a novel methodology for model-
ing the thermal behavior of residential buildings by using the
PWARX model. The identification procedure is detailed to ob-
tain the model and its parameters. Also, several analyses have
been conducted to have a suitable structure for the model, as
well as to validate it. The first of them is the sensitivity anal-
ysis which is necessary to determine what inputs will be re-
quired in order to guarantee the accuracy of the model and the
quality of identified parameters. We can conclude that solar
radiation and heating power are the main influential inputs for
modeling thermal behavior with an influence index of 20%
and 70% respectively. On the other hand, we also remark that
model parameters are impacted by the location and the orien-
tation of the building. Once again, it has been shown that the
PWARX model is more suitable for any configuration than the
ARX and its derived models. Indeed, through a comparative
study between the piecewise ARX model and other existing



models such as nonlinear ARX, indexed ARX and ARX mod-
els, the PWARX model gives good results in terms of indoor
temperature estimation with 78.48% accuracy. Furthermore, a
comparison procedure details how the PWARX model could
be used to estimate and to compare the thermal behavior of
different archetype buildings.

Hence, the future works will be directed to extend this
approach for predicting energy performance certificates for
existing buildings, for helping to derive strategies for bet-
ter energy efficiency of the Heating, Ventilation and Air-
Conditioning system (HVAC) while taking into consideration
the occupant’s activities and comforts, and usage modes.
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