Following with a high sensitivity the adsorption of gases on nanoparticles by indirect nanoplasmonic sensing.

Benjamin Demirdjian, Fréderic Bedu, Alain Ranguis, Igor Ozerov, Claude R. Henry

Interdisciplinary Center for Nanoscience of Marseilles

Aix-Marseille Univ, CNRS, CINaM UMR 7325, 13288 Marseille, France

demirdjian@cinam.univ-mrs.fr

Introduction

Development of chemical and biological nanosensors based on the extraordinary optical properties of noble-metal nanoparticles.

Nanosensors based on localized surface plasmon resonance (LSPR) are sensitive to small local changes in refractive index at the surface of metal nanoparticles during the adsorption/desorption of molecules.

→ These changes induce a shift in the wavelength of the LSPR response.

Variations of the LSPR peak extinction is linked to the collective oscillation of electrons in the metal. The minimum of reflection corresponds to a maximum of absorption.

Probing gas adsorption by direct and indirect nanoplasmonic sensing

<u>a) Direct:</u>

Gas adsorption on gold disks modify their dielectric properties

 \rightarrow a shift in the wavelength of the LSPR response of the gold disk sensor.

b) Indirect:

Gas adsorption on nanoparticles modify the dielectric properties at the surface of the nanoparticles

→ a shift in the wavelength of the LSPR response of the underlying gold disk detector.

Gold nanodisks fabrication: a lift off process

Sample holder = borosilicate glass window, e = 1 mm, \emptyset = 25,4 mm Cleaning: acetone + US, then isopropanol + US, EDI rinsing, oxygen plasma oven at 150°C (300 W during 10 min)

PMMA spin-coating (resin 950 K at 4 %, speed : 4000 rpm, e = 270 nm annealing 10 min at 170° C)

Gold layer deposition (5 nm) to remove the charges (Edwards 306)

The gold film is irradiated with an electron beam (Raith PIONNEER) Area of 1 x 1 mm²

Revelation in acetone (or is removed) then with MIBK/IPA 1 : 3 during 45 s Then with IPA during 45 s (\rightarrow holes in the resin)

Cr and Au evaporation within the PMMA resin (Edwards 306) $e_{Cr} = 2 \text{ nm}, e_{Au} = 20 \text{ nm}$ Lift-off of the resin (acetone + US)

➔ Precise control of the shape, the size and the pitch of gold nanodisks

FDTD Simulations → **parameters** (d, p, h) giving the best theoretical S/N

d	p	h	λ	FWHM
100	250	25	645	95
100	300	25	655	92
100	350	25	663	90

"OptiFDTD" from Optiwave

FDTD Simulations

"OptiFDTD" from Optiwave

FDTD Simulations

Parameters (d, p) to obtain the best experimental S/N ratio

Calibration of our LSPR sensor

The response of LSPR nanosensors follows a simple model described by the group of Campbell:

$$\Delta \lambda = m (n_2 - n_1) [1 - exp(-2d/l_d)]$$
 (1)

 $\Delta \lambda$: wavelength shift

m: sensitivity of the refractive index (RI)

n₂ and n₁: RIs of different surrounding media

d: effective thickness of the adsorbate layer

 $\mathbf{l}_{\mathrm{d}}:$ characteristic decay length of the evanescent electromagnetic field

Deposition of a controlled thickness (8 nm) of SiO₂ layer (magnetron sputtering)

 $\Delta \lambda = 27 \text{ nm}$

Equation (1) \rightarrow ld = 36 nm

Aspect ratio (d/h): an important parameter:

Chen et al. (Nanotechnology, 2009):

d/h = 4 → ld = 39 nm, m = 173 nm/RIU d/h = 1.43 → ld = 28 nm, m = 56 nm/RIU

Our work: **d/h = 5 → ld = 36 nm, m = 162 nm/RIU**

Direct nanoplasmonic sensing: water adsorption isotherms on bare gold nanodisks

High sensitivity: error bar on $\Delta\lambda \sim 0.04$ nm (~ 4/100 H₂O ML !)

Reversibility: no chemisorption of water on gold (see Heras et al., ZPCNF, 1982)

Water adsorption behavior on metal surfaces and its influence on surface potential studied by *in situ* SPM

Guo et al., Applied Surface Science, 2012

For Au film: t ~ 1 nm at RH = 100 %, i.e. about 3.3 H_2O ML For Cr film: t ~ 2 nm at RH = 100 %, i.e. about 6.6 H_2O ML

Indirect nanoplasmonic sensing: water adsorption on soot nanoparticules

gas/nanoparticles/Au nanodisks

- → insulating layer (SiO₂) on gold nanodisks
 - 1. protects and makes more stable the detection nanostructure at high temperature
 - 2. eliminates the (electronic) interaction NP's / gold nanodisks

http://www.insplorion.com/technology/indirect-nanoplasmonic-sensing

AFM image (tapping mode) - AFM PSIA XE-100

Soot particles are involved in atmospheric process (ice nuclei, contrails formation, radiative forcing, chemi...)

Dilution of soot particles into ethanol + droplet on the gold nanodisks (+ SiO2)

Water adsorption isotherm on hydrophilic soot

•At RH > 70 % \rightarrow peculiar blue shift !

•Desorption: small hysteresis \rightarrow some water molecules do not desorb completely from the soot particles (porosity ...)

Blue shift ?

Hydrophilic soot aggregates collapse into + dense structures during RH *¬*

Mikhailov et al. (JGR, 2006):

- \rightarrow RH = 100 % soot aggregates are more compact
 - higher mass fractal dimension Df
 - smaller gyration radius
 - higher n and k values

capillary forces applied by water molecules adsorbed on surfaces of hydrophilic soot primary particles
→ more compact soot aggregates

Conclusions

High sensitivity sensor (a few hundredths of H₂O ML by DNPS) Large (P, T) domains of studies Non destructive probe (compare to e⁻ probes)

Outlooks

Quantitive measurements with mass spectrometry

Chemical reactivity of gas on nanoparticles

•Catalysis mettalic nanoparticles (Pt, Pd, ...) + CO, O2 + H2, NO

•Environmental heterogenous reactions
 Ice nucleation on soot particles
 Photochemistry and reactivity NO2/soot → O3

