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We show that automorphisms groups on hyperelliptic hypermaps of even genus g are subgroups of the following groups :

, where E 8g are Elliptic groups that can be viewed as an extension of Quasi-Dihedral groups. We construct most of the maximal groups with respect to order and genus according to the group structure. We show that hypermaps of genus 2 are almost all hyperelliptic and that their automorphisms group is a subgroup of one of the following groups :

Résumé. Nous montrons que les groupes d'automorphisms d'hypercartes hyperelliptiques de genre g pair sont un sous-groupe de l'un des groupes suivants :

), les groupes Elliptiques E 8g pouvant se comprendre comme une extention des groupes quasidiedraux; nous construisons la plus part des groupes maximaux selon l'ordre, le genre et la structure du groupe. Nous montrons que les hypercartes de genre 2 sont presque toutes hyperelliptiques et que leur groupe d'automorphismes est un sous-groupe de l'un des groupes suivants : C 10 , (C 2 ⇥ C 6 ) o C 2 ou GL 2 (F 3 ).

Introduction

The combinatorial study of Riemann surfaces topology is a research field where either geometers such as G. Jones and D. Singerman (see [JoSi]) or group and graph theorists such as R.Cori and A. Machi (see [CoMa]) have developped to meet at the joint point of the theory of maps. This study is made effective by the tessellation of the surface into polygons that naturally leads to the consideration of a map: a pair of permutations (↵, ), one corresponding to the edges and the other to the vertices of these polygons.Then, topological properties have combinatorial translations for instance, connexity on the surface is ensured by the transitivity of < ↵, > (see below for a detailed explanation). Some properties of the automorphisms of the surface correspond then to the properties of Aut(↵, ), centralizer of both ↵ and in the symmetric group. An example is given by a classical result known as the Riemann Hurwitz formula which relates the genus of the surface, the genus of it quotient surface with respect to an automorphism group G and the number of points fixed by all elements in G on the surface. Defining the genus of the map in function of the number of cycles of ↵, and ↵ 1 , Machi showed that the formula holds for Aut(↵, ) (see [Ma]).

Maps theory has been generalized in a natural way to the one of hypermaps by Cori and can be related to hypergraph theory (see [Co] and below). Searching for links between a hypermap and its quotient hypermap with respect to an automorphism group, we have proposed in [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF] the concept of induced automorphism which can be understood as follow. Let (↵, ) be a hypermap, Aut(↵, ), G a subgroup of Aut(↵, ) and let (↵, ¯ ) be the quotient hypermap of (↵, ) with respect to G. When belongs to the normalizer of G in Aut(↵, ), the automorphism ¯ induced by on (↵, ¯ ) is well defined.

This paper deals with the hyperelliptic hypermaps introduced in [CoMa] as a natural correspondancy to hyperelliptic surfaces. The idea is to study hypermaps on which all automorphisms are induced on the sphere by operating a quotient with respect to the hyperelliptic involution. These can be viewed as 2-sheeted coverings of the sphere (see below). Since it appears that the genus parity modifies greatly the structure of automorphisms groups, we concentrate on hyperelliptic hypermaps of even genus. The general theorem states that Aut(↵, ) is a subgroup of one of the following groups :

C 4g+2 , (C 2 ⇥ C 2g+2 ) o C 2 , E 8g , GL 2 (F 3 ) or SL 2 (F 5 )
, where E 8g is the elliptic group of order 8g that can be defined in the following way : E 8g =< a, b/a 4g = b 2 = 1, ba = a 2g 1 b >; when g is even, elliptic groups can be viewed as as generalisation of quasidiedral groups; we give a general technique to construct maps owning these automorphisms groups. The former theorem can be directy applied to hypermaps of genus 2 since we prove that "almost" all hypermaps of genus 2 are hyperelliptic. Therfore, if (↵, ) is a hypermap of genus 2, then Aut(↵, ) is a subgroup of one of the following groups : C 10 , (C 2 ⇥ C 6 ) o C 2 or GL 2 (F 3 ). In annexe, one can find examples and drawings of most of these groups.

Hypermaps, automorphisms and induced automorphisms

For a general introduction to the theory of hypermaps see [CoMa]. In this section we recall a few definitions and results that will be needed in the sequel. Definition 1. A hypermap is a pair of permutations (↵, ) on B (the set of brins) such that the group they generate is transitive on B. When ↵ is a fixed point free involution, (↵, ) is a map. The cycles of ↵, and ↵ 1 are called edges, vertices and faces, respectively; but if their specification in terms of edges, vertices or faces is not needed, we will refer to them as points. Note that considering the permutation means doing first ↵ 1 and then so that permutations are multiplied from left to right.

Euler's formula gives the relationship between the numbers of cycles of these three permutations:

z(↵) + z( ) + z(↵ 1 ) = n + 2 2g
where n = card(B), g is a non-negative integer, called the genus of (↵, ) and where for any permutation ✓, z(✓) denotes the number of its cycles (cycles of length 1 are included) (see [CoMa], p.422). If g = 0, then (↵, ) is planar ; if g = 1, then (↵, ) is toroidal (on the torus).

Definition 2. An automorphism of a hypermap (↵, ) is a permutation commuting with both ↵ and that is :

↵ = ↵ and =
Thus, the full automorphism group of (↵, ), denoted by Aut(↵, ), is the centralizer in Sym(n) of the group generated by ↵ and . A subgroup G of Aut(↵, ) is an automorphism group of (↵, ); the transitivity of (↵, ) implies that Aut(↵, ) is semi-regular. Recall here that a semi-regular group is defined by the fact that all its orbits are of the same length namely |G|.

We denote by ✓ ( ) the number of cycles of a permutation ✓ fixed by an automorphism and by ( ) the total number of cycles of ↵, and ↵ 1 fixed by ; o( ) will be the order of . If (↵, ) is planar ( g = 0) then ( ) = 2 for all non trivial automorphisms . Moreover, Aut(↵, ) is one of C n (cyclic), D n (dihedral), A 4 , S 4 and A 5 (see [CoMa] p.464). We shall need this result later.

We now define an equivalence relation R on the set B. This leads to the following definition.

Definition 4. The quotient hypermap (↵, ¯ ) of (↵, ), with respect to an automorphism group G, is a pair of permutations (↵, ¯ ) acting on the set B, where B = B/R and ↵, ¯ are the permutations induced by ↵ and on B.

The following Riemann-Hurwitz formula (RH) relates the genus of (↵, ¯ ) to the genus g of (↵, ) (see [Ma]):

2g 2 = |G|(2 2) + P 2G {id} ( ) It follows that  g. In case G is a cyclic group, G =< >, (RH) becomes (RH2): 2g 2 = |G|(2 2) + P 2G {id} ( ) As a consequence, if g 2, |Aut(↵, )|  84(g 1).
We reproduce here a part of the proof found in [CoMa]. When the quotient is the torus, it can be proved that |Aut(↵, )|  4(g 1). When the quotient is planar, (RH) can be changed into (RH?) the following formula :

2g 2 |G| = (r 2) P r i=1 1 ni
where r is the number of conjugacy classes of fixing automorphisms and n i the cardinality of each classe of stabilizer.

If r < 3 then g < 2 ; If r 4 then |Aut(↵, )|  12(g 1) ; If r = 3 then we have the following array finishing the proof :

n 1 n 2 n 1 P 3 i=1 1 ni |G|  |G| = n 1 > 3 n 2 > 3 n > 3 1 4 8(g 1) 3 n 2 > 3 n > 3 1 6 12(g 1) 3 3 n > 3 1 12 24(g 1) 6n n 3 (g 1) 2 n 2 > 4 n > 4 1 10 20(g 1) 2 4 n > 4 1 20 40(g 1) 8n n 4 (g 1) 2 3 n > 6 1 42
84(g 1) 12n n 6 (g 1) This leads to a new definition : Definition 5. The signature of an automorphism group is given by (n 1 , n 2 , ...n r ) where the n i are written in cressant order. Now, some other propreties :

If is an automorphism of order m, then, for all integers i, ( )  ( i ), and when m and i are coprime ( ) = ( i ).

Let (↵, ) be a hypermap, G an automorphism group of (↵, ) and let (↵, ¯ ) be the quotient hypermap of (↵, ) with respect to G. The proof of the following results can be found in [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF]. For any element in the normalizer of G in Aut(↵, ), the permutation ¯ , defined as /G , is an automorphism of (↵, ¯ ). The two following operations on (↵, ) are equivalent:

(i) taking the quotient of (↵, ) first by G and then taking the quotient of (↵, ¯ ) by < >, (ii) taking the quotient of (↵, ) by < G, >.

Definition 6. The permutation ¯ is called the induced automorphism of on (↵, ¯ ). We also say induces ¯ on (↵, ¯ ).

We now give the theorem that counts the fixed cycles of an induced automorphism.(see [START_REF] Bessis | Fixed points of induced automorphisms of hypermaps[END_REF]) Theorem 7. Let (↵, ) be a hypermap admitting an automorphism and an au-

tomorphism group G such that G is normal in < G, >. Then: |G| ( ¯ ) = P 2G ( )
where ¯ is the permutation induced by on the quotient hypermap of (↵, ) with respect to G.

When G = C p , we have simpler formulas (see [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF]). G is now generated by an automorphism of prime order p and is an element of Aut(↵, ). Then there are two cases described by the next two propositions.

Proposition 8. Let commute with . is of order m, where p and m are coprime, then p ( ¯ ) = ( ) + (p 1) ( ) (IAF 1) is of order pn, p and n coprime, and belong to < >, then p ( ¯ ) = ( p ) + (p 1) ( ) (IAF 2) is of order p m n, where m > 1, p and n coprime, and belong to < > , then ( ¯ ) = ( ) (IAF 3) is of order pm, m being any integer, and does not belong to < >, then ( i ) ⌘ 0 (mod p) andp ( ¯ ) = P p 1 i=0 ( i ) (IAF 4) Now, the other case: Proposition 9. If does not commute with , then ( ¯ ) = ( ). (IAF 5)

In the classical theory of Riemann surfaces, a hyperelliptic surface S is a surface admitting an involution which is central in Aut(S) and fixes 2g + 2 points. This notion applies to hypermaps [CoMa].

Definition 10. A hypermap (↵, ) of genus g 2 is said to be hyperelliptic if it admits an automorphism of order 2 such that the quotient hypermap (↵, ¯ ) with respect to < > is planar.

Remark 11. Definition 10 is equivalent to the classical definition since by (RH) if the quotient hypermap (↵, ¯ ) with respect to < > is of genus 0 then fixes 2g + 2 points and it can be proved that only one involution can fix exactly 2g + 2 points, therefore it is central in the group. (See [CoMa])

Since an automorphism on the sphere fixes exactly 2 points, it has been proved in [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF] that: Proposition 12. Let be an automorphism on a hyperelliptic hypermap of genus g 2, then is of odd order, then ( ) + ( ) = 4 is of order 2n with n odd , and belong to < >, then ( 2 ) + ( ) = 4 is of order 2 m n, where m > 1, with n odd, and belong to < > , then ( ) = 2 is of order 2m, m being any integer, and does not belong to < >, then ( ) = 0, 2, 4 and ( ) + ( ) = 4 It can also be described in the following way :

Remark 13. An automorphism on a hyperelliptic hypermap of genus g 2 has one of the following behaviors: it is the hyperelliptic involution and therefore fixes 2g + 2 points it fixes 2 points in common with the hyperelliptic involution and therefore fixes only these 2 points; it fixes 1 point in common with the hyperelliptic involution and therefore fixes either 1 or 3 points; it fixes no point in common with the hyperelliptic involution and therefore fixes either 0, 2 or 4 points.

Note that a "non hyperelliptic" automorphism fixes at most 2 points in common with the hyperelliptic involution.

Proposition 14. Let (↵, ) be a hyperelliptic hypermap. Then Aut(↵, ) is either C 2n (cyclic) where n is a divisor of 2g + 1 ; C 2n or lifting of D n by C 2 admitting C 2n as a subgroup where n is a divisor of 2g ; C 2 ⇥ C n or a lifting of D n by C 2 admitting C 2 ⇥ C n as a subgroup, where n is a divisor of 2g + 2 ; or Aut(↵, ) is of order 24, 48, 120 (liftings of A 4 , S 4 , A 5 respectively).

We shall also need the following result proved in [START_REF] Bessis | A note on the fixed points of a hypermap automorphism[END_REF] based on a result in [BiCo].

Proposition 15. An automorphism of prime power order can not fix only one point.

These two last results that can be found in [START_REF] Bessis | p-elliptic hypermaps and the Klein map[END_REF] Proposition 16. Let (↵, ) be a hypermap of genus g 2 such that there exists an automorphism of prime order 2g + 1. Then the 2g + 1-Sylow subgroups are of order 2g + 1 and :

(1) Except for one case when g = 3 and Aut(↵,

) = P SL 2 (7) (the simple group of order 168), (↵, ) is a (2g + 1)-elliptic hypermap. (2) When (↵, ) is a (2g + 1)-elliptic hypermap, Aut(↵, ) is either C 2g+1 or
C 4g+2 (in which cas its is also hyperelliptic) and if 3 divides g we also have C 2g+1 o j C 3 (the unique non commutative group of order 6g + 3) where j is a cubic root of unity mod 2g + 1. The equivalent result with g + 1.

Proposition 17. Let (↵, ) be a hypermap of genus g 2 such that there exists an automorphism of prime order g + 1. Then the g + 1-Sylow subgroups are of order g + 1 and :

(1) (↵, ) is a (g + 1)-elliptic hypermap except for the following cases: g = 2 and |Aut(↵, )| is equal to 24 or 48 ; g = 4 and |Aut(↵, )| is equal to 60, 90 or 120; Or g = 6 and |Aut(↵, )| = 420.

(2) When (↵, ) is a (g + 1)-elliptic hypermap, then Aut(↵, ) is one of the following groups:

C g+1 , C 2g+2 , C 3g+3 , D g+1 , D 2g+2 (in which case it is also hyperelliptic), C 2 ⇥ C 2g+2 (also hyperelliptic), C g+1 o 1 C 4 (also hy- perelliptic), if 4 divides g, C g+1 o i C 4 or (C 2 ⇥ C 2g+2 ) o C 2
reaching the maximum order of 8(g + 1) (also hyperelliptic).

automorphism Groups on hyperelliptic hypermaps of even genus

Notation 18. Let (↵, ) be a hyperelliptic hypermap ; in the rest of the article, we will denote by be the hyperelliptic involution fixing 2g + 2 points. Since < > is central in Aut(↵, ) any automorphism permutes these fixed points among themselves, and we can define a homomorphism h from Aut(↵, ) to S 2g+2 that will be regularily refered to . We indicate by C p o k C m the group such that there exists ✓, generator of C p , and , generator of C m , and ✓ = ✓ k . We also indicate by

(C p ⇥ C n ) o (k,l) C m
the group such that there exists ✓ , generator of C p , there exists !, generator of C n , and , generator of C m , such that ✓ = ✓ k and ! = ! l .

Proposition 19. Let (↵, ) be a hyperelliptic hypermap of even genus g 2. Let be an automorphism of (↵, ) of order 2 n such that 6 = . Then, fixes exactly two points. Moreover, if n > 1, then is a power of .

Proof. Let us suppose first that the automorphism is of order 2. We know that on an hyperelliptic hypermap any automorphism which is not fixes at most four points as a consequence of Proposition 13. Now, by (RH) we have

2g 2 = 2(2 2) + ( ) that is ( ) = 2g 2(2 2) therefore ( ) = 4( g 2 + 1
) 2 (since g is even). ( ) is an even number, less than 4 and not dividable by 4 i.e. ( ) = 2.

Let now be of order 2 n with n > 1. Note that ( ) can only be 0 or 2 because its power of order 2 is either and by Proposition 12 ( ) = 2 (case 3); or its power of order 2 is another automorphism and we have just proved that it fixes two points.

There exists an homomorphism h from Aut(↵, ) to S 2g+2 = S 4 g 2 +2 . Since ( ) is 0 or 2, h( ) must be written as k cycles of length 2 n with either a cycle of length 2 (if ( ) = 0) or two cycles of length 1 (if ( ) = 2). But in anycase, ( 2 ) = 2 which means that belong to < 2 > thus belong to < >.

By Proposition 12 (case 3) ( ) = 2 . ⇤ Corollary 20. Let (↵, ) be a hyperelliptic hypermap of even genus g 2. Let be an automorphism of (↵, ) of order 2 n m such that m is odd and n > 1, then is a power of and fixes exactly two points.

Proof. The automorphism m of order 2 n satisfies the conditions of Proposition 19 ; thus, belong to < m > thus belong to < >. By Proposition 12 (case 3)

( ) = 2 . ⇤ Theorem 21. Let (↵, ) be a hyperelliptic hypermap of even genus g 2. Let G be a 2-Sylow subgroup of Aut(↵, ), then G is isomorphic to C 2 n (cyclic) of maximum order 4g, D 2 n (Dihedral) of maximum order 4g, Q 2 n (generalized quaternions) of maximum order 4g or QD 2 n (QuasiDiedral)
where it can reach 8g, its maximum order.

Proof. Since G be a 2-Sylow subgroup, it is the lifting of either C 2 n 1 (cyclic), D 2 n 1 (Dihedral) on the plane by the hyperelliptic involution. Let ¯ be a generator of the normal subgroup of order 2 n 1 . Let be a lifting of ¯ in G.

If Ḡ = id, then G = C 2 ; If Ḡ = C 2 , then G = C 2 ⇥ C 2 or G = C 4 ; If Ḡ = C 2 n 1 , with n
3 then G = C 2 n because ¯ a generator of the group of order 2 n 1 (of minimum order 4) must be lifted in an element of minimum order 4 and we know by Proposition 19 that is a power of , which means that all the orders are "pushed up" of a coefficient 2 by the lifting.

If

Ḡ = D 2 , then G can be D 4 (Dihedral), Q 8 (quaternions) , C 2 ⇥ C 4 or C 2 ⇥ C 2 ⇥ C 2 ;
Let us show that the two last groups are impossible. Since both groups are abelian, there own ✓ a central involution which is not the hyperelliptic one. By Proposition 19, ✓ fixes two points and non in common with the other elements of the group. Thus, there exists a homomorphism k from the group onto S 2 and ker(k) = ✓ which means that the group is of maximum order 4: hence, the contradiction.

If Ḡ = D 2 n 1 , with n 3 then G is of order 2 n+1 owning C 2 n as a subgroup. General group theory tells us that there are exactly four different non abelien groups of order 2 n+1 owning a cyclic subgroup of index 2:

D 2 n =< , ✓/ 2 n = ✓ 2 = 1, ✓ = 1 ✓ > (Dihedral); Q 2 n+1 =< , ✓/ 2 n = ✓ 4 = 1, ✓ = 1 ✓, 2 n 1 = ✓ 2 > (Generalized Quater- nions) ; QD 2 n+1 =< , ✓/ 2 n = ✓ 2 = 1, ✓ = 2 n 1 1 ✓ > (QuasiDiedral); AD 2 n+1 =< , ✓/ 2 n = ✓ 2 = 1, ✓ = 2 n 1 +1 ✓ > ("Almost" Dihedral)
Now, the quotient of the three first groups by In this case, its signature is necessarily (2, 4, 4g) because the quotient by is planar, it owns a cyclic subgroup of order 4g fixing two points, no odd number can appear in the signature. Since Aut(↵, ) is the lifting of D 2g by , the element of order 4 appearing in the signature does not belong to C 4g because all elements in this group fix the same points. Let ⌧ i be the generators of the groups contained in this class, then ⌧ 2 i = . How many groups of order 4 do we have in Aut(↵, ) ? At least two : the one in C 4g and ⌧ i , so that Aut(↵, ) can't be Dihedral. At maximum : g + 1 because they all fix two points in common with (never the same ones). Since 8g = 2 n+1 , g = 2 n 2 and therfore g + 1 = 2 n 2 + 1. This implies that the only possible group is QuasiDiedral because a Generalized Quaternions would have 2 n 1 + 1 groups of order 4.

< 2 n 1 = > is D 2 n 1 . But the quotient of the last group by < 2 n 1 = > is C 2 ⇥ C 2 n 1 which is a contradiction. A 2-Sylow subgroup of Aut(↵, ) is of maximun order 8g m if g = 2 k ⇥ m
Of course, when Aut(↵, ) = QD 8g , D 2g and Q 4g are natural subgroups of index 2 in Aut(↵, ) and therefore reach their maximum order of 4g. ⇤

The definition of a new group is now necessary :

Definition 22. For all integer g 2 , let us call elliptic group of order 8g the group defined by generators and relations as

E 8g =< a, b/a 4g = b 2 = 1, ba = a 2g 1 b >.
When g is a power of 2, the elliptic group is the usual QuasiDiedral group; when gis even, it is also related to QuasiDiedral group as it will be seen below.

Proposition 23. For all even number g 4, there exist (↵, ) a hyperelliptic hypermap of genus g such that Aut(↵,

) = E 8g =< , ✓/ 4g = ✓ 2 = 1, ✓ = 2g 1 ✓ > of order 8g; when g = 2 n then Aut(↵, ) = QD 8g .
Proof. This proof is based on the construction of a hyperelliptic map over 24g brins.

It is a lifting of D 2g where g 4 is any even number. If one considers D 2g as a the representation of the globe, cut by 2g meridians with an artic pole and an antartic pole (both represented as large faces and not vertices) then this map can be viewed as the double covering of it. The larger g is, the more refined the cutting by merdians is.

↵ = (1, 2)(3, 4)...(12g 1, 12g)( 1, 2)( 3, 4)...(12g 1, 12g
) that is 12g edges of length 2 (the meridians).

= (1, 4g, 4g + 1)(2, 4g + 3, 3)(4, 4g + 5, 5)...(4g 2, 8g 1, 4g 1) ( 1, 4g, 4g + 1)( 2, 4g + 3, 3)( 4, 4g + 5, 5)...(4g 2, 8g 1, 4g 1) (8g+1, 4g+2, 12g)(8g+3, 4g+4, 8g + 2)(8g+5, 4g+6, 8g + 4)...(12g 1, 8g, 12g 2) (8g + 1, 4g + 2, 12g)(8g + 3, 4g + 4, 8g + 2)(8g + 5, 4g + 6, 8g + 4)... (12g 1, 8g, 12g 2) that is 8g vertices of length 3. ↵ = (4g, 4g 2, 4g 4, ...4, 2, 4g, 4g 2, 4g 4, ...4, 2) (8g + 1, 8g + 3, 8g + 5, 8g + 7, ...12g 1, 8g + 1, 8g + 3, 8g + 5, 8g + 7, ...12g 1) (1, 4g + 3, 8g + 2, 4g + 2, 1, 4g + 3, 8g + 2, 4g + 2) (3, 4g + 5, 8g + 4, 4g + 4, 3, 4g + 5, 8g + 4, 4g + 4) (5, 4g + 7, 8g + 6, 4g + 6, 5, 4g + 7, 8g + 6, 4g + 6) . . . (4g 3, 8g 1, 12g 2, 8g 2, 4g 3, 8g 1, 12g 2, 8g 2) (4g 1, 4g + 1, 12g, 8g, 4g 1, 4g + 1, 12g, 8g) that is two faces of length 4g and 2g faces of length 8.

There exists an automorphism of order 4g whose power of order 2 is the hyperelliptic involution :

= (1, 3, 5, ...4g 1, 1, 3, 5, ..., 4g 1) (2, 4, 6, ..., 4g, 2, 4, 6, ..., 4g) (4g + 1, 4g + 3, ..., 8g 1, 4g + 1, 4g + 3, ..., 8g 1) (4g + 2, 4g + 4, ..., 8g, 4g + 2, 4g + 4, ..., 8g) (8g + 1, 8g + 3, ..., 12g 1, 8g + 1, 8g + 3, ..., 12g 1) (8g + 2, 8g + 4, ..., 12g, 8g + 2, 8g + 4, ..., 12g)

fixes the two faces of length 4g and permutes the others. The hyperelliptic involution = (1, 1)(2, 2) . . . (12g 1, 12g) is its power of order 2 and fixes the 2g + 2 faces.

There exists an involution ✓ : ✓ = (4g, 8g + 1)(4g 2, 8g + 3)...(4g 4k, 8g + 4k + 1)(4g 4k 2, 8g + 4k + 3)... (2, 12g 1) (4g, 8g + 1)(4g 2, 8g + 3)... (4g 4k, 8g + 4k + 1)(4g 4k 2, 8g + 4k + 3)... (2, 12g 1)

(1, 12g)(3, 12g 2)...(4k + 1, 12g 4k)(4k + 3, 12g 4k 2)...(4g 1, 8g + 2) (1, 12g)(3, 12g 2)...(4k + 1, 12g 4k)(4k + 3, 12g 4k 2)...(4g 1, 8g + 2) (4g + 3, 8g)(4g + 5, 8g 2)(4g + 7, 8g 4)...(6g 1, 6g + 4) (4g + 3, 8g)(4g + 5, 8g 2)(4g + 7, 8g 4)...(6g 1, 6g + 4) (4g + 4, 8g 1)(4g + 6, 8g 3)(4g + 8, 8g 5)...(6g, 6g + 3) (4g + 4, 8g 1)(4g + 6, 8g 3)...(6g, 6g + 3) (4g + 1, 4g + 2)(4g + 1, 4g + 2)(6g + 1, 6g + 2)(6g + 1, 6g + 2) ✓ fixes 2 edges (its last two cycles) and ✓ will fix 2 edges too (the two cycles before). Now, by construction (see the figure in annexe),

✓ = 1 ✓ = 2g 1 ✓ . There- fore, it is E 8g =< , ✓/ 4g = ✓ 2 = 1, ✓ = 2g 1 ✓ >. ⇤
Remark 24. This map has been constructed for g = 4 and g = 6; its is drawn in Annexe A. When g = 2, this construction exists but leads to a larger group with respect to the genus and with a different structure. It is explicite in Annexe B. When g is odd, this construction exists but leads to very different groups (object of a for-coming paper).

Proposition 25. Let (↵, ) be a hyperelliptic hypermap of even genus g 2 such that Aut(↵, ) is the lifting of D n (Dihedral) by the hyperelliptic involution, owning a cyclic subgroup of index 2 then Aut(↵, ) is one of the following groups of order 4n:

D 2n =< , ✓/ 2n = ✓ 2 = 1, ✓ = 1 ✓ > (Dihedral); Dic n =< , ✓/ 2n = ✓ 4 = 1, ✓ = 1 ✓, n = ✓ 2 > (Dicyclic) ; E 4n =< , ✓/ 2n = ✓ 2 = 1, ✓ = n 1 ✓ > (Elliptic).
The signature of the maximal groups of each structure is (2, 2, 2, 2g) , (4, 4, 2g) , (2, 4, 4g) and of maximal order 4g, 4g and 8g respectively.

Proof. Aut(↵, ) is the lifting of D n (Dihedral) on the plane by the hyperelliptic involution. Let ¯ be a generator of the normal subgroup of order n and ✓ a reflexion such that ✓ ¯ = ¯ 1 ✓ in D n . Let be a lifting of ¯ in Aut(↵, ) , by hypothesis of order 2n (that is 2< > ) , then there are four cases.

Case 1 : o(✓) = 2 and ✓ = 1 ✓ ; it is the definition of a dihedral group of order 4n

Case 2 : o(✓) = 4 and ✓ = 1 ✓ and n = ✓ 2 ; it is the definition of a dicyclic group of order 4n

Case 3 : o(✓) = 2 and ✓ = 1 ✓ = n 1 ✓ ; it is our definition of an elliptic group of order 4n (if n is dividable by 4).

Case 4 : o(✓) = 4 and ✓ = 1 ✓ and n = ✓ 2 ; In this case,

✓ = 1 ✓ = 1 ✓ = 1 ✓ 3 = 1 ✓ 1 = (✓ ) 1 which means that (✓ ) 2 = id; now, (✓ ) = ( 1 ✓) = 1 (✓ )
. So that this group can be defined by < , ✓ 0 > where ✓ 0 = ✓ and we are back to the third case. D 2g signature is (2, 2, 2, 2g) because the element of order 2g fixes two points in common with the hyperelliptic involution that are exchanged by the reflexions so that is one class. the other three classes of order 2 are one for each class of reflexion ans one for the hyperelliptic involution Note that when Dic 4g is of maximun order it is structured by a generalized quaternion (see next corollary and Theorem 21) the signature is (4, 4, 2g) because the element of order 2g fixes two points in common with the hyperelliptic involution that are exchanged by the elements of order 4 so that is one class. each classe of order 4 is composed of g conjugated elements such that their power of order 2 is the hyperelliptic involution so that all fixed points are already fixed by an automorphism of greater order; thus, 2 does not appear in the signature. E 8g signature is (2, 4, 4g) because the element of order 4g fixes two points in common with the hyperelliptic involution that are exchanged by the elements of order 4 so that is one class. The class of order 4 is composed of 2g conjugated elements such that their power of order 2 is the hyperelliptic involution so that all fixed points are already fixed by an automorphism of greater order; the 2 which appears in the signature is the reflexion class. ⇤ Corollary 26. Let (↵, ) be a hyperelliptic hypermap of even genus g 2 such that Aut(↵, ) is the lifting of a Dihedral group by the hyperelliptic involution, owning a cyclic subgroup of index 2 then Aut(↵, ) is a subgroup of the following groups ::

D 4g (Dihedral); C 2m+1 o 1 C 4 ; C 2m+1 o Q 4g 2m+1 ; C 2m+1 o QD 8g 2m+1
where 2m + 1 is the odd factor of Aut(↵, ) order.

Proof. First group is immediate; the next two groups come from the rewriting of Dic 4g considering C 4 as the first generalized quaternion group (see [DE] page 202 and seq. also 408 and seq.); the last group is the rewriting of E 8g following exactely the same steps in the demonstration of the former groups. The automorphism which structures the semi-product in each case is the one induced by each group Dic 4g or E 8g . ⇤ Proposition 27. Let (↵, ) be a hyperelliptic hypermap of even genus g 2 such that the induced automorphism group is either

C n or D n where o( ) = n divides g+1 ; then Aut(↵, ) is a subgroup of either C 2 ⇥C 2g+2 , D 2g or (C 2 ⇥C 2g+2 )o A C 2
reaching the maximum order of 8(g + 1), where A is an automorphism described in the proof.

Proof. If the quotient group is C n , then by Theorem 10, Aut(↵,

) is C 2 ⇥ C n and it is a subgroup of C 2 ⇥ C 2g+2 .
If the quotient group is D n with n dividing g + 1 (thus odd), then Aut(↵, ) owns a subgroup of type C 2 ⇥ C n = C 2n =< = 0 >. Let ✓ be a reflexion such that ✓ ¯ = ¯ 1 ✓ in D n ; then there are two cases.

Case 1 :

✓ 0 = ✓( ) = 1 ✓ = ( ) 1 ✓ = ( 0 ) 1 ✓ ; it is either the definition of a dihedral group if o(✓) = 2 or ar dicyclic group if o(✓) = 4. Case 2 : ✓( ) = 1 ✓ , that is ✓ 2 ( ) = ✓ 1 ✓ (E1). If o(✓) = 2 ,

this last equation becomes

= ✓ 1 ✓ which is impossible because the left handside is of even order and the right handsid is of odd order as a conjugate of 1 . Thus, o(✓) = 4 and ✓ 2 = . Then (E1

) becomes = ✓ 1 ✓ that is ✓ 1 = 1 ✓ i.e. ✓ 1 = ( ✓ 1 ) 1 thus ( ✓ 1 ) 2 = id. Let ✓ 1 = ✓ 0 . Then, ✓ 0 ( ) = 1 ✓( ) = 1 (✓( )) = 2 ✓ = 1 ✓ 0 that is 1 = ✓ 0 ✓ 0 which
is impossible because the left handside is of odd order and the right handside is of even order as a conjugate of . If the quotient group is D 2n with n dividing g + 1 (thus odd), then Aut(↵, ) 2-Sylows subgroups can only be D 4 or Q 8 by Theorem 21. Since Aut(↵, ) owns a subgroup of type C 2 ⇥ C 2n (by Theorem 10) which contains already three involutions, Q 8 is impossible, so that the 2-Sylows subgroups can only be D 4 . Now, D 4 =< ⌧, ✓/⌧ 4 = ✓ 2 = id, ✓⌧ = ⌧ 1 ✓ > with ⌧ 2 = and Aut(↵, ) =< , , ✓ > because the latter is included in the former and order coincide. We know that ✓ ¯ = ¯ 1 ✓ because the induced automorphism group is D 2n . This equation becomes in Aut(↵, ) either ✓ = 1 ✓ or ✓ = ✓. If ✓ = 1 ✓ were the correct formula, then < , ✓ >= D 2n and, since is central, Aut(↵, ) =< , , ✓ > could not owns an element of order 4 : a contradiction. This means that the correct formula is ✓ = 1 ✓ and the group definition is :

< , , ✓/ 2n = 2 = ✓ 2 = 1, = , ✓ = ✓, ✓ = 1 ✓ > So that Aut(↵, ) is a subgroup of (C 2 ⇥ C 2g+2 ) o A C 2
reaching the maximum order of 8(g + 1), where A is the automorphism described above. ⇤ Remark 28. Proposition 27 could have been stated in the following way : let (↵, ) be a hyperelliptic hypermap of even genus g 2 such that the induced automorphism group is either

C n or D n where o( ) = n divides g + 1 ; then Aut(↵, ) is a subgroup of (C 2 ⇥ C 2g+2 ) o A C 2 reaching the maximum order of 8(g + 1). Indeed, Aut(↵, ) subgoups of index 2 are C 2 ⇥ C 2g+2 =< , > , the subgroup < ⌧, 2 > is Dic n = C n o 1 C 4 because
it owns an element of order 4 and the subgroup < ✓, 2 > is D 2n since it is non abelian and owns no element of order 4. Note that C 2n =< 2 > is also a subgroup, but of index 4.

Proposition 29. Let (↵, ) be a hyperelliptic hypermap of even genus g 2.

If the quotient of Aut(↵, ) with respect to is A 4 , S 4 or

A 5 then Aut(↵, ) is SL 2 (F 3 ) = Q 8 o C 3 of order 24 , GL 2 (F 3 ) = (Q 8 o C 3 ) o C 2 of order 48, or SL 2 (F 5
) of order 120 respectively.

Proof. Let us suppose that the quotient of Aut(↵, ) with respect to is A 4 . The 2-Sylow subgroups are of order 8 and by Theorem 21, they can only be D 4 or Q 8 . In both cases, there exists un element ⌧ 1 of order 4, and by Proposition 19, ⌧ 2 1 = . Let ⌧ 2 be a representative of the other automorphism such that < ⌧1 , ⌧2 >= C 2 ⇥C 2 and of course ⌧3 = ⌧1 ⌧2 . Let ✓1 be an automorphism of order 3 on the quotient, ✓1 acts on the common fixed points of and the ⌧ i s. Hence, two cases. First case : and the ⌧ i s have strictly less than 6 fixed points in common (minimum the 2 points fixed by ⌧ 1 up to 4 if another ⌧ i fixes points), then, since at least one representative ✓ 1 of ✓1 is an automorphism of order 3, ✓ 1 fixes at least one of these points, which means that there exists an element of order 6 on the quotient. This is impossible because A 4 has no element of order 4. Second case :

and the ⌧ i s have 6 fixed points in common (2 points fixed by each ⌧ i ), in which case all the ⌧ i s are of order 4 and are such that ⌧ 2 i = . This group is Q 8 . Now, there exists a unique group of order 24 such that the quotient by a C 2 is A 4 and owning 2-

Sylows equal to Q 8 : this group is SL 2 (F 3 ) = Q 8 o C 3 .
Let us suppose that the quotient of Aut(↵, ) with respect to is S 4 . The 2-Sylow subgroups are of order 16 and by Theorem 21, they can only be D

8 , Q 16 or QD 16 . Since A 4 is a subgroup of S 4 , SL 2 (F 3 ) = Q 8 o C 3 is a subgroup of Aut(↵, )
and Q 8 is a subgroup of Aut(↵, ) two-Sylows. Thus, D 8 is impossible. We are left with Q 16 or QD 16 . The first one owns 5 ⌧ i of order 4 such that ⌧ 2 i = and the second one owns only 3 of them. Now, S 4 contains four D 3 that are not in A 4 (even if the C 3 are in A 4 ). Those groups can only be lifted in D 6 or C 3 o C 4 ; in the second case, three new ⌧ i s are created by the lifting ; but SL 2 (F 3 ) contains already three ⌧ i s, so that it is one to many. This means that the four D 3 are lifted in D 6 and that the number of ⌧ i s, remains three. Aut(↵, ) 2-Sylow subgroups are therefore QD 16 . Now, there exists a unique group of order 48 such that the quotient by a C 2 is S 4 , owning 2-Sylows equal to QD 16 and admitting SL 2 (F 3 ) as a subgroup: this group is GL

2 (F 3 ) = (Q 8 o C 3 ) o C 2 .
Let us suppose that the quotient of Aut(↵, ) with respect to is A 5 . There are only three non resoluble groups of order 120 : S 5 , A 5 ⇥ C 2 and SL 2 (F 5 ) ; but only the last group admits SL 2 (F 3 ) as a subgroup. Hence the result. ⇤

Remark 30. Those last three results can be tested with the GAP computation and their well presented lattices are searchable in [DE]. SL 2 (F 3 ) and GL 2 (F 3 ) are constructed in Annexe B on a map of genus 2. The first possible hyperelliptic hypermap of even genus on which one could construct SL 2 (F 5 ) is g = 14 because the signature must contain the minimum of conjugacy classes (three), the orders must be the lowest possible and reduced to the compulsory ones; thus, the signature is (3, 4, 5) ; 2 does not appear because all fixed points are "taken" by automorphisms of order 4. Since there are 15 groups of order 4 (all conjugates) in SL 2 (F 5 ) fixing each 2 points in common with the hyperelliptic involution, 2g + 2 = 30 and g = 14.

All these results lead to a general theorem which describes automorphisms groups on hyperelliptic hypermaps of even genus: Theorem 31. Let (↵, ) be a hyperelliptic hypermap of even genus g 2. Then, Aut(↵, ) is a subgroup of one of the following groups :

C 4g+2 , (C 2 ⇥ C 2g+2 ) o C 2 , E 8g , GL 2 (F 3 ) or SL 2 (F 5 ) .
Proof. It is a simple summ up of the former results; E 8g contains all Dicyclic and Dihedral groups (thus cyclic and quaternions); both GL 2 (F 3 ) or SL 2 (F 5 ) contain SL 2 (F 3 ). ⇤

hypermaps of genus 2

The general results on hyperelliptic hypermaps of even genus find a natural application on genus 2 because of the following theorem. But, before we need a technical lemma to help the next theorem proof : Lemma 32. Let (↵, ) be a hyperelliptic hypermap of genus 2. Then Aut(↵, ) is either reduced to identity, C 2 , C 4 ; or (↵, ) is 5-elliptic, 3-elliptic or hyperelliptic.

Proof. We know by (RH) that an automorphism of prime order can only be of order 2, 3 = g + 1, 5 = 2g + 1. If 5 divides |Aut(↵, )| then by Proposition 16 Aut(↵, ) is either C 5 or C 10 therefore (↵, ) is 5-elliptic.

If 3 divides |Aut(↵, )| and if (↵, ) is not 3-elliptic then by Proposition 17 , |Aut(↵, )| is either 24 or 48. Let us consider a central automorphism in G a 2-Sylow subgroup of Aut(↵, ); it fixes either 2 or 6 points. If it fixes two points, there exists an homomorphism h from G to S 2 . If Ker(h) 6 =< > there exists an automorphism of order 4that fixes 2 points and by (RH2) 2 = 4( 22) + 3 ⇥ 2 which is impossible. Thus |G|  4, a contradiction. If fixes six points, then it is the hyperelliptic involution.

If neither 3 or

5 divide |Aut(↵, )|, then |Aut(↵, )| = 2 k .
Let us consider a central automorphism in G a 2-Sylow subgroup of Aut(↵, ); it fixes either 2 or 6 points. If it fixes two points, there exists an homomorphism h from G to S 2 . If Ker(h) 6 =< > there exists an automorphism of order 4that fixes 2 points and by (RH2) 2 = 4(2 2) + 3 ⇥ 2 which is impossible. Thus Ker(h) =< > and |Aut(↵, )|  4 which means that Aut(↵, ) is either C 2 , C 4 or C 2 ⇥ C 2 ; now, by (RH2), the last case leads to the existance of a hyperelliptic involution: if all involutions fix two points then by (RH2) 2 = 4(2 2) + 3 ⇥ 2 is impossible. If fixes six points, then it is the hyperelliptic involution. ⇤

In the classical Riemann Surface Theory, there is a theorem that states that any hypermap of genus 2 is a hyperelliptic. The following theorem gives the combinatorial result equivalent to the geometrical result :

Theorem 33. Let (↵, ) be a hyperelliptic hypermap of genus 2. If Aut(↵, ) > 6 or if Aut(↵, ) owns a C 2 ⇥ C 2 subgroup then (↵, ) is hyperelliptic.

Proof. We know that if (↵, ) is 5-elliptic then by Proposition 16 since Aut(↵, ) > 6, Aut(↵, ) is C 10 therefore (↵, ) is hyperelliptic. If (↵, ) is 3-elliptic then by Proposition 17 since Aut(↵,

) > 6, Aut(↵, ) is D 6 , C 2 ⇥ C 6 , C 3 o 1 C 4 or (C 2 ⇥ C 2g+2 ) o C 2 all
hypereliptic hypermaps (C 9 is impossible because the 3-Sylows are of order 3 = g + 1).

If Aut(↵, ) owns a C 2 ⇥ C 2 subgroup, then it has already been proved in Proposition 32 that (↵, ) is hyperelliptic. ⇤ This last result can not really be improved because of the following example:

Example 34. Let (↵, ) be the following hypermap: ↵ = (1, 2, 3, 4, 5) and = (5, 4, 3, 2, 1) = ↵ 1 thus ↵ = ↵ 2 ; by (RH) , (↵, ) of genus g = 2 and Aut(↵, ) = (↵, ) =< ↵ > thus all element of the hypermap is an automorphism of it and none is hyperelliptic since Aut(↵, ) = C 5 .

In fact, the hypermap is not hyperelliptic because of a lack in brins, since all the " exceptions" are compatible with hyperellipticity.

In the rest of the paper, we simply adapt results on hypermaps of even genus to hypermaps of genus 2 Proposition 35. Let (↵, ) be a hyperelliptic hypermap of genus 2. Let G be a 2-Sylow subgroup of Aut(↵, ), then G is a subgroup of QD 16 (QuasiDiedral).

Proof. Immediate application of Proposition 21. ⇤ Now, the general description of automorphism groups on hypermaps of genus 2.

Proposition 36. Let (↵, ) be a hypermap of genus 2, then Aut(↵, ) is either 2,3,4,5,6,8,10 

C n (cyclic) with n = 1,
or D n (dihedral) with n = 1, 2, 3, 4, 6 , Q 8 , C 2 ⇥ C 6 , C 3 o C 4 , QD 16 (QuasiDiedral), (C 2 ⇥ C 6 ) o C 2 , SL 2 (F 3 ) = Q 8 o C 3 of order 24 or GL 2 (F 3 ) = (Q 8 o C 3 ) o C 2 of order 48.
Proof. Immediate application of Theorem 31 and the fact that if g = 2, then |Aut(↵, )|  84 so that SL 2 (F 5 ) is impossible. ⇤

The former proposition can be resumed in the following theorem :

Theorem 37. Let (↵, ) be a hypermap of genus 2, then Aut(↵, ) is a subgroup of one of the following groups :

C 10 , (C 2 ⇥ C 6 ) o C 2 or GL 2 (F 3 ) = (Q 8 o C 3 ) o C 2 .
Do all these groups exist ? We have constructed all the groups and subgroups in the annexe except (C 2 ⇥ C 6 ) o C 2 . 5. Annexe : Examples and drawings 5.1. The Decagone. This hyperelliptic map is defined over 10 brins with 5 edges of length 2, one vertex of length 10 and one face of length 10. Euler's formula tells ↵ = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10), = (10, 7, 6, 3, 2 )(9,8,5,4,1) ↵ 1 = (10,8,6,4,2,9,7,5,3,1) . Since ↵ and commute, Aut(↵, ) =< ↵ 1 >; thus it is equal to C 10 . See figure 5.1.

A :

The double hexagon. This hyperelliptic map is defined over 12 brins with 6 edges of length 2, 2 vertices of length 6 and 2 faces of length 6. Euler's formula tells us that the genus is 2. It is the abelien group with maximal order on a hypermap of genus 2. ↵ = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12), = (11, 10, 7, 6, 3, 2)(12, 9, 8, 5, 4, 1) ↵ 1 = (12, 10, 8, 6, 4, 2)(11, 9, 7, 5, 3, 1) . Since ↵ and commute, Aut(↵, ) =< ↵, >; thus it is equal to C 2 ⇥ C 6 . See figure 5.2. 5.3. The hypercube. This hyperelliptic map is defined over 48 brins with 24 edges of length 2, 16 vertices of length 3 and 6 faces of length 8. Euler's formula tells us that the genus is 2. Its quotient with respect to the hyperellitic involution is the cube , 11, 42, 34, 25, 35, 18, 10)(2, 32, 30, 28, 26, 8, 6, 4)(3, 13, 44, 36, 27, 37, 20, 12) (5, 15, 46, 38, 29, 39, 22, 14)(7, 33, 48, 40, 31, 9, 24, 16)(17, 43, 21, 47, 41, 19, 45, 23) GAP computation gives : gap> StructureDescription( Aut ); "GL(2,3)" (33, 18, 48)(35, 20, 82)(37, 22, 84)(39, 24, 86)(41, 26, 88)(43, 28, 90)(45, 30, 92)(47, 32, 94) (81, 66, 96)(83, 68, 34)(85, 70, 36)(87, 72, 38)(89, 74, 40)(91, 76, 42)(93, 78, 44)(95, 80, 46) ↵ = (1, 19, 82, 66, 49, 67, 34, 18)(2, 64, 62, 60, 58, 56, 54, 52, 50, 16, 14, 12, 10, 8, 6, 4) (3, 21, 84, 68, 51, 69, 36, 20)(5, 23, 86, 70, 53, 71, 38, 22)(7, 25, 88, 72, 55, 73, 40, 24) (9, 27, 90, 74, 57, 75, 42, 26)(11, 29, 92, 76, 59, 77, 44, 28)(13, 31, 94, 78, 61, 79, 46, 30) (15, 65, 96, 80, 63, 17, 48, 32)(33, 83, 37, 87, 41, 91, 45, 95, 81, 35, 85, 39, 89, 43, 93, 47). This map owns , the following automorphism of order 16 : = (1, 3, 5, 7, 9, 11, 13, 15, 49, 51, 53, 55, 57, 59, 61, 63) (2, 4, 6, 8, 10, 12, 14, 16, 50, 52, 54, 56, 58, 60, 62, 64) (17, 19, 21, 23, 25, 27, 29, 31, 65, 67, 69, 71, 73, 75, 77, 79) (18, 20, 22, 24, 26, 28, 30, 32, 66, 68, 70, 72, 74, 76, 78, 80) (33, 35, 37, 39, 41, 43, 45, 47, 81, 83, 85, 87, 89, 91, 93, 95) (34, 36, 38, 40, 42, 44, 46, 48, 82, 84, 86, 88, 90, 92, 94, 96); and ✓, the following automorphism of order 2 : ✓ := (16, 33)(14, 83) (12,37) (18, 43, 19)(20, 45, 21)(22, 47, 23)(73, 24, 97)(74, 99, 75)(76, 101, 77)(78, 103, 79) (80, 105, 81)(82, 107, 83)(84, 109, 85)(86, 111, 87)(88, 113, 89)(90, 115, 91)(92, 117, 93)(94, 119, 95) (49, 26, 72)(51, 28, 122)(53, 30, 124)(55, 32, 126)(57, 34, 128)(59, 36, 130)(61, 38, 132)(63, 40, 134) (65, 42, 136)(67, 44, 138)(69, 46, 140)(71, 48, 142) (121, 98, 144)(123, 100, 50)(125, 102, 52) (127, 104, 54)(129, 106, 56)(131, 108, 58)(133, 110, 60)(135, 112, 62)(137, 114, 64) (139, 116, 66)(141, 118, 68)(143, 120, 70); ↵ = (96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2) (49, 123, 53, 127, 57, 131, 61, 135, 65, 139, 69, 143, 121, 51, 125, 55, 129, 59, 133, 63, 137, 67, 141, 71) (1, 27, 122, 98, 73, 99, 50, 26)(3, 29, 124, 100, 75, 101, 52, 28)(5, 31, 126, 102, 77, 103, 54, 30) (7, 33, 128, 104, 79, 105, 56, 32)(9, 35, 130, 106, 81, 107, 58, 34)(11, 37, 132, 108, 83, 109, 60, 36) (13, 39, 134, 110, 85, 111, 62, 38)(15, 41, 136, 112, 87, 113, 64, 40)(17, 43, 138, 114, 89, 115, 66, 42) (19, 45, 140, 116, 91, 117, 68, 44)(21, 47, 142, 118, 93, 119, 70, 46)(23, 97, 144, 120, 95, 25, 72, 48). This map owns , the following automorphism of order 24 :

(S 4 ). It is GL 2 (F 3 ) = (Q 8 o C 3 ) o C 2 of
= (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95) (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96) (25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119) (26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120) (49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143) (50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144); and ✓, the following automorphism of order 2 : ✓ = (1, 144)(3, 70)(5, 140)(7, 66)(9, 136) (11, 62)(13, 132) (92, 125)(94, 51)(96, 121) (27, 120)(29, 46)(31, 116)(33, 42)(35, 112) 

Definition 3 .

 3 Let G be an automorphism group of the hypermap (↵, ). Two brins b 1 and b 2 are equivalent, b 1 R b 2 , if they belong to the same orbit.

  where m is odd because it is the lifting of D 2g m by the hyperelliptic involution. If m = 1, then |G| = |Aut(↵, )| = 8g.
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 52 Figure 5.2. The Double Hexagone
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  Figure 5.3. The Hypercube

  order 48, the group with maximal order on a hypermap of genus 2. Note that its two-Sylows are of order 16, thus of

	maximal order;
	↵ = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
	(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(37, 38)(39, 40)(41, 42)(43, 44)(45, 46)(47, 48)
	= (17, 10, 24)(42, 19, 12)(44, 21, 14)(46, 23, 16)(41, 34, 48)(36, 18, 43)(45, 38, 20)
	(47, 40, 22)(1, 32, 9)(25, 8, 33)(2, 11, 3)(26, 35, 27)(4, 13, 5)(28, 37, 29)(6, 15, 7)(30, 39, 31)
	↵ = (1

  This map is defined over 96 brins with 48 edges of length 2, 32 vertices of length 3 and two faces of length 16 and 8 faces of length 8. Euler's formula tells us that the genus is 4. It is a lifting of D 8 . This map is the less refined double covering of the globe with Proposition 23 technique (see above).

	↵ = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
	(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(37, 38)(39, 40)(41, 42)(43, 44)(45, 46)(47, 48)
	(49, 50)(51, 52)(53, 54)(55, 56)(57, 58)(59, 60)(61, 62)(63, 64)(65, 66)(67, 68)(69, 70)(71, 72)
	(73, 74)(75, 76)(77, 78)(79, 80)(81, 82)(83, 84)(85, 86)(87, 88)(89, 90)(91, 92)(93, 94)(95, 96)
	= (1, 64, 17)(2, 19, 3)(4, 21, 5)(6, 23, 7)(8, 25, 9)(10, 27, 11)(12, 29, 13)(14, 31, 15)
	(49, 16, 65)(50, 67, 51)(52, 69, 53)(54, 71, 55)(56, 73, 57)(58, 75, 59)(60, 77, 61)(62, 79, 63)

  Now, ✓ = 7 ✓, thus Aut(↵, ) =< , ✓/ 4⇥4 = ✓ 2 = 1, ✓ = 2⇥4 1 ✓ >= E 32 = QD 32 We give here the result of GAP computation: gap> StructureDescription( Aut ); "QD32" Note that this group owns D 8 , C 16 and Q 16 , as maximal subgroups. See Figure5.4. 5.5. The hyperglobe on genus 6. This map is defined over 144 brins with 72 edges of length 2, 48 vertices of length 3 and two faces of length 24 and 12 faces of length 8. Euler's formula tells us that the genus is 6. It is a lifting of D 12 . This map is the second less refined double covering of the globe with Proposition 23 technique after the one of genus 4 (see above). ↵ = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24) (25, 26)(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(37, 38)(39, 40)(41, 42)(43, 44)(45, 46)(47, 48) (49, 50)(51, 52)(53, 54)(55, 56)(57, 58)(59, 60)(61, 62)(63, 64)(65, 66)(67, 68)(69, 70)(71, 72) (73, 74)(75, 76)(77, 78)(79, 80)(81, 82)(83, 84)(85, 86)(87, 88)(89, 90)(91, 92)(93, 94)(95, 96) (97, 98)(99, 100)(101, 102)(103, 104)(105, 106)(107, 108)(109, 110)(111, 112)(113, 114) (115, 116)(117, 118)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132) (133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144); = (1, 96, 25)(2, 27, 3)(4, 29, 5)(6, 31, 7)(8, 33, 9)(10, 35, 11)(12, 37, 13)(14, 39, 15) (16, 41, 17)

	(49, 48)(51, 94)(53, 44)(55, 90)(57, 40)(59, 86)(61, 36)(63, 82) Figure 5.4. The Hyperglobe (19, 80)(21, 30)(23, 76)(67, 32)(69, 78)(71, 28)
	(20, 79)(22, 29)(24, 75)(68, 31)(70, 77)(72, 27)
	(17, 66)(65, 18)(25, 26)(73, 74).
	(10, 87)(8, 41)(6, 91)(4, 45)(2, 95)
	(64, 81)(62, 35)(60, 85)(58, 39)(56, 89)(54, 43)(52, 93)(50, 47)
	(1, 96)(3, 46)(5, 92)(7, 42)(9, 88)(11, 38)(13, 84)(15, 34)