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Sparse Bayesian Image Restoration with Linear Operator Uncertainties

with Application to EEG Signal Recovery

Lotfi Chaari, Hadj Batatia and Jean-Yves Tourneret

Abstract— Sparse signal/image recovery is a challenging topic
that has captured a great interest during the last decades,
especially in the biomedical field. Many techniques generally
try to regularize the considered ill-posed inverse problem by
defining appropriate priors for the target signal/image. The
target regularization problem can then be solved either in a
variational or Bayesian context. However, a little interest has
been devoted to the uncertainties about the linear operator,
which can drastically alter the reconstruction quality. In this
paper, we propose a novel method for signal/image recovery
that accounts and corrects the linear operator imprecisions.
The proposed approach relies on a Bayesian formulation which
is applied to EEG signal recovery. Our results show the
promising potential of the proposed method compared to other
regularization techniques which do not account for any error
affecting the linear operator.

Index Terms— Sparse restoration, Hierarchical Bayesian
Model, MCMC, linear operator, EEG/MEG

I. INTRODUCTION

In biomedical engineering, solving inverse problems is

a challenging issue especially when these problems are

ill-posed. Indeed, most of the medical imaging modalities

lead to solving some inverse problem in order to recover the

target signal or image. The associated observation model

generally involves an observation operator which may be a

priori estimated. However, the knowledge of this observation

operator is generally affected by errors or uncertainties

which can drastically decrease the reconstruction quality.

This problem is for example widely known in many medical

signal and image processing applications such as paralle

magnetic resonance imaging [1]. These applications require

the analysis of signals such as electrocardiograms,

electroencephalograms, magnetoencephalograms,

magnetic resonance imaging (MRI) or positron

emission tomography (PET). In this paper, we focus

on Electroencephalographic/Magnetoencephalographic

(EEG/MEG) source localization. The standard observation

model associated with EEG or MEG signals involves a

linear operator called the lead field matrix, which makes

the link between the sources of the electrical signal within

the brain and the observations. In most of the cases,

a realistic calculation of this operator [2] is subject to

some imprecisions. These imprecisions make the source

localization from dynamic EEG/MEG recordings difficult
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and require to solve an ill-posed inverse problem. In

addition, another source of artifacts may interfere with the

useful signal such as power grid noise, eye movements,

heart beat or muscle activities. For all these reasons,

regularization is generally essential to regularize the inverse

problem and improve the accuracy of source localization. In

this context, a number of recent works have been developed

during the last two decades to handle the regularization

problem for EEG/MEG signals [3–6]. However, all these

works do not account for any eventual imperfection

resulting from the estimation of the lead field matrix. These

methods try to correct the second source of artifacts (power

grid noise, eye movements,...) by using appropriate prior

information in the reconstruction model. Due to the nature

of EEG/MEG signals, sparse priors have for instance been

widely investigated [4, 5].

In this paper, we propose a new method for sparse

regularization of EEG/MEG signals accounting for

observation operator errors. The proposed method is

developed in a Bayesian framework by using appropriate

priors for the observation operator as well as for the target

signal. This method provides estimation for both the target

signal and the linear operator of the observation model. In

addition, the other model parameters and hyperparameters

are automatically estimated from the data. A hierarchical

Bayesian model is built based on the likelihood and the

used priors. A Markov Chain Monte Carlo (MCMC) [7]

algorithm is then used to draw samples according to the

target distribution and derive accurate estimates afterward.

The rest of the paper is organized as follows. Section II

presents the proposed Bayesian method as well as its corre-

sponding estimators. The new approach is then validated in

the context of EEG signal restoration in Section III. Finally,

conclusions and perspectives are drawn in Section IV.

II. UNSUPERVISED SPARSE BAYESIAN REGULARIZATION

A. Problem statement

Let x ∈ R
M×T be our target signal (source amplitudes

in EEG/MEG), which is measured by y ∈ R
P×T through a

linear observation operator H ∈ R
P×M (lead field matrix),

where M , P and T denote the number of dipoles, sources,

and time points, respectively. Accounting for the additive

acquisition noise n, the observation model we are interested

in can be written as

y = Hx+ n. (1)
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Due to all mentioned sources of artifacts (see Section I),

the inverse problem in Eq. (1) is ill-posed. We propose

to adopt a sparse regularization strategy for estimating

the unknown signal x via a Bayesian framework. Indeed,

sparsity promoting priors have been widely used for static

regularization problems, but also for dynamic ones where an

additional temporal dimension has to be accounted for [5, 8].

Specifically, we propose to extend the Bayesian sparse reg-

ularization method recently developed in [9] by considering

uncertainties associated with the linear operator H. Indeed,

since EEG signals are sparse in the original domain, using

sparsity promoting priors allows fine details and transitions

in the target signal to be preserved. In this paper, we

use a Bernoulli-Laplace prior for the target signal and a

Gaussian prior for the linear operator (lead field matrix).

The following sub-section describes the adopted hierarchical

Bayesian model.

B. Hierarchical Bayesian model

In a probabilistic setting, x, y and H are assumed to be re-

alizations of random vectors X , Y and H . Our goal will be to

characterize the posterior probability distribution of (X,H)
given Y , by considering some parametric probabilistic model

and by estimating the associated hyperparameters.

1) Likelihood:

Under the assumption of additive iid Gaussian noise of

variance σ2
n, the likelihood associated with the observation

model in Eq. (1) can be expressed as follows

f(y|x,H, σ2
n) =

(
1

2πσ2
n

)PT/2

exp

(
−||y −Hx||22

2σ2
n

)
(2)

where ||.||2 denotes the Euclidean norm.

2) Priors:

In the proposed model, the unknown parameter vector to

be estimated will be denoted by θ = {x,H, σ2
n}. In what

follows, we introduce appropriate priors for the unknown

model parameters.

Prior for x

To promote the sparsity of the target image, we propose as

in [9, 10] to consider a Bernoulli-Laplace prior for xi (i =
1, . . . ,MT ), defined by

f(xi|ω, λ) = (1− ω)δ(xi) +
ω

2λ
exp

(
−
|xi|

λ

)
(3)

where δ(.) is the Dirac delta function, λ > 0 is the parameter

of the Laplace distribution, and w is a weight belonging to

[0, 1]. Assuming the coefficients xi are a priori independent,

the prior distribution for x is

f(x|ω, λ) =
MT∏

i=1

f(xi|ω, λ). (4)

Prior for σ2
n

To guarantee the positivity of σ2
n and keep this prior non-

informative, we use here a Jeffrey’s prior defined as

f(σ2
n) ∝

1

σ2
n

1R+(σ2
n) (5)

where 1R+ is the indicator function on R
+, i.e., 1R+(ξ) = 1

if ξ ∈ R
+ and 0 otherwise, and ∝ means ”proportional to”.

Prior for H
To account for sensitivity map estimation errors, we adopt

here a Gaussian prior for the target sensitivity operator H
with diagonal covariance matrix σ2

hI and mean H

f(H|H, σ2
h) ∝

(
1

2πσ2
h

)PM/2

exp

(
−
||H −H||22

2σ2
h

)
.

∝
PM∏

l=1

(
1

2πσ2
h

)1/2

exp

(
−
(hl − hl)

2

2σ2
h

)
. (6)

This prior allows us to model sensitivity errors as a Gaussian

perturbation of H with respect to some mean H. In what

follows, H will be assumed to be known while σ2
h will be

estimated.

3) Hyperpriors:

The hyperparameters λ and ω might be fixed a priori using

information about the image sparsity. Since this information

is not always easy to obtain, this paper proposes to estimate

these hyperparameters from the data using a hierarchical

Bayesian approach. This approach requires to define priors

for the hyperparameters. As in [9], inverse gamma (denoted

as IG(λ|α, β)) and uniform (denoted as U[0,1]) priors have

been chosen for the hyperparameters λ and ω.

As regards the linear operator variance σ2
h, a Jeffrey’s prior

has been used to guarantee its positivity while keeping this

prior non-informative:

f(σ2
h) ∝

1

σ2
h

1R+(σ2
h). (7)

C. Bayesian inference

We adopt here a maximum a posteriori (MAP) strategy in

order to estimate the model parameter vector θ based on the

posterior of the unknown parameters and hyperparameters.

More precisely, if we denote by Φ = {λ, ω, σ2
h} the model

hyperparameters, the joint posterior distribution of {θ,Φ}
can be expressed as

f(θ,Φ|y, α, β) ∝ f(y|θ)f(θ|Φ)f(Φ|α, β). (8)

The posterior Eq. (8) is not sufficiently simple to derive

a closed form expression for the MAP estimator of θ. As

a consequence, we propose here to use a Gibbs sampler

[7] that iteratively generates samples according to the

conditional distributions f(x|y, ω, λ,H, σ2
n), f(σ

2
n|y,x,H),

f(H|σ2
h,y,x), f(λ|x, α, β), f(ω|x) and f(σ2

h|H). This

sampler is summarized in Algorithm 1.

The conditional distributions f(x|y, ω, λ,H, σ2
n),

f(σ2
n|y,x,H), f(λ|x, α, β) and f(ω|x) have been derived

in [9] where the uncertainties about H were not considered.

As regards f(σ2
h|H), straightforward calculations show that

this posterior is the following inverse gamma distribution

σ2
h|H ∼ IG

(
σ2
h|PM/2, ||H −H||22

)
. (9)



Algorithm 1 Gibbs sampler.

Initialize with some x(0) and H(0).

repeat

➀ Sample σ2
n according to f(σ2

n|y,x,H).
➁ Sample λ according to f(λ|x, α, β).
➂ Sample ω according to f(ω|x).
➃ Sample x according to f(x|y, ω, λ,H, σ2

n).
➄ Sample σ2

h according to f(σ2
h|H).

➅ Sample H according to f(H|σ2
n,y,x).

until convergence

Concerning f(H|σ2
n,y,x), after decomposing H on the

orthonormal basis B = {U1, . . . , UMP } such that H =
H̃−l +hlUl where H̃−l is nothing but H whose lth element

has been set to 0, straightforward calculations yield the

following conditional distribution for hl:

hl|x,y, σ
2
h, σ

2
n ∼ N (µl, σ

2
l ) (10)

where σ2
l =

σ2
n
σ2
h

σ2
n
+σ2

h
||Ulx||22

, µl = σ2
l (e

T

lUlx + hl) and

el = y − H̃−lx.

After convergence, the proposed algorithm ends up with

sampled sequences that are used to compute a minimum

mean square error (MMSE) or MAP estimator of the un-

known parameter vector, allowing us to compute the esti-

mated signal x̂ and operator Ĥ, in addition to the estimated

noise variance σ̂2
n and the estimated hyperparameters λ̂, ω̂

and σ̂2
h.

III. APPLICATION TO EEG SIGNAL RECOVERY

In this experiment, we consider an EEG reconstruction

problem where the observed signals correspond to the

activity measured by each electrode during the acquisition

time. We used the MNE software1, to simulate an EEG

dataset using 20 electrodes with 35 sources (35 voxels

on the brain surface), where only 3 of them have been

chosen to be active. The simulation involved 21 time

points, which means that we have to recover a 35 × 21
image x (see Fig. 1[Ground truth]) from an observation

y of size 20 × 21, where each line of x represents the

activity at a given voxel (source) of the brain surface.

The linear operator H is supposed to represent the brain

model geometry. The simulation has been performed by

taking a Gaussian acquisition noise of variance σ2
n = 0.16.

To simulate uncertainties in the observation operator, a

zero-mean Gaussian noise of variance σ2
h = 0.0064 has

been added to the reference lead field matrix H.

Fig. 1 displays the ground truth and reconstructed signals

using a standard weighted least squares method (WLS), the

proposed method and the Bernoulli-Laplace regularization

(ℓ0 + ℓ1) of [9]. Visual inspection of reconstructed images

clearly show the reconstruction errors caused by the

linear operator imprecisions for WLS and the ℓ0 + ℓ1

1http://www.martinos.org/mne/

regularization. These errors are clearly reduced by the

proposed method by recovering a better sparsity support

and accurate signal. Table I confirms this observation by

reporting quantitative evaluation of the sparsity level for

the reconstructed signals. In fact, when evaluating the ℓ0
pseudo-norm of reconstructed signals (||.||0), the proposed

method gives the closest sparsity level (||x̂||0 = 31) to

the ground truth (||xref ||0 = 51). As regards quantitative

evaluation of reconstruction quality, Table I also reports

signal to noise rations (SNRs)2. Reported values clearly

show the ability of the proposed method (SNR = 13.8 dB) to

recover more accurate signals than the ℓ0+ ℓ1 regularization

(SNR = 1.34 dB), which is due to the adopted model that

accounts for imprecisions in the observation operator. This

SNR gain confirms the importance of accounting for such

errors.

TABLE I

SNR AND SPARSITY LEVEL OF RECONSTRUCTED SIGNALS.

Ground truth WLS ℓ0 + ℓ1 Proposed method

SNR (dB) - 0.41 1.34 13.80

||.||0 51 595 165 31

Ground truth WLS
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Fig. 1. Original and restored EEG signals using WLS, ℓ0+ℓ1 regularization
and the proposed method.

As regards the linear operator restoration, Fig. 2 shows

the true observation operator used for simulation, as well

as the noisy and restored ones. This figure also reports

SNR values which show that our method allows getting

accurate estimates of the observation operator. This accurate

estimation explains the obtained SNR gain in the estimation

of the signal x̂.

When looking at the model hyperparameters, the sam-

pled chains allowed us to derive the following estimates:

2SNR = 20 log10
||xref ||2

||xref−x̂||2



Ground truth Noisy: SNR = 3.17 dB
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Fig. 2. Ground truth, noisy and restored observation operator using the
proposed method. SNR values are also provided.

σ̂2
n = 0.13 and σ̂2

h = 0.0065, which are good estimates of

the reference values σ2
n and σ2

h. Concerning the Bernoulli

parameter, the estimated value ω̂ = 0.1265 indicates indeed

a high sparsity level of the signal x̂.

As regards computational cost, 1000 iterations are re-

quired for the proposed method including 500 iterations

corresponding to the burn-in period (have been discarded

from the estimation). With a Matlab implementation on a

64-bit 2.00GHz i7-3667U architecture, the proposed method

takes 176 seconds, while the ℓ0+ℓ1 regularization takes only

165 seconds. The proposed method presents therefore a good

compromise in terms of performance/cost ratio. Note that this

computational cost can be highly decreased by resorting to

C implementation for example.

IV. CONCLUSIONS

In this contribution, we proposed a novel method for

sparse signal/image regularization which, in addition to stan-

dard signal imperfections, models imprecisions about the

observation operator. The proposed method was developed

in a flexible Bayesian framework where the regularization

parameters were automatically estimated from the data. In

application to EEG/MEG signal restoration, promising re-

sults show the potential of the proposed method in handling

such complicated restoration problems. Future work will

investigate the application of this method on real EEG/MEG

signals where experimental conditions could be more severe

and not fully controlled.
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