
HAL Id: hal-03224137
https://hal.science/hal-03224137

Submitted on 12 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alternating-time Temporal Logic with Explicit
Programs (LAMAS 2014)

Andreas Herzig, Emiliano Lorini, Faustine Maffre, Dirk Walther

To cite this version:
Andreas Herzig, Emiliano Lorini, Faustine Maffre, Dirk Walther. Alternating-time Temporal Logic
with Explicit Programs (LAMAS 2014). Workshop on Logical Aspects of Multi-Agent Systems @
AAMAS 2014 (LAMAS 2014), IFAAMAS, May 2014, Paris, France. �hal-03224137�

https://hal.science/hal-03224137
https://hal.archives-ouvertes.fr

Alternating-time Temporal Logic with Explicit

Programs

Andreas Herzig1, Emiliano Lorini1, Faustine Maffre1, Dirk Walther2

1University of Toulouse, IRIT, 118, route de Narbonne, F-31062 Toulouse
Cedex 9, France

{Andreas.Herzig, Emiliano.Lorini, Faustine.Maffre}@irit.fr
2TU Dresden, Theoretical Computer Science, 01062 Dresden, Germany

dirk.walther@tu-dresden.de

Abstract. We introduce ATLEP, an extension of Alternating-time Tem-
poral Logic (ATL), following the recent Alternating-time Temporal Logic
with Explicit Actions (ATLEA). ATLEP adds to the language of ATL ex-
plicit programs whose agents are committed to play, formulated in an
extension of Propositional Dynamic Logic (PDL) where strategies can be
captured. We add combinations of commitments, inspired from the work
on the Game Description Language. We also give an example on how a
multi-agent game can be fully modeled with ATLEP, along with several
winning strategies.

1 Introduction

ATL [1] is a logic for reasoning about strategic abilities of agents. Thanks to
its language, one can express that a group of agents can or cannot ensure a
property by playing some actions. ATL extends Computational-tree Temporal
Logic (CTL) where each moment in time, or state, leads to several futures and
formulas are expressed with existential and universal quantifications on paths
(sequences of states). ATL replaces these quantifications by a path quantifier
that is parametrized by a coalition (a group) of agents, which means that this
coalition can “force the game” on a path ensuring a temporal property whatever
the other agents do.

ATL is an interesting framework to formalize games in multi-agent systems
but suffers from some weaknesses, which have led to several extensions such as
ATEL [9]. One of the most recent is ATLEA [3] which tries to remedy the lack of
explicit actions in the language. Indeed, while the semantics of ATL are rich (with
actions and strategies as first-class citizens), the syntax only allows to express
the existence or absence of a strategy, but does not allow to name strategies or
the actions underlying them. This is what motivated the development of, first,
ATL with Explicit Strategies (ATLES) [8] and then ATL with Explicit Actions
(ATLEA).

Our goal here with ATL with Explicit Programs (ATLEP) is to pursue this
work by generalizing actions to PDL programs. We can also see ATLEP as a

multi-agent version of CTL with path relativisation in the style of [5], which is
a program-based extension of CTL. In comparison with that work we are now
going a step further by introducing a multi-agent extension. We can also cite as
a similar work the logic ADL [7], where the authors use the operators from PDL

and replace the programs by groups of agents.

This paper is organized as follows: Section 2 presents the syntax and the
semantics of ATLEP. Section 3 adds two new operators used to combine com-
mitments with priorities. Section 4 gives an example of a game and several
strategies that can be applied to it.

2 Syntax and Semantics

Like in ATLES and ATLEA, we index the path quantifier by commitment func-
tions. Here they are defined inductively from atomic commitments ρact (a map-
ping from agents to actions), by sequential composition of commitments, non-
deterministic choices between commitments, finite and infinite iteration of com-
mitments, and tests. Informally, ρact(a) = ω (also written (a, ω) or a 7→ ω) means
that agent a is committed to play action ω at the current state. Then we can
compose commitments: the sequential composition ρ1; ρ2 means that agents must
play according to their commitments from ρ1, then from ρ2, ρ1 ∪ ρ2 that agents
must play according to their commitments from ρ1 or ρ2 (non-deterministically),
ρ∗ that agents must play their commitments from ρ a non-deterministic but finite
number of times, including zero, ρ∞ that agents must play their commitments
infinitely, and ϕ? that agents are committed to test the formula ϕ at the current
state. (We assume the last action does not take any time and is not performed
by one agent but by all agents.)

The commitment function ρ indexes the ATL path quantifier 〈〈A〉〉. Then,
〈〈A〉〉ρψ reads “while the agents committed by ρ perform actions as specified in
ρ, the agents in A have a strategy to ensure the temporal property ψ, no matter
what the agents outsideA do”. Therefore, we reduce the set of available strategies
to those compatible with commitments. For example, if we have three agents a, b
and c, the formula 〈〈{a, b}〉〉ρψ with ρ = {a 7→ ω1}∪{a 7→ ω2}; {a 7→ ω3, c 7→ ω4}
holds at state w iff there exists a strategy for the agents a and b where a plays
ω1 or ω2 at w, then at any next state w′, ω3, such that for every strategy for the
agent c where he plays ω4 at w′, the path resulting from the chosen strategies
satisfies ψ. If ρ = ∅, then the operator 〈〈A〉〉ρ is the same as the ATL operator
〈〈A〉〉.

2.1 Syntax

We fix a set Σ a set of agents, Π of atomic propositions, and Ω a set of action
names. These sets are countably infinite and disjoint. The language of ATLEP

is defined over the signature 〈Σ,Π,Ω〉.

Definition 1 (ATLEP syntax). The grammar of state formulas ϕ, path for-
mulas ψ, action commitments ρact and commitments functions ρ is defined as
follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉ρψ

ψ ::= ¬ψ | ©ϕ | ϕ U ϕ

ρ ::= ρact | ρ; ρ | ρ ∪ ρ | ρ∗ | ρ∞ | ϕ?

where p ranges over Π, A ranges over 2Σ, and ρact ranges over partial functions
from Σ to Ω with finite domain.

Note that in the state formula 〈〈A〉〉ρψ there is no constraint relating the
set A to the set of agents committed. We sometimes omit set parentheses as
in 〈〈a〉〉ρψ, where a is an agent. For state formulas, the operators ∧, →, ↔,
⊤ and ⊥ are defined as usual with ¬ and ∨. For path formulas, the temporal
operators sometime and forever are defined respectively by ✸ϕ = ⊤Uϕ and
✷ϕ = ¬(⊤U¬ϕ). As in PDL, we define the programs skip = ⊤? and abort = ⊥?
which respectively mean “do nothing” and “fail”.

2.2 Concurrent Game Structure with action Names

Formulas are evaluated on CGSN (Concurrent Game Structure with action Names)
that are defined just like in ATLEA. They are CGS from ATL that additionally
interpret action names as moves.

Definition 2 (CGSN). Let S = {1, ..., n} ⊂ Σ with n ≥ 1 be a finite set of
agents, P ⊂ Π be a finite set of propositions and O ⊂ Ω be a finite set of action
names. A CGSN C for the signature 〈S, P,O〉 is a tuple C = 〈W,V,M,Mov,E, ‖.‖〉
with:

– W a finite, non-empty set of states, or worlds;

– V :W −→ 2P a valuation function which associates to every state the set of
propositions true at this state;

– M a finite, non-empty set of moves;

– Mov : W × S −→ 2M \ ∅ a function such that for every state w ∈ W and
every agent a ∈ S, Mov(w, a) ⊆M is the non-empty set of moves available
for a at w;

– E :W ×MS −→W is a transition function mapping a world w and a move
profile −→m = 〈m1, ...,mn〉 (containing one move for each agent) to the world
E(w,−→m) ∈ W ;1

– ‖.‖ : O −→ M is a denotation function mapping action names in O to
moves in M , such that a move can interpret several action names.

1 Note that the function E is defined over all move profiles, including the non-available
ones (according to the Mov function). We choose this to make the definition more
compact; we deal with the non-available move profiles later.

An action ω is available to agent a in the state w if ‖ω‖ ∈ Mov(w, a).
The denotation function ‖.‖ is a mapping from action names to actions. In the
following, we do not distinguish between these two terms and designate both as
“actions”.

2.3 Strategies and compatibility with commitments

In order to interpret formulas, we need a notion of compatibility between strate-
gies and programs. Indeed, if an agent is committed to a program, we should
only consider strategies compatible with this commitment as available strategies.
In this section, we define several necessary notions to express this compatibility.

Move profiles. We define move profiles wrt. a CGSN. A move profile −→m is
a tuple of actions, one for each agent in S. A partial move profile −→mA for the
coalition A is a tuple of actions, one for each agent from A. The action for the
agent a in a move profile −→m is denoted by −→m(a); in a partial move profile −→mA,
it is denoted by −→mA(a) (for a ∈ A). A move profile −→mS is the same as a (total)
move profile −→m. The move profile −→m∅ is an empty tuple 〈〉. We define the set of
(total) move profiles as MS and the set of partial move profiles for A as MA.

Therefore a (finite or infinite) sequence of move profiles
−→
M = −→m1−→m2... can be

considered as a word on the alphabetMS , and a sequence of partial move profiles
−→
MA = −→m1

A
−→m2

A... can be considered as a word on the alphabet MA. The empty

sequence is denoted by ε. The sequence of move profiles
−→
MS for the set S is an

equivalent notation for the sequence
−→
M . The length of a sequence

−→
M , denoted

by length(
−→
M) is equal to the number of move profiles composing it.

A partial move profile −→mA is included in a partial move profile −→mB, noted
−→mA ⊆ −→mB, iff A ⊆ B and ∀a ∈ A,−→mA(a) = −→mB(a). The empty tuple 〈〉 is

included in every move profile. Then a sequence
−→
MA = −→m1

A
−→m2

A... is a prefix of

a sequence
−→
MB = −→m1

B
−→m2

B ..., noted
−→
MA ⊑

−→
MB, iff length(

−→
MA) ≤ length(

−→
MB)

and ∀i < length(
−→
MA) + 1,−→mi

A ⊆ −→mi
B.

2

A move profile is used to determine the successor of a state with the tran-
sition function E. The set of available move profiles in the state w is defined
as prof(w) = {−→m : ∀a ∈ S,−→m(a) ∈ Mov(w, a)}. In the same way, the set of
available partial move profiles for A in the state w is defined as profA(w) =
{−→mA : ∀a ∈ A,−→mA(a) ∈ Mov(w, a)}. The completion of a partial move profile
−→mA is the set of (total) move profiles compl(w,−→mA) = {−→m : −→m ∈ prof(w) and
∀a ∈ A,−→m(a) = −→mA(a)}. Observe that the completion compl(w,−→mA) is available
at w iff −→mA is available at w. The completion of the move profile −→m∅ at w is, by
definition, equal to prof(w).

The set of possible successors of w is the set of states E(w,−→m) with −→m ∈
prof(w). We define the function E(w,−→mA) (with −→mA a partial move profile),
which gives the set of possible successors of w such that the agents in A play

2 We write i < length(
−→

MA) + 1 to include the case where
−→

MA is infinite.

actions from −→mA, defined as E(w,−→mA) = {E(w,−→m) : −→m ∈ compl(w,−→mA)}. If
at least one action in −→mA is not available at w, then E(w,−→mA) will be empty.
Also, E(w,−→mS) will contain at most one world.

We extend the function E to finite sequences of partial profiles as follows:

E(w,
−→
MA) =

{

{w} if
−→
MA = ε

{w′ : there is a w′′ ∈ E(w,−→m1
A), w

′ ∈ E(w′′,
−→
M ′

A)} if
−→
MA = −→m1

A ·
−→
M ′

A

If an action is not available in one of the move profiles of the sequence
−→
MA,

then the result will be an empty set. If profiles are total then this function will
return at most one state.

Strategies. A strategy for an agent a is a function fa mapping a world w to an
available action fa(w) ∈ Mov(w, a); a strategy for a coalition (a set of agents)
A ⊆ S is a function FA mapping each agent a ∈ A to his strategy FA(a). The
function FA(w) maps a world to a partial move profile −→mA such that for all
a ∈ A,−→mA(a) = FA(a)(w).

The set out(w,FA) of outcomes of a strategy FA from the world w is the set
of infinite sequences of move profiles corresponding to the actions chosen in FA

by each agent from A. Formally, it is the set of sequences:

out(w,FA) = {−→m1−→m2... : ∃w0w1... with w0 = w and

E(wi,
−→mi+1) = wi+1 and −→mi+1 ∈ compl(wi, FA(wi))}

Traces of commitments. The domain of an atomic commitment ρact, denoted
by dom(ρact), is the set of all agents committed by it.

A trace is a (finite or infinite) sequence of (total or partial) move profiles.
The set tr(w, ρ,A) is the set of sequences of move profiles describing actions from
ρ for the committed agents from A if they begin their commitment at w. It is
inductively defined as follows:3

tr(w, ρact, A) = {−→mA : ∀a ∈ A,−→mA(a) ∈Mov(w, a) and
if a ∈ dom(ρact) then

−→mA(a) = ‖ρact(a)‖}

tr(w, ρ1; ρ2, A) = {
−→
M1

A ·
−→
M2

A :
−→
M1

A ∈ tr(w, ρ1, A), finite and
−→
M2

A ∈ tr(E(w,
−→
M 1

A), ρ2, A)}

∪ {
−→
M1

A :
−→
M1

A ∈ tr(w, ρ1, A), infinite}
tr(w, ρ1 ∪ ρ2, A) = tr(w, ρ1, A) ∪ tr(w, ρ2, A)

tr(w, ρ∗, A) = {
−→
M1

A · ... ·
−→
Mn

A : n ∈ N, ∀i ≤ n,
−→
M i

A ∈ tr(E(w,
−→
M 1

A · ... ·
−→
M i−1

A), ρ, A)

and ∀i ≤ n− 1,
−→
M i

A finite}

tr(w, ρ∞, A) = {
−→
M1

A ·
−→
M2

A · ... : ∀i,
−→
M i

A ∈ tr(E(w,
−→
M1

A · ... ·
−→
M i−1

A), ρ, A), finite}

∪ {
−→
MA :

−→
MA ∈ tr(w, ρ,A), infinite}

tr(w,ϕ?, A) = {ε}

3 Note that we have a world w as a parameter of tr while it does not appear in the
definitions. However, this will be needed for combined commitments (Section 3).

Informally: the trace of an atomic commitment ρact corresponds to the set of
move profiles where agents from A choose the action they are committed to (the
others can choose any action); a sequential composition corresponds to the con-
catenation of all possible sequences from the first and the second commitment,
if the first is finite (if the first is infinite, we do not concatenate the second); a
non-deterministic choice corresponds to the union; the non-deterministic repeti-
tion and infinite repetition corresponds to the concatenation of finite sequences
(in finite repetition, only the last one can be infinite). The test does not take
any time, therefore it is represented by the empty sequence.

Let us consider some special cases. If the commitment function ρ is empty, it
is equivalent to the atomic program skip and in this case, tr(w, skip, A) = {ε}. If
the set A is empty, then for each ρact composing ρ, tr(w, ρact, A) = {−→m∅} = {〈〉}.
Therefore, tr(w, ρ,A) contains sequences of empty tuples. Finally, if ρ does not
contain any agent from A, then for each ρact composing ρ, tr(w, ρact, A) = MA

and therefore, tr(w, ρ,A) contains sequences of various lengths, but for every
move profile of every sequence, there exists other sequences of the same length
where all other possible move profiles fromMA are placed at the same position.

Compatibility. We can now define the compatibility of a strategy with a com-
mitment: the strategy FA is compatible with the commitment ρ at world w

iff for every −→m1−→m2... ∈ out(w,FA), there exists a (finite or infinite) sequence
−→m1

A
−→m2

A... ∈ tr(w, ρ,A) such that −→m1
A
−→m2

A... ⊑
−→m1−→m2.... Intuitively, for every

possible outcome of the strategy, we can find a sequence in the trace of the
commitment which is a prefix of the outcome.

Paths. An infinite sequence λ = w0w1w2... of worlds is called a computation if
for each position i ≥ 0, wi+1 is a possible successor of wi. We denote by λ[i] the
i-th component wi in λ and by λ[0, i] the finite initial sequence w0...wi of λ.

The set paths(w,
−→
MA) with w a world and

−→
MA a sequence of partial move pro-

files, denotes the set of computations beginning at w and which can be reached

if agents in A play the actions described in the move profiles from
−→
MA. More

formally:

paths(w,
−→
MA) =

{

{λ : λ[0] = w} if
−→
MA = ε

{w0w1w2... : w0 = w and w1w2... ∈ paths(E(w,−→m1
A),

−→
M ′

A)} if
−→
MA = −→m1

A ·
−→
M ′

A

We extend this to a set of sequences of move profiles MA as paths(w,MA) =
⋃

−→
MA∈MA

paths(w,
−→
MA).

The commitment function ρ is feasible for a coalition A at a world w iff
paths(w, tr(w, ρ,A)) 6= ∅. More generally, a commitment ρ is feasible for a
coalition A iff it is feasible for A at every world (for each w ∈ W we have
paths(w, tr(w, ρ,A)) 6= ∅). We also say that a commitment ρ is deterministic

for a coalition A iff for every w ∈ W , paths(w, tr(w, ρ,A)) is either empty or a
singleton. If a commitment is deterministic and feasible for A, then it leads to
exactly one computation everywhere for this coalition.

2.4 Truth conditions

The satisfaction relation, with C a CGSN and w a world, is defined as follows:

C, w |= 〈〈A〉〉ρψ iff there exists a strategy FA compatible with ρ at w
such that for every strategy FS\A compatible with ρ at w,

it holds that C, λ � ψ where {λ} = paths(w, out(w,FA ∪ FS\A)).

That means, 〈〈A〉〉ρψ is true at w iff it is possible for agents from A to find
a strategy compatible with their commitments such that for each strategy from
their opponents compatible with their commitments, it ensures the path formula.
If a commitment forces actions which are not available, then the formula cannot
be satisfied. Atomic propositions, Boolean and temporal operators have the same
satisfaction relation as in ATL.

We can express the availability (and unavailability) of programs with ATLEP

formulas. As in ATLEA, if 〈〈a〉〉a 7→ω©⊤ is true at w then the program composed
of one action ω is available for agent a at world w (written ‖ω‖ ∈ Mov(w, a)).
In ATLEP, we have C, w |= 〈〈A〉〉ρ©⊤ iff paths(w, tr(w, ρ,A)) 6= ∅ (ρ is feasible
for the players from A at the world w). The unavailability is therefore expressed
by the negation of this formula: C, w |= ¬〈〈A〉〉ρ©⊤ iff paths(w, tr(w, ρ,A)) = ∅.

2.5 Validity

Validity and satisfiability are defined as usual. We now discuss some ATLEP

validities. First of all, we note that 〈〈A〉〉∅ is equivalent to the standard ATL

operator 〈〈A〉〉. Therefore, all validities from ATL are also applicable here if ρ = ∅.
We extend the domain of an atomic commitment to programs as follows:4

– dom(ρ1; ρ2) = dom(ρ1 ∪ ρ2) = dom(ρ1) ∪ dom(ρ2);
– dom(ρ∗) = dom(ρ∞) = dom(ρ);
– dom(ϕ?) = S.

To express new ATLEP validities, we define the strength of a commitment
function. A commitment function ρ is stronger than another commitment func-

tion ρ′, denoted by ρ ≥ ρ′, iff ∀C, ∀w ∈W, ∀
−→
Mdom(ρ) ∈ tr(w, ρ, dom(ρ)), ∃

−→
Mdom(ρ′)

∈ tr(w, ρ′, dom(ρ′)) such that
−→
Mdom(ρ) ⊒

−→
Mdom(ρ′). Clearly, ≥ is a partial pre-

order.

Proposition 1. The following formulas are ATLEP valid.

4 One might argue that the domain of a test should be the empty set, however setting
it to S is necessary for technical reasons that will become clear in Section 3.

1. 〈〈A〉〉ρ©⊤ for dom(ρ) ∩ A = ∅;
2. ¬〈〈A〉〉ρ©⊥ for dom(ρ) ⊆ A;
3. (〈〈A1〉〉ρ©ϕ1∧〈〈A2〉〉ρ©ϕ2) → 〈〈A1∪A2〉〉ρ©(ϕ1 ∧ ϕ2) for A1∩A2 ⊆ dom(ρ);
4. 〈〈A〉〉ρψ → 〈〈A〉〉ρ′ψ for ρ′ ≥ ρ and (dom(ρ′) \ dom(ρ)) ∩ A = ∅;
5. 〈〈A〉〉ρ′ψ → 〈〈A〉〉ρψ for ρ′ ≥ ρ and dom(ρ′) \ dom(ρ) ⊆ A;
6. 〈〈A ∪ {a}〉〉ρψ → 〈〈A〉〉ρψ for a ∈ dom(ρ);
7. 〈〈A〉〉ρact ;ρ✷ϕ↔ ϕ ∧ 〈〈A〉〉ρact

©〈〈A〉〉ρ✷ϕ;
8. 〈〈A〉〉ρ1∪ρ2

ψ ↔ 〈〈A〉〉ρ1
ψ ∨ 〈〈A〉〉ρ2

ψ for dom(ρ1 ∪ ρ2) ⊆ A;
9. 〈〈A〉〉ρ1∪ρ2

ψ ↔ 〈〈A〉〉ρ1
ψ ∧ 〈〈A〉〉ρ2

ψ for dom(ρ1 ∪ ρ2) ∩ A = ∅;
10. 〈〈A〉〉ρ∞

1
;ρ2
ψ ↔ 〈〈A〉〉ρ∞

1
ψ;

11. 〈〈A〉〉ρ∞

act
ψ ↔ 〈〈A〉〉ρact

© 〈〈A〉〉ρ∞

act
ψ;

12. 〈〈A〉〉ϕ?;ρψ ↔ ϕ ∧ 〈〈A〉〉ρψ.

Items 1 and 2 corresponds to the (⊤) and (⊥) axioms from ATL (and their
extensions from ATLEA). Item 3 is the superadditivity axiom from ATL as seen
in ATLEA. It says how two coalitions (with actions from their commons members
fixed) can join their forces. Item 4 and 5 are respectively about increasing the
commitment of opponents (a coalition can achieve the same goal if agents from
outside are more committed) and releasing the commitment of proponents (a
coalition can achieve the same goal if agents inside it are less committed, that
means, we release some constraints). Item 6 is the same as in ATLEA, about
committed proponents becoming opponents. Equivalences 7-12 have no ATLEA

counterpart. Item 7 gives a equivalence for the sequential compositions, in the
case where the sequence begins with an atomic action and the path formula
must hold forever. For non-deterministic choice and test, items 8, 9 and 12
give more general formulas. Item 10 is about the infinite commitments and the
useleness of a commitment after an infinite commitment, and item 11 is about
the decomposition of an infinite repetition of atomic commitments.

3 Combining commitments

We have seen that in our language, commitments are partial functions forcing
agents to play specified actions. An interesting idea may be to combine these
commitments to produce new, more complicated strategies. To do this, we use
the operators defined in [10], where a language based on GDL (Game Description
Language) is developed to reason about strategies. The authors combine them
with the prioritized disjunction ▽ and the prioritized conjunction △. Informally,
the first gives a choice between strategies: try to apply every strategy, beginning
with the highest priority, until one can be applied; the second one combines
actions from strategies: try to apply as many strategies as possible at the same
time; if there is a conflict, remove the lowest priority, then the second lowest
priority, etc. We adapt these operators to our framework and define prioritized
disjunction and conjunction on commitments.

Definition 3. (Prioritized commitments) Prioritized commitments are defined
as an extension of commitments:

ρ ::= ρact | ρ; ρ | ρ ∪ ρ | ρ∗ | ρ∞ | ϕ? | ρ▽ ... ▽ρ | ρ △ ... △ ρ

State formulas, path formulas and action commitments are as before. We
refer to that language as the extended language for ATLEP.

With this definition, and unlike the original connectives, we allow the compo-
sition of conjunctions and disjunctions, like in 〈〈A〉〉(ρ1▽ρ2)△ρ3

ψ, and the melting
with program connectives; for example, 〈〈A〉〉(ρ1▽ρ2);ρ3

ψ is syntactically allowed.
We extend the definition of dom in the obvious way:

dom(ρ1▽ ... ▽ρm) = dom(ρ1 △ ... △ ρm) =
⋃

1≤i≤m

dom(ρi)

In the semantics, we define the set tr(w, ρ,A) of sequences of move profiles
resulting if we want the execute the prioritized commitments ρ for committed
agents from A, beginning at w, as follows:

tr(w, ρ1▽ ... ▽ρm, A) =











tr(w, ρ1, A) if m = 1 or

paths(w, tr(w, ρ1, A)) 6= ∅

tr(w, ρ2▽ ... ▽ρm, A) otherwise

tr(w, ρ1 △ ... △ ρm, A) =



















⋂

1≤i≤m

tr(w, ρi, A) if m = 1 or

⋂

1≤i≤m

paths(w, tr(w, ρi, A)) 6= ∅

tr(w, ρ1▽ ... ▽ρm−1, A) otherwise
This means that, if we have a prioritized disjunction of commitments, we will

try each one, beginning from the left, until we found one that is feasible. If we
have a prioritized conjunction, we will try to apply them all, then if we have a
conflict (two different actions for the same agent at the same state), we will try
again without the rightmost one, and so on.

Moreover, we expand the notions of deterministic and feasible for prioritized
commitments:

– ρ1▽ ... ▽ρm is deterministic for A if for each k such that 1 ≤ k ≤ m, ρk is
deterministic for A;

– ρ1 △ ... △ ρm is deterministic for A if ρ1 is deterministic for A;
– ρ1▽ ... ▽ρm is feasible for A if there exists k with 1 ≤ k ≤ m such that ρk

is feasible for A;
– ρ1 △ ... △ ρm is feasible for A if ρ1 is feasible for A.

Intuitively, a prioritized disjunction is deterministic if each commitment is
deterministic. Indeed, if each ρi is deterministic, then it will lead to zero or
one path. So, we will try to apply ρ1: if it gives one path, then we choose it
and the disjunction is deterministic; if not, we try ρ2, and so on. If we reach
ρm, we apply it and since it is deterministic, the prioritized disjunction will be
deterministic. A prioritized conjunction will be deterministic if ρ1 is deterministic
because whatever the number of commitments we take into account, we will
always intersect the resulting set of paths with the paths for ρ1, which leads
to zero or one paths. On the other side, a prioritized disjunction is feasible if
there exists a k for which ρk is feasible (if there is more than one, we choose the

leftmost one). A prioritized conjunction is feasible if ρ1 is since if no other ρi is
feasible, we will choose ρ1.

The truth condition stays the same, except that we can now interpret prior-
itized commitments thanks to the function tr.

With these new elements, we can add some validities to the language.

Proposition 2. The following formulas are ATLEP valid.

13. 〈〈A〉〉ρ1
ψ → 〈〈A〉〉ρ1▽ρ2

ψ;
14. 〈〈A〉〉ρ1

ψ → 〈〈A〉〉ρ1△ρ2
ψ for A ∩ dom(ρ2) = ∅;

15. 〈〈A〉〉ρ1△ρ2
ψ → 〈〈A〉〉ρ1

ψ for dom(ρ2) ⊆ A;
16. 〈〈A〉〉{a1 7→ω1}△...△{am 7→ωm}ψ → 〈〈A〉〉{a1 7→ω1,...,am 7→ωm}ψ

with ∀i, j such that 1 ≤ i, j ≤ m, if i 6= j then ai 6= aj.

Item 13 is about the disjunction: if the first commitment of a prioritized dis-
junction is possible, then it will always be chosen and so, adding commitments
will be useless. Item 14 and 15 are about the conjunction: we can try to combine
a commitment with new ones and ensure the same result if the new commitments
are not about the proponents; on the other side, we can remove commitments
as long as they do not release constraints on opponents. Item 16 connects pri-
oritized disjunction of actions with sets of atomic commitments. Note that the
implication is invalid if there are i, j with ai = aj : then that agent is overcom-
mitted and the right hand side of the implication is false, while the left hand
side is not necessarily so. Note also that it does not matter here whether the ai
are members of A or not.

4 Reasoning about strategies: the game of Nim

We now illustrate ATLEP with the turn-based multiple player game of Nim.

4.1 Modeling the game

We model a version of the game of Nim for n ≥ 2 players. We have a row of
m ≥ 1 objects, for example chips, and at his turn, a player can remove from 1 to
k (with k ≥ 1) chips. The winner is the player removing the last chip (the game
cannot end with a tie: one player always wins and the others lose).

The version with 2 players is well-known in game theory because there exists
a simple winning strategy (for the first or the second player, depending on the
initial number of chips m). We will see it later.

We assume players move in the order of their number, from player 1, to player
n, then player 1 again and so on. Let us model this game, which we will call
Nimn,m,k, by a CGSN CNimn,m,k

, with the signature 〈S, P,O〉 as follows:

– S = {1, ..., n}, with n > 1;

– P = {c0, ..., cm, turn1, ..., turnn, wins1, ..., winsn, multiple}, with ci mean-
ing that there remain i chips in the row, turna meaning that it is a’s turn,
winsa that player a has won, andmultiplemeaning that the number of chips
left is a multiple of k + 1 (useful for strategies);

– O = {take1, ..., takek, idle} with takei the action of taking i chips from the
row and idle the action of waiting.

We also define terminal ≡
∨

a∈S

winsa.

A state of this game is determined by the number of chips left and the player
which has to move. Therefore we denote states by wa,ncl, with a the current
player and ncl the number of chips left in the row. Then the initial state is
denoted by w1,m.

We also introduce the functions previous(a, n) and next(a, n), returning re-
spectively the player acting before a and the player acting after a, formally
defined as:

– previous(a, n) =

{

a− 1 if a > 1

n if a = 1

– next(a, n) =

{

a+ 1 if a < n

1 if a = n

Then we define CNimn,m,k
= 〈W,V,M,Mov,E, ||.||〉 as:

– W = {wa,ncl : 1 ≤ a ≤ n, 0 ≤ ncl ≤ m};5

– V (the valuation function) such that:
• ci ∈ V (wa,ncl) iff i = ncl;
• turnb ∈ V (wa,ncl) iff b = a;
• winsb ∈ V (wa,ncl) iff b = previous(a, n) and ncl = 0;
• terminal ∈ V (wa,ncl) iff ncl = 0;
• multiple ∈ V (wa,ncl) iff ncl (mod k+1) = 0.

– Mov (the legality function), defined as:

• Mov(wa,ncl, b) =

{

{idle} if terminal ∈ V (wa,ncl) or b 6= a

{takei : 1 ≤ i ≤ min(ncl, k)} otherwise

– E (the transition function), defined for the n+ 1 possible move profiles −→m:

• E(wa,ncl,
−→m) =

{

wnext(a,n),ncl−i if −→m(a) = takei and ∀a′ 6= a, −→m(a′) = idle

wa,ncl otherwise

4.2 Individual strategies

First, we can find some simple strategies for individuals agents.
The most obvious is to finish the game instantly if this is possible, using the

following strategy:

5 Note that, because each player is forced to pick at least one chip, some worlds are
unreachable, like w2,m, w3,m or w3,m−1, etc.

– winInsta (win instantly if possible):

ρwinInsta =
⋃

1≤i≤k

(〈〈a〉〉{a 7→takei} © winsa)?; {a 7→ takei}

This will be feasible only if the number of chips left is less than k during a’s
turn, so this strategy is not feasible for a everywhere. However, and despite the
non-deterministic choice, winInsta is deterministic (if there is a way to win, it
will always be unique).

Another strategy of a is to try to ensure that a can play once more; if possible,
remove a number of chips such that even if all other players remove the maximum
number of chips, we can play again. To capture this, we first define the state
formula:

othersWina ≡ 〈〈S \ {a}〉〉∅

((

∨

a′∈S\{a}

winsa′

)

U turna

)

meaning that players other than a have a strategy so that one of them wins
before a can play again. Then we define the following strategy:

– playAgaina (play such that a can play next turn if possible):

ρplayAgaina
=

⋃

1≤i≤k

(〈〈a〉〉{a 7→takei} ©¬othersWina)?; {a 7→ takei}

This commitment is neither feasible (it is not feasible if there is less than
k(n− 1)+ 1 chips left) nor deterministic (we may have several choices if there is
more than k(n−1)+1 chips left) for a. The commitment playAgaina is interesting
because it takes into account the other players’ strategies through the test (in
othersWina). We add another strategy which takes a specified number of chips:

– removea,i (remove i chips):

ρremovea,i
= {a 7→ takei}

We can combine playAgaina and removea,i to obtain:

– playAgainMaxa (take as much as possible chips such that a can play next
turn):

ρplayAgainMaxa
= (ρplayAgaina

△ ρremovea,k
) ▽...▽(ρplayAgaina

△ ρremovea,1
)

This strategy (take as many as possible chips such that we can play again)
is deterministic. We finally add a simple strategy, consisting in removing the
minimal number of chips, that means, one:

– removeMina (remove 1 chip):

ρremoveMina
= {a 7→ take1}

All these commitments are not always feasible for a, so we finally add a last
strategy, consisting in simply doing nothing (which will be used later, at almost
every combination, so that the strategy is feasible during another player’s turn):

– idlea (wait for your turn):

ρidlea = {a 7→ idle}

With all these, we can define the prioritized commitment individuala as:

ρindividuala = ρwinInsta▽ρplayAgainMaxa
▽ρremoveMina

▽ρidlea

This commitment is deterministic (because every element of the disjunction
is) and feasible for a: if it is a’s turn and there is at least one chip, he can always
play take1; if not, or if the game has ended, then he can always play idle. If
one player follows this, he will try to win instantly if this is possible, if not, he
will try to remove the maximum number of chips such that he can play at his
next turn (to get closer the winning state) if this is possible, if not, to remove
only 1 chip, to keep the opponents away from the winning state; if none of these
options is available, then it is not his turn or the game is in a winning state, and
he just waits.

This strategy is a winning strategy in some cases.

Proposition 3. If k ≥ m, then we have:

CNimn,m,k
, w1,m |= 〈〈1〉〉ρ∞

individual1

✸wins1

(the strategy individual1 is a winning strategy for the first player).

If k ≥ m, then winInst1 is feasible: 〈〈a〉〉{a 7→takem} © winsa is true in the
initial state (a can remove all the m chips at once and win), so a will play takem
and win.

4.3 Two-player classic strategy for coalitions

The two-player version of this game has often been studied and there exists a
simple winning strategy for it [2]. The idea is simple: if possible, take a number
of chips such that the number of remaining chips is equal to a multiple of k+1.
If the number of remaining chips is different from a multiple of k + 1, this is
always possible: if ncl (mod k + 1) = p with p 6= 0, then we can always remove
p chips to reach a state with ncl (mod k + 1) = 0 since 1 ≤ p ≤ k. If a player
manages to do this once, then his opponent cannot reach a world with the same
statement, and so the first player can maintain this state until the end of the
game, and win when ncl = 0. In our language, this strategymoduloa for a player
a can be expressed as:

– moduloa (if possible, reach a state with a number of chips multiple of k+1):

ρmoduloa = ¬multiple?; {a 7→ takencl (mod k+1)} ∪multiple?; {a 7→ take1}

If the initial number of chips m is not a multiple of k + 1, and if a follows
it every time he can play takei, this commitment is deterministic and feasible
(whatever the second player chooses, he cannot reach a state with multiple true)
and leads to a winning state for the first player. If m is a multiple of k+1, then
this commitment is also feasible and deterministic (actually, this second part of
the commitment will never be used in the following formulas, since we will never
commit agents to this strategy if they are in a case where multiple is true).

This strategy does not transfer directly to n players. But an idea is, if n is
even, to form two coalitions of the same size, like A = {1, 3, 5, ..., n − 1} and
A′ = S \A = {2, 4, 6, ..., n}, to “simulate” a two-player game. Then the previous
commitment can be applied.

We define the strategy classicA, with A a coalition of agents, as:

ρclassicA = △
a∈A

(ρmoduloa▽ρidlea)

meaning that each agent from a coalition A tries to play the specified takei, but
if this is not possible (because it is another player’s turn or the game has ended),
then he just waits (as seen before for the individual strategy). This combination
is deterministic and feasible for our coalition A if m is not a multiple of k + 1,
because 1 can follow ρmodulo1 and the other agents from A cannot play takei,
so they follow ρidlea , then at the next turn multiple is true, so all players from
A follow ρidlea (while 2 plays take1), then 3 follows ρmodulo3 while the others
follow ρidlea , and so on. Therefore players from A can always follow ρmoduloa

at their turn and wait when multiple is true (during the turn of an agent from
A′) or when takei is not feasible (when another agent from A plays). Then all
commitments from the prioritized conjunction ρclassicA will always be applied
together. Symmetrically, ρclassicA′

is deterministic and feasible for A′.
With these commitments, we can formulate the two-player strategy of one

coalition or the other. Using the result from the two-player game of Nim, we can
came to the following conclusion.

Proposition 4. If m is not a multiple of k + 1, then we have:

CNimn,m,k
, w1,m |= 〈〈A〉〉ρ∞

classicA
✸

(

∨

a∈A

winsa

)

(the strategy classicA is a winning strategy for the coalition A). If m is a multiple
of k + 1, then we have:

CNimn,m,k
, w1,m |= 〈〈A′〉〉ρ∞

classic
A′

✸

(

∨

a′∈A′

winsa′

)

(the strategy classicA′ is a winning strategy for the coalition A′).

A winning strategy for a coalition is a strategy leading to a winning state for
at least one member of the coalition.

We could also consider strategies for “consecutive coalitions”, that is, the first
p ≤ n players will form a coalition against the last players.With a certain number
of chips left, one coalition could inevitably win or simply win by removing as
many chips as possible.

5 Conclusion

We have extended ATLEA by using programs instead of actions. This allows to
commit agents further in the future and even to repeat some actions indefinitely,
that means, to express (memoryless) strategies. We have then adapted a pro-
gram operator stemming from the Game Description Language GDL and have
demonstrated its usefulness by means of an example.

In the future, we would like to add an epistemic dimension to this framework
in order to directly express uniform strategies with the help of commitments,
that is, strategies for which agents choose the same action at indistinguishable
worlds.

Acknowledgments

We gratefully acknowledge the anonymous reviewers for their comments. The last
author acknowledges the support of the German Research Foundation (DFG)
within the Cluster of Excellence Center for Advancing Electronics Dresden (cfAED).

References

1. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. Journal of the ACM, 49(5):672–713, 2002.

2. Elwyn Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for Your
Mathematical Plays (4 vols.). A. K. Peters, 2nd edition, 2000.

3. Andreas Herzig, Emiliano Lorini, and Dirk Walther. Reasoning about actions
meets strategic logics. In Davide Grossi, Olivier Roy, and Huaxin Huang, editors,
International Workshop on Logic, Rationality and Interaction, 2013.

4. Annela R. Kelly. One-pile misre Nim for three or more players. International
Journal of Mathematics and Mathematical Sciences, 2006.

5. Martin Lange and Markus Latte. A CTL-based logic for program abstractions. In
WoLLIC, volume 6188, pages 19–33, 2010.

6. Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strategies.
In Kamal Lodaya and Meena Mahajan, editors, FSTTCS, volume 8 of LIPIcs,
pages 133–144, 2010.

7. Nicolas Troquard and Dirk Walther. Alternating-time dynamic logic. In Wiebe
van der Hoek, Gal A. Kaminka, Yves Lespérance, Michael Luck, and Sandip Sen,
editors, Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 473–480. IFAAMAS, 2010.

8. Dirk Walther, Wiebe van der Hoek, and Michael Wooldridge. Alternating-time
temporal logic with explicit strategies. In Proceedings of the 11th Conference on
Theoretical Aspects of Rationality and Knowledge, pages 269–278, 2007.

9. Michael Wooldridge and Wiebe van der Hoek. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.

10. Dongmo Zhang and Michael Thielscher. Representing and reasoning about game
strategies. Under review process of J. Philosophical Logic, 2014.

