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bDépartement de Génie Mécanique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1,

Canada

Abstract

Highly-swept blades are used in automotive cooling systems, in the fans of mod-
ern ultra-high by-pass ratio engines and in counter-rotating open rotors, in part
in order to reduce noise emission. The present work investigates the effect of
sweep on the free-field noise emission from the trailing edge of an isolated airfoil
analytically, as a first step towards a more complete approach dedicated to ro-
tating blades. Firstly, Amiet-Schwarzschild’s technique is extended to the case
of a swept airfoil in order to assess the effect of sweep on the sound directiv-
ity both by a single three-dimensional gust and by the combined effect of all
gusts at a given frequency. It is found that sweep produces a non-symmetric
directivity pattern, similar to the effect of a skewed gust. Sweep also affects the
wavenumber distribution of the wall-pressure fluctuations beneath a turbulent
boundary layer. This effect is studied by means of a generalised Corcos’ model,
which allows distributing energy in the chordwise and spanwise wavenumber
ranges independently. The role of the spanwise-wavenumber distribution of
wall-pressure power spectral density in amplifying the radiated noise is investi-
gated and shown to have a limited impact.

Keywords: Airfoil trailing-edge noise, Free-field sound propagation,
Wall-pressure fluctuations model
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b airfoil half-chord
c airfol chord measured in the flow direction
c0 speed of sound
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k ω/c0, acoustic wavenumber
kx, ky aerodynamic wavenumbers relative to a rectangular airfoil
k′x, k

′
y aerodynamic wavenumbers relative to a swept airfoil

K wavenumber vector
Lsup,Lsub aeroacoustic transfer functions for supercritical and subcritical gusts, respectively
ly spanwise correlation length of wall-pressure fluctuations
Mi Ui/c0, Mach number based on i-th mean velocity component
p′, p, P fluctuating pressure variables
RT ratio of timescales of pressure
Spp far-field acoustic power spectral density
sinc sine cardinal function
x = x1, x2, x3 observer position in a coordinate system centered on the trailing edge of an airfoil
Uc convective speed of wall-pressure fluctuations
U0 mean flow speed
Ux projection of mean flow speed on x′ axis
Uy projection of mean flow speed on y′ axis
α U0/Uc
βi

√
1−M2

i , compressibility factor based on i-th mean velocity component
βC Clauser’s parameter
γ gust oblique angle
δ boundary layer thickness
δ∗ boundary layer displacement thickness
∆ δ/δ∗

ηx, ηy distance between two points on the airfoil surface in the x and y directions, respectively
Π wake strength parameter
Π(ω, kx, ky) two-wavenumber-frequency spectral density of wall-pressure fluctuations
Π0(ω, ky) one-wavenumber-frequency spectral density of wall-pressure fluctuations
ρ0 flow density in a quiescent medium
τmax maximum shear stress across the boundary layer
ϕpp(ω) single-point frequency spectrum of wall-pressure fluctuations
ψ sweep angle
ω reduced frequency

(·) normalization by the half-chord, b
(·)∗ complex conjugate

1. Introduction

The turbulent boundary layer over an aerodynamic profile generates a spec-
trum of wall-pressure fluctuations that is scattered as acoustic waves at the
trailing edge. In general, this broadband trailing-edge noise is the minimum
achievable noise of a blade operating in a homogeneous stationary flow. It is
therefore of great interest in a variety of industrial applications, typically low-
Mach number cooling fans but also ultra-high by-pass ratio (UHBR) engines
and counter-rotating open rotors (CROR). In particular, these aero-engine ar-
chitectures both allow for a substantial reduction of fuel consumption. Ongoing
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research also focuses on the mechanisms of their noise emission to further re-
duce the environmental impact of air transportation. For car-engine cooling
fans, noise reduction achieved with sweep is a possible way of improving pas-
senger comfort.

It is worth noting that the definitions of sweep and lean may vary according
to the industrial context. In low-speed axial-flow turbomachines, sweep refers to
the azimuthal displacement of blade cross-sections, either forward or backward
with respect to the direction of rotation, by opposition to a radial (unswept)
blade stacking. In this case, shifting the cross-sections axially is referred to as
lean. They have both aerodynamic and acoustic effects. In the case of high-
speed turbomachines, the opposite convention applies: sweep denotes blade
stacking in the axial or flow direction, whereas lean is in the circumferential
or flow-normal direction. In the present paper dealing with isolated airfoils,
sweep is defined as the angle of the relative flow with respect to the normal
to the trailing-edge. In that general sense, it can be retained as a generic
definition including blade skewness. The use of swept blades for the mitigation of
several noise generation mechanisms in aeroengine architectures and low-speed
ventilation systems has been investigated experimentally and numerically over
the years. Vad [1] studied different leading- and/or trailing-edge swept airfoil
configurations and concluded that local unloading of the airfoil can be achieved
by applying sweep to either edge, irrespectively of the shape of the stacking
line, because only the component of the mean velocity perpendicular to the
edge contributes to lift generation. Envia et al. [2, 3] investigated the effect of
swept and leaned rotor blades and stator vanes in turbofans. De Laborderie and
Moreau [4] presented a model of the sound transmitted in a duct from a three
dimensional row of outlet guide vanes due to wake interaction. They performed
a parametric study of the combined effect of sweep and lean. They concluded
that lean was more effective than sweep and that a combined effect could yield
an even larger noise mitigation. Woodward et al. [5] found experimentally
that swept vanes significantly reduce the tonal interaction noise emitted by a
turbofan. The common conclusion of these studies is that sweep increases the
phase changes from hub to tip of the unsteady aerodynamics producing noise
thus reducing the source strength (see also [6]). Grasso et al. [7] introduced
sweep as a design variable in the AI-driven design of a counter-rotating fan
in order to make the most of this effect. Casalino et al. [8] investigated the
effect of serrations on swept OGVs, finding that the interaction noise could only
be marginally further reduced if the characteristic dimensions of the serrations
are sufficiently large compared to the integral scales of the impinging turbulent
fluctuations. The role of sweep in the reduction of noise from low-speed axial
fans may be more complicated to assess than in the case of turbofans. For
instance, in the optimization of a swept benchmark fan carried out by Bamberger
& Carolus [9] it was not clear whether the noise reduction was due to sweep or
to the reduction of secondary flows. The influence of the operating conditions
of the fan on the possibility of reducing noise by means of sweep is highlighted
in [10], [11] and [12]. Herold et al. [10] also pointed out that vortex shedding
from the trailing-edge of a blade is significantly dependent on the component
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of the mean flow speed perpendicular to the edge. Therefore, sweep could help
reducing this noise generation mechanism as well. The main motivation of the
present work is to assess an analytical model as a possible way of quantifying
the benefit of sweep, usable at the early design stage.

Amiet-Schwarzschild’s approach [13, 14] is selected. It calculates trailing-
edge noise from a consistent model of boundary-layer turbulence, with station-
ary statistical properties, convecting past a trailing edge. The theory was orig-
inally developed for the case of an airfoil with unswept trailing edge. Likewise,
Amiet’s model of leading-edge turbulence interaction noise [15] was originally
formulated considering an unswept leading edge. It has been later extended
to the investigation of the effect of sweep. This feature was first introduced
in the analytical formulation of Amiet’s leading-edge theory by Rozenberg [16],
followed by Carazo et al. [17, 18] who studied the effect of sweep in CROR wake-
interaction noise. The same approach was applied to the study of blade-vortex
impingement noise by Roger et al. [19] and Quaglia et al. [20]. The expression
of the unsteady lift generated on the swept airfoil by any Fourier component
of the hydrodynamic disturbance was found identical to results obtained by
Adamczyk [21] using the Wiener-Hopf technique.

Concerning the trailing-edge noise modeling, the main scattering formulation
obtained by Amiet [22] has been corrected by taking into account a leading-edge
back-scattering contribution with a second application of Schwarzschild’s tech-
nique [23, 24], in order to improve the low-frequency prediction. However, this
theory again refers only to the case of an edge perpendicular to the mean flow
velocity. The aim of the present paper is to introduce the sweep angle in Amiet’s
formulation of trailing-edge noise. It will be shown that this modification of the
original formulation has a twofold effect. On the one hand, sweep modifies the
directivity of the noise emitted at a given frequency with respect to the case
of a rectangular airfoil, all other conditions being held constant, as was already
noticed in the corresponding leading-edge study [17]. On the other hand, the
distribution of energy of the incident wall-pressure field is also modified due to
the rotation of the reference frame aligned with the edge. It is interesting to
investigate this effect as well, because the power spectral density (PSD) of the
acoustic pressure is directly proportional to that of the incident wall-pressure
fluctuations. Therefore the quantification of wall-pressure statistics is critical
for obtaining an accurate sound prediction.

Various models of the spectrum of wall-pressure fluctuations are available in
the literature, which are either semi-empirical or based on the Poisson equation
governing the unsteady pressure in an incompressible turbulent boundary layer
(see [25] and [26] for exhaustive reviews of either category). Sound predictions
obtained with Amiet’s theory are very sensitive to the selected wall-pressure
spectrum formulation, as shown in [27, 28]. For this reason, the calculations
presented in this work are carried out using a model of the statistics of the
wall-pressure fluctuations in the wavenumber domain that can be adjusted, in
order to evaluate the effect of different wavenumber-domain distributions on the
emitted noise.

Finally, the sound propagation theory developed in Section 2 is linked in

4



x1

x2

U0

x′ 

y′ , η x, ξy

0−2b

ψ −L /2

L /2

Figure 1: Reference frames and integration surfaces considered for the formulation of the noise
radiated by a swept blade segment (adapted from [17]).

Section 5 to the strip-theory approach used in rotating machinery noise predic-
tion.

2. Application of Amiet-Schwarzschild’s method to the noise emitted
by a swept trailing-edge

2.1. Derivation of the canonical wave equation for the disturbance pressure

An analytical expression is sought for the disturbance pressure generated as
an incident wall-pressure field is convected past the trailing edge of an airfoil.
The disturbance pressure acts as equivalent acoustic sources and the correspond-
ing far-field sound pressure is obtained from Curle’s acoustic analogy, yielding a
closed-form expression of the aeroacoustic transfer function. The trailing edge is
first assimilated to the edge of a half-plane for the application of Schwarzschild’s
theorem. The correction for back-scattering from the leading edge is obtained
with a second iteration of Schwarzschild’s technique, which takes the solution
of the first iteration as input. It has been shown in [24] that the effect of the
back-scattering correction is significant mainly at low frequencies.

The analytical developments presented below follow those of Roger & Moreau
[23] for the case of an unswept airfoil as in Fig. 1 (dashed lines). If the sweep
angle, ψ, defined in Fig. 1 vanishes, the following results coincide with those of
[23].

The convected wave equation for the disturbance pressure is written as

∇2p′ − 1

c20

D2

Dt2
p′ = 0. (1)

Due to the introduction of sweep, the mean flow speed has a finite component
along the span of the airfoil and therefore the total derivative operator has the
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form
D

Dt
=

∂

∂t
+ Ux

∂

∂x′
+ Uy

∂

∂y′
. (2)

Sinusoidal pressure gusts are defined by wavenumbers (kx, ky) in the reference
frame aligned with the mean flow, (x, y), which are transposed in the frame
attached to the swept airfoil trailing-edge, (x′, y′), with the following transfor-
mation: {

k′x = kx cosψ − ky sinψ

k′y = kx sinψ + ky cosψ.
(3)

Factorising the disturbance pressure at the reduced frequency ω as

p′(x′, y′, z, t) = P (x′, y′, z)eiωt

P (x′, y′, z) = p(x′, z)ei(k′xM
2
x/β

2
x)x′

e−ik′yy
′

and using Prandtl-Glauert/Reissner/Lorentz transformation allows re-writing
Eq. (1) as a canonical wave equation

∂2p

∂X ′2
+
∂2p

∂Z2
+ κ2p = 0 (4)

with the normalized coordinates X ′ = x′/b, Y ′ = y′βx/b and Z = zβx/b and
the parameter

κ2 = µ2 −
k
′2
y

β2
x

with µ2 =
k
′2
xM

2
x

β4
x

. (5)

If κ2 > 0, the differential equation is hyperbolic and the gust is said super-
critical, whereas if κ2 < 0, the differential equation is elliptic and the gust is
said subcritical. Subcritical gusts induce evanescent pressure waves in the case
of an infinite-span airfoil. However, they are considered because the acoustic
field is obtained by integrating the effect of all gusts over the actual - finite -
airfoil surface, in which case they were shown to contribute significantly at low
frequencies [23].

2.2. Solution of the canonical wave equation

2.2.1. Main trailing-edge contribution

An incident-pressure sinusoidal gust of unitary amplitude and frequency ω,
convected towards the trailing edge with speed Uc = U0/α, with α > 1, can be
represented as

p′0(x′, y′, z, t) = e−iαk′xx
′
eiωt

P0(x′, y′, z) = e−ik′xx
′(α+M2

x/β
2
x)eik′yy

′/βx .

The convection speed Uc is assumed parallel to the mean flow speed, U0. It is
worth noting that arbitrary inclination of the convection speed of the boundary-
layer turbulence with respect to the trailing edge has been addressed by Howe
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in a review paper on trailing-edge noise theories [29]. Yet the author considered
an external flow normal to the edge. This mixed assumption is a priori relevant
in the case of blades for which a radial fluid motion occurs. The formulation
presented in this work, assuming that both the convection speed and the free-
stream velocity are parallel, is compatible with the radial-equilibrium condition.
The other difference with Howe’s analysis is that a finite chord length is explicitly
taken into account.

It is also assumed that the wall is perfectly rigid. Therefore the normal-
to-wall gradient of the corresponding disturbance pressure, p′1, vanishes on the
half-plane. Furthermore the disturbance pressure is equal and opposite to the
incident pressure field at the trailing edge and in the wake according to the
Kutta condition. These boundary conditions are expressed as

∂p1

∂Z
(X ′, 0) = 0 for X ′ < 0

p1(X ′, 0) = −e−ik
′
xX

′(α+M2
x/β

2
x)eik

′
yY

′/βx for X ′ ≥ 0.
(6)

Schwarzschild’s theorem [14] provides the following solution of the canonical
equation (4) for the disturbance pressure with the boundary conditions of Eq. (6)
for X ′ < 0:

p1(X ′, 0) = − 1

π
eik

′
yY

′/βx

∫ ∞
0

√
−X

′

ζ

e−iκ(ζ−X′)

ζ −X ′
e−ik

′
xζ(α+M2

x/β
2
x)dζ. (7)

Defining the complex-valued function

E∗(x) =

∫ x

0

e−it

√
2πt

dt = C2(x)− iS2(x)

where C2 and S2 are the Fresnel integrals (see [30]), Eq. (7) is re-formulated in
the supercritical case (κ > 0) as

P sup
1 (X ′, 0) = e−iαk

′
xX

′
[
(1 + i)E∗

(
−(αk

′
x + κ+ µMx)X ′

)
− 1
]
. (8)

If ψ = 0 and k′y = 0, this corresponds to the original result derived by Amiet in
[22].

Equation (7) is applied to the subcritical case (κ2 < 0) as well by defining
the parameter

κ′2 = −κ2 =
k
′2
y

β2
x

− µ2.

Although κ′ is a double-valued constant (κ′ = ±iκ), it is necessary to select the
proper branch cut κ′ = −iκ to ensure the asymptotic decay to zero at an infinite
distance from the source of the scattered pressure field. Defining the complex
error function Φ0(

√
ix) =

√
2eiπ/4E∗(x), the subcritical disturbance pressure

solution is expressed as

P sub
1 (X ′, 0) = e−iαk

′
xX

′
[
Φ0

([
−i(αk′x − iκ′ + µMx)X ′

]1/2)
− 1

]
. (9)
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2.2.2. Leading-edge back-scattering correction

The main trailing-edge disturbance pressure derived in the previous section
can be corrected by adding a term that accounts for the back-scattering from the
leading edge. The problem is expressed in terms of the disturbance potential,
Φ, which is related to the disturbance pressure by the equation

P eiωt = −ρ0
DΦ

Dt
(10)

with Φ = φ eiωt. Applying Eq. (2), the previous equation becomes

− b

ρ0Ux
P = ik

′
xφ+

∂φ

∂X ′
. (11)

Therefore, the trailing-edge disturbance potential is

φ1(X ′, 0) = − b

ρ0Ux

∫ X′

−∞
P1(ζ, 0)e−ik

′
x(ζ−X′)dζ. (12)

The variable transformation

ψ1 = φ1 eiµMX′
, ν = −(X ′ + 2)

allows formulating a Schwarzschild’s problem analogous to that of Eq. (4) with
the following boundary conditions:{

ψ2(ν, 0) = −ψ1(ν, 0) for ν > 0,
∂ψ2

∂Z (ν, 0) = 0 for ν ≤ 0.
(13)

The first condition cancels the trailing-edge disturbance potential upstream of
the leading edge (X ′ < −2), whereas the second condition represents a per-
fectly rigid wall extending infinitely downstream of the leading edge (X ′ ≥ −2).
As a consequence, the leading-edge correction potential, ψ2, does not fulfill
the Kutta condition and should be corrected with a third trailing-edge back-
scattering term. Further iterations of the Schwarzschild technique, however, are
not necessary as shown in [15]. In particular, it has been demonstrated in [24]
that the leading-edge back-scattering contribution to the overall radiated noise
tends to vanish at high frequencies.

The solution to the leading-edge Schwarzschild’s problem is

ψ2(ν, 0) = − 1

π

∫ ∞
0

√
−ν
ζ

e−iκ(ζ−ν)

ζ − ν
ψ1(ν, 0)dζ.

This integral, unfortunately, has no closed-form analytical solution. However,
it is shown in [23], that a reasonable approximation of the back-scattering dis-
turbance pressure is given- for a supercritical incident gust- by

P sup
2 (X ′, 0) ' (1 + i)e−4iκ

2
√
π(α− 1)k

′
x

1−Θ2
1√

A1

ei(Mxµ−κ)X′

×
[
i
{
k
′
x +Mxµ− κ

}
{F (X ′)}c +

{
∂F (X ′)

∂X ′

}c]
(14)
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with the parameters

A1 = αk
′
x +Mxµ+ κ, A = k

′
x +Mxµ+ κ, Θ1 =

√
A1

A
(15)

and the function

F (X ′) = e2iκ(X′+2) {1− (1 + i)E∗ [2κ(X ′ + 2)]} . (16)

The superscript {−}c represents the multiplication of the imaginary part of the

argument by the correction factor ε =
(

1 + 1
4µ

)−1/2

. This correction is needed

to match the approximate analytical solution of Schwarzschild’s integral with its
numerical computation. Finally, the leading-edge back-scattering disturbance
pressure generated by a subcritical incident gust is

P sub
2 (X ′, 0) ' (1 + i)(1−Θ′21 )

2
√
π(α− 1)k

′
x

√
A′1

ei(Mxµ−iκ′)X′

×
[
i
{
k
′
x +Mxµ− iκ′

}
F ′(X ′) +

∂F ′(X ′)

∂X ′

]
(17)

with the parameters

A′1 = αk
′
x +Mxµ− iκ′, A′ = k

′
x +Mxµ− iκ′, Θ′1 =

√
A′1
A′

(18)

and the function

F ′(X ′) = 1− erf

(√
2κ′(X ′ + 2)

)
. (19)

In this case, the correction of the imaginary part is not needed.

2.3. Expression of the far-field acoustic pressure

The acoustic far-field pressure corresponding to a disturbance pressure har-
monic of unit amplitude and wavenumber K = (k′x, k

′
y) is calculated by means

of Curle’s analogy [31] as

pK(x, ω) = − iω x3

4πc0S2
0

∫
Sy

∆P (X ′, 0)eiωRt/c0e−ik
′
yY

′
dSy (20)

where ∆P = 2P = 2(P1 + P2) is the induced source distribution accounting for
the opposite disturbance pressures induced on both sides of the airfoil, acting
as an equivalent dipole distribution. The convection of acoustic waves by an
external mean flow with velocity components Ux and Uy along the x′ and y′

directions, respectively, is accounted for using the following modified coordinates
(see [16]):

Rt =
1

β2
0

(Rs −Mx(x1 − x′)−My(x2 − y′)) ,
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Rs ≈ S0

(
1−

(1−M2
y )x1x

′ + (1−M2
x)x2y

′

S2
0

)
and

S0 =
√
βy2x2

1 + βx2x2
2 + β2

0x
2
3.

Equation (20) contains a double integral of the equivalent dipole distribution
over the airfoil surface. Considering the parallelogram shape of the swept airfoil,
this integral is solved in the non-Cartesian reference frame (ξ, η) represented in
Fig. 1, such that {

x′ = ξ cosψ

y′ = η + ξ sinψ.
(21)

Introducing the coordinate transformation of Eq. (21) in Eq. (20) yields the
following expression of the integral:

pK(x, ω) = − iω x3 cosψ

2πc0S2
0

b2
∫ 0

− 2
cosψ

∫ L
2b

− L
2b

P
(
ξ, 0
)

eiωRt/c0e−ik
′
y(η+ξ sinψ)dξdη.

(22)
The complex amplitude of the source distribution f(X ′) can be defined such as

P = f(X ′)e−i(k′xX
′+k

′
yY

′); furthermore, defining the parameter

C = αk
′
x + k

′
y tanψ − k

cosψ β2
0

(
β2
yx1 cosψ

S0
+
β2
xx2 sinψ

S0
−M0

)
, (23)

the double integral appearing in Eq. (22) can be separated in its two variables:

pK(x, ω) =− iω x3 cosψ

2πc0S2
0

b2eik/β2
0(S0−Mxx1−Myx2)

∫ 0

− 2
cosψ

f
(
ξ
)

e−iCξ cosψdξ

×
∫ L

2b

− L
2b

e−iη[k′y−k/β
2
0(β2

xx2/S0−My)]dη. (24)

Consequently, the integral involving η is independent of the dipole distribution
and can be solved as

b

∫ L
2b

− L
2b

e−iη[k′y−k/β
2
0(β2

xx2/S0−My)]dη = L sinc

(
L

2b

[
k
′
y −

k

β2
0

(
β2
xx2

S0
−My

)])
.

(25)
The integral involving ξ represents the aeroacoustic transfer function, L, which
is the sum of the main trailing-edge contribution and of the leading-edge back-
scattering correction: L = L1 + L2. Thus, the far-field acoustic pressure at a
point x and a frequency ω, generated by a disturbance pressure gust of unit
amplitude and wavenumber K, is

pK(x, ω) =− iω x3 Lb cosψ

2πc0S2
0

eik/β2
0(S0−Mxx1−Myx2)

× sinc

(
L

2b

[
k
′
y −

k

β2
0

(
β2
xx2

S0
−My

)])
L. (26)
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2.3.1. Main trailing-edge aeroacoustic transfer function

It is possible to derive an analytical expression of the aeroacoustic transfer
function, L. In order to derive the main trailing-edge term in the supercritical
case, we define the complex amplitude of the source distribution

f sup
1

(
ξ
)

= (1 + i)E∗
[
−Bξ cosψ

]
− 1

with the parameter

B = αk
′
x + µMx + κ.

Consequently,

Lsup
1 (k′x, k

′
y) =

∫ 0

− 2
cosψ

f sup
1

(
ξ
)

e−iCξ cosψdξ

= − e2iC

iC cosψ

{
(1 + i)e−2iC

√
2B ES∗ (2(B − C))− (1 + i)E∗ (2B) + 1− e−2iC

}
(27)

where ES∗ is the modified Fresnel integral introduced in [32] as

ES∗(z) =
E∗(z)√

z
=

1− i

2

Φ0
(√

iz
)

√
z

.

In the subcritical case, defining the complex amplitude of the source distribution
as

f sub
1

(
ξ
)

= Φ0
([
−iA′1ξ cosψ

]1/2)− 1

yields the following aeroacoustic transfer function

Lsub
1 (k′x, k

′
y) =

∫ 0

− 2
cosψ

f sub
1

(
ξ
)

e−iCξ cosψdξ

= − e2iC

iC cosψ

{
(1 + i)

√
2A′1ES∗ (2(A′1 − C)) e−2iC − Φ0

(
[2iA′1]

1/2
)

+ 1− e−2iC
}
.

(28)

It can be noticed that both Eqs. (27) and (28) contain the term −e−2iC within
the curly brackets. According to Amiet [33], the equivalent of this term for the
unswept edge cancels out the contribution of the incident pressure P0 to the
sound radiation from the trailing edge. Therefore, it is omitted in the following
noise calculations in order to take into account the effect of both the incident
and disturbance pressures.

2.3.2. Leading-edge back-scattering aeroacoustic transfer function

The complex amplitude of the leading-edge back-scattering disturbance pres-
sure is defined, in the supercritical case, as

f sup
2 (ξ) =H ei(αk

′
x+Mxµ−κ)ξ cosψ

×

[
i
{
k
′
x +Mxµ− κ

}{
F (ξ cosψ)

}c
+

1

cosψ

{
∂F (ξ cosψ)

∂ξ

}c]
(29)
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with the parameter

H =
(1 + i)e−4iκ

2
√
π(α− 1)k

′
x

1−Θ2
1√

A1

.

The corresponding aeroacoustic transfer function can be expressed as

Lsup
2 =

∫ 0

−2/ cosψ

f sup
2 (ξ)e−iC ξ cosψdξ

=
H e2iD

cosψ

∫ 2

0

[
i
{
k
′
x +Mxµ− κ

}
{F (u)}c +

{
∂F (u)

∂u

}c]
e−iDudu (30)

by means of the variable transformation u = ξ cosψ + 2 and by defining the
parameter

D = C − (αk
′
x +Mxµ− κ).

It can be noticed that, for ψ = 0, the expression of D corresponds to that given
in [23]:

D(ψ = 0) = κ− µx1

S0
.

The analytical solution of the integral of Eq. (30) is obtained by following the
same method as in [23] for the unswept case, yielding

Lsup
2 =

H

cosψ

({
e4iκ[1− (1 + i)E∗(4κ)]

}c − e2iD + i[D + k
′
x +Mxµ− κ]G

)
(31)

with the parameter

G = (1 + ε)ei(2κ+D) sin(D − 2κ)

D − 2κ
+ (1− ε)ei(−2κ+D) sin(D + 2κ)

D + 2κ

+
(1 + ε)(1− i)

2(D − 2κ)
ei4κE∗ [4κ]− (1− ε)(1 + i)

2(D + 2κ)
e−i4κE [4κ]

+
ei2D

√
2

√
2κES∗(2D)

[
(1− ε)(1 + i)

D + 2κ
− (1 + ε)(1− i)

D − 2κ

]
.

Similarly, the complex amplitude of the leading-edge disturbance pressure
in the subcritical case is defined as

f sub
2 (ξ) =H ′ ei(αk

′
x+Mxµ−iκ′)ξ cosψ

×
[
i
{
k
′
x +Mxµ− iκ′

}(
F ′(ξ cosψ)

)
+

1

cosψ

(
∂F ′(ξ cosψ)

∂ξ

)]
(32)

with the parameter

H ′ =
(1 + i)(1−Θ′21 )

2
√
π(α− 1)k

′
x

√
A′1

.
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The subcritical aeroacoustic transfer function can be formulated as

Lsub
2 =

∫ 0

−2/ cosψ

f sub
2 (ξ)e−iC ξ cosψdξ

=
H ′e−2iD′

cosψ

∫ 2

0

[
i(k
′
x +Mxµ− iκ′)

(
1− erf

(√
2κ′u

))
+
∂

∂u

(
1− erf

(√
2κ′u

))]
eiD′udu

=
H ′e−2iD′

cosψ

{(
1− erf

(√
4κ′
))

e2iD′
− 1

+i(A′ −D′)

∫ 2

0

(
1− erf

(√
2κ′u

))
eiD′udu

}
. (33)

with the parameter

D′ = αk
′
x +Mxµ− iκ′ − C.

Again, for ψ = 0, the parameter D′ corresponds to the original unswept formu-
lation [23]:

D′(ψ = 0) = µ
x1

S0
− iκ′.

The last remaining integral of Eq. (33) can be solved as follows:∫ 2

0

(
1− erf

(√
2κ′u

))
eiD′udu =

(
1− erf

(√
4κ′
)) e2iD′

iD′

− 1

iD′
+

2
√

2κ′

iD′
ES∗(−2D′∗). (34)

Therefore, the subcritical leading-edge aeroacoustic transfer function is

Lsub
2 =

H ′e−2iD′

D′ cosψ

{
A′
[(

1− erf
(√

4κ′
))

e2iD′
− 1
]

+2
√

2κ′(A′ −D′)ES∗(−2D′∗)
}
. (35)

Finally, for ψ = 0,

A′ −D′ = K + µ

(
M0 −

x1

S0

)
,

consistent with the unswept formulation.

2.4. Far-field sound power spectral density

As pointed out by Amiet in [22], the wall pressure measured at a given
point and frequency, ω, is made up of many spectral components of the form
p = p0ei[ω(t−x/Uc)−kyy]. The convective wavenumber, Kc, and the convective
speed, Uc, are variable, but their product Kc Uc = ω is constant. Consequently,
the sound power spectral density (PSD) at a given frequency results from the

13



summation of the contributions of all these spectral components. A simplifi-
cation is introduced at this point, considering that a frequency ω is associated
with a single value of Uc. For an unswept airfoil, this also determines a unique
value of Kc. This is consistent with Taylor’s hypothesis [34] of frozen convection
of the aerodynamic field generating the wall-pressure fluctuations. However, the
convective speed, Uc, is not aligned with the frame of reference attached to the
trailing edge of the swept airfoil represented in Fig. 1. Therefore the dispersion
relation becomes

ω = Uc ·K = K ′c Uc cosψ + k′y Uc sinψ. (36)

Consequently, for given ω and Uc, the sound PSD is given by the contribution of
all the gusts the wavenumbers of which (K ′c, k

′
y) satisfy the following equation:

K ′c =
ω

Uc cosψ
− k′y tanψ. (37)

Equation (37) states that, in the swept-airfoil case, there is no longer a unique
chordwise wavenumber K ′c associated with the frequency ω, but rather a set of
values depending on k′y.

Equation (26) expresses the far-field acoustic pressure at a given frequency
and observer position due to a single disturbance pressure gust. Following the
argumentation of Amiet [15, p. 409-410] and Roger & Moreau [23, p. 499-500],
it can be shown that the acoustic PSD due to all incident gusts contributing to
the frequency ω is

Spp(x, ω) =

(
ω x3 cosψ Lb

2π c0 S2
0

)2

× 1

b

∫ +∞

−∞
Π0

(
ω, k

′
y

)
sinc2

{
L

2b

[
k
′
y −

k

β2
0

(
β2
xx2

S0
−My

)]} ∣∣∣L(K ′c, k′y)∣∣∣2 dk
′
y

(38)

where Π0(ω, k′y) denotes the wavenumber spectral density of incident wall-
pressure fluctuations. The expression of the PSD is equal for both angular
frequencies ±ω; it must be doubled to be compared with measured PSD.

A sine cardinal squared function appears within the integral of Eq. (38). The
asymptotic limit for aspect ratio, L/2b, tending to infinity of the sine cardinal
squared is a Dirac delta function:

lim
L/2b→+∞

sinc2

(
L

2b

[
k
′
y −

k

β2
0

(
β2
xx2

S0
−My

)])
=

2πb

L
δ

(
k
′
y −

k

β2
0

(
β2
xx2

S0
−My

))
. (39)

Equation (38) can be simplified by substituting Eq. (39) in the integral, resulting
in the asymptotic formulation

S∞pp(x, ω) =

(
ω x3 cosψ b

c0 S2
0

)2
L

2π
Π0

(
ω,K

′
y

) ∣∣∣L(K ′c,K ′y)∣∣∣2 (40)
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with

K
′
y =

k

β2
0

(
β2
xx2

S0
−My

)
. (41)

The effect of this large-span simplification is to select a privileged oblique gust
for the computation of the sound PSD at a given x2 coordinate. In this case, the
observer hears only that gust which produces an acoustic wavefront normal to
the line joining airfoil and observer [15]. Parametric tests presented by Moreau &
Roger [24] show that an aspect ratio L/2b = 3 is enough to ensure good results in
the mid-span plane using the asymptotic formula given by Eq. (41). In summary,
when the asymptotic formulation is used, the unique skewed gust contributing
to the sound radiated at a given frequency, ω, and observer position, x, is
determined by Eqs. (37) and (41). It can also be noticed that the squared
cosine of the sweep angle appears at the numerator of the general expression of
the sound PSD: the same conclusion was reached by Ffowcs Williams and Hall
[35] by different means.

Regardless of the selected model of wall-pressure statistics, which will be dis-
cussed in the next section, the aeroacoustic transfer functions presented in this
section allow for an evaluation of how the sweep angle modifies the directivity
patterns of the noise emitted by the interaction of the trailing edge with a given
three-dimensional incident pressure gust. A parametric study of the directivity
is presented in Fig. 2. The first test case concerns an incident gust with ky = 0,
i.e. a parallel gust in the frame of reference of an unswept airfoil. It can be seen
in Figs. 2(a), 2(b), that the directivity of the sound emitted by an unswept airfoil
due to a parallel incident pressure gust is symmetric with respect to the plane
normal to the wall with x2 = 0. However, the same gust convected past the trail-
ing edge of an airfoil with ψ = 15o produces a non-symmetric sound directivity
pattern. This effect is only slightly visible in the compact regime (Fig. 2(a)),
but prominent in the non-compact regime (Fig. 2(b)). It is interesting to com-
pare qualitatively the effect of sweep with that of the gust skewness. To do so,
we define the oblique angle, or skewness, of a gust as γ = arctan(ky/kx). The
directivity of sound emitted by an unswept airfoil due to two impinging gusts,
one parallel (γ = 0) and one skewed (γ = 15o), is represented in Figs. 2(c), 2(d).
Whereas in the compact regime (Fig. 2(c)) the skewed gust produces a direc-
tivity nearly aligned with the axis pointing normal to the plane of the figure,
in the non-compact regime (Fig. 2(d)) the directivity is very similar to that of
Fig. 2(b). This is a direct consequence of Eq. (3). Finally, the combined effect
of sweep and gust skewness is assessed in Figs. 2(e), 2(f), where the airfoil has
ψ = 15o. As already pointed out, the difference between directivity patterns
is more apparent in the non-compact regime (Fig. 2(f)). In this case, the gust
with γ = 0 behaves as a skewed gust due to sweep, as seen in the first test case.
Interestingly, the gust having γ = −15o generates an almost symmetric sound
directivity, due to the compensation between opposite sweep and skewness ef-
fects. However, the directivity pattern is not perfectly symmetric due to the
inherent asymmetry of the underlying surface.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Study of the effect of sweep and of gust skewness on acoustic power directivity in the
compact and non-compact regime. Left column: kc = 0.25. Right column: kc = 5. Observer
on a half-sphere seen from above (upper x3 axis), arbitrary units. M0 = 0.47, aspect ratio
L/c = 1.5. (a) γ = 0. (b) γ = 0. (c) ψ = 0. (d) ψ = 0. (e) ψ = 15o. (f) ψ = 15o.
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3. Wavenumber-frequency spectral density of wall-pressure fluctua-
tions

3.1. Original Corcos’ model

The closure of Eqs. (38) and (40) is obtained by defining the PSD of the
incident wall-pressure fluctuations at frequency ω and spanwise wavenumber
ky. This derives from the complete frequency-wavenumber wall-pressure PSD,
defined as

Π (kx, ky, ω) =
1

4π2

∫∫ +∞

−∞
Γpp(ηx, ηy, ω) ei(kxηx+kyηy) dηxdηy (42)

where Γ(ηx, ηy, ω) is the space-frequency cross-spectral density. The quantity
of interest is then the integral of Eq. (42) with respect to kx:

Π0 (ω, ky) =

∫ +∞

−∞
Π (kx, ky, ω) dkx. (43)

It can also be noticed that the single-point wall-pressure frequency spectrum is
the integral of Eq. (42) over both wavenumbers:

ϕpp(ω) =

∫∫ +∞

−∞
Π (kx, ky, ω) dkxdky. (44)

The complete frequency-wavenumber PSD, Π (kx, ky, ω), could be provided by
Direct Numerical Simulation, for instance, but for preliminary acoustic evalu-
ation, empirical or semi-analytic models are often used. A model of the wall-
pressure statistics widely applied in literature is Corcos’ [36]. Since this model
can illustrate the effect of sweep on the wall-pressure statistics and then on the
predicted acoustic pressure, its main features are hereby described, assuming a
frame of reference (x, y) where the convection speed of wall-pressure fluctuations
is aligned with the axis x, representative of an unswept airfoil. The effect of
sweep will be introduced at a later stage.

The first hypothesis of Corcos’ model is that the space-frequency cross-
spectral density can be expressed as the product of simpler functions of sep-
arated spatial variables:

Γpp(ηx, ηy, ω) = ϕpp(ω)A(ηx, ω)B(ηy, ω) e−iKc ηx (45)

where A(ηx, ω) and B(ηy, ω) are the real-valued longitudinal and lateral coher-
ence functions, respectively. The phase shift is given by Kc ηx, assuming that
the x axis is aligned with the convective speed of wall-pressure fluctuations. The
substitution of Eq. (45) in Eq. (42) yields

Π (kx, ky, ω) = ϕpp(ω)
1

2π

∫ +∞

−∞
A(ηx, ω)ei(kx−Kc)ηx dηx

× 1

2π

∫ +∞

−∞
B(ηy, ω)eikyηy dηy. (46)
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The longitudinal and lateral correlations can be defined as

A(ηx, ω) =
|Γ(ηx, 0, ω)|
ϕpp(ω)

, B(ηy, ω) =
|Γ(0, ηy, ω)|
ϕpp(ω)

, (47)

without making any further assumption on the shape of these functions. The
substitution of Eqs. (47) and (46) in Eq. (43) shows that the longitudinal co-
herence function has no effect on the calculation of Π0(ω, ky), at least within
the hypothesis of zero sweep. In fact,

1

2π

∫∫ +∞

−∞
A(ηx, ω)ei(kx−Kc)ηx dηxdkx

=
1

2π

∫∫ +∞

−∞

|Γ(ηx, 0, ω)|
ϕpp(ω)

ei(kx−Kc)ηx dηxdkx

=

∫ +∞

−∞

Π(k∗x, ω)

ϕpp(ω)
dk∗x =

ϕpp(ω)

ϕpp(ω)
= 1 with k∗x = kx −Kc.

Therefore, only the lateral correlation function determines the value of Π0(ω, ky).
This is consistent with the physics of span-wise distributed sources concentrated
at the trailing edge of the airfoil, as pointed out in [23, 37]. Furthermore, defin-
ing the lateral correlation length of wall-pressure fluctuations as

ly(ω, ky) =

∫ ∞
0

B(ηy, ω)eikyηy dηy, (48)

we can express the wall-pressure PSD as

Π0 (ω, ky) =
1

π
ϕpp(ω) ly(ω, ky), (49)

consistently with the formulation used by [23].
The second hypothesis of Corcos’ model concerns the expressions of the

coherence functions, which are assumed to be exponentials:

A(ηx, ω) = e−|ηx|αω B(ηy, ω) = e−|ηy| βω (50)

with αω = αxω/Uc and βω = αyω/Uc. In the following calculations, the con-
stants αx = 0.10 and αy = 0.77 will be used, which are within the typical range
for smooth rigid walls (see [38]). The substitution of Eqs. (50) in Eq. (46) yields
Corcos’ frequency-wavenumber PSD of wall-pressure fluctuations:

Π(kx, ky, ω) = ϕpp(ω)
1

π αω

1 +
(
kx−Kc
αω

)2

1
π βω

1 +
(
ky
βω

)2 . (51)

Finally, substituting Eq. (51) in Eq. (43) and comparing the result with Eq. (49),
it can easily be shown that

ly(ω, ky) =
βω

β2
ω + k2

y

. (52)
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3.2. Generalised Corcos’ model

Corcos’ model owes its popularity to the mathematical advantages outlined
in the previous paragraph, namely the decoupling of the space/wavenumber
variables and the capability to go easily from the space/time to the wavenum-
ber/frequency domain. However, this model is also known to overestimate the
contribution of the subconvective kx range to a given reduced frequency, ω, by
as much as 20 dB. A generalisation of Corcos’ model that corrects the low-
wavenumber behavior while preserving the mathematical advantages has been
proposed by Caiazzo et al. [38]. This generalised model relies on the fact that
the wavenumber energy distribution of Corcos’ model, given in Eq. (51), is
equivalent to a Lorentzian function in each wavenumber. A Lorentzian func-
tion, in turns, corresponds to the squared magnitude of a Butterworth filter of
order one. Therefore, the generalised Corcos’ model represents the wavenumber
energy distribution with Butterworth filters of arbitrary integer orders m and
n in the lateral and longitudinal directions, respectively:

Π(kx, ky, ω) = ϕpp(ω)

n sin(π/2n)
π αω

1 +
(
kx−Kc
αω

)2n

m sin(π/2m)
π βω

1 +
(
ky
βω

)2m . (53)

It can be noticed that, consistently with the first hypothesis of Corcos’ model,
the order of the longitudinal filter, n, does not influence the value of Π0(ω, ky).
In fact, ∫ ∞

−∞

n sin(π/2n)
π αω

1 +
(
kx−Kc
αω

)2n dkx = 1 ∀n ∈ N. (54)

The parameters m and n can be varied independently to obtain the desired
wavenumber distribution of wall-pressure fluctuations. It was found in [38] that
increasing the order of the chordwise wavenumber filter, n, brings the spectral
density level closer to experimental evidence in the subconvective range. Yet, the
generalised model does not overcome the main limitation of the original one. As
Singer [39] pointed out, the separation of space/wavenumber variables prevents
from representing correctly the wall-pressure correlation in directions that are
neither parallel nor normal to the mean flow. This generalised model, however,
is retained in this work because it allows assessing the effect of different Π(kx, ky)
distributions on the emitted noise by simply varying m and n. Also, the rotation
of the wavenumber plane expressed in Eq. (3) can be readily introduced in
Eq. (53) obtaining

Π(k′x, k
′
y, ω) = ϕpp(ω)

n sin(π/2n)
π αω

1 +
(
k′x cosψ+k′y sinψ−Kc

αω

)2n

m sin(π/2m)
π βω

1 +
(
−k′x sinψ+k′y cosψ

βω

)2m .

(55)
It can be noticed that the introduction of sweep generates a coupling between
the longitudinal and lateral wall-pressure statistics. Since the rotated spanwise
wavenumber k′y now appears inside the longitudinal filter as well, the order n
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of this filter influences the value of Π0(ω, k′y). The integration of Eq. (55) with
respect to k′x, necessary to obtain ly(ω, k′y) according to Eqs. (43) and (49), is
not as straightforward as in the unswept case. Analytical integration is still
possible but rather cumbersome, especially with increasing values of m and
n. For this reason, analytical formulations of ly for various combinations of m
and n have been obtained by means of the open-source symbolic computation
language SageMath-8.2.

3.3. Single-point wall-pressure PSD

Finally, Rozenberg’s model [40] of the single-point wall-pressure PSD, ϕpp(ω),
is selected for the closure of Eq. (55). This is an empirical model that takes into
account the effects of Reynolds number and adverse pressure gradient, validated
on a range of pipe flow and airfoil applications. The functional expression is

ϕpp(ω)U0

τ2
maxδ

∗ =

[
2.82 ∆2(6.13 ∆−0.75 + F1)A1

] [
4.2
(

Π
∆ + 1

)]
ω̃2

[4.76 ω̃0.75 + F1]
A1

+ [C ′3ω̃]
A2

(56)

with ω̃ = ω δ∗/U0, A1 = 3.7+1.5βC , A2 = min(3, 19/
√
RT )+4, C ′3 = 8.8R−0.57

T

and

F1 = 4.76

(
1.4

∆

)0.75

[0.375A1 − 1] .

Note that the typographical error in the definition of A2 in [40] has been cor-
rected.

4. Application of the swept trailing-edge theory to the computation
of wall-pressure statistics and sound emission

4.1. Application case: controlled-diffusion airfoil

The numerical tests presented in this section refer to an application case ana-
lyzed in [40]: a controlled-diffusion airfoil of chord c = 0.1356 m with a strongly
adverse pressure gradient. Reference measurements have been performed in the
anechoic room of ECL by Moreau & Roger [41] and computations have been per-
formed by Christophe et al. [42] for instance. The wall-pressure spectrum and
the boundary-layer parameters needed for the application of Eq. (56) are col-
lected at a location on the suction side, close to the trailing edge, where the flow
is about to separate. The data, presented in Tab. 1 of [40], are U0 = 16.9 m/s,
∆ = 2.23, τmax = 0.167 Pa, βC = 20.9, Π = 8.18 and α = 1.43. This application
case is used to test the effect of the introduction of sweep on the description of
the wall-pressure statistics and on the corresponding trailing-edge sound level
and directivity.
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4.2. Effect of sweep angle on the wavenumber spectral density of wall-pressure
fluctuations

Examples of wavenumber spectral density prescribed by Eq. (55), normal-
ized by ϕpp, are depicted in Fig. 3. The left column represents cases in which
the mean flow direction is aligned with the x′ axis. It can be noticed that the

local maxima for each k
′
y correspond to a line of constant k

′
x = Kc = ω b/Uc.

The increase of the order of the chordwise Butterworth filter, n, causes a much

faster decay of the wavenumber spectral density along the k
′
x axis. The increase

of m has also the effect of flattening the spectral density around the maximum

along the k
′
y axis. The effect of sweep is introduced in the right column of

Fig. 3 for the same (m,n) values. In this case, the line of local maxima is a

function of k
′
y expressed by Eq. (37). Also, the absolute maximum of the dis-

tribution corresponds to a k
′
y 6= 0 consistently with Eq. (55). The dashdotted

lines in each plot represent the limit between subcritical and supercritical gusts
according to Eq. (5). For ψ = 0 the angle of the supercritical range corre-
sponds to atan(M0/β0), whereas for ψ 6= 0 it is slightly smaller, corresponding
to atan(Mx/βx). However, due to the rotation of the wavenumber plane, more
energy enters the supercritical range, especially for m > 1. These considera-
tions are consistent with those presented by Roger et al. [19] concerning the
wavenumber energy distribution of the vortices impinging on the leading edge
of a swept airfoil.

The information needed for noise prediction is the integral of the distribu-
tions depicted in Fig. 3 with respect to k′x. This corresponds to the spanwise
correlation length of wall-pressure fluctuations, ly, according to Eq. (43). It is
evident from Eq. (53) that the value of this integral is independent of n if and
only if ψ = 0. On the contrary, the value of n is expected to play a role when
ψ 6= 0, according to Eq. (55). Figure 4 presents the variation of the shape of
ly, obtained by analytical integration of Eq. (55), following the variation of the
filter orders (m,n). Either with or without of sweep, the increase of m flattens
the curve around the maximum, as already pointed out, while causing a faster
decay of the correlation away from the maximum. The effect of increasing n,
visible only for ψ 6= 0, is to increase slightly the correlation peak for a given m.
However, there is only a negligible difference between the curves at n = 2 and
n = 3.

4.3. Effect of sweep on far-field Sound Pressure Level and directivity

The effect of sweep on far-field Sound Pressure Level (SPL) is evaluated
in Fig. 5 using the original Corcos’ model (i.e. m = 1, n = 1 in Eq. (55)).
The effect of the variation of the filter orders will be evaluated in the next
section. The left-hand-side plot depicts the wall-pressure spectrum, ϕpp(ω),
computed with Rozenberg’s formulation of Eq. (56) (which agrees very well
with the measurements as shown in Fig. 17(e) of [40]). The right-hand-side plot
of Fig. 5 presents firstly the sound spectrum predicted for an unswept airfoil.
This curve corresponds to the one depicted in Fig. 18 of [40], which also agrees
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Figure 3: Normalized wavenumber wall-pressure spectral density at f = 320 Hz. Left column:
ψ = 0. Right column: ψ = 30◦. Dashed line: locus of local maxima corresponding to K′c.
Dash-dotted line: critical limit. (a) m = 1, n = 1, ψ = 0. (b) m = 1, n = 1, ψ = 30◦.
(c) m = 3, n = 1, ψ = 0. (d) m = 3, n = 1, ψ = 30◦. (e) m = 1, n = 3, ψ = 0. (f)
m = 1, n = 3, ψ = 30◦.
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Figure 4: Spanwise correlation length of wall-pressure fluctuations at f = 320 Hz with various
orders of the m, n filters. Plain lines: ψ = 0◦. Dashed lines: ψ = 30◦.

well with experimental data. It is also shown that the increase of ψ causes an
overall decrease of the sound spectrum in the midspan plane.

The relative importance of the main traling-edge scattering term and of the
leading-edge back-scattering correction is evaluated using the CD airfoil test
case. Figure 6 shows the predicted SPL for ψ = 0◦ and ψ = 30◦ broken down
into its main and back-scattering components. The vertical lines correspond to
the reduced wavenumber µ = π/4. As pointed out by Amiet [15], for M → 0,
this value limits the chord to 1/4 of the acoustic wavelength, therefore for smaller
frequencies the airfoil surface acts as a compact source of noise. It can be seen
that the leading-edge correction is significant for frequencies in the compact
regime, where it partially cancels the main trailing-edge contribution. This is
valid for any value of the sweep angle.

Figure 7 shows the directivity of far-field noise calculated in the same test
case on the upper half-sphere around the airfoil. Unlike the directivity patterns
presented in Fig. 2, which are due to a single skewed gust, the ones presented in
Fig. 7 are obtained with the asymptotic formulation of Eq. (39). Consequently,
the radiated sound is determined by a set of skewed gusts whose k′y wavenum-
bers are determined by the coordinates of the observer, x2. At f = 100 Hz
(Fig. 7(a)), the sound directivity is that of a compact dipole and the effect of
sweep consists mainly in the reduction of the SPL at all observation angles. The
reduction is observed at higher frequencies as well (see Figs. 7(b), 7(c)), where
it is accompanied by a more prominent asymmetry of the directivity pattern.

4.4. Effect of wall-pressure wavenumber spectral distribution on Sound Pressure
Level and directivity

The effect of the order of the Butterworth filters of the generalised Corcos’
model is investigated in Figs. 8 and 9. Figure 8 shows that, in the midspan
plane, the main effect is that of the parameter m, which can raise the SPL
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Figure 5: (a) wall-pressure PSD calculated with Rozenberg’s model. (b) effect of sweep on
the SPL in the midspan plane (x1 = 0, x2 = 0) at a distance R = 2 m from the trailing edge.
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Figure 6: Relative importance of the main trailing-edge scattering and leading-edge back-
scattering terms in the midspan plane (x1 = 0, x2 = 0). Vertical lines correspond to the
reduced wavenumber µ = π/4. (a) ψ = 0◦. (b) ψ = 30◦.
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(a) (b)

(c)

Figure 7: Effect of sweep on the predicted directivity of the noise of the CD airfoil on a
half-sphere seen from above (upper x3 axis). (a) f = 100 Hz. (b) f = 2.5 kHz. (c) f = 10
kHz.
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Figure 8: Effect of the orders of the Butterworth filters on the SPL in the midspan plane
(x2 = 0) at a distance R = 2 m from the trailing edge. (a) ψ = 0◦. (b) ψ = 30◦.

spectrum by approximately 3 dB increasing from 1 to 2, as can be seen in the
left-hand-side plot for ψ = 0. Increasing m to 3 provides only a further marginal
increase of the sound PSD. For a non-zero sweep angle (Fig. 8(b)), it is possible
to study the combined effect of the variations of m and n. In this case, the
main effect is that of the parameter m, whereas the increase of n only provides
a marginal increase of the spectral level.

The effect of the filter orders (m,n) on the directivity is shown in Fig. 9
at f = 10 kHz. In case the ψ = 0, the directivity pattern is not qualitatively
changed by the increase of m, but the amplitude of the radiated sound pressure
increases at all angles of observation. The directivity patterns for the ψ = 30◦

cases confirm the observations made for the spectrum in the mid-span plane,
normal to the airfoil surface. The main effect is again that of the parameter
m. However, a smaller increase of the SPL at m = 1 can be observed for n
increasing from 1 to 2.

It has been shown that the variation of the transverse correlation length of
wall-pressure fluctuations, ly, within the hypothesis of the generalised Corcos’
model has a limited impact on the sound emission, quantifiable in a range of
3 dB for m varying between 1 and 3. This effect, however, might explain small
discrepancies between measured and modelled spectra.

5. Connection with the strip theory for rotating blades

The reference frame considered in previous sections has axes normal and
parallel to the trailing edge. Sweep is addressed by considering oblique mean
flow and span ends in this frame, as illustrated in Fig. 1. Its effect if assessed for
the same span length, L, and chord, 2b, defined parallel and normal to the edges,
respectively, as for the rectangular, zero-sweep airfoil. With this convention,
compared three-dimensional radiation properties result from changes in either
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(a) (b)

(c)

Figure 9: Effect of the order of the Butterworth filters, (m,n), on the directivity of the noise
of the CD airfoil on a half-sphere seen from above (upper x3 axis) at f = 10 kHz. (a) ψ = 0.
(b) ψ = 30◦. (c) ψ = 30◦.
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Figure 10: (a) Radial cuts of an axial-flow fan in strip theory. (b) Produced simplified flat-
plate airfoil as blade segment, either straight or swept.

the sub-critical or the supercritical character of the incident wall-pressure gusts,
for constant span, and to a less extent from the deformation of the rectangle
into a parallelogram. Sound reduction is also expected from the reduced speed
normal to the edges. A complementary point of view is provided in the present
section for completeness, in connection with the strip theory usually used for
axial-flow, rotating-blade noise modeling.

According to this theory, a rotor blade is split into segments limited by
annular cuts. Each segment is simplified as a parallelogram airfoil. The flow is
assumed free of radial velocity component, consistently with a velocity vector
along the x direction, oblique in the (x1, x2) coordinate system. Using the
alternative reference frame with axes parallel and normal to the flow direction
makes sense. This is illustrated in Fig. 10 showing ideal blade segments featured
by the same annular cuts on a zero-sweep blade and on a swept blade. Unlike in
Fig. 1, the same radial extent L is kept for both, making the actual span of the
swept, parallelogram airfoil larger, equal to L/ cosψ. Furthermore, the chord,
noted c, is now kept unchanged in the direction of the flow. In other words,
the aspect ratio is increased for the swept airfoil. Assessing the effect of sweep
by comparing the responses of both airfoil shapes in Fig. 10 leads to slightly
different conclusions as those previously drawn.

Now, the way a swept blade is designed from a baseline straight one in
practice can differ from one manufacturer to another. Indeed, for the same ra-
dial extent, the chord can be set constant along the flow direction or constant
perpendicularly to the leading-or-trailing edge, leading to different options and
constraints. This is why, to author’s opinion, highlighting the effect of sweep
with both conventions illustrated in Fig. 1 and Fig. 10 makes sense. It is also
worth noting that, for both, the baseline and swept airfoils have the same area.
Figure 11 compares the predicted responses of rectangular and parallelogram
airfoils of same chord, c, in the direction of the flow and same extent normal
to this direction. The wall-pressure statistics is assumed the same and is esti-
mated by using Gliebe’s empirical correlation [43], based on the mean flow speed
and boundary layer thickness. The spanwise correlation length is calculated by
means of the classical Corcos’ model (accounting for sweep effects). The mean
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Figure 11: (a) Present trailing-edge noise predictions for the airfoil shapes shown in Fig. 10 (b)
Measured turbulence-impingement noise spectrum of a swept, parallelogram airfoil of constant
chord in Giez et al experiment, and compared predictions ignoring and accounting for sweep,
reproduced from [45].

flow speed is the same as in the experiment by Giez et al [44] and the boundary
layer thickness is set to 0.5 mm. Sound reduction is observed, as well as a signif-
icant shift of the non-compactness humps and dips towards higher frequencies.
The shift can be attributed to the larger aspect ratio. Comparisons reported in
Figs. 5 refer to a constant aspect ratio: the sound spectrum has some reduced
level with hardly any noticeable shift of the humps and dips.

As a preliminary validation element, the trends predicted by the present
trailing-edge noise model are compared with previous predictions of the turbulence-
impingement (leading-edge) noise of a swept airfoil according to a similar model
by Giez et al [44, 45]. Both models are based on the same mathematical back-
ground, namely Schwarzschild’s technique applied by Amiet and its extensions.
They involve a main scattering term and a secondary back-scattering term,
both corresponding to half-plane problems [46]. Though the sources and the
way the solution is derived are different, both models are very similar with re-
spect to radiating properties, such as the interference effects involved in the
structuring of directivity lobes, and the shifted threshold between sub-critical
and supercritical gusts (pressure gusts for trailing-edge noise and velocity gusts
for turbulence-impingement noise). This is especially true at subsonic Mach
numbers, the flow speed having less effects than the geometry of the radiating
surface. Figure 11(b) reproduces key results by Giez et al (both measured and
predicted) for the same sweep angle of 35◦ as considered in Fig. 11(a). The
same amount of reduction and the same qualitative dips-and-humps shift are
predicted in Fig. 11(a) and Fig. 11(b). Because the predictions by Giez et al fit
with the measured sound spectrum of the swept airfoil, the figure globally pro-
vides a first, indirect validation. Dedicated trailing-edge noise measurements
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with zero-sweep and swept airfoils are well beyond the scope of the present
theoretical paper. They will be the matter of future work.

6. Conclusions

The analytical developments and parametric numerical tests presented in
this paper have highlighted the importance of taking into account sweep in a
theory of trailing-edge noise. They provide more complete physical insight into
the scattering of sound from the trailing-edge and allow assessing the potential
for effective noise reduction. Furthermore, the model can be efficiently inte-
grated in the early design stage of propellers or fans and can guide the design
process to attain the target of reduced noise emissions.

The effect of sweep on generating an asymmetric directivity of far-field noise
has been elucidated. Furthermore, the use of a generalised Corcos’ model high-
lighted the fact that noise predictions can be biased by the hypothesis on the
transverse correlation length of wall-pressure fluctuations. More investigation is
necessary on this issue, especially in case of rotating blades where the statistics
may significantly differ from the stationary airfoil case. This is all the more true
since the original model of Corcos is still used for fan applications.
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