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61Abstract 

62Background

63Lysosomal acid lipase deficiency (LALD, OMIM#278000) is a rare lysosomal disorder with an autosomal 

64recessive inheritance. The main clinical manifestations are related to a progressive accumulation of 

65cholesteryl esters, triglycerides or both within the lysosome in different organs such as the liver, spleen, 

66and cardiovascular system. A wide range of clinical severity is associated with LALD including a severe 

67very rare antenatal/neonatal/infantile phenotype named Wolman disease and a late-onset form named 

68cholesteryl ester storage disease (CESD). 

69Methods

70This study aimed to investigate a cohort of at-risk patients (4174) presenting with clinical or biological 

71signs consistent with LALD using the assessment of LAL activity on dried blood spots. 

72Results

73LAL activity was lower than 0.05 nmol/punch/L (cut-off: 0.12) in 19 patients including 13 CESD and 6 

74Wolman. Molecular study has been conducted in 17 patients and succeeded in identifying 34 mutated 

75alleles. Fourteen unique variants have been characterized, 7 of which are novel. 

76Conclusion

77This study allowed to identify a series of patients and expanded the molecular spectrum knowledge of 

78LALD. Besides, a new screening criteria grid based on the clinical/biological data from our study and the 

79literature has been proposed in order to enhance the diagnosis rate in at risk populations. 

80
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841. Introduction

85Lysosomal acid lipase (LAL - EC.3.1.13) acts mainly in the hepatocytes following low-density 

86lipoproteins (LDL) endocytosis to hydrolyze cholesterol esters (CE) and triglycerides (TG) into 

87glycerol, free cholesterol (FC) and fatty acids. The reaction products are released into the cytosol 

88and are involved in different metabolism such as energy, transport and anabolism [1]. FC is 

89involved in several regulatory pathways. Sterol regulatory element binding proteins (SREBPs) 

90modulate the expression of several genes involved in cholesterol and lipid synthesis. After their 

91translation in the endoplasmic reticulum (ER), SREBPs form a complex with SREBP Cleavage 

92Activating Proteins (SCAPs). In the presence of high FC concentrations, SCAP maintains SREBP 

93in the ER. Conversely, in the presence of low cytosolic FC concentrations, SCAP brings SREBP to 

94the Golgi apparatus where it becomes active through proteolytic cleavage steps. Then, SREBP 

95translocates into the nucleus and binds to specific sequences located in the 5’UTR/enhancer 

96regions on the target genes named SRE for Sterol Response Elements [2]. ABCA1, is an ATP-

97Binding-Cassette transporter that mediates the transport of cytosolic FC and phospholipids to 

98pre-High-Density Lipoprotein (pre-HDL) particles to form HDLs [3]. 

99LAL deficiency (LALD, OMIM#278000) is a rare autosomal recessive lysosomal disorder. The 

100decrease or the loss of enzyme activity leads to a progressive accumulation of the enzyme 

101substrates namely, CE, TG or both within the lysosome in different organs mainly the liver, 

102spleen, and cardiovascular system [1, 4]. In LALD, intracellular FC depletion induces through 

103SREBP regulation (i) an increase of cholesterol and apolipoprotein B synthesis with a subsequent 

104increase of Very Low-Density Lipoproteins (VLDL) secretion, (ii) an increase of LDL receptor 

105expression with a subsequent increase of LDL uptake. Besides, the low cytosolic FC concentration 

106prevents ABCA1-mediated HDL particle formation. As a result, the lipid profile in LALD 

107displays a high total cholesterol, LDL and TG concentrations, and a decreased HDL level [1, 4]. 

108This lipid accumulation causes several cellular damages. In the liver, microvacuolar steatosis, 

109elevation of transaminase activity, fibrosis and cirrhosis have been reported. Splenomegaly, the 

110subsequent anemia and thrombocytopenia are probably related to lipid build-up within the 

111macrophages. Lipid accumulation in the intestinal mucosa induces several gastrointestinal 



112disturbances such as diarrhea, abdominal and epigastric pain. Steroid hormones are synthesized 

113in the adrenal cortex from FC. In LALD, low FC hampers the steroid synthesis and results in 

114adrenal insufficiency. In severe antenatal forms of LALD, adrenal calcification related to 

115extensive fetal adrenal necrosis can be detected by ultrasound [5]. The dyslipidemia associated 

116to LALD underlies the increased cardiovascular risk. 

117LALD, as all inborn errors of metabolism (IEMs), is primarily due to a monogenic alteration. But 

118it is to be noted that a large number of genetic and environmental factors may modulate 

119phenotypic expression. Thus, a wide range of clinical severity is associated with LALD. This 

120continuum encompasses a severe antenatal/neonatal/infantile phenotype named Wolman 

121disease and a late-onset form named cholesteryl ester storage disease (CESD) [1]. 

122Wolman disease is an ultra-rare condition (incidence: 1/500,000) with a very severe outcome. 

123Prior to enzymotherapy treatment survival expectancy was less than 2 years [6]. The symptom 

124onset may occur in the fetal stage with 50% of affected infants presenting with antenatal adrenal 

125calcifications. Massive hepatomegaly and failure to thrive with malabsorption contribute to the 

126premature death. 

127CESD incidence is estimated at 1/40,000 [7]. Hepatomegaly is often present at diagnosis and 

128lysosomal lipid accumulation leads to progressive organ damages including cardiovascular 

129alteration, fibrosis and cirrhosis. Recently, the prevalence at birth of LAL deficiency has been 

130estimated at 3.45–5.97 cases per million births in European-ancestry populations [8]

131At the molecular level, LALD results from the LIPA gene alterations. This gene is located on 

132chromosome 10q23.2 and includes 10 exons. To date, 111 LIPA variants have been reported [1, 4] 

133with a splicing variant being frequently present (NM_000235:c.894G>A - p.(Gln298=)) [9].

134LALD treatment used to be based on low-fat diet, lipid reduction and hematopoietic stem cell 

135transplant or liver transplantation with variable outcome. An enzyme replacement therapy 

136(ERT), Sebelipase alfa, has been recently approved considering the clinical benefit especially in 

137the most severe cases with a significant survival increase [6]. 



138This study reports the screening of a cohort of at-risk patients presenting with clinical or 

139biological signs consistent with LALD.

140

1412. Materials and Methods

1422.1. Cohort description

143This cohort is based on 4174 dried blood spot (DBS) samples obtained from individuals, who 

144were suspected of having LALD after clinical screening (the presence of unexplained 

145hepatomegaly or an increase in transaminase activity by ≥ 1.5 times the upper reference limit, or 

146a disturbed serum lipid profile with or without splenomegaly or gastrointestinal dysfunction or 

147hepatic microvacuolar steatosis/fibrosis/cirrhosis), and submitted to our laboratory for the 

148assessment of LAL activity between 2015 and 2019. The cohort included 1690 females (age = 42.78 

149± 22.56 years) and 2494 males (age = 44.88 ± 20.49 years). Informed consents were obtained from 

150all subjects involved in the study. Seventeen written informed consents have been signed for the 

151molecular analysis.

1522.2. Lysosomal acid lipase

153All described laboratory procedures were performed at the Metabolic Biochemistry Department, 

154Rouen University Hospital, Rouen, France

155For all analyses presented in this study, DBS were prepared by spotting EDTA venous blood on 

156filter paper (PerkinElmer 226). Fresh DBS were analyzed within three days upon preparation and 

157were archived at −20 C in individual plastic bags with a desiccant. 

158The enzymatic assay was carried out based on the method described by Hamilton et al [10, 11] 

159using 4-methylumbelliferyl palmitate (4-MU) as a substrate and the LAL inhibitor, Lalistat-2. 

160Briefly, DBS was incubated in 200 μL of water for 1 hour. Then, 40 μL aliquots of DBS water 

161extracts were preincubated with 10 μL of 30 μM Lalistat-2 or water for 10 minutes in a 96-well 

162flat bottom black plate. Then, 150 μL of reaction buffer solution containing 4-MU-Palm (0.35 mM) 

163and cardiolipin (0.032%) in a 0.15 M acetate buffer with 1% Triton X-100, pH 4.0 was added. The 

164plate was sealed and incubated at 37 °C for 3 hours. Following the incubation, ten 4-MU 

165standards serially diluted in water (Range: 0.02 - 11.34 μmol 4-MU) were added to the plate. 



166Then, 100 μL of 0.15 M acetate buffer with 1% Triton X-100 was added to all wells, and the 

167fluorescence was measured in a plate reader (F7000, Hitachi, Japan) (excitation λ = 320 nm; 

168emission λ= 446 nm). LAL activity was calculated by subtracting the value in the inhibited 

169reaction (with Lalistat-2) from the value of reaction without the inhibitor (total lipase activity). 

170The reference range was between 0.32 and 2.08 nmol/punch/1 hour with a cut-off set at 0.12 for 

171LALD.

1722.2. Molecular Analysis

173DNA extraction: for NGS analysis, genomic DNAs were extracted from blood using a silica-

174membrane-based DNA purification method (QIAamp DNA Blood Mini Kit, QIAGEN). NGS 

175sequencing was performed at the IRIB-Rouen University Hospital Facility (Service Commun de 

176Génomique).

177The promoter region and the flanking intronic sequences of the LIPA gene (NM_000235) are 

178included in our in-house lysosomal disease NGS panel. The NGS sequencing method has been 

179reported previously [12]. Briefly, custom primers were designed using the SureDesign software 

180(Agilent Technologies, Santa Clara, California, USA). The library preparation protocol was set up 

181using the QXT SureSelect enrichment kit from Agilent. Library construction was done using 

182enzymatic fragmentation and the SureSelectQXT kit (Agilent Technologies, Santa Clara, 

183California, USA) to capture targeted sequences. Patients’ libraries were pooled after the 

184enrichment step. Libraries were sequenced on a MiSeq or a NextSeq 500 platform (Illumina, San 

185Diego, USA) using 2x150 bp paired-end sequencing. For the detection of SNVs, indels and CNV, 

186a double bioinformatics pipeline was used with complementary algorithms in order to optimize 

187the disease-causing variant detection rate. 

188An in-house software, CanDiD allowed for the prioritization and filtration of variants using 

189defined criteria such as minor allele frequency in public databases or consequences of the variant 

190(missense, synonym, nonsense, splicing) [13]. The filtered variants were compared to variant 

191databases including dbSNP (https://www.ncbi.nlm.nih.gov/snp/), GnomAD 

192(https://gnomad.broadinstitute.org/), HGMD (http://www.hgmd.cf.ac.uk/) and LOVD 

193(https://databases.lovd.nl/shared/genes).

https://www.ncbi.nlm.nih.gov/snp/
https://gnomad.broadinstitute.org/
http://www.hgmd.cf.ac.uk/
https://databases.lovd.nl/shared/genes


194Evaluation of the pathogenicity of the variants were analyzed with in silico tools such as SIFT 

195[14], PolyPhen2 [15] or MutationTaster [16] and M-CAP [17] to predict potential deleterious effect 

196on protein function, and HumanSplicingFinder 2.4.1 [18], MaxEntScan [19], NNSPLICE [20], 

197GeneSplicer [21], SpliceSiteFinder [22], and ESEFinder [23] for possible effect on splicing. Variant 

198classification was done according to the recommendations of the American College of Medical 

199Genetics [24].

200The control of the sample identity was performed using a multiplex SNaPshot analysis 

201comparing five SNPs located within the captured regions of 5 genes unrelated to LDs included 

202in the panel. 

2033. Results

2043.1. Patients

205We assessed 4174 DBS samples (Supplementary Table S1). In females (n = 1,690, 40% of the 

206cohort), the overall mean age was 42.78 ± 22.56 years, with a mean LAL activity of 0.98 ± 0.59 

207nmol/punch/1 hour. For males (n = 2,494, 60% of the cohort), mean age was 44.88 ± 20.49 years, 

208with a mean LAL activity of 0.89 ± 0.54 nmol/punch/1 hour. One hundred and fifty-seven samples 

209came from children below 2 years old (3.7 %) including 73 females and 84 males. Four thousand 

210and seventeen (96.3%) samples came from patients older than 2 years old and included 1607 

211females and 2410 males. 

212Based on this cohort, 19 patients (Figure 1 and 2) have been detected with an LAL activity lower 

213than 0.05 nmol/punch/1 including 13 CESD (9 females and 4 males) with an average age at 

214diagnosis of 22.42 ± 18.23 years and 6 Wolman (4 females and 2 males) with an average age at 

215diagnosis of 3.12 ± 4.08 months. For CESD patients, laboratory work-up showed an impaired 

216lipid profile (Supplementary Table S2) with a total cholesterol = 2.72 ± 0.47 g/L (<2.3), HDL 

217cholesterol = 0.35 ± 0.09 g/L (N>0.45), LDL cholesterol = 2.31 ± 0.5 g/L (N<1.3), triglycerides = 1.92 

218± 1.26 g/L (N<1.33). For the Wolman patients, laboratory work-up showed an impaired lipid 

219profile, cholesterol = 1.53 ± 0.87 g/L, HDL cholesterol = 0.15 ± 0.08 g/L, LDL cholesterol = 1.3 ± 0.92 

220g/L, triglycerides = 3.26 ± 1.42 g/L. 



221The main clinical phenotype of Wolman patients was as follows: all patients were from 

222consanguineous parents and presented with hepatomegaly and hypertriglyceridemia, 5/5 

223showed adrenal calcification, 5/6 presented with anemia, 5/6 with splenomegaly and 5/5 with 

224elevated serum transaminases, 4/6 presented failure to thrive and 4/6 died in infancy, 2/2 

225vomiting, 2/6 with hypercholesterolemia, 2/5 hepatic fibrosis, 2/5 hepatic steatosis, 1/3 diarrhea, 

2261/3 abnormality in cardiovascular system and 1/5 with cirrhosis. Regarding CESD patients, 13/13 

227presented with hepatomegaly, 11/11 showed elevated in serum transaminases, 9/9 presented 

228with hypercholesterolemia, 7/11 with hepatic steatosis, 5/7 with hypertriglyceridemia, 3/9 with 

229hepatic fibrosis and 2/10 with splenomegaly (Supplementary Table S2 and Table S3).

230Molecular investigation has been conducted in seventeen patients. It yielded 34 mutated alleles 

231(Figure 4 and Supplementary Table S4). Fourteen unique variants have been identified, 7 have 

232been previously reported [9, 25-30]. The common variant, c.894G>A / p.(Gln298=) [9], has been 

233identified in 12 mutated alleles. Seven variants were novel and included four in CESD form: 

234NM_000235:c.340G>T - p.(Asp114Tyr), c.232_243delins - p.(Pro76Alafs*5), c.538+1G>A 6 p.(?), 

235c.647T>G - p.(Leu216*) and three in Wolman disease: c.429-1G>C - p.(?), c.601G>C - p.(Gly201Arg) 

236and c.538G>A - p.(Gly180Ser). 

2374. Discussion

238LALD presentation covers a very wide range of clinical severity spanning from a life-threatening 

239pediatric form to a non-specific, slowly progressive adult form. 

240The progressive lipid accumulation, primarily in hepatocytes and macrophages, underlies the 

241organomegaly, gastro-intestinal dysfunction, liver disease, and dyslipidemia observed in LALD 

242patients. First-line diagnosis relies on LAL enzyme activity assessment using peripheral 

243leukocytes or DBS. The recent development of rapid and reliable fluorimetric method using DBS 

244[10] enabled the screening of large at-risk populations. Molecular study of LIPA gene is indicated 

245to confirm LALD diagnosis. Considering the ever-growing advances in LD therapies, an early 

246and accurate diagnosis of LALD is critical. Unexplained liver disease and/or lipid abnormalities 

247should prompt to assess LAL enzyme activity. Besides, hypercholesterolemic status may be 

248misleading. Indeed, known hypercholesterolemia disorders are often evoked as first-line 

249diagnosis while this pheonotype might be consistent with LALD [31].



250The results presented here are issued from the diagnostic work-up of patients presenting with 

251clinical or biological signs consistent with LALD, namely unexplained hepatomegaly or 

252increased transaminase activity (≥ 1.5 times the upper reference limit), or abnormal serum lipid 

253profile with or without splenomegaly or gastrointestinal dysfunction or hepatic microvacuolar 

254steatosis/fibrosis/cirrhosis. Nineteen patients have been diagnosed with LALD with an LAL 

255activity below 0.05 nmol/punch/h (LALD patients’ overall mean = 0.01). No difference has been 

256observed in LAL activity values between CESD and Wolman patients. Six patients were 

257diagnosed with Wolman disease out of 157 children below 2 years old (3.82%). Regarding CESD, 

25813 patients were identified out of 4017 individuals older than 2 years of age (0.32%). This very 

259low diagnosis yield prompted us to reevaluate the screening criteria considering the clinical and 

260biological features present in the patients characterized in this study and others [32-37]. In our 

261series, hepatic damages were present in all patients and dyslipidemia was noted in 15/15 patients. 

262Besides, Wolman patients presented with additional features such as gastrointestinal 

263disturbances, anemia, failure to thrive, adrenal calcification and premature death. The screening 

264criteria grid proposed here prioritizes liver damages and dyslipidemia and takes into account the 

265main features reported in the literature and in our series. The suggested criteria are presented in 

266Table 1 with a weighted scoring for each feature. To conduct LALD screening, a total score higher 

267than four is required with either (i) at least one liver/spleen and one dyslipidemia feature or (ii) 

268one feature across three different categories. This stringent strategy may allow a sharper, more 

269targeted, and therefore more efficient screening for LALD. 

270Molecular studies were conducted in 17 patients and succeeded in confirming the molecular basis 

271of LALD in all tested individuals. Fourteen unique variants have been identified; 7 variants have 

272been previously reported [9, 25-30] while 7 were novel (3 missense, 1 nonsense, 2 splicing, 1 

273frameshift variants). The common variant, c.894G>A - p.(Gln298=), accounted for 12 out of 34 

274mutated alleles (Figure 4) and was exclusively identified in CESD patients. Importantly, severe 

275truncating variants including nonsense, frameshift and splicing variants were associated with 

276both Wolman disease and CESD phenotypes, but the variants identified in Wolman patients were 

277distinct from those associated with CESD phenotype. 

278



2795. Conclusions

280LALD is a very rare and underdiagnosed condition. This study allowed to identify a series of 

281patients and better tune the screening criteria for LALD in at-risk populations. Besides, our study 

282expands the molecular spectrum knowledge of lipase acid deficiency. The effect of ERT on 

283survival rate and clinical course urges to define efficient diagnosis strategies.

284
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385Legends
386

387Figure 1. Cohort description.

388Figure 2. LAL enzymatic activity distribution between Non-LALD, CESD and Wolman 
389patients. The panel to the left is a zoom on low activity values.

390Figure 3. Clinical phenotype overview of the CESD and Wolman patients. Blank box 
391means that the status of clinical feature has not been reported.                                           
392*Hypercholesterolemia is defined with either increased total cholesterol or LDL 
393cholesterol concentrations.

394Figure 4. Molecular variations of the seventeen investigated cases describing seven novel and 
395seven previously reported variants. The number of mutated alleles is indicated in the circle. 
396The size of the bubble is proportional to the number of mutated alleles.

397
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399











400

401

402Table 1. Screening criteria.

403

404

405

Categories Features Score

Hepatomegaly 3

Elevated transaminases (>1.5 N) 3

Microvacuolar Steatosis 3

Fibroris/Cirrhosis 2

Liver/Spleen

Splenomegaly 1

LDL > 1.3 g/L (under lipid lowering treatment) 3Dysplipidemia

HDL < 0.45 g/L 3

Diarrhea/Vomiting 3Gastrointestinal

Ascitis 1

Failure to thrive 3

Adrenal calcification 3

Abdominal distension/pain 1

Thrombopenia 1

Other

Anemia 1



406Highlights

407

408 A screening of 4174 at-risk LALD patients is reported

409

410 Nineteen patients including thirteen CESD and six Wolman have been identified

411

412 Thirty-three mutated alleles have been identified including fourteen unique variants have been 

413characterized, 7 of which are novel. 

414

415 A new LALD screening criteria grid based on the clinical/biological data is proposed. 

416
417
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