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Abstract  46 

 47 

Changes in temperature affect consumer-resource interactions, which underpin the 48 

functioning of ecosystems. However, existing studies report contrasting predictions regarding 49 

the impacts of warming on biological rates and community dynamics. To improve prediction 50 

accuracy and comparability, we develop an approach that combines sensitivity analysis and 51 

aggregate parameters. The former determines which biological parameters impact the 52 

community most strongly at a given temperature. The use of aggregate parameters (i.e., 53 

maximal energetic efficiency, ρ, and interaction strength, κ), that combine multiple biological 54 

parameters, increases explanatory power and reduces the complexity of theoretical analyses. 55 

We illustrate the approach using empirically-derived thermal dependence curves of biological 56 

rates and applying it to consumer-resource biomass ratio and community stability. Based on 57 

our analyses, we generate four predictions: 1) resource growth rate regulates biomass 58 

distributions at mild temperatures, 2) interaction strength alone determines the thermal 59 

boundaries of the community, 3) warming destabilises dynamics at low and mild 60 

temperatures only, 4) interactions strength must decrease faster than maximal energetic 61 

efficiency for warming to stabilise dynamics. We argue for the potential benefits of directly 62 

working with the aggregate parameters to increase the accuracy of predictions on warming 63 

impacts on food webs and promote cross-system comparisons.  64 

 65 

 66 
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Introduction  67 

 68 

Temperature strongly regulates consumer-resource interactions that constitute the 69 

fundamental blocks of ecosystems (O’Connor et al. 2009; Montoya & Raffaelli 2010; 70 

Petchey et al. 2010; Rall et al. 2012; Amarasekare 2019), and anthropogenic climate change 71 

will, in most cases, increase mean temperatures (IPCC 2013). Therefore, understanding and 72 

predicting the impacts of warming on consumer-resource interactions has attracted much 73 

interest (Vasseur & McCann 2005; Binzer et al. 2012; Thakur et al. 2017). A breakthrough 74 

occurred with the postulation that metabolic rate increases exponentially with temperature, 75 

with the slope (often referred to as activation energy) conserved across levels of organisation 76 

(Gilooly et al. 2001; Brown et al. 2004). However, activation energies can vary significantly 77 

among organisms and biological rates (Dell et al. 2011; Réveillon et al. 2019). In addition, 78 

the thermal response curve of biological rates can decrease at high temperatures, producing a 79 

unimodal thermal dependence shape (Deutsch et al. 2008; Pörtner & Farrell 2008; Englund et 80 

al. 2011; Uiterwaal & DeLong 2020). This lack of consensus regarding the exact shape of the 81 

temperature-dependence of physiological rates (e.g. ingestion rates), behavioural traits (e.g. 82 

consumer search or attack rates) or production (carrying capacity) has contributed to 83 

diverging, sometimes contradicting, predictions of how consumer-resource interactions will 84 

respond to warming (e.g. Vucic-Pestic et al. 2011; Sentis et al. 2012).  85 

 86 

A dual approach to address the divergence in predictions 87 

 88 

Two community properties describing important features of the community are consumer-89 

resource biomass ratio and stability, defined with respect to the occurrence of oscillations. 90 

Their importance is reflected in their prevalence in the literature on the effects of warming on 91 
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consumer-resource communities and food webs (Rall et al. 2010, 2012; Uszko et al. 2017; 92 

Barbier & Loreau 2019; Bideault et al. 2020). However, predictions vary about the impacts 93 

of warming on both these community properties. Biomass ratios have been theorised to 94 

increase (Rip & McCann 2011; Gilbert et al. 2014) or decrease (Vasseur & McCann 2005) 95 

monotonically with warming, though experimentally-derived data have mainly yield 96 

unimodal responses (Fussmann et al. 2014; Uszko et al. 2017). Likewise, the effects of 97 

warming on stability remain unclear. Using data on specific rates (e.g. consumer ingestion 98 

and metabolism), studies have inferred that stability either increases monotonically (Rall et 99 

al. 2010, 2012; Vucic-Pestic et al. 2011; Fussmann et al. 2014) or responds unimodally 100 

(Sentis et al. 2012; Betini et al. 2019) to warming. Theoretical work on stability, in particular 101 

on the mechanisms causing the onset of oscillations, expands decades (Rosenzweig & 102 

MacArthur 1963; May 1972). Vasseur and McCann (2005) showed that warming will 103 

destabilise consumer-resource communities when the consumer metabolic rate increases 104 

slower than the ingestion rate. Johnson and Amarasekare (2015)  demonstrated the pivotal 105 

role of the temperature-dependence of carrying capacity — rather than metabolism and 106 

ingestion	
  — in determining warming-stability relationships. All these examples demonstrate 107 

that the mixed predictions, whether empirically-derived or theoretical, originate from two 108 

distinct sources: the different parameters hypothesised to be driving community responses 109 

and the thermal dependence shapes of these parameters. To improve the accuracy of 110 

predictions regarding the effects of warming on consumer-resource communities, we need to 111 

establish which biological parameters drive community properties (biomass distribution, 112 

stability) and to acquire a mechanistic understanding of how their thermal dependence shapes 113 

affect community properties. 114 

 115 
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A dual approach utilising sensitivity analysis and the application of aggregate parameters can 116 

address both these issues (Fig. 1). On the one hand, sensitivity analysis establishes the 117 

parameters that most strongly influence the community property of interest: it quantifies the 118 

incremental increase in a response variable with respect to a small incremental increase in a 119 

parameter. It has been extensively used in population ecology and demography (Caswell 120 

2019), with important applications in applied ecology (Manlik et al. 2018). Since the relative 121 

importance of parameters can change along the temperature gradient, a sensitivity analysis 122 

allows us to determine the temperatures at which changes in the values of the different 123 

parameters have the strongest relative impact (Zhao et al. 2020).  124 

 125 

On the other hand, we can aggregate groups of the primary parameters into fewer, 126 

biologically meaningful and empirically measurable quantities. The use of such aggregate 127 

parameters reduces the complexity of theoretical analyses, provides a mechanistic 128 

interpretation for the difference in predictions and facilitates the comparison among 129 

predictions (Barbier & Loreau 2019; Bideault et al. 2020). Experimentally, replacing multiple 130 

measurements of individual parameters with measurements of the aggregates could also 131 

restrict the room for divergent findings. The seminal work of Yodzis and Innes (1992) 132 

reduced the analysis of consumer-resource interactions to two principal aggregate parameters; 133 

consumer maximal energetic efficiency and a measure of resource abundance. A variation of 134 

maximal energetic efficiency (termed energetic efficiency) has been widely used by empirical 135 

studies. However, rather than being measured directly, it has been derived from 136 

measurements of its principle components, i.e., feeding and metabolic rates (Rall et al. 2010; 137 

Vucic-Pestic et al. 2011; Sentis et al. 2012). Gilbert et al. (2014) posited that a single 138 

aggregate parameter — interaction strength defined as the impact of the consumer on the 139 

resource population density	
   — could capture the effects of warming on the stability of 140 
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consumer-resource interactions. However, their approach was based on a type I (non-141 

saturating) functional response, whereas most consumer-resource species pairs typically 142 

produce type II or III (saturating) functional responses (Jeschke et al. 2004). Moreover, the 143 

thermal dependence of interaction strength did not match the impact of warming on stability 144 

for type II or III functional responses (Uszko et al. 2017), pointing to a more complex 145 

relationship between interaction strength, warming and stability. We use two aggregate 146 

parameters: the maximal energetic efficiency of the consumer population, defined as the ratio 147 

of energetic gains through ingestion with no resource limitation (i.e., maximal energetic 148 

gains) over energetic losses associated to metabolic demand (Yodzis & Innes 1992) and 149 

interaction strength, measured as the ratio of resource population density without consumers 150 

to resource population density with consumers (Gilbert et al. 2014). 151 

 152 

Thus, our dual approach identifies the parameters causing the divergence in predictions 153 

through the sensitivity analysis and simplifies complex theoretical explorations and empirical 154 

measurements through the two aggregate parameters (Fig. 1). By expressing the sensitivities 155 

and the community dynamics in terms of the aggregate parameters, analyses collapse into two 156 

dimensions. This creates a simple and mechanistic tool to increase the accuracy and improve 157 

comparability of theoretical and empirically-driven predictions on the impact of temperature 158 

changes on consumer-resource communities. The dual approach of sensitivity analysis and 159 

parameter aggregation is not tailored to a specific model of consumer-resource interactions as 160 

both are often used independently for different ecological models (e.g. Barbier et al., add a 161 

ref for sensitivity). Here, we apply this general approach to the Rosenzweig-MacArthur 162 

model (Rosenzweig & MacArthur 1963), a model frequently used to study the effects of 163 

temperature on consumer-resource interactions (Fussmann et al. 2014; Uszko et al. 2017; 164 

Daugaard et al. 2019; Dee et al. 2020). Moreover, our approach can be applied to both static 165 
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and dynamic properties of consumer-resource interactions. We illustrate this application 166 

using consumer-resource biomass ratio and a stability metric quantifying the proximity to 167 

oscillations, respectively; these two variables dominating the literature on the effects of 168 

warming on consumer-resource communities (Vasseur & McCann 2005; Rall et al. 2008; 169 

Uszko et al. 2017; Betini et al. 2019). We implement different thermal parameterisations 170 

from the literature to elucidate how the relative importance of different parameters and their 171 

varying thermal dependence shapes impact predicted effects of temperature on consumer-172 

resource interactions. Based on our results, we make four predictions that can be theoretically 173 

and empirically tested.  174 

 175 

The dual approach  176 

 177 

In this study we illustrate the application of the dual approach (i.e. parameter sensitivity and 178 

aggregation) using the Rosenzweig-MacArthur model with a type II functional response 179 

(Rosenzweig & MacArthur 1963). This model describes the rate of change in resource and 180 

consumer biomass densities:   181 

 182 

!"
!"
= 𝑟(1− !

!
)𝑅 − !"

!!!!!
𝐶 (1) 183 

 184 

!"
!"
= (𝑒 !"

!!!!!
−𝑚)𝐶  (2) 185 

 186 

R and C are the resource and consumer species biomass densities, respectively. Resource 187 

growth is logistic, with an intrinsic growth rate, r, and carrying capacity, K. Resource 188 

biomass density is limited by the consumer through a saturating Holling type II functional 189 

response with attack rate, a, and handling time, h. Consumer growth is proportional to the 190 
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assimilated consumed biomass, with e the dimensionless assimilation efficiency; losses occur 191 

due to metabolic costs, m. Below we present the formulas most relevant to our study; an 192 

extensive analysis of the model is available in the supplementary information (SI 1). We 193 

chose a type II response due to its prevalence in many natural consumer-resource interactions 194 

(Jeschke et al. 2004), though our approach works for the general form of the functional 195 

response (SI 2). Additionally, the functional response can be defined with respect to attack 196 

rate and handing time, 𝑓 𝑅 = !"
!!!!!

, or maximum consumption rate, J, and half-saturation 197 

density, R0, 𝑓 𝑅 = !"
!!!!

 (SI 3).  198 

 199 

Stability and aggregate parameters  200 

 201 

As demonstrated through the ‘paradox of enrichment’ (Rosenzweig 1971), the Rosenzweig-202 

MacArthur model produces population cycles (oscillations) with increasing energy fluxes 203 

(Rip & McCann 2011). Therefore, the coexistence equilibrium can be stable or unstable, 204 

where dynamics oscillate around the unstable equilibrium (i.e., a limit cycle). The switch 205 

from stable to unstable dynamics occurs at a Hopf bifurcation. Theoretical studies have 206 

analysed this qualitative change (Yodzis & Innes 1992; Vasseur & McCann 2005; 207 

Amarasekare 2015) because these distinct stability regimes translate to different temporal 208 

dynamics, with oscillations leading to greater variability over time. We applied a stability 209 

metric that quantifies the tendency of the dynamics to oscillate (Johnson & Amarasekare 210 

2015).   211 

 212 

For our analyses we assumed dynamics had converged to the stable equilibrium or the limit 213 

cycle and determined the coexistence equilibria and the biomass ratio analytically (SI 1). 214 

Equilibrium means zero rate of change for both consumer and resource population biomasses. 215 
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For the limit cycle, this yields the unstable equilibrium which is approximately equal to the 216 

time-averaged biomass values along the limit cycle. Thus, we set equations (1) and (2) to 217 

zero, solved to yield the coexistence equilibrium and retrieved the biomass ratio:   218 

 219 

ℬ = !!
!!
= 𝑒𝑟 !" !!!! !!

!"# !!!!
  (3) 220 

 221 

In the model analysis we observed certain repeated parameter groupings (i.e., aggregate 222 

parameters) governed the dynamics (SI 1). Such aggregates have been previously used for the 223 

analysis of the Rosenzweig-MacArthur model (Yodzis & Innes 1992; Vasseur & McCann 224 

2005). The aggregates we selected represent ecological mechanisms which can be empirically 225 

measured. These are maximal energetic efficiency, 𝜌 = !
!!

,  and interaction strength, 226 

𝜅 = 𝑎ℎ𝐾 !
!!

− 1 . A closer look at ρ and κ elucidates their biological meaning.  !
!
 is the 227 

saturation value of the functional response and thus represents the maximum consumption 228 

rate, J. Hence, ρ can be written as:  229 

 230 

𝜌 = 𝑒
!"#$%&'(  
!""#$#%!&#'(
!""#$#!$%&

∗ 𝐽
!"#$!%!

!"#$%&'()"#  !"#$

∗
1
𝑚

!"#$%&'(  
!"#$%&'()  

!"##

=
𝑚𝑎𝑥𝑖𝑚𝑎𝑙  𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐  𝑔𝑎𝑖𝑛

𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐  𝑙𝑜𝑠𝑠    

 231 

ρ quantifies the energetic gain-to-loss ratio of the consumer population biomass assuming its 232 

maximum feeding rate is realised (i.e. unlimited resources). ρ was introduced by Yodzis and 233 

Innes (1992) as a key aggregate parameter to understand food web dynamics. In empirical 234 

studies, a variant of ρ termed energetic efficiency, y, has been often applied (Rall et al. 2010; 235 

Sentis et al. 2012, 2017). Unlike ρ, y is a function of the full functional response term and 236 
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hence also depends on resource density, 𝑦 = !∗!(!)
!

, where 𝑓 𝑅 = !"
!!!!!

 at a specified 237 

resource density, R.  238 

 239 

The second aggregate parameter, κ, can be rewritten in terms of the resource population 240 

density:  241 

 242 

𝜅 = 𝑎ℎ𝐾
𝑒
𝑚ℎ − 1 =

𝐾
𝑅!

 

 243 

κ is the ratio of the resource equilibrium density without consumers (carrying capacity) to the 244 

resource equilibrium density with consumers. κ quantifies the effect of the consumer 245 

population on the resource population and measures interaction strength (Berlow et al. 1999; 246 

Gilbert et al. 2014).  247 

 248 

Using ρ and κ we determine the conditions for positive resource (eq. 4) and consumer (eq. 5) 249 

densities, as well as the Hopf bifurcation (eq. 6) (SI 1):  250 

 251 

𝜌 > 1   (4) 252 

 253 

𝜅 > 1   (5) 254 

 255 

𝜅 − 𝜌 − 1 = 0  (6)  256 

 257 
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κ>1 requires that ρ>1 (SI 1). Hence, κ>1 defines the consumer feasibility boundary. We do 258 

not consider stochastic extinctions which may occur due to large-amplitude oscillations when 259 

population biomass reaches very low values.  260 

 261 

To determine stability, we adjusted the metric of Johnson and Amarasekare (2015) so that it 262 

vanished at the Hopf bifurcation (SI 4). This metric, 𝒮, defines stability solely in relation to 263 

the Hopf bifurcation.  264 

 265 

𝒮 = −
𝜅 − 𝜌 − 1
𝜌 − 1    

 266 

𝒮>0 corresponds to a stable equilibrium and 𝒮<0 to oscillations.  267 

 268 

Sensitivity analysis 269 

 270 

We performed a sensitivity analysis of the biomass ratio (Ɓ) and the stability metric (𝒮) with 271 

respect to the original model parameters (i.e., r, a, h, e and m). A sensitivity analysis 272 

quantifies the effect of an infinitesimal change in a parameter on the response variable. 273 

Typically, while one parameter is being perturbed, all others are assumed to remain constant  274 

and correlations between the parameters are not explicitly considered. However, this 275 

approach can be applied in cases of correlated parameter change without a loss of accuracy.  276 

As many environmental conditions (e.g. temperature) induce correlated changes in the 277 

parameters , then the sensitivity of the response variable (e.g. Ɓ or 𝒮) with respect to the 278 

environmental conditions can be reconstructed by combining the sensitivities of the 279 

individual parameters (SI 5.1). Different types of sensitivity indices exist such as simple 280 

sensitivity and elasticity (Manlik et al. 2018; Caswell 2019). Here we used elasticity for 281 
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biomass ratio (Ɓ) and an adjusted elasticity for stability (𝒮) (SI 5.1), both dimensionless to 282 

facilitate direct comparisons between parameter sensitivities.  283 

 284 

Elasticity is a proportional sensitivity, quantifying how a relative change in a parameter 285 

translates into a relative change in the variable; otherwise known as the log-scaled sensitivity 286 

(Manlik et al. 2018). Thus, the elasticity of Ɓ with respect to parameter x is given by:  287 

 288 

𝜕!ℬ =   
𝜕ℬ
ℬ
𝜕𝑥
𝑥
=
𝜕 ln ℬ
𝜕ln  (𝑥) 

 289 

If ∂xƁ=1, a relative increase of 10% in parameter x causes a relative increase of 10% in 290 

variable Ɓ. Conversely, ∂xƁ  =-­‐1 implies that a relative increase of 10% in parameter x results 291 

in relative decrease of 10% in Ɓ.  292 

 293 

For the sensitivity of the stability metric, 𝒮, we used a variation of the elasticity. We defined 294 

the sensitivity of 𝒮 as the incremental change in 𝒮 induced by a relative change in parameter 295 

x. Our adjustment was possible due to 𝒮 being dimensionless and it prevents sensitivities 296 

from diverging to infinity close to the Hopf bifurcation without altering the outcome of our 297 

analysis (SI 5.1).  298 

 299 

𝜕!𝒮 =
𝜕𝒮
𝜕𝑥
𝑥
=

𝜕𝒮
𝜕ln  (𝑥) 

 300 
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∂x𝒮=1   implies that a relative increase in parameter x of 10% translates into an absolute 301 

increase of 0.1 in 𝒮	
   and has a stabilising effect. If, conversely, ∂x𝒮=-­‐1, the same relative 302 

increase in x would lead to decrease of 0.1 in  𝒮 with a destabilising effect.  303 

 304 

The magnitude and sign of each sensitivity determine how strongly and in what direction the 305 

parameter perturbation impacts the variable, respectively. We used the magnitudes to rank the 306 

relative importance of all parameters. The sign provided qualitative information regarding the 307 

direction of change (increasing or decreasing the response variable).  308 

 309 

All sensitivities could be expressed in terms of ρ and κ. Hence, sensitivities are fully 310 

determined in a plane with of ρ and κ as axes (Fig. SI 5.1, 5.2). In this ρ-κ   plane the 311 

sensitivities of all parameters can be ranked by magnitude, splitting the parameter space into 312 

regions where different parameters have the highest, second highest, etc. sensitivity 313 

magnitude. Here, we present figures where the regions are determined by the top-two ranked 314 

sensitivities; we do not portray changes in the rankings of the lowest sensitivities (see Fig. SI 315 

5.4 and SI 5.5 for the complete biomass ratio and stability metric regions, respectively). The 316 

biomass ratio and stability metric have different sensitivity expressions and, therefore, 317 

produced different regions. For each variable, the regions remain fixed irrespective of the 318 

parameterisation used, because the sensitivity expressions stem from the model equations. 319 

The ρ-κ  plane provides additional information, such as the feasibility boundary (eq. 5) and 320 

the position of the Hopf bifurcation (eq. 6).  321 

 322 

Temperature parameterisations  323 

 324 
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To demonstrate the impacts of different parameter thermal dependencies, we implemented 325 

temperature parameterisations from the literature. Maintenance respiration rates, 𝑚, have 326 

been shown to increase exponentially with temperature (Brown et al. 2004). The Arrhenius 327 

equation is most often used to describe this thermal dependence (Vasseur & McCann 2005; 328 

Sentis et al. 2017; Uszko et al. 2017). However, the thermal response curves of resource 329 

growth rate, r, attack rate, a  , and handling time, h, have been represented either through the 330 

Arrhenius equation (Vasseur & McCann 2005; Binzer et al. 2016) or as unimodal functions 331 

(Amarasekare 2015; Uszko et al. 2017; Zhang et al. 2017; Uiterwaal & DeLong 2020; Zhao 332 

et al. 2020). Carrying capacity, K , and consumer assimilation efficiency, e, have a less clear 333 

connection to temperature (Uszko et al. 2017; Dee et al. 2020). We selected two 334 

parametrisations related to the ongoing debate surrounding the importance of including the 335 

decreasing part of the biological rates beyond the optimal temperature (Pawar et al. 2016) 336 

and used these as an illustrative comparison. The ‘unimodal’ model had a unimodal 337 

parameterisation for r, a (both hump-shaped) and h (U-shaped), the Arrhenius equation for m 338 

(increasing), and constant K and e (Uszko et al. 2017). We compared this to a ‘monotonic’ 339 

parameterisation where all thermal dependencies (r, a, m increasing; h, K decreasing) follow 340 

the Arrhenius equation and e is constant (Fussmann et al. 2014). Following this comparison, 341 

we plotted four additional parameterisations from the literature onto the ρ-κ  plane to broaden 342 

the comparison and demonstrate the simplicity of applying the approach to empirically-343 

derived measurements. These consisted of two similar monotonic parameterisations (Vucic-344 

Pestic et al. 2011; Binzer et al. 2016), one where only a was hump-shaped (Sentis et al. 345 

2012) and one which though monotonic, included some distinctive thermal dependencies – 346 

exponentially increasing K(T) and e(T) and constant h (Archer et al. 2019). We provide a 347 

description of the studies and details of their parameterisations in the supplementary material 348 

(SI 6).  349 
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 350 

We should note that not all parameterisations included the resource growth rate, r, so the 351 

biomass ratio could not be calculated in these cases. However, we could calculate ρ and κ 352 

and, hence, the biomass ratio elasticities for all parameterisations.  Thus, we could determine 353 

how biomass ratio sensitivities to individual parameters changed with warming regardless of 354 

the actual biomass ratio values. By including studies which had not measured resource 355 

growth or estimated the biomass ratio we broadened the scope of the comparison of the 356 

biomass ratio sensitivities. Though this does not represent an exhaustive list of 357 

parameterisations, we were restricted to parameterisations which could be used to parametrise 358 

the Rosenzweig-MacArthur model with a type II response and whose available parameters 359 

could yield ρ and κ. ‘Mild’ and ‘extreme’ temperatures, as well as ‘close’ or ‘far’ from 360 

consumer extinction, are defined relative to each parameterisation’s temperature range and 361 

feasibility boundaries, respectively. The feasible temperature range was determined by 362 

interaction strength (κ>1) with the temperature extremes corresponding to the point of 363 

consumer extinction. This condition assumes that resources have a broader thermal range 364 

than consumers (e.g., Rose & Caron 2007; West & Post 2016). If resources go extinct at 365 

temperatures consumers could withstand, then the feasibility boundary becomes dependent 366 

on resource growth rate, r (Amarasekare 2015). The parameterisations we present come from 367 

ectotherms, where environmental temperatures correspond to the organisms’ temperatures. 368 

However, our approach can be transferred to endotherms as it does not depend on a specific 369 

thermal parametrisation.  370 

 371 

Sensitivities depend on proximity to thermal boundaries 372 

 373 

Biomass ratio: always most sensitive to e and m  374 
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 375 

We analytically obtained four groups of biomass ratio elasticity magnitudes, ∂eƁ=|∂mƁ|, 376 

∂KƁ=∂aƁ, ∂rƁ and ∂hƁ. e and m always have the largest elasticity and hence the strongest 377 

relative impact on the biomass ratio (∂eƁ=|∂mƁ| >∂KƁ, ∂aƁ, ∂rƁ, |∂hƁ|, Table 1). Increasing e 378 

increases the biomass ratio  (∂eƁ  >0), increasing m reduces it (∂mƁ  <0). K and a have equal 379 

and positive elasticities (∂KƁ=∂aƁ>0), both increasing the biomass ratio. The elasticity of r 380 

is constant, ∂rƁ=1; a directly proportional positive effect on Ɓ. Increasing h reduces the 381 

biomass ratio, ∂hƁ<0. These are general results, independent of any model parameterisation 382 

(with temperature or otherwise) following directly from the Rosenzweig-MacArthur model’s 383 

equations.  384 

 385 

Biomass ratio: high r elasticity far from thermal boundaries 386 

 387 

Both the ‘unimodal’ and ‘monotonic’ temperature parameterisations produced a unimodal 388 

biomass ratio thermal dependence (Fig. 2). The unimodal parameterisation induced thermal 389 

boundaries to the community at both low (1℃) and high (33℃) temperatures (Fig. 2a). The 390 

biomass ratio exceeded 1 for most temperatures (higher consumer than resource biomass), 391 

peaked at 14℃ around Ɓ≈5.5 and decreased rapidly to 0 as it approached both thermal 392 

boundaries (low and high temperature extremes). The biomass ratio of the monotonic 393 

parameterisation (Fig. 2b) increased with warming from low temperatures, peaked at Ɓ≈0.19, 394 

before decreasing to 0 at high temperatures (27.5℃). The two parameterisations are derived 395 

from different systems, hence the different temperature ranges.  396 

 397 

In both parameterisations, sensitivity to e and m was highest throughout (Fig. 2c, d) - as 398 

expected from the analytical findings. Elasticities were split into two groups at mild 399 
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temperatures: e, m and r had the highest elasticity with ∂eƁ=|∂mƁ|≈∂rƁ=1, while a, h and K 400 

elasticities were very low. Approaching the temperature extremes all elasticities besides ∂rƁ 401 

diverged; ∂hƁ diverged faster than ∂KƁ=∂aƁ in the unimodal parameterisation (Fig. 2c), 402 

while the opposite occurred in the monotonic one (Fig. 2d).  403 

 404 

Expressing the elasticities in terms of ρ and κ (Table 1) reduces the sensitivity analysis to two 405 

dimensions. Ranking the elasticity magnitudes creates distinct regions in the ρ-κ plane which 406 

correspond to different elasticity ranking orderings and provide a mechanistic overview of 407 

which elasticities dominate where (Fig. 3a). e and m always have the highest elasticity, so the 408 

three regions reflect changes in the second highest-ranked elasticity. Regions adjacent to 409 

consumer extinction (κ=1) have high sensitivity to either h (red region) or to a and K (yellow 410 

region). r elasticity is highest in the region farthest from consumer extinction (orange region). 411 

The two temperature parameterisations were mapped onto this plane by calculating their ρ 412 

and κ values (Fig 3b and c). Despite the two trajectories being markedly different, both 413 

occupied the region where r ranked second highest for most temperatures. The unimodal 414 

parameterisation produced a unimodal trajectory, crossing the consumer extinction threshold 415 

at low and high temperatures (Fig. 3b). The monotonic parameterisation’s trajectory 416 

converged monotonically towards consumer extinction with increasing temperature (Fig. 3c).  417 

 418 

All other parameterisations from the literature also occupied the region of high r elasticity for 419 

most temperatures, far from their thermal boundaries (Fig. 4). Three monotonic 420 

parameterisations produced monotonic trajectories (Fig. 4a, b, c) which started in the region 421 

of high r elasticity and converged monotonically towards consumer extinction (κ=1). With a 422 

hump-shaped thermal dependence of attack rate, a unimodal trajectory emerged (Fig. 4d). At 423 

low temperatures it occupied the region of high  𝑟 elasticity but moved away from consumer 424 
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extinction. With further warming, the trajectory switched direction and followed the same 425 

path as the monotonic parameterisations, crossing the consumer extinction boundary. A 426 

unimodal thermal dependence for attack rate (hump-shaped) and handling time (U-shaped) 427 

(Fig. 4e), induced extinctions at low and high temperatures imposing a unimodal trajectory. 428 

Unlike all previous parameterisations, the trajectory crossed the extinction threshold in the 429 

region of high h elasticity. The final parameterisation, though monotonic, yielded unimodal 430 

trajectories (Fig. 4f). A monotonically increasing K(T) (as opposed to decreasing in the other 431 

monotonic parameterisations and constant in the unimodal ones) initially forced the trajectory 432 

away from consumer extinction, albeit within the region of high r elasticity. Consumer 433 

energetic efficiency ρ decreased, pushing consumers towards extinction, thus forcing an 434 

abrupt decline towards the consumer boundary.  435 

 436 

Stability most sensitive either to 𝑒  and 𝑚 or to 𝑎 and 𝐾  437 

 438 

Similarly to the biomass ratio, the analytical approach for the stability sensitivities yielded 439 

results conserved independently of the temperature parameterisations (Table 1): equal 440 

sensitivity magnitudes pairwise for e and m and for a and K (i.e., |∂e𝒮|=∂m𝒮  and |∂K𝒮|=|∂a𝒮|), 441 

negative stability sensitivities of e, a and K (∂e𝒮,   ∂a𝒮,   ∂K𝒮<0) implying they destabilise 442 

dynamics, a positive sensitivity of m (∂m𝒮>0) indicating a stabilising effect. h can be either 443 

stabilising or destabilising and r does not affect the stability regime (∂r𝒮=0).  444 

 445 

The unimodal temperature parameterisation exhibited oscillations (𝒮<0) over most 446 

temperatures (Fig. 5a). Only at low and high thermal extremes did dynamics briefly stabilise 447 

prior to consumer extinction. The monotonic temperature parametrisation produced 448 

oscillations at low temperatures (𝒮<0), crossed a Hopf bifurcation at 17℃ and dynamics 449 
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were stable (𝒮>0) thereafter (Fig. 5b). In both cases, stability close to consumer extinction 450 

was most sensitive to consumer assimilation efficiency, e, and metabolism, m, (|∂e𝒮|=∂m𝒮) 451 

followed by handling time, h (Fig. 5c, d). Moving away from the thermal boundaries, attack 452 

rate, a, and carrying capacity, K, increased in relative importance. Furthest away from the 453 

thermal boundaries, stability was most sensitive to changes a and K, followed by h. Even 454 

though ∂h𝒮  did not rank highest in any temperature range, it was a close second both at the 455 

temperature extremes (second to |∂e𝒮|=∂m𝒮) or furthest away from them (second to 456 

|∂K𝒮|=|∂a𝒮|). Additionally, h switched from destabilising at mild temperatures (∂h𝒮<0) to 457 

stabilising (∂h𝒮>0) close to the temperature extremes (Fig. 5c, d, Fig. S5.2). 458 

 459 

The ρ-­‐κ  plane for the stability metric was split into four regions; in two regions closest to 460 

consumer extinction, |∂e𝒮|=∂m𝒮   were the largest sensitivities (Fig. 6a, red and yellow 461 

regions) and in the two regions furthest from consumer extinction, |∂K𝒮|=|∂a𝒮|ranked highest 462 

(Fig. 6a, green and blue regions). Additionally, the Hopf bifurcation (Fig. 6a, dashed curve) 463 

split the plane into stable equilibrium and oscillation regions. Corresponding to the general 464 

findings, stability in the two reference (‘unimodal’ and ‘monotonic’) parameterisations was 465 

most sensitive to changes in e and m   at the thermal extremes - close to consumer extinction - 466 

and to a and K at milder temperatures – far from consumer extinction (Fig. 6b, c). The 467 

unimodal trajectory occupied the region of oscillations for most temperatures, crossing the 468 

Hopf bifurcation twice close to consumer extinction, once at low and once at high 469 

temperatures (Fig. 6b, blue region). The monotonic trajectory started in the region of 470 

oscillations and moved into the stable region with warming, crossing the Hopf bifurcation far 471 

from the thermal extreme (Fig. 6c, yellow region). 472 

 473 

Parameter thermal dependencies impact warming-stability relationships 474 
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 475 

Plotting the other temperature parameterisations’ trajectories onto the ρ-κ plane reproduced 476 

the same patterns with respect to the stability metric’s sensitivity (Fig. 7): stability was most 477 

sensitive to e and m at the thermal extremes and to a and K far from the extremes. 478 

Significantly, the trajectories revealed the impact of the thermal dependence shape of 479 

individual parameters on the warming-stability relationship. In three monotonic 480 

parameterisations, warming stabilised the dynamics (Fig. 7 a, b, c). In the cases, when 481 

oscillations did take place, these occurred at low temperatures (Fig 7a resident prey, b, c) and 482 

dynamics crossed the Hopf bifurcation far from the thermal boundary. In the case with two 483 

enrichment levels (Fig. 7c), the high enrichment scenario required higher temperatures to 484 

stabilise the dynamics. For the unimodal trajectory with hump-shaped attack rate (Fig. 7d), 485 

warming at low temperatures pushed the dynamics towards (low enrichment) or deeper into 486 

(high enrichment) the region with oscillations (i.e., destabilised dynamics). Here too, the 487 

destabilising impact of enrichment was evident. However, further warming switched the 488 

direction of the trajectory. Subsequently, both ρ and κ decreased. κ   declined much faster, 489 

forcing the dynamics towards the stable region and eventually consumer extinction. Both the 490 

switch in the trajectory direction and the Hopf bifurcation (high enrichment scenario) 491 

occurred at mild temperatures, in the region of high a and K sensitivity. In the 492 

parameterisation with both a (hump-shaped) and h (U-shaped) unimodal (Fig. 7e), the Hopf 493 

bifurcation occurred close to the thermal boundaries, where κ  increased (low temperatures) or 494 

decreased (high temperatures) much faster than ρ. The dynamics were oscillatory for most 495 

temperatures, with the switch in the trajectory’s direction occurring in the region of highest 496 

sensitivity to a and K. The final parameterisation’s trajectories were characterised by a 497 

negative relationship between ρ and κ (Fig. 7f). Driven by the positive thermal dependence of 498 
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carrying capacity, warming increased κ and destabilised dynamics which oscillated for most 499 

temperatures.  500 

 501 

Discussion 502 

 503 

Research on the impacts of warming on consumer-resource interactions has yielded mixed 504 

results (Vasseur & McCann 2005; Englund et al. 2011; Rall et al. 2012; Gilbert et al. 2014; 505 

Uszko et al. 2017). Resolving this debate and improving predictions has become even more 506 

pressing as most ecosystems face increased temperatures (Easterling et al. 2000; Walther et 507 

al. 2002; Root et al. 2003; Parmesan 2006). Here, we developed an approach to improve and 508 

simplify predictions on the impacts of warming on consumer-resource interactions. This 509 

approach integrates two pathways: (1) a sensitivity analysis to identify the key biological 510 

parameters whose variations have the largest relative impact on community properties at a 511 

given temperature, and (2) aggregate parameters (maximal energetic efficiency, ρ, and 512 

interaction strength, κ) to increase explanatory power. We used the Rosenzweig-MacArthur 513 

model with a type II functional response, and applied the approach to consumer-resource 514 

biomass ratio and a stability metric quantifying the propensity for oscillations (Johnson & 515 

Amarasekare 2015). Therefore, our insights apply to study systems well-described by the 516 

Rosenzweig-MacArthur model. Our analyses revealed that the relative significance of 517 

different parameter groupings is determined by the proximity of the consumer to its thermal 518 

boundaries. We, further, elucidated how differences in the shape of the thermal dependence 519 

curves of individual parameters qualitatively impact predictions. We used empirically-520 

derived thermal dependence curves of biological parameters from the literature to illustrate 521 

this. 522 

 523 
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We focus our discussion on the formulation of four testable predictions arising from our 524 

results. For each prediction, we present its implications and rationale. Then, we discuss the 525 

empirical measurement of the aggregate parameters and present important subtleties and 526 

potential extensions of our approach.  527 

 528 

Prediction 1: Resource growth rate regulates biomass distribution at mild temperatures  529 

 530 

Implications: We showed that the relative dominance of consumer assimilation efficiency, 531 

metabolism and resource growth rate in driving changes in biomass distributions should 532 

manifest itself in any consumer-resource community far from its feasibility boundaries, 533 

assuming these communities are well-described by the Rosenzweig-MacArthur model (Fig. 534 

3a). Due to the agreement about the thermal dependence of metabolism (Rall et al. 2010; 535 

Fussmann et al. 2014; Uszko et al. 2017) and the negligible -if any- change of assimilation 536 

efficiency with warming (Dell et al. 2011), differences in the thermal performance curve of 537 

resource growth rate will strongly impact biomass ratio predictions. Therefore, improved 538 

predictions about the impacts of warming on biomass distributions at mild temperatures 539 

necessitate the accurate description of the thermal dependence of resource growth rate.  540 

 541 

Reasoning: Far from the community thermal boundaries, consumer assimilation efficiency, 542 

metabolism and resource growth rate always had the greatest elasticity with an almost equal 543 

relative impact on biomass ratio (∂eƁ=|∂mƁ|≈∂rƁ=1, Fig. 2c, d and Fig. S5.1). Increasing 544 

metabolism reduced biomass ratios (Table 1), which is likely to be a universal response 545 

across ecosystems, given the positive exponential dependence of metabolism on temperature 546 

across organisms (Gilooly et al. 2001; Brown et al. 2004; Rall et al. 2012 but see Ehnes et al. 547 

2011). Conversely, assimilation efficiency increased biomass ratios but has either been 548 
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assumed to be unaffected by temperature changes (Vasseur & McCann 2005; Sentis et al. 549 

2017; Uszko et al. 2017) or has yielded a weak temperature-dependence (Wurtsbaugh & 550 

Davis 1977; Handeland et al. 2008; Lang et al. 2017; Daugaard et al. 2019) with negligible 551 

change compared to other parameters. Increasing resource growth rate also increased the 552 

biomass ratio. However, evidence on the shape of resource growth’s thermal response 553 

remains inconclusive: it can either increase exponentially with temperature (Savage et al. 554 

2004) or decrease abruptly beyond the thermal optimum (Dannon et al. 2010; Thomas et al. 555 

2012). Since the biomass ratio is directly proportional to the resource growth rate (∂rƁ=1, 556 

Table 1), it will be strongly affected by the values and shape of the resource growth rate 557 

thermal performance curve. Given the consensus surrounding the temperature-dependence of 558 

metabolism and the minor scale of potential change in assimilation efficiency with 559 

temperature, our findings emphasise the significance of correctly parameterising the resource 560 

growth rate when aiming to predict biomass distribution changes due to warming at mild 561 

temperatures. 562 

 563 

Prediction 2: Interaction strength determines consumer survival with increasing 564 

temperatures. 565 

 566 

Implications: If resources have a broader thermal range compared to consumers (Rose & 567 

Caron 2007; West & Post 2016), the thermal boundaries of the community can be determined 568 

by measuring solely the thermal dependence of interaction strength, κ. This quantity — the 569 

ratio of the resource equilibrium density without consumers (carrying capacity) to the 570 

resource equilibrium density with consumers	
  — can be determined experimentally (Berlow et 571 

al. 2004) or through observations, facilitating predictions and cross-system comparisons 572 

thereof.  573 
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 574 

Reasoning: Close to the consumer extinction boundary, consumer survival becomes 575 

extremely sensitive to all parameters apart from resource growth (Fig. 2, S5.1), making 576 

accurate predictions challenging. Currently, consumer survival has been inferred through 577 

energetic efficiency — the effective energetic gain of consumers at a certain resource density 578 

—  which requires determining the thermal dependence of the functional response (Vucic-579 

Pestic et al. 2011; Archer et al. 2019). Not only is the functional response’s thermal 580 

dependence hotly contested (Uszko et al. 2017; Uiterwaal & DeLong 2020), but this 581 

uncertainty will be exacerbated by its extremely high sensitivity at the community’s thermal 582 

boundaries. We showed there exists an alternative, empirically more direct and theoretically 583 

more robust metric to determine consumer survival, and hence community feasibility. 584 

Interaction strength — the relative values of resource equilibrium without and with 585 

consumers (Berlow et al. 1999, 2004; Gilbert et al. 2014) — provides the necessary condition 586 

for consumer survival (κ>1), when resources are thermal generalists compared to consumers. 587 

This provides an accurate threshold and represents a measurable quantity that can be 588 

standardised across experimental designs and study systems (Berlow et al. 2004). 589 

 590 

Prediction 3: Warming reduces community stability at low and mild temperatures  591 

 592 

Implications: This prediction rests on important assumptions: that resources have a broader 593 

thermal range, that  organisms currently experience temperatures below their optima (Pawar 594 

et al. 2016) and that the functional response is of type II with a unimodal thermal dependence 595 

(Rall et al. 2012; Sentis et al. 2012; Kuiters 2013; West & Post 2016; Uszko et al. 2017; 596 

Uiterwaal & DeLong 2020). We deem these assumptions realistic based on the literature; 597 
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therefore, we argue that consumer-resource interactions at low and mild temperatures will be 598 

destabilised by warming. At higher temperatures, warming should always enhance stability. 599 

 600 

Reasoning: Stability in the context of consumer-resource interactions has predominantly 601 

referred to a qualitative distinction between stable and oscillating dynamics (Rosenzweig & 602 

MacArthur 1963; Yodzis & Innes 1992; Vasseur & McCann 2005). We based our analysis on 603 

an adjusted stability metric which quantifies the tendency of dynamics to oscillate (Johnson 604 

& Amarasekare 2015, SI 4). When comparing existing temperature parameterisations, we 605 

found that in most monotonic parameterisations (increasing metabolism and attack rate, 606 

decreasing handling time and carrying capacity, assimilation efficiency constant), warming 607 

always (i.e., monotonically) stabilised dynamics (Fig. 7a, b, c). The single exception arose 608 

when warming and carrying capacity increased simultaneously, which destabilised dynamics 609 

(Fig. 7f). Carrying capacity has been described as a proxy for enrichment and its destabilising 610 

effect has been established whether independently of temperature (Rosenzweig 1971) or as 611 

antagonistic to warming (Binzer et al. 2016). When at least one parameter in the functional 612 

response had a unimodal thermal dependence (i.e., hump-shaped attack rate or U-shaped 613 

handling time), this yielded a unimodal warming-stability relationship (Fig. 7d, e). 614 

Significantly, the divergence between the unimodal and (most) monotonic parameterisations 615 

in the predicted effect of warming on stability manifested itself at low or mild, rather than 616 

high temperatures (Fig. 6, 7). This pattern originates in the impact of the parameters with 617 

unimodal thermal dependencies on stability. Attack rate is destabilising (Table 1, McCann 618 

2011). Thus, a hump-shaped thermal dependence of attack rate destabilises dynamics with 619 

warming below the thermal optimum and stabilises dynamics beyond it. Handling time is 620 

stabilising close to the thermal extremes (Fig. 6c, S5.2). A U-shaped handling time will 621 

rapidly decrease with warming from low temperatures, which is strongly destabilising; a 622 
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corresponding steep increase at high temperatures produces a strong stabilising effect. Thus, 623 

warming at high temperatures will always be stabilising. However, at lower temperatures, 624 

unimodal and monotonic thermal dependencies produce contrasting warming-stability 625 

relationships. Therefore, the thermal dependence shape of the functional response combined 626 

with the temperatures currently experienced by communities relative to their optimal 627 

temperature will determine the impact of warming on stability (Betini et al. 2019). 628 

 629 

Prediction 4: Warming stabilises dynamics only when interaction strength decreases faster 630 

than maximal energetic efficiency 631 

 632 

Implications: The combination of ρ — the energetic gain-to-loss ratio of consumers given 633 

unlimited resources	
  — and κ — interaction strength	
  — accurately describes the warming-634 

stability relationship with no recourse to the thermal dependence shapes of individual 635 

parameters, the current temperatures relative to the thermal optima, or the proximity to the 636 

thermal boundaries of the community. Therefore, differential responses of resources and 637 

consumers to warming (Dell et al. 2014) will be encompassed by the thermal dependence of 638 

the aggregates – assuming the consumer-resource system is well-described by the 639 

Rosenzweig-MacArthur model. The Hopf bifurcation condition (eq. 6) dictates that κ should 640 

decrease faster than ρ for warming to stabilise consumer-resource interactions. Thus, 641 

measuring ρ and κ directly can increase the accuracy of warming-stability predictions and 642 

simplify cross-system comparisons. 643 

 644 

Reasoning: Decreasing energetic efficiency or interaction strength have been considered 645 

equivalent to increasing stability (Rall et al. 2008, 2010; Sentis et al. 2012). Thus, estimates 646 

of consumer energetic efficiency or interaction strength based on empirically-derived thermal 647 
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dependence curves of individual rates (e.g. ingestion rate, attack rate, metabolic rate) have 648 

been used to infer the impacts of warming on stability (Rall et al. 2010, 2012; Vucic-Pestic et 649 

al. 2011; Fussmann et al. 2014). However, this raises two significant issues. On the one hand, 650 

even subtle changes in the thermal dependence shapes of individual parameters can yield all 651 

possible outcomes (Amarasekare 2015). On the other hand, reducing the analysis of stability 652 

to a single aggregate parameter has limitations. Gilbert et al. (2014) described the warming-653 

stability relationship with a single aggregate, interaction strength, but their approach was 654 

based on a type I functional response and its predictions do not work well in type II or III 655 

scenarios (Uszko et al. 2017). Johnson and Amarasekare (2015) and Amarasekare (2015) 656 

attained a single aggregate parameter to reduce the complexity of their explorations; 657 

however, this lacks descriptive power of the dynamics close to the community’s thermal 658 

boundaries (SI 4). Our analysis in the ρ-κ plane suggests that stability cannot be reduced to a 659 

single aggregate parameter nor does a decrease in either one or both of ρ and κ suffice to 660 

stabilise dynamics. In fact, both ρ and κ can decrease with warming while dynamics become 661 

destabilised. A stabilising effect of warming requires not only a concurrent reduction in ρ and 662 

κ, but also the latter to decrease faster. Critically, both ρ and κ represent biological quantities 663 

which can be consistently measured across study systems.  664 

 665 

Working with the aggregate parameters  666 

 667 

Working directly with the two aggregate parameters, maximal consumer energetic efficiency, 668 

ρ, and interaction strength, κ, can simplify empirical measurements and improve the accuracy 669 

of theoretical predictions, particularly for field data and experiments, as we argue below. To 670 

determine the thermal dependence of maximal consumer energetic efficiency and interaction 671 

strength, one can measure consumer population growth given unlimited resources and 672 
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resource population density in presence and absence of consumers at different temperatures, 673 

respectively. These measurements can be performed in the lab and the field. Interaction 674 

strength is commonly determined in field experiments where consumers are excluded 675 

(Berlow et al. 2004; Wootton & Emmerson 2005; Novak 2010; Estes et al. 2011). Consumer 676 

energetic gain-to-loss ratio under effectively unlimited resources is more rarely estimated. 677 

However, it can be derived from consumer population net growth and metabolism and 678 

mortality, quantities measured commonly in the field and in the lab (Hanson & Peters 1984; 679 

Stemberger & Gilbert 1985; Lampert et al. 1986). Moreover, confounding factors in field 680 

measurements of the population-level aggregates should generate less uncertainty compared 681 

to that of measuring multiple individual parameters, where uncertainty propagates and often 682 

generates large uncertainty in model predictions (e.g. Sentis et al. 2015). Therefore, working 683 

directly with the aggregate parameters can be both simpler and lead to more accurate 684 

predictions in the field. On the other hand, measuring the individual parameters in the lab has 685 

well-established protocols and a history of reliable outputs, with measurements requiring only 686 

short-term experiments as opposed to the aggregates. 687 

 688 

The choice between measuring the aggregate or the individual parameters will be informed 689 

by the questions and objectives of each study. The aggregates describe population-level 690 

mechanisms of consumer-resource interactions, while the individual parameters correspond 691 

to physiological or behavioural processes of individual organisms scaled up to the population 692 

level. As we argued, the aggregates can provide more accurate predictions for field 693 

measurements whereas individual parameters can be accurately measured in the lab. This 694 

does raise the question whether measurements in a controlled laboratory environment can 695 

represent noisier conditions in the field. It would be useful to compare directly measured 696 
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aggregate parameters to aggregate parameter values derived from the individual parameters 697 

to determine how well predictions based on individual rates capture the dynamics of the 698 

system. Regardless of the choice, our approach provides the tools for both pathways: studies 699 

working with individual parameters will benefit from identifying the most important 700 

parameters to measure, while aggregate parameter datapoints can be directly mapped onto the 701 

ρ-κ landscape.  702 

 703 

Subtleties and extensions 704 

 705 

The sensitivity analysis quantified the sensitivity of the model variables to infinitesimal 706 

parameter changes. Therefore, applying its insights to data should take into consideration the 707 

scales of parameters in the temperature range of interest and potential uncertainties in the 708 

parameter estimates (Manlik et al. 2018, Fig. Sx). Hence, our argument for the reduced 709 

significance of the thermal dependence of assimilation efficiency in driving changes in 710 

biomass distributions, despite its high sensitivity.  711 

 712 

Regarding the stability of consumer-resource interactions, the ρ-κ plane helped visualise the 713 

stabilising effect of a type III functional response (Fig. S2.1), which has both theoretical and 714 

empirical support (Sarnelle & Wilson 2008; Kalinkat et al. 2013; Uszko et al. 2017; 715 

Daugaard et al. 2019). For the type II response, the defining role of the functional response 716 

(attack rate) and  the carrying capacity has been widely documented (Rosenzweig 1971; 717 

Amarasekare 2015; Johnson & Amarasekare 2015; Binzer et al. 2016); we add the important 718 

caveat that this is the case only far from consumer extinction (Fig. 6a).  719 

 720 
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Finally, relaxing certain assumptions can extend our approach. Considering the scenario 721 

where the consumer has a broader thermal niche relative to that of the resource will make the 722 

thermal limits of coexistence dependent on resource growth (Amarasekare 2015). 723 

Considering the extinction of populations with very low abundances to account for stochastic 724 

extinctions can define a realisable coexistence range within the feasible parameter space. 725 

Breaking down the original model parameters (e.g. handling time includes the handling and 726 

ingestion of prey) could facilitate our understanding of the role of more fundamental 727 

physiological processes in the dynamics. Finally, climate change will lead to stronger 728 

fluctuations in temperatures (IPCC 2013), which have been shown to alter predictions in 729 

consumer-resource dynamics (Vasseur et al. 2014; Dee et al. 2020). This makes the inclusion 730 

of temperature variability an important next step.  731 

 732 

Conclusions  733 

 734 

Warming will have significant, but as yet uncertain impacts on consumer-resource 735 

interactions which underpin the structure and functioning of ecosystems. We presented an 736 

approach that will help to improve the accuracy of predictions and reconcile divergent results 737 

by facilitating cross-system comparisons. This approach first determines the parameters 738 

whose variations have the largest effect on community properties. Second, it simplifies 739 

analyses to a two-dimensional plane of mechanistically tractable aggregate parameters; 740 

maximal consumer energetic efficiency and interaction strength. Applying it to consumer-741 

resource biomass ratio and stability, we showed that close to the consumer extinction 742 

boundary (i.e., at temperature extremes) both variables are most sensitive to changes in 743 

consumer assimilation efficiency and metabolism. Far from the boundary (i.e., mild 744 

temperatures), biomass ratio is most sensitive to resource growth rate, consumer assimilation 745 
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efficiency and metabolism. This yielded our first prediction, that resource growth rate 746 

regulates biomass distributions at mild temperatures. The consensus around the thermal 747 

dependence of metabolism and the limited potential impact of warming on assimilation 748 

efficiency, underscore the importance of correctly measuring the thermal dependence of 749 

resource growth rate. Using the two aggregate parameters also simplified the study of 750 

important properties of consumer-resource interactions. From this followed our second 751 

prediction, that the thermal boundaries of the community are defined by interaction strength 752 

alone. In terms of stability, we demonstrated that a unimodal thermal dependence of attack 753 

rate or handling time alters predictions of warming-stability relationships below the thermal 754 

optimum, where many organisms may be currently living. Hence our third prediction, that 755 

initial increases in mean temperatures will destabilise consumer-resource interactions. 756 

Significantly, our approach elucidates how the thermal dependence of stability can be 757 

comprehensively characterised by maximal energetic efficiency and interaction strength 758 

values. This produced our fourth prediction; a faster reduction of interaction strength than of 759 

maximal energetic efficiency with warming is necessary for dynamics to stabilise. Finally, we 760 

demonstrated the potential for targeted experiments to measure the thermal dependencies of 761 

maximal energetic efficiency and interaction strength to improve predictions. Ultimately, we 762 

show that any temperature parameterisation fitted to the Rosenzweig-MacArthur model can 763 

be mapped onto the aggregate parameter plane, revealing its stability landscape, providing a 764 

mechanistic interpretation for its predictions and allowing for the cross-system comparison of 765 

these predictions. 766 
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Tables and Figures 955 

 956 

Table 1. Sensitivities of the biomass ratio (∂xƁ)  and of the stability metric (∂x𝒮) with respect 957 

to the six original model parameters. All sensitivities are expressed in terms of ρ and κ. 958 

 959 
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Consumer-resource biomass 
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 960 

 961 

 962 

Figure 1. Illustration of the current and new dual approaches to predict the impact of global 963 

change drivers on community properties. 1) Predictions require a consumer-resource model; 964 

the Rosenzweig-MacArthur model (Rosenzweig & MacArthur 1963) or its bioenergetic 965 

equivalent (Yodzis & Innes 1992) have been used most commonly for ectotherm consumer-966 

resource pairs. 2a) The current approach is to experimentally measure the response of 967 

parameters along an environmental gradient, e.g. the thermal dependence of the resource 968 

population maximal growth rate with critical temperatures, CTmin, CTmax, and the thermal 969 
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optimum, Topt. These measurements are used to parameterise the model. Importantly, not all 970 

parameters are measured, but rather those which are considered significant (e.g. consumer 971 

feeding and metabolic rates for warming-stability relationships). Assuming the remaining 972 

parameter values, the model is then used to generate predictions. 2b) Our new dual approach 973 

aims to increase the accuracy of predictions and facilitate their comparison. First a sensitivity 974 

analysis determines which parameters have the greatest relative impact on the community 975 

property of interest along the environmental gradient. Then, aggregate parameters which 976 

represent biologically measurable quantities are used to express all sensitivities and 977 

determine the dynamics. Collapsing analyses to the two aggregate parameters reduces 978 

complexity and increases mechanistic tractability. This facilitates the choice of which 979 

parameters need to be measured. 3) Through the empirical determination of the most 980 

appropriate parameters (either from the original model parameters of the aggregate 981 

parameters themselves) and the reduction in the number of measurements required, prediction 982 

accuracy improves. The advantages of the new dual approach are twofold. First, as the 983 

sensitivity analysis will have identified the most impactful parameters, the source of 984 

divergence in predictions can be isolated. Second, the aggregates represent standardised 985 

measurable population-level indicators across systems, making theoretical or empirical 986 

predictions directly comparable. 987 
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 988 

 989 

Figure 2. Consumer-resource biomass ratios for the (a) unimodal and (b) monotonic 990 

parametrisations along the temperature gradient. Feasible temperature ranges are constrained 991 

by the condition of positive biomass densities for both consumer and resource (grey areas 992 

correspond to consumer extinction). The different background colours correspond to different 993 

elasticity rankings of model parameters (see legend). Panels (c) and (d) provide the values of 994 

the six parameter elasticities along the temperature gradient for the unimodal and monotonic 995 

parameterisations, respectively.  996 

 997 
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 998 

Figure 3. (a) Biomass ratio elasticity rankings in the ρ-κ plane. The plane is split into regions 999 

(different colours) which correspond to different parameters having the top-two largest 1000 

elasticities. These regions have been derived from the analytic expressions of the elasticities 1001 

(Table 1). e and m elasticities always rank first. Close to consumer extinction h ranks second 1002 

highest at low ρ (ρ < 2, red region) and a and K at higher ρ (ρ > 2, yellow region). r ranks 1003 

second highest far from consumer extinction (orange region). The plane includes the 1004 

feasibility boundary (κ=1) and the Hopf bifurcation (dotted curve splitting the plane into 1005 

stable equilibrium and oscillations). For the (b) unimodal and (c) monotonic 1006 

parameterisations from the literature, the thermal dependencies of 𝜌 = !
!!

 and 𝜅 = !
!!

 were 1007 

calculated. This yielded a trajectory for each parameterisation (solid black line). The paths of 1008 

the trajectories demonstrate the elasticity of the biomass ratio along the temperature gradient 1009 

for each parameterisation.   1010 
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 1011 

Figure 4. Trajectories of the six empirical temperature parameterisations in the ρ-κ plane: a) 1012 

Vucic-Pestic et al. (2011) with six different experiments – three predator size-classes and two 1013 

types of prey, b) Fussmann et al. (2014), c) Binzer et al. (2016) with two levels of 1014 

enrichment, d) Sentis et al. (2012), with two levels of enrichment, e) Uszko et al. (2017), f) 1015 

Archer et al. (2019) with two prey types and three measurements. (a), (b) and (c) have 1016 

monotonic thermal dependences for a, m (increasing) and h, K (decreasing), and a constant e. 1017 

(d) has a unimodal thermal performance curve for a (hump-shaped), constant e and K, 1018 

monotonic h (decreasing) and m (increasing). (e) has a unimodal (U-shaped) h and a (hump-1019 

shaped) thermal dependence, constant e and monotonic K, m (increasing). (f) has monotonic 1020 

a, K, m, e (increasing) and h constant. All parameter values are detailed in SI 4. The coloured 1021 

regions demonstrate the different biomass ratio sensitivity rankings (see legend in Fig. 3a). 1022 

The trajectories (solid black lines) for each parameterisation are derived from calculating the 1023 

thermal dependence of 𝜌 = !
!!

 and 𝜅 = !
!!

 (see Temperature dependencies and 1024 

parameterisations for details).  1025 



47	
  
	
  

 1026 

 1027 

Figure 5. The thermal dependence of the stability metric, 𝒮, for the (a) unimodal and (b) 1028 

monotonic parameterisations. 𝒮 >0corresponds to stable dynamics, 𝒮	
  <0 to oscillations. 𝒮	
  1029 

=0 (dotted line) corresponds to the Hopf bifurcation. The coloured temperature ranges 1030 

highlight regions of different sensitivity rankings.  For temperatures beyond the community 1031 

feasibility boundaries the areas are greyed out. In (c) and (d) the sensitivity to each parameter 1032 

is plotted along the temperature gradient for the unimodal and monotonic parameterisations, 1033 

respectively. 1034 
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 1035 

Figure 6. (a) Stability metric sensitivity rankings in the ρ-κ plane. The plane is split into 1036 

regions (different colours) which correspond to different parameters having the top-two 1037 

largest sensitivities. These regions have been derived from the analytic expressions of the 1038 

elasticities (Table 1). e and m rank first close to consumer extinction; h ranks second highest 1039 

closest to consumer extinction (red region). The sensitivity of stability to a and K increases 1040 

moving away from consumer extinction. a and K sensitivity ranks second (yellow region), 1041 

and then first moving further away. Initially e and m rank second (green region) before h 1042 

becomes significant (blue region). The plane includes the feasibility boundary (κ=1) and the 1043 

Hopf bifurcation (dotted curve splitting the plane into stable equilibrium and oscillations). 1044 

For the (b) unimodal and (c) monotonic parameterisations from the literature, the thermal 1045 

dependencies of 𝜌 = !
!!

 and 𝜅 = !
!!

 were calculated. This yielded a trajectory for each 1046 

parameterisation (solid black line). The paths of the trajectories demonstrate the dynamical 1047 

regime and the sensitivity of the stability metric along the temperature gradient for each 1048 

parameterisation.   1049 
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 1050 

 1051 

Figure 7. Trajectories of the six empirical temperature parameterisations in the ρ-­‐κ  plane: a) 1052 

Vucic-Pestic et al. (2011) with six different interaction experiments – three predator size-1053 

classes and two types of prey, b) Fussmann et al. (2014), c) Binzer et al. (2016) with two 1054 

levels of enrichment, d) Sentis et al. (2012), with two levels of enrichment, e) Uszko et al. 1055 

(2017), f) Archer et al. (2019) with two prey types and three measurements. (a), (b) and (c) 1056 

have monotonic thermal dependences for a, m (increasing) and h, K (decreasing), and a 1057 

constant e. (d) has a unimodal thermal performance curve for a (hump-shaped), constant e 1058 

and K, monotonic h (decreasing) and m (increasing). (e) has a unimodal (U-shaped) h and a 1059 

(hump-shaped) thermal dependence, constant e and monotonic K, m (increasing). (f) has 1060 

monotonic a, K, m, e (increasing) and h constant. All parameter values are detailed in SI 4. 1061 

The coloured regions demonstrate the different biomass ratio sensitivity rankings (see legend 1062 

in Fig. 6a). The trajectories (solid black line) for each parameterisation are derived from 1063 

calculating the thermal dependence of 𝜌 = !
!!

 and 𝜅 = !
!!

. Therefore, trajectories do not 1064 

change with the variable of interest; the sensitivity regions do.  1065 


