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Abstract

We study the properties of spin-less non-interacting fermions trapped in a confining
potential in one dimension but in the presence of one or more impurities which are
modelled by delta function potentials. We use a method based on the single particle
Green’s function. For a single impurity placed in the bulk, we compute the density of the
Fermi gas near the impurity. Our results, in addition to recovering the Friedel oscillations
at large distance from the impurity, allow the exact computation of the density at short
distances. We also show how the density of the Fermi gas is modified when the impurity is
placed near the edge of the trap in the region where the unperturbed system is described
by the Airy gas. Our method also allows us to compute the effective potential felt by the
impurity both in the bulk and at the edge. In the bulk this effective potential is shown to
be a universal function only of the local Fermi wave vector, or equivalently of the local
fermion density. When the impurity is placed near the edge of the Fermi gas, the effective
potential can be expressed in terms of Airy functions. For an attractive impurity placed
far outside the support of the fermion density, we show that an interesting transition
occurs where a single fermion is pulled out of the Fermi sea and forms a bound state
with the impurity. This is a quantum analogue of the well-known Baik-Ben Arous-Péché
(BBP) transition, known in the theory of spiked random matrices. The density at the
location of the impurity plays the role of an order parameter. We also consider the
case of two impurities in the bulk and compute exactly the effective force between them
mediated by the background Fermi gas.
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1 Introduction

Noninteracting fermions in a confining trap is a topic of much current interest, especially in the
context of cold atom where important experimental advances have been made over the last
few decades [1–5]. In the presence of a trap, the density of the Fermi gas in the ground state
is confined in a finite region of space. Indeed, the density vanishes outside a finite interval
in one-dimension. Inside this interval, usually referred to as the “bulk”, the fermion density
can be estimated, for a large number of fermions N , using a semi-classical approximation, or
equivalently the so-called local density approximation (LDA) [6–8]. Near the edge where the
density vanishes, the quantum fluctuations play a dominant role and the local properties of the
fermions are very different from that of the bulk [9–12]. This edge region is called the “Airy
gas” because the Airy functions play an important role in describing the quantum correlations.
It is well known that the LDA is a very good approximation when the confining potential
is smooth. However, if this potential has singularities, such as a step or delta-function, this
method fails. Indeed Kohn and Sham [13] studied how the LDA/Thomas-Fermi approximation
(valid for sufficiently slowly varying potentials which will be addressed later) is modified by
a region within the bulk where the potential varies rapidly. In particular, they estimated how
the density gets modified far from a localised impurity potential [13]. In a recent paper [14],
the modified density due to the presence of a step potential was studied using exact methods
based on the determinantal properties of the Fermi gas.

Here, we consider instead the case when the smooth confining potential is modulated by in-
troducing one or more delta functions but of arbitrary strength. This situation naturally arises
when one introduces one or more immobile impurities in the Fermi gas, where the impurities
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are modelled by delta-function potentials (attractive or repulsive). In the absence of the trap,
i.e., for a free Fermi gas, the effects of such impurities have been well studied in the literature.
For example, when a single impurity is introduced in the Fermi gas, the density of the Fermi
gas is modulated near the impurity. At distances far from the impurity, the density exhibits
decaying oscillations, famously known as Friedel oscillations [15–17]. How this density gets
modulated close to the impurity has been studied in [18] in one dimension for delta function
potentials. In addition, the effective Casimir interaction between two impurities (mediated
by the background Fermi gas) has also been studied [19, 20], however, again, the results ob-
tained are only valid at large distances. Note that similar questions have also been studied for
bosonic systems, with and without interactions (see e.g. [22, 23]). The problem of an impu-
rity in a non-homogeneous free Fermi gas confined in a harmonic potential, or equivalently
the Tonks-Girardeau gas in the strongly repulsive limit, has been extensively studied [24–27].
These studies are based on an analytic derivation for the wave functions due to the impurity
and a then a numerical summation to compute the local density and the energy change due
to the impurity. In this paper we show how exact analytic results can be obtained in the bulk
and at the edges of trapped systems.

In this paper we employ a method based on the single particle Green’s function that allows
us to obtain exact results for the trapped Fermi gas. We first consider the case when a single
impurity is added to the trapped Fermi gas in three different locations: (i) in the bulk, (ii)
near the edge and (iii) outside the edge. In the bulk (case (i)), where the trapped Fermi gas
behaves locally as a free Fermi gas, we obtain the explicit form of the density near the impurity
at all scales, not necessarily large. At large distances, we recover Friedel oscillations, our short
distance results agree with those of [18] when the impurity is repulsive but we show that a
correction is needed for attractive impurities. However in cases (ii) and (iii), the presence
of the trap considerably modifies the bulk results and we obtain new results for the density
close to the impurity. In addition, in all the three cases, we compute the effective potential felt
by the impurity due to the background Fermi gas. In case (iii), for an attractive impurity, we
show that an interesting transition occurs where a single fermion is pulled out of the Fermi sea
and forms a bound state with the impurity. This is a quantum analogue of the classical Baik-
Ben Arous-Péché (BBP) transition [28, 29], known in the theory of spiked random matrices,
where an eigenvalue detaches from the bounded support of the eigenvalues, due to a rank-
one perturbation. This rank-one perturbation is the analogue of the delta-function potential
induced by the impurity in the Fermi gas and the eigenvalue is the analogue of the fermion
position. We then go beyond the case of a single impurity and study the effects of adding two
impurities. In this case we compute the effective Casimir-like interaction between the two
impurities mediated via the trapped Fermi gas. For two impurities, we restrict our analysis
to case (i) where both the impurities are placed in the bulk. In this case, we obtain exact
results for this effective interaction at arbitrary separation between the impurities. At large
distances, our results are in agreement with the one found in Refs. [19, 20] obtained by a
different method.

We restrict ourselves here to the case of immobile impurities. The case of mobile impurities
has been extensively studied for fermionic systems both theoretically [30–36] and experimen-
tally [37]. The set up of immobile impurities that we study in this paper is more difficult to
access experimentally, however it has been suggested that impurities could be introduced by
superimposing an optical lattice on an overall trapping potential [38].
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2 Model and summary of main results

2.1 The model

We consider a gas of identical spin-less fermions of mass m in a trap generated by a potential
V (x) at zero temperature. We then add n delta-impurities of strengths gi . The single particle
Hamiltonian is then given by

H = H0 +∆H , H0 = −
ħh2

2m
∂ 2

∂ x2
+ V (x) and ∆H =

n
∑

i=1

giδ(x − x i) , (1)

where H0 is the Hamiltonian associated with the trap and ∆H corresponds to the impurities.
The eigenfunctions and eigenvalues of H0 are denoted by ψ0

j (x) and ε0
j . Similarly, ψ j(x) and

ε j denote the eigenfunctions and eigenvalues of H. Consider first the case with no impurity
(i.e. gi = 0 for all i = 1, · · · , n). At zero temperature, the system is in the many-body ground-
state such that all single-particle states of H0 below the Fermi level, denoted by µ, are occupied,
each by a single fermion. The ground-state energy is given by

E0(µ) =
∑

j

θ (µ− ε0
j )ε

0
j , (2)

where θ (x) is the Heaviside function where one usually uses the definition θ (0) = 1. We
now switch on the gi ’s, i.e., we introduce the impurities in the system. The single-particle
Hamiltonian then changes from H0 to H. This will change the single-particle eigenfunctions
and eigenvalues. Consequently the ground state energy will also change. Here we work in
the grand-canonical ensemble where the Fermi level µ remains fixed, while the number of
fermions is not fixed and the system is in contact with a reservoir of particles. Then the new
ground state energy, in the presence of the impurities, is given by

E(µ) =
∑

j

θ (µ− ε j)ε j . (3)

Similarly one can define the number of particles N0(µ) and N(µ) below the Fermi level µ as

N0(µ) =
∑

j

θ (µ− ε0
j ) , N(µ) =

∑

j

θ (µ− ε j) . (4)

Since we are working in the grand-canonical setting, N0(µ) and N(µ) can be different and the
quantity which will play a crucial role is the grand-potential at zero temperature

Ω(µ) = E(µ)−µN(µ) . (5)

At zero temperature, thanks to the Wick’s theorem, all the correlation functions are given
by determinants constructed from the so-called kernel or the one-particle density matrix, which
reads for H0 and H respectively [10]

K0µ(x , y) =
∑

j

θ (µ− ε0
j )ψ

0∗
j (x)ψ

0
j (y) , Kµ(x , y) =

∑

j

θ (µ− ε j)ψ
∗
j (x)ψ j(y) . (6)

Setting x = y in the Eq. (6) we find the fermion density

ρ0µ(x) = K0µ(x , x) =
∑

j

θ (µ− ε0
j )|ψ

0
j (x)|

2 , ρµ(x) = Kµ(x , x) =
∑

j

θ (µ− ε j)|ψ j(x)|2 .

(7)
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2.2 Outline and main results

In Section 3 A, we first recall the method of the Green’s function introduced in [14] and present
in Section 3 B the explicit expressions for the Green’s function in the absence of impurities.
This is then used as the building block to obtain an exact expression for the Green’s function in
the presence of the impurities in Section 3 C. In Section 4 we examine the effect of impurities
in the bulk of the system. In the absence of the impurities, the density in the bulk is given by

ρ0µ(x) = K0µ(x , x)'
kF (x)
π

, where kF (x) =
1
ħh

Æ

2m(µ− V (x)) . (8)

Here kF (x) is just the local Fermi wave vector. The density vanishes at the edge xe where
V (xe) = µ. The bulk of the system is thus defined such that V (x) � µ (see below in Eq.
(29) for a more precise definition). We now add a single impurity in the bulk of the system,
say at x = 0, and investigate how the kernel and the density change near the impurity. We
reparametrize the impurity strength in terms of an inverse length scale λ defined as

g =
λħh2

m
. (9)

We show that the change in the kernel upon adding this impurity is given by

∆Kµ(x , y) = Kµ(x , y)− K0µ(x , y) =
λexp(λ(|x |+ |y|))

π
Im E1(λ+ ikF )(|x |+ |y|)] , (10)

where Im denotes the imaginary part and E1(z) =
∫∞

z d t e−t/t denotes the exponential inte-
gral [39]. Here kF = kF (0) is the Fermi wave vector at the impurity position. Putting x = y
in (10) we obtain the change in the density due to the impurity (see also Figs. 4 and 5)

∆ρµ(x) = Kµ(x , x)− K0µ(x , x) =
λexp(2λ|x |)

π
Im E1(2(λ+ ikF )|x |) . (11)

We show how this formula recovers the density change computed in [18] for a free Fermi gas
when the impurity λ is repulsive. The result given here and in [18] is exact for a homogeneous
free fermion system at all impurity strengths and distances and we note that formulas given
for these Friedel oscillations [15–17] are often given in the regime of linear response or at long
distances. However our formula in (11) holds for any x and λ. In particular, we obtain an
explicit formula for the density at the position of the impurity

ρµ(0) =
kF

π
−
λ

π
arg(ikF +λ) =

kF

π
−
λ

2
+
λ

π
tan−1

�

λ

kF

�

. (12)

We then compute the effective potential Veff(x1) felt by the impurity, where x1 denotes the
position of the impurity in the bulk, due to its interaction with the Fermi gas. This is obtained
by computing the change in the ground state energy of the many-body system due to the
addition of an impurity. This effective potential can be expressed in the scaling form

Veff(x1) = Ω(µ)−Ω0(µ) =
ħh2λ2

2πm
W
�

kF (x1)
λ

�

, (13)

where Ω0(µ) = E0(µ)−µN0(µ) and the scaling function is given by

W (γ) = (γ2 + 1) tan−1
�

1
γ

�

+ γ−
π

2
. (14)

The function W (γ) is shown in Fig. 1 and has the asymptotic properties
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-6

-4

-2

2

W(γ)

Figure 1: The scaling function for the effective potential W (γ) defined in Eq. (14).
Note that although W is discontinuous at γ= 0 the potential Veff is continuous. Note
that although W is discontinuous at γ = 0, the potential Veff(x1) is continuous as a
function of λ at λ= 0.

W (γ)'











−πθ (−γ) +π sgn(γ) γ
2

2 , γ→ 0 ,

2γ γ→±∞ .

(15)

In Section 5 we investigate what happens when the impurity is placed at x1 to the right
of the edge xe, such that V (x1) > V (xe) = µ. When the impurity is attractive we show that
a phase transition occurs as the reduced strength λA = −λ > 0 of the impurity is increased
beyond a critical value. We call this transition a filling transition. Let us recall from ele-
mentary quantum mechanics of a single particle that a delta potential introduced at x1, in
addition to a flat potential V (x) = V0, introduces a single bound state with wave function

ψb(x) =
p

λA exp(−λA|x − x1|) and energy Eb = −
ħh2λ2

A
2m + V0. Substituting V0 = V (x1) we find

that there are two different phases: (i) weak impurity, where Eb > µ implying that this bound
state is unoccupied and consequently ρµ(x1) ' 0; (ii) strong impurity, where Eb < µ imply-
ing that this bound state is occupied and consequently ρµ(x1) ' λA. The transition occurs
exactly at Eb = µ, which corresponds to λA = κµ(x1) =

p

2(V (x1)−µ). This filling transi-
tion has some similarities with the BBP transition in random matrix theory, where a rank one
perturbation to a random matrix can displace the maximal eigenvalue of the matrix [28,29].

In Section 6 we study the effect of adding two impurities in the bulk, say at x1 and x2,
close to x = 0. We assume that x1 and x2 are such that |V (x1)− V (x2)| � EF = ħh2k2

F/(2m)
where kF = kF (0) is the Fermi wave vector at x = 0. This condition ensures that the potential
remains effectively constant on the scale of the separation r = |x1−x2| between the impurities.
We show that the effective Casimir-like interaction between these two impurities, mediated by
the background Fermi gas, is given by

Vint(r, kF ,γ1,γ2) = −
2EF

πζ
Re

∫ ∞

0

ds
�

1− i
s
ζ

�

× ln

�

1+
γ1γ2

[1− i s
ζ − iγ1][1− i s

ζ − iγ2]
exp(−2ζi − 2s))

�

, (16)
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where ζ = kF r and γi = λi/kF are the scaled impurity strengths. Our result is valid for all ζ.
Interestingly, using free fermionic field theory, an expression for Vint(r, kF ,γ1,γ2) was derived
in Refs. [19,20], which reads

Vint(r, kF ,γ1,γ2)'
EF

πζ
Re Li2

�

−
γ1γ2

[1− iγ1][1− iγ2]
exp(−2iζ)

�

, (17)

where Li2(z) =
∑∞

n=1 zn/n2 is the di-logarithm function and Re denotes the real part. Our
formula (16) can be shown to reduce to (17) when ζ � 1. However, this form (17) is an
approximate form that holds only for large ζ. As ζ→ 0, Vint(r, kF ,γ1,γ2) in Eq. (17) diverges,
which is not physical. Instead, our exact result (16), which holds for all ζ, approaches to a
constant as ζ→ 0 (see Fig. 6).

In Section 7 we analyse the effect due to an impurity close to the edge of the Fermi gas, i.e.
x1 ≈ xe. The Friedel oscillations [15–17] around impurities in the bulk are strongly suppressed
near the edge. However weak oscillations, that are already present at the edge without any
impurities, still persist in the presence of impurities. The main effect of the impurity is to alter
the phase of these oscillations. For an attractive impurity, we show that the filling transition
discussed above becomes a smooth crossover on the scale of the inter-particle distance at the
edge and the local density profile is described by a universal scaling function. Finally we
obtain an analytic expression for the effective potential acting on the impurity placed in the
edge region.

In Section 8 present our general conclusions and perspectives for future studies.

3 Basic formalism and set up

We now describe how the single particle Green’s function can be used to extract the change in
the kernel due to the addition of an impurity at a fixed position in the system. The results given
below are derived in detail in a recent paper [14] and we refer the reader there for detailed
derivations. Our method is closely related to that used in [13], although we use a different
choice of integration contours.

3.1 Kernels via Green’s functions

The Green’s function Gµ′(x , y) associated to the Hamiltonian H in (1) is defined for an arbitrary
running Fermi energy µ′ as

Gµ′(x , y) =
∑

j

ψ∗j (x)ψ j(y)

µ′ − i0+ − ε j
. (18)

The Green’s function has poles at µ′ = ε j + i0+, i.e., infinitesimally above the real axis in the
complex plane. In operator notation we also have the equivalent resolvent representation

Gµ′ = (µ
′ − i0+ −H)−1, (19)

from which we see that Gµ′(x , y) is solution to the equation

ħh2

2m
∂ 2

∂ x2
Gµ′(x , y) + (µ′ − i0+ − V (x))Gµ′(x , y) = δ(x − y). (20)

The kernel can be obtained from the Green’s function from the following formula

Kµ(x , y) =
1
π

∫ µ

−∞
dµ′Im Gµ′(x , y) =

1
π

Im

∫ µ

−∞
dµ′ Gµ′(x , y), (21)
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where the imaginary part can be taken outside the integral as the integration contour is real.
Noting that when µ→∞ the kernel becomes the sum over a complete set of states, we can
derive an alternative representation

Kµ(x , y) = δ(x − y)−
1
π

Im

∫ ∞

µ

dµ′ Gµ′(x , y). (22)

In this paper we will be interested in the change in the kernel due to an added impurity. If
we denote the Green’s function in the absence of impurities by G0µ(x , y), then we can write
the Green’s function as Gµ(x , y) = G0µ(x , y) +∆Gµ(x , y) where ∆Gµ(x , y) is the change in
the Green’s function due to the impurities. It is then easy to see that the change in kernel
∆Kµ(x , y) = Kµ(x , y)− K0µ(x , y) is given by

∆Kµ(x , y) =
1
π

Im

∫ µ

−∞
dµ′∆Gµ′(x , y), (23)

if one uses Eq. (21), or alternatively

∆Kµ(x , y) = −
1
π

Im

∫ ∞

µ

dµ′∆Gµ′(x , y) (24)

if one uses Eq. (22). The fact that these two representations (23) and (24) are equivalent can
also be seen from the following argument. These integrals can be interpreted as contour inte-
grals in the complex µ′ plane along the real axis. In Fig. 2 these two contours are represented
as Γ1 = (µ,∞) for (24) and Γ2 = (−∞,µ) for (23), along with the position of the poles which
are infinitesimally above the real axis and are shown by crosses. In terms of the contours Γ2 and
Γ1 shown on the figure we have ∆Kµ(x , y) = 1

π Im
∫

Γ1
dµ′∆Gµ′(x , y) = − 1

π Im
∫

Γ2
dµ′∆Gµ′(x ,

y). The equivalence of the two representations can also be demonstrated as follows. First, us-
ing Cauchy’s theorem which, as there are no poles in the lower half of the complex plane, gives
∫

Γ1∪Γ2∪Γ3
dµ′∆Gµ′(x , y) = 0, where Γ3 is taken to be an infinite semicircle, with center at the

origin, in the lower half of the complex plane. One can then show that
∫

Γ3
dµ′∆Gµ′(x , y) = 0

to obtain the desired result. Finally we should point out that by rotating the contour Γ1 about
z = µ by −π/2 (so it is parallel to the imaginary axis) gives an integral representation that cor-
responds to the sum over Matsubara frequencies in the fermionic field theory setting [19,20].

It is important to note here that the representation given in Eq. (24) has a number of
advantages over that in Eq. (23). First, it involves an integral over µ′ > µ therefore we do
not need to know the Green’s function ∆Gµ′(x , y) for small µ′ < µ. Since µ is large, we just
need to know the Green’s function for large µ′ which can be conveniently computed using the
semi-classical approximation. Furthermore, we will see that the representation in Eq. (24) is
more suitable to asymptotic analysis of certain formulas.

3.2 Bulk and edge Green’s function

In this section, we recall the results obtained in Ref. [14] for the kernel both in the bulk as well
as at the edges, using the Green’s function method, for a smoothly varying trapping potential
V (x).

In the bulk. We start with the bulk and consider the potential around a point x0 where we
assume that V (x)≈ V (x0) and solve Eq. (20) with a constant potential V (x0). This gives

Gµ′(x0 + z, x0 + z′) =
im

ħh2

exp(−ikµ′(x0)|z − z′|)
kµ′(x0)

, (25)
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xxx xxx xx x

ℂ

Γ2
μ

Γ1

μ′ 

Γ3

Figure 2: Contour integrals used in the integral representations of the kernel.
Crosses, ×, indicate the poles of the Green’s function which are just above the real
axis. Γ1 = (µ,∞) is the contour used in representation Eq. (23) and Γ2 = (−∞,µ)
that is used for representation Eq. (24). The contour Γ3 is used to close the contour
Γ1 ∪ Γ2 and is taken to be a semi-circle in the lower half of the complex plane whose
radius is taken to∞.

where
kµ′(x0) =

Æ

2m(µ′ − V (x0))/ħh− i0+ (26)

is the local Fermi wave vector given the Fermi energy µ′. The positive value of the square
root is taken and it is understood to have a negative infinitesimal imaginary part as indicated
above. By inserting this expression (25) in Eq. (21), setting x = y and performing the integral
over µ′ one finds the density in the bulk

ρµ(x) =

p

2m(µ− V (x))
πħh

=
kµ(x)

π
. (27)

These results are obviously exact for a flat potential V (x) = V0. However they are also ac-
curate as long as the relative variations of kµ(x) on microscopic scales, of order O(1/kµ) are
negligible, i.e.,

|kµ[x0 + 1/kµ(x0)]− kµ(x0)| ≈

�

�

�

�

�

k′µ(x0)

kµ(x0)

�

�

�

�

�

� kµ(x0) . (28)

Using k′µ(x0)∝ V ′(x0)/kµ(x0) from Eq. (27), this condition (28) translates to [14]

R=
ħh|V ′(x0)|

m
1
2 |2µ− 2V (x0)|

3
2

� 1 . (29)

Note that this argument naturally introduces a length scale

ξ=
kµ(x0)

k′µ(x0)
, (30)

which sets the size of the region over which this assumption that V (x) is constant holds. The
condition in (29) clearly gets violated in two cases: (i) when the potential is not smooth, for
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instance when the potential exhibits a step structure as studied in [14] or when there is a delta
function contribution to the potential (ii) when the analysis is carried out at the edge of the
trap where the density in Eq. (27) vanishes.

At the edge. The edge xe of the Fermi gas occurs where the density vanishes, i.e. when

µ= V (xe) . (31)

We see from Eq. (29) that R diverges as x0 → xe. The physics near the edge region (the so
called Airy gas), can be studied by linearizing the potential V (x) near x = xe, i.e.

V (xe + z)' V (xe) + zV ′(xe) . (32)

In this region, by solving Eq. (20) with a linear potential (32), the Green’s function can be
written in the scaling form [14]

Gµ′(xe + z, xe + z′) =
1
αewe

ge

�

z
we
+

V (xe)−µ′

αe
,

z′

we
+

V (xe)−µ′

αe

�

, (33)

where we andαe are respectively the length scale associated with 1/ρe, whereρe is the fermion
density at the edge [10] and the energy scale associated with the edge given by

we =

�

ħh2

2mV ′(xe)

�
1
3

, αe =

�

ħh2V ′(xe)2

2m

�
1
3

= V ′(xe)we . (34)

The function ge(ζ,ζ′) is given by

ge(ζ,ζ′) = −πAi(ζ)[−iAi(ζ′) + Bi(ζ′)] for ζ > ζ′ (35)

= −πAi(ζ′)[−iAi(ζ) + Bi(ζ)] for ζ < ζ′ . (36)

For later purposes, we note that

Im
�

ge(ζ,ζ′)
�

= πAi(ζ)Ai(ζ′). (37)

Outside the bulk. In the classically forbidden region, far outside the edge where the condition
in (29) holds, we will again assume that V (x) is slowly varying around a point x0. In this case,
the solution of Eq. (20) reads

Gµ′(x0 + z, x0 + z′)≈ −
m

ħh2

exp(−(κµ′(x0) + i0+)|z − z′|)
[κµ′(x0) + i0+]

, (38)

where

κµ′(x0) =

p

2m(V (x0)−µ′)|
ħh

(39)

is positive. This result is similar to the one found in the bulk in Eq. (25) with a local Fermi
wavevector which is imaginary.

One can check, using the asymptotic properties of the Airy functions Ai(z) and Bi(z), that
the edge result for the Green’s function (33) matches (i) on the left with the bulk result (20)
and (ii) on the right with the result far outside the bulk (38).
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3.3 Treating delta function potentials

In this section we show how one can use the Green’s function method to study systems where
the potential has a delta-function part. The delta function potential has been extensively stud-
ied in quantum systems to model impurities [21]. Here we show that the Green’s function
method is particularly well suited to study this problem.

We start with a single particle Hamiltonian H0 and denote its Green’s function by

G0µ = (µ− i0+ −H0)
−1 . (40)

We now add n impurities so that the total Hamiltonian is

H = H0 +∆H, (41)

with

∆H =
n
∑

i=1

giδ(x − x i). (42)

The coordinates x i ’s are the positions of the impurities and gi ’s denote their interaction stren-
gths with the fermions. Note that the sign of gi can be positive (repulsive) or negative (attrac-
tive). Many methods have been found [21] to extract the Green’s function Gµ = (µ−i0+−H)−1.
A simple way to do this is to observe that

Gµ(x , y) = G0µ(x , y) +
n
∑

i=1

AiG0µ(x , x i) , (43)

yields a solution to [µ− i0+ −H]Gµ = δ(x − y) if the Ai ’s obey the linear equations.

Ai − giG0µ(x i , y)−
n
∑

j=1

giA jG0µ(x i , x j) = 0 . (44)

Note that the Ai ’s depend implicitly on both the x i ’s and y . The solution of this linear equation
(44) can be expressed as

Ai =
n
∑

j=1

R−1
i j g jG0µ(x j , y), (45)

where the n× n matrix R has components Ri j given by

Ri j = δi j − giG0µ(x i , x j). (46)

This leads to the change in the Green’s function

∆Gµ(x , y) =
n
∑

i, j=1

R−1
i j g jG0µ(x , x i)G0µ(x j , y) . (47)

For general x and y the above expression is quite complicated. However, if we consider the
Green’s function at points where there are impurities and define the n× n matrices G0 and G
such that G0i j = G0µ(x i , x j) and Gi j = Gµ(x i , x j) things simplify a bit. In this case, using Eq.
(47) and adding to G0µ, one gets in the matrix form

G = G0(I + R−1ΛgG0), (48)

where the matrix Λg has components Λgi j = giδi j . Noting that Eq. (46) implies R+ΛgG0 = I
and multiplying both sides by R−1 gives I + R−1ΛgG0 = R−1. Using this result, Eq. (48) now
reads

G = G0R−1 = G0(I −ΛgG0)
−1 , (49)
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where we further used Eq. (46) for R. Thanks to this relation, one can compute G if one knows
G0.

Using, furthermore, the formula for the derivative of the determinant of a matrix with
respect to a parameter t, i.e.

∂

∂ t
ln[det A(t)] = Tr

�

A−1(t)
∂

∂ t
A(t)

�

, (50)

we can rewrite Eq. (49) as

Gµ(x i , x i) = −
∂

∂ gi
ln
�

det[1−ΛgG0]
�

. (51)

We will use this representation later.
Let us consider the simplest case of a single impurity located at x1 with an amplitude

g1 = g (this corresponds to n = 1 in Eq. (42)). In this case, the full Green’s function can be
computed from Eq. (43), (45) and (46)

Gµ(x , y) = G0µ(x , y) +
g G0µ(x , x1)G0µ(x1, y)

1− gG0µ(x1, x1)
, (52)

which has a simple Schwinger-Dyson form. Expanding the denominator in powers of g, this
formula (52) has a simple physical interpretation: it adds up contributions to the Green’s
function arising from no scattering, one scattering, two scatterings, etc, from the impurity.
Note that the first order term in g in Eq. (52) can be used as a response function to compute
the first order correction to the Green’s function due to an arbitrary impuritiy potential [13].
Exactly at the position of the impurity the diagonal part of the Green’s function is given by

Gµ(x1, x1) =
G0µ(x1, x1)

1− gG0µ(x1, x1)
. (53)

We will see below that this formula is particularly useful to deduce the fermion density at the
impurity as well as the energy change induced by the introduction of an impurity.

In the following, we will use the formulae derived in this section in the case where H0
corresponds to a smooth trapping potential in the absence of a delta-potential.

4 Impurity in the bulk

Here we consider the effects of delta-function impurities in the bulk. The overall smooth
trapping potential V (x) described by H0 (see Eq. (1)), as discussed before, can be taken to be
locally constant and without loss of generality we set V (x) = 0. Thus the Fermi wave vector
at Fermi energy µ is given by kF = kµ =

p

2mµ/ħh. The local density of the system without

impurity is given by ρ0µ =
kF
π .

The effect of impurities has been well studied in the literature, notably the density around
impurities exhibits the well known Friedel oscillations [15–17] in homogeneous systems and
related oscillations in inhomogeneous systems [13]. However, in most previous studies only
the behavior of the density at distances greater than the inter-particle distance `0 = 1/ρ0µ or
in the linear response regime (i.e. to first order in λ). In [18] the density change induced by a
delta function impurity was studied exactly. Here, by using a more versatile method, we show
how this result can be rigorously extended to inhomogeneous bulk systems. We also show
how the result given in [18] is, simply, modified to take properly into account the appearance
of a bound state in the case of an attractive impurity.
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It is important to know the exact behavior of this density at the location of the impurity
since, as we will see, it determines the effective interaction between the impurity and the
surrounding fermions. We show that this density at the impurity is finite and depends on the
local Fermi-wave vector. We also compute the effective interaction and show that it is given
by Eq. (14).

4.1 Friedel oscillations

We start by computing the kernel in the presence of a single impurity of strength g1 = g placed
at x1 = 0. Here the change in the Green’s function, using Eqs. (24), (25) and (52) for the
bulk Green’s function yields a change in the kernel ∆Kµ(x , y) = Kµ(x , y)−K0µ(x , y) which is
given by

∆Kµ(x , y) =
gm2

πħh2 Im

∫ ∞

µ

dµ′
exp(−ikµ′[|x |+ |y|])

ħhkµ′(ħhkµ′ − i gm
ħh )

. (54)

Now we change variables µ′ = ħh2k/2m (so dµ′ = ħh2kdk/m) and we assume that µ > 0 so
that the integration over k is along the real axis. The way in which all the contours in Fig. 2

transform under the transformation k =
Ç

2m
ħh2 µ′ is shown in Fig. 3 along with the position of

the original poles in the Green’s function shown again as crosses. This gives

∆Kµ(x , y) =
λ

π
Im

∫ ∞

kF

dk
exp(−ik[|x |+ |y|])

k− iλ
, (55)

where
λ= mg/ħh2 (56)

is an inverse length scale associated with the impurity, and kF = kF (0) =
p

2mµ/ħh is the Fermi
wave vector at the position of the impurity.

The integral in Eq. (55) corresponds to the contour Γ ′1. The contour Γ ′1 can be deformed
onto the contour Γ4 as the integral over the contour Γ ′3 is zero and there are no poles crossed
during this deformation [14], to give

∆Kµ(x , y) =
λ

π
Im

∫ ∞

0

−idκ
exp(−(ikF +κ)[|x |+ |y|])

kF − iκ− iλ
. (57)

The above can also be written in terms of standard functions via the change of variables
s′ = κ+λ+ ikF to obtain

∆Kµ(x , y) =
λexp(λ(|x |+ |y|))

π
Im

∫ ∞

λ+ikF

ds′

s′
exp(−(|x |+ |y|)s′)

=
λexp(λ(|x |+ |y|))

π
Im E1[(λ+ ikF )(|x |+ |y|)], (58)

where we recall that

E1(ζ) =

∫ ∞

ζ

d t
exp(−t)

t
(59)

is the exponential integral function [39].
Taking x = y we find that the change in the local density ∆ρµ(x) around the position of

the impurity at x = 0 is given by

∆ρµ(x) =
λexp(2λ|x |)

π
Im E1(2(λ+ ikF )|x |) . (60)
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ℂ k = 2μ′ 

Γ′ 2

Γ′ 1

kF

x
x

xxxxxxx

x
x

Γ4
Γ′ 3

Γ′ ′ 3

Figure 3: Contour integrals used in the integral representations of the kernel in terms
of the variable k =

Æ

2mµ′/ħh2. Crosses indicate the poles of the Green’s function in
the complex plane of k. The contours Γ ′i for i = 1, 2, 3 correspond to the contours
Γi shown in Fig. 2 when mapped into the k plane. Note that the contour Γ ′2 has
two components: one vertical, and one horizontal going from k = 0 to k = kF . The
contour Γ ′′3 denotes a portion on Γ ′3, shown in bold, which is useful for later purpose.
The contour Γ4 = (kF , kF−i∞), which is useful for asymptotic analysis, is also shown.

This is an important result of this paper, since it is valid for all values of λ and at all distances x .
The comparison between this result (60) and the result of Ref. [18] is performed in Appendix
A. We now study this form of the density profile in Eq. (60) at distances respectively very close
and very far from the impurity.

Density close the impurity. Here we analyse the density in Eq. (60) very close to the impurity,
i.e. the limit x → 0. For small x we can use the asymptotic expansion E1(x) = −γE−ln(x)+x+
O(x2) at small x [39]. In particular at x = 0, taking the imaginary part of the logarithm, we
get the total local density (with the bulk term ρ0µ = kF/π included)

ρµ(0) =
kF

π
−
λ

π
arg(ikF +λ) =

kF

π
−
λ

2
+
λ

π
tan−1

�

λ

kF

�

, (61)

where tan−1 above is the principle branch such that tan−1(0) = 0. The change in the density is
equal to zero when λ= 0 as because kF ≡ kF − i0+ one has that arg(ikF ) = π/2. The change
in the local density is significant if λ∼ kF .

Repulsive case. In the limit of strong repulsion if λ= λR with λR > 0 and λR� kF we find

ρµ(0)'
k3

F

3λ2
Rπ

, (62)

while for λR� kF one has

ρµ(0)'
kF

π
−
λR

2
. (63)
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Attractive case. In this case, setting λ = −λA with λA > 0, we find, for strong attraction
λA� kF

ρµ(0)' λA+
k3

F

3λ2
Aπ

. (64)

Note that the dominant term λA in Eq. (64) is the contribution from the single bound state
associated to the attractive delta function. Indeed such a bound state has a wave function

ψb(x) =
Æ

λA exp(−λA|x |) , (65)

which gives rise to a density |ψbs(0)|2 = λA. On the other hand, for weak attraction λA� kF

ρµ(0)'
kF

π
+
λA

2
. (66)

Given the fact that a bound state can appear one might naively assume that some non-analytici-
ty is introduced into the many body fermionic problem by its appearance. The kernel as given
in Eq. (58) is an analytic function of λ, and as all thermodynamic properties are derived
from the kernel we see that the appearance of a bound state introduces no thermodynamic
singularities. This fact can be shown to hold generically for any attractive impurity potential
[40].

Density far from the impurity and Friedel Oscillations. In this case the asymptotic expan-
sion [39] for |ζ| � 1 and |arg(ζ)|< 3π/2,

E1(ζ)∼ ζ−1 exp(−ζ), (67)

can be used but one can also use the representation given in Eq. (57) where the long distance
behavior comes from an expansion about κ = 0. We find from (60) that the density for large
x decays as

∆ρµ(x)' −
λ

2π|x |(λ2 + k2
F )
[kF cos(2kF |x |) +λ sin(2kF |x |)] , (68)

which can be rewritten as

∆ρµ(x)' −
λ

2π|x |
q

λ2 + k2
F

sin
�

2kF |x |+ tan−1
�

kF

λ

��

. (69)

At large |x |, both the repulsive and attractive cases are described by the formula (69) with
λ= λR > 0 in the repulsive case while λ= −λA < 0 in the attractive case. In the limit of small
λ, one finds

∆ρµ(x)' −
λ

2πkF |x |
cos(2kF |x |), (70)

which is the standard formula for large distance one-dimensional Friedel oscillations in the
regime of linear response [18].

In Fig. 4 we plot the relative perturbation of the exact density

∆ρµ(x)

ρ0µ
= n(ζ,γ) = γexp(2γ|ζ|)Im E1(2(γ+ i)|ζ|)) (71)

as a function of ζ = kF x , where we recall that ρ0µ is the local density in the absence of the
impurity and where we have written λ= γkF

1. In Fig. 4 we plot n(ζ,γ) in the repulsive case

1Due to the mirror symmetry ζ↔−ζ of the density, only the regime ζ≥ 0 is plotted in Figs. 4 and 5.
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1 2 3 4 5 6
ζ

-0.8

-0.6

-0.4

-0.2

0.2
n(ζ, 1)

Figure 4: The relative change in the density around the point x = x1, given by Eq.
(71) due to a repulsive delta function potential at the point x = 0 of amplitude
λR = γkF for γ = 1 (solid line), and its asymptotic approximation (dashed line)
obtained using Eq. (69)

with γ = 1. The asymptotic expansion Eq. (69) is also shown as an orange dashed line. For
ζ > 3, this asymptotic form describes accurately the exact result. However, when extrapolated
to small values of ζ, this asymptotic form diverges while the exact result approaches a finite
value as ζ → 0 (see Eq. (61)). In Fig. 5 we plot n(ζ,γ) for an attractive impurity with
γ= −1. We see the signature of the localized wave function about the impurity which causes
an increase in the local density. Again we see that the asymptotic approximation for Friedel
oscillations becomes accurate only for ζ ∼ 3. Note that in [27] the density in the presence of
a delta impurity in the bulk of a Tonks-Girardeau gas was computed by numerically summing
the exact wave functions. Since the density in the Tonks-Girardeau gas is identical to the one
of the Fermi gas studied here, the density in Fig. 4 of [27] also exhibits the same Friedel
oscillations that are obtained here analytically.

Going beyond the density we can also analyse the kernel Kµ(x , y) in Eq. (58) for large |x |
and |y| by using the same asymptotics for the Exponential integral. We find at large |x | and
|y|, both for the repulsive and attractive cases,

∆Kµ(x , y)' −
λ

π(|x |+ |y|)
q

λ2 + k2
F

sin
�

kF (|x |+ |y|) + tan−1
�

kF

λ

��

. (72)

Finally we should note that in one dimension any interaction between the fermions dras-
tically modifies the physics and one must use Luttinger liquid description to examine impurity
problems [19,20,41,42]. As an example of the change introduced by interaction, an arbitrary
scattering impurity becomes totally reflective irrespective of its strength [41]. In [42] it was
shown that the 1/|x | asymptotic decay envelope seen for the free Fermi gas becomes a more
general power law decay of the form 1/|x |g where g is the interaction strength.

4.2 The effective potential acting on an impurity

Here we examine how the total energy of the fermion system is changed by adding of a single
impurity at fixed Fermi energy µ. The Hamiltonian H(λ) depends explicitly on the parameter
λ = gm/ħh2 where g is the impurity strength. We denote by εk(λ) the kth energy level, as a
function of λ. We define the total energy E(µ,λ) and the total number of fermions N(µ,λ) as

E(µ,λ) =
∑

j

θ (µ− ε j(λ))ε j(λ) , N(µ,λ) =
∑

j

θ (µ− ε j(λ)) . (73)
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1 2 3 4 5 6
ζ

0.5

1.0

1.5

2.0

2.5
n(ζ, -1)

Figure 5: The relative change in the density around the point x = x1, given by Eq.
(71) due to an attractive delta function potential at the point x = 0 of amplitude
such that λ = −λA = γkF for γ = −1 (solid line), and its asymptotic approximation
(dashed line) using Eq. (69).

The goal is to compute the effective potential felt by the impurity at position x1 which can be
identified as the change in the grand-potential (since we are working at fixed Fermi energy µ)

Veff(x1) = Ω(µ,λ)−Ω(µ, 0) where Ω(µ,λ) = E(µ,λ)−µN(µ,λ) . (74)

This problem for a homogeneous system, where the potential is constant, has been studied
in [33,34].

To perform this computation, we use the Hellmann-Feynman theorem which states that

∂ ε j(λ)

∂ λ
=

∫

d x ψ∗j (x ,λ)
∂ H
∂ λ
ψ j(x ,λ) , (75)

where ψ j(x ,λ) is the eigenstate associated to the energy level εk(λ). In the present case of
the delta-impurity this theorem (75) gives

∂ ε j(λ)

∂ λ
=
ħh2

m
|ψ j(x1,λ)|2. (76)

From this, one sees that every energy level is moved up for repulsive impurities and down for
attractive ones. Thus at fixed µ, the derivatives of the energy E(µ,λ) and of the number of
particles N(µ,λ) in Eq. (73) with respect to λ read

∂λE(µ,λ) =
∑

j

θ (µ− ε j)∂λε j(λ)−µ
∑

j

∂λε j(λ)δ(µ− ε j(λ)) (77)

∂λN(µ,λ) = −
∑

j

∂λε j(λ)δ(µ− ε j(λ)) . (78)

Therefore, using Eq. (74), the derivative of Ω(µ,λ) with respect to λ, using (77) and (78)
together with (75) is given by

∂λΩ(µ,λ) =
ħh2

m

∑

j

θ (µ− ε j(λ))|ψ j(x1,λ)|2 =
ħh2

m
ρµ(x1,λ) , (79)
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where we have made explicit the dependence of the fermion density on λ. The effective
interaction of the impurity with the fermion system is thus given by

Veff(x1) = Ω(µ,λ)−Ω(µ, 0) =
ħh2

m

∫ λ

0

dλ′ρµ(x1,λ′) . (80)

We can now use the expression for the fermion density given in Eq. (61) to obtain

Veff(x1) =
ħh2

2πm

�

(k2
F (x1) +λ

2) tan−1
�

λ

kF (x1)

�

+ kF (x1)λ−
πλ2

2

�

=
ħh2λ2

2πm
W
�

kF (x1)
λ

�

,

(81)
where the function W (γ) is given in Eq. (14). When kF (x) is constant, the formula Eq. (81)
agrees with that found in [34] for homogeneous systems.

In the limit of a weak impurity strength |λ| � kF (x1) we find from (81)

Veff(x1)'
ħh2λ kF (x1)
πm

, (82)

which is obvious from the Hellmann-Feynman theorem and can also be seen as a mean field
result. Therefore for λ > 0 the impurity is pushed away from a dense region, while for λ < 0 it
is attracted by dense regions. On the other hand, for a strong impurity strength, |λ| � kF (x1),
we find

Veff(x1)'
ħh2

4m

�

k2
F (x1)sgn(λ)− 2λ2θ (−λ)

�

. (83)

In the case where λ < 0 we see that Veff(x1) contains a term corresponding to the bound
state energy, Eb = −ħh2λ2/2m of the state localized around the impurity. Again we see that
repulsive impurities are repelled from dense regions and attractive impurities are attracted by
dense regions, which clearly agrees with physical intuition.

Link with the problem of mobile impurities. The above results on the effective interaction
potential felt by an impurity in an inhomogeneous system is to our knowledge new, as men-
tioned above the problem for a homogeneous system was discussed in [33, 34]. However a
problem with a similar flavor, involving a mobile impurity, has been studied. McGuire [30,31]
considered the problem of N identical spin-less fermions with no mutual interactions. In this
system, one introduces an additional particle, with coordinate x0, which interacts with each
of the N fermions via a delta function potential. In its most general form we can consider the
N + 1 body Hamiltonian given by

H =
N
∑

i=1

−
ħh2

2m
∂ 2

∂ x2
i

+ V (x i) + g
N
∑

i=1

δ(x i − x0)−
ħh2

2M
∂ 2

∂ x2
0

+V(x0), (84)

where M is the mass of the impurity particle and V(x) the effective potential it feels due to
the trap. The problem examined by McGuire corresponds to identical masses, i.e. M = m and
to homogeneous system with V (x) = 0, hence kF (and thus the density) being constant. The
change in the energy due to the additional particle is found to be

∆E(kF ,λ) =
ħh2

2πm

�

(2k2
F +

λ2

2
) tan−1

�

λ

2kF

�

+ kFλ−
πλ2

4

�

. (85)

Interestingly, we note that this formula (85) is strikingly similar to the expression obtained
here in the case of an immobile impurity and one can write

∆E(kF ,λ) =
ħh2λ2

4πm
W
�

2 kF

λ

�

, (86)
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with the same scaling function W (γ) given in Eq. (14). Note that the problem considered in
this paper corresponds to the limit M →∞ where the position x0 is fixed.

More recently the problem introduced by McGuire was revisited in the presence of an
external harmonic potential V (x) = mω2 x2/2, which is the same on both the fermions and
the impurity particle. The effect of inhomogeneity was treated by combining McGuire’s result
with an LDA-like approximation, which turns out to be remarkably accurate even for systems
with a small number of fermions [35].

5 Impurity far from the bulk and the filling transition

We consider an impurity of strength g1 = g placed at x1 far from the bulk of the Fermi gas,
where the condition in Eq. (29) holds and the density vanishes. One may ask the question
whether an attractive impurity can pull fermions out of the bulk. In this region the kernel in
the region of the point x1 is given by

∆Kµ(x1 + z, x1 + z′) =
1
π

Im

∫ µ

−∞
dµ′∆Gµ′(x1 + z, x1 + z′), (87)

where in the above integral µ′ < µ� V (x1) (and thus the contour Γ2 in Fig. 2 is the appro-
priate one to use). More precisely the condition in Eq. (29) holds in the above integral and so
we can use Eq. (38) for the Green’s function. When an impurity is placed at the point x1 the
induced change in the Green’s function is

∆Gµ′(x1 + z, x1 + z′) =
g G0µ′(x1 + z, x1)G0µ′(x1, x1 + z′)

1− gG0µ′(x1, x1)
(88)

=
mλ

ħh2

exp(−(κµ′(x1) + i0+)[|z|+ |z′|])
(κµ′(x1) + i0+)([κµ′(x1) + i0+] +λ)

, (89)

where κµ′(x1) is given by Eq. (39).
Now using dµ′ = −ħh2κdκ/m we find that the change in the kernel is

∆Kµ(x1 + z, x1 + z′) =
λ

π
Im

∫ ∞

κF (x1)
dκ

exp(−(κ+ i0+)[|z|+ |z′|])
[κ+ i0+] +λ

. (90)

Here and below we denote κµ(x1) = κF (x1). We now use the standard identity

−
1
π

Im
1

−κ−λ− i0+
= −δ(κ+λ), (91)

which gives, for λ > 0,
∆Kµ(x1 + z, x1 + z′) = 0 , (92)

as κF (x1)> 0. Hence a repulsive impurity far from the bulk has no effect on the Fermi gas.
However for an attractive impurity, writing λ= −λA with λA > 0 we find

∆Kµ(x1 + z, x1 + z′) = λAθ (λA−κF (x1))exp(−λA[|z|+ |z′|]). (93)

The above result is easily interpreted physically. It can be written as

∆Kµ(x1 + z, x1 + z′) = θ (λA− κF (x1))ψb(z)ψb(z
′), (94)

whereψb(z) is the bound state wave-function for a delta potential at z = 0 and in the absence
of any other potential given in Eq. (65). The kernel well outside the bulk is thus generated by
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a single particle bound state. The fermion density at the position of the impurity is thus given
by

ρµ(x1) = λAθ (λA− κF (x1)). (95)

It exhibits a transition as a function of λA. It vanishes when λA < κF (x1) and is nonzero
for λA > κF (x1). This corresponds to a filling transition of the bound state where the density
exhibits a jump by κF (x1). The transition is sharp for large κF (x1). At smaller values of κF (x1),
i.e. close to the edge, it is replaced by a smooth crossover, which is analysed in Section 7.

This transition can be interpreted by the following energy argument. The energy of this
bound state in the presence of a local potential is given by

E∗b(x1) = −
λ2

Aħh
2

2m
+ V (x1) . (96)

Hence this state is occupied if E∗b < µ, which corresponds to λA > κF (x1). In contrast, when
E∗b > µ this bound state energy level exceeds the Fermi energy and hence it remains unoccupied
at zero temperature. We note that this type of transition is quite generic, and not specific to
a delta-function impurity. For instance, it can occur in a more general context when there is
a second additional potential well (i.e. a second minimum of the trapping potential). When
the Fermi energy increases above this second minimum, a new disjoint interval arises in the
support of the density. However the case of the delta potential yields a particularly simple
tractable example, since it corresponds to a rank one perturbation.

A natural question to ask is whether there is an effective potential felt by the particle when
it is outside the bulk. This potential can, again, be derived using the Hellmann-Feynman
theorem (80) together with the expression for the density outside the bulk given in Eq. (95).
We find

Veff(x1) = −
ħh2

2m
θ (λA−κF (x1))

�

λ2
A−κF (x1)

2
�

. (97)

Furthermore we note that using Eq. (39) we can write

Veff(x1) = θ (λA− κF (x1))

�

−
ħh2

2m
λ2

A+ V (x1)−µ
�

. (98)

Hence we see that for λA > κF (x1), the x1-dependence of the effective potential Veff(x1) is the
same as the trapping potential V (x1), this is due to the fermion which forms a state bound
about the impurity.

An analogy in random matrix theory. This filling transition is reminiscent of the Baik-
Ben Arous-Péché (BBP) transition in random matrix theory [28, 29]. The BBP transition oc-
curs when one considers a N × N random matrix M0, for instance from the Gaussian Uni-
tary Ensemble, GUE, with a semi-circle density of support [−

p
2N ,
p

2N] at large N (the
Wigner sea), perturbed by a fixed ranked one matrix, i.e. when considering the matrix sum

M =M0 +
q

N
2 γ|e1〉〈e1|. For a weak perturbation γ < 1 the Wigner sea is essentially un-

changed and the largest eigenvalue λmax of M behaves as in the absence of perturbation, i.e.
λmax '

p
2N+ 1p

2N1/6χ2 where χ2 = O(1) fluctuates according to the GUE Tracy-Widom distri-
bution. Above the threshold, for γ > 1, an outlier or spike eigenvalue detaches from the Wigner

sea, and the largest eigenvalue now behaves as λmax '
q

N
2 (γ+

1
γ)+

1p
2
N (0,σ2 = 1− 1

γ2 ) (i.e.,
with Gaussian fluctuations). The analogy with our quantum problem is suggested by the fact
that (i) the joint probability density function, PDF, of the eigenvalues of M0 is identical to the
joint PDF of the fermion positions in the ground state of the harmonic oscillator V (x) = 1

2 x2

(ii) the perturbation is of rank one in each problem. It is then tempting to establish an analogy
between the spike/outlier from the Wigner sea, and the fermion bound to the delta impurity
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outside the Fermi sea. A difference is that the analog of the typical value of λmax would be
x1, which in our problem is given. However, in both cases the order parameter of the strong
coupling phase (i.e. γ > 1 in random matrix theory or λA > κF (x1) in the fermion problem) is
the overlap of the state of the system with the perturbation. Note that the BBP transition has
a non-trivial critical regime when γ− 1 = O(N−1/3), where λmax gradually leaves the edge of
the spectrum. The critical region in our problem corresponds to the case where the impurity
is placed near the edge studied below in Section 7.

6 Interaction between two impurities in the bulk

In this section we compute the effective interaction between two impurities in the bulk sep-
arated by a distance r. We place impurity 1 at x1 and impurity 2 at x2. We assume that
|x2 − x1| � ξ where the length ξ is defined in Eq. (30) such that the trapping potential can
be considered as constant. For two impurities we can still apply the Hellmann-Feymnam theo-
rem, for example differentiating with respect to λ2, which measures the interaction strength of
impurity 2. Writing explicitly the dependence on the coupling constants λ1 and λ2, we obtain
the analogue of Eq. (79) valid for two impurities

∂Ω(µ,λ1,λ2)
∂ λ2

=
ħh2

m
ρµ(x2,λ1,λ2) , (99)

where Ω(µ,λ1,λ2) is the grand-potential of the system in the presence of the two impurities
(it depends on both x1 and x2 but we omit the explicit dependence for notational simplicity).
In Eq. (99), ρµ(x2,λ1,λ2) denotes the density of the Fermi gas at the location of the second
impurity. Let us define the effective interaction between the two particles as

Vint(r) = Ω(µ,λ1,λ2)−Ω(µ,λ1, 0)−Ω(µ, 0,λ2) +Ω(µ, 0, 0) , (100)

which depends only on the distance r = |x2 − x1| since the system is translationally invariant
on scale of the order O(ξ). The interaction potential Vint(r) in Eq. (100) can be written as

Vint(r) =
ħh2

m

�

∫ λ2

0

dλ′2 ρµ(x2,λ1,λ′2)−
∫ λ2

0

dλ′2 ρµ(x2, 0,λ′2)

�

. (101)

Now using the representation of ρµ(x2,λ1,λ2) in terms of the Green’s function in Eq. (21) by
setting x = y = x2 we find

ρµ(x2,λ1,λ2) = Kµ(x2, x2) =
1
π

Im

∫ µ

−∞
dµ′Gµ′(x2, x2) . (102)

We now use Eq. (51) which can be written as

Gµ′(x2, x2) = −
m

ħh2

∂

∂ λ2
ln
�

det[1−ΛgG0]
�

, (103)

thus facilitating the integration with respect to λ′2 in Eq. (101). This then yields

Vint(r) = −
1
π

Im

∫ µ

−∞
dµ′

�

ln
�

(1− g1G0µ′(x1, x1))(1− g2G0µ′(x2, x2))− g1 g2G2
0µ′(x1, x2)

�

− ln
�

1− g1G0µ′(x1, x1)
�

− ln
�

1− g2G0µ′(x2, x2)
�

�

. (104)
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Using the fact that G0µ(x , y) = G0µ(x − y), we get

Vint(r) = −
1
π

Im

∫ µ

−∞
dµ′ ln

�

1−
g1 g2G2

0µ′(r)

(1− g1G0µ′(0))(1− g2G0µ′(0))

�

, (105)

where we recall that r = |x2 − x1|. Now using the expression for the Green’s function in Eq.
(25), valid in the bulk, and again changing the integration variable to k where µ′ = ħh2k2/2m,
we find

Vint(r) = −
ħh2

πm
Im

∫

Γ ′2

dk k ln
�

1+
λ1λ2

[k− iλ1][k− iλ2]
exp(−2ikr)

�

, (106)

where the contour Γ ′2 is shown in Fig. 3. As λ1 and λ2 are real, there are no poles inside the
region enclosed by the contours Γ ′2, Γ4 and Γ ′′3 shown in Fig. 3. Therefore Cauchy’s theorem
tells us that the contour integral around this region is identically zero. Using further the fact
that the integrand vanishes on the contour Γ ′′3 as its radius is extended to∞ we obtain

Vint(r) =
ħh2

πm
Im

∫

Γ4

dk k ln
�

1+
λ1λ2 exp(−2ikr)
[k− iλ1][k− iλ2]

�

. (107)

Making the substitution k = kF − iκ where kF = kF (x1)≈ kF (x2), we find the exact result

Vint(r) = −
ħh2

πm
Im i

∫ ∞

0

dκ(kF − iκ) ln
�

1+
λ1λ2 exp(−2ikF r − 2κr)

[kF − iκ− iλ1][kF − iκ− iλ2]

�

. (108)

Writing λi = kFγi and making the change of variable κ = kF u we find the interaction energy,
with its dependence on the physical parameters r, kF , γ1 and γ2 made explicit, is given by

Vint(r, kF ,γ1,γ2) = −
ħh2k2

F

πm
Im i

∫ ∞

0

du (1− iu) ln
�

1+
γ1γ2 exp(−2ikF r − 2kF ur)
[1− iu− iγ1][1− iu− iγ2]

�

= −
ħh2k2

F

πm
Re

∫ ∞

0

du (1− iu) ln
�

1+
γ1γ2 exp(−2kF r(i + u))
[1− iu− iγ1][1− iu− iγ2]

�

.

(109)

For kF r � 1 one can expand the integrand about u= 0. The corrections due to terms of order
u are of order 1/kF r (see Eq. (112) below). We thus find for r large

Vint(r, kF ,γ1,γ2)' −
ħh2k2

F

πm
Re

∫ ∞

0

du ln
�

1+
γ1γ2 exp(−2kF r(i + u))
[1− iγ1][1− iγ2]

�

. (110)

This is exactly the result obtained in [19, 20] via a field theoretic method based on the sum-
mation of Matsubara frequencies, which becomes a continuous integral at zero temperature.
In this large distance approximation the integral can be evaluated to give

Vint(r, kF ,γ1,γ2)'
ħh2kF

2rπm
Re Li2

�

−
γ1γ2 exp(−2ikF r)
[1− iγ1][1− iγ2]

�

, (111)

where Li2 is the di-logarithm function [39].

The interaction potential can then be written in terms of the Fermi energy EF =
ħh2k2

F
2m and

the variable ζ= kF r to give

Vint(r, kF ,γ1,γ2) = −
2EF

πζ
Re

∫ ∞

0

ds
�

1− i
s
ζ

�

ln

�

1+
γ1γ2 exp(−2ζi − 2s))

[1− i s
ζ − iγ1][1− i s

ζ − iγ2]

�

, (112)
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Figure 6: Effective interaction U(z,γ1,γ2) (in units of the Fermi energy) between im-
purities, solid lines exact interaction given by Eq. (112) and dashed lines asymptotic
large distance approximation Eq. (113). Shown in (a), (b) and (c) impurities with
interactions strengths (γ1,γ2) = (1,1), (−1,−1) and (1,−1) respectively.

and with the asymptotic form for large ζ given by

Vint(r, kF ,γ1,γ2)'
EF

πζ
Re Li2

�

−
γ1γ2

[1− iγ1][1− iγ2]
exp(−2iζ)

�

. (113)

In Fig. 6a we show the interaction energy in units of EF , U(ζ,γ1,γ2) = Vint(ζ, kF ,γ1,γ2, )/EF ,
for the exact result Eq. (112) for two repulsive impurities with (γ1,γ2) = (1, 1), as a function
of ζ, along with the corresponding large distance approximation of Eq. (113). As was the case
for Friedel oscillations the asymptotic result is accurate for ζ > 3 but diverges towards −∞ as
ζ→ 0. The potential oscillates in a manner reminiscent of the Friedel oscillations, exhibiting
local minima, but is attractive for ζ < 1. In Fig. 6b we show the corresponding result for
two attractive impurities (γ1,γ2) = (−1,−1), again the potential oscillates and presents local
minima. A sharp barrier appears at ζ∼ 1/2, but a deep minimum is formed for small ζ. In Fig.
6c we show the case for an attractive and repulsive impurity with (γ1,γ2) = (1,−1). Here, in
contrast to the case of impurities of the same type, the short distance behavior of the potential
is repulsive. The oscillatory behavior of the interaction is clearly of a quantum origin and
related via the Hellmann-Feynman theorem to density fluctuations. It is interesting to note
that in the context of the thermal Casimir effect of scalar statistical field theories, oscillatory
Casimir interactions are very rare, however they can appear due to higher derivative terms
in the field theory, for instance a field theory related to Brazovskii type theories in polymer
systems turns out to possess a similar oscillatory interaction [43].

For interacting systems, the long distance behavior of the effective interaction between two
scatterers was derived in [19,20] and was compared to the corresponding free Fermi case Eq.
(111). It was found that the 1/r envelope decay in Eq. (111) is renormalized in a way which is
consistent with the corresponding change in the density oscillations around the impurity [42].
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7 Impurity near the edge

In this section we investigate the effect of adding a delta function impurity near the edge at
x = xe such that µ= V (xe). In this region, in the absence of the impurity the Green’s function
satisfies the scaling form given in Eq. (33). The width of this region is given by we and the
corresponding energy scale is denoted by αe, both displayed in Eq. (34). Consider now an
impurity located at x = x1 = xe + z0 where z0 will be of the same order as we. Substituting
the scaling form from (33) into (52), we obtain the change in the Green’s function due to the
impurity as

∆Gµ′(x1 + z, x1 + z′) =
λ∗

αewe

ge(
z+z0
we
+ µ−µ′

α , z0
we
+ µ−µ′

αe
)ge(

z0
we
+ µ−µ′

α , z′+z0
we
+ µ−µ′

αe
, )

1−λ∗ge(
z0
we
+ µ−µ′

αe
, z0

we
+ µ−µ′

αe
)

, (114)

where ge(ζ,ζ′) is given in (35) and

λ∗ =
ħh2λ

mαewe
= 2λwe (115)

is a dimensionless measure of the impurity strength in the edge region.
The kernel K0µ at the edge in the absence of impurity is given by,

K0µ(x , y) =
1
we

KAi

�

x − xe

we
,

y − xe

we

�

, KAi(a, b) =

∫ ∞

0

du Ai(a+ u)Ai(b+ u) (116)

in terms of the Airy kernel KAi. The change in the kernel,∆Kµ = Kµ−K0µ, is obtained from Eq.

(24) by integrating over µ′ between µ and+∞, making the change of variables z0
we
+ µ−µ

′

αe
= −u

and setting z0 = cwe then gives

∆Kµ(x1 + awe, x1 + bwe) = −
λ∗

πwe

∫ ∞

−c
du Im

ge(a− u,−u)ge(−u, b− u)
1−λ∗ge(−u,−u)

, (117)

where function ge is given in (35) and the dimensionless number c given by

c =
z0

we
=

x1 − xe

we
, (118)

measures the relative position of the impurity compared to the edge. The above integral has
an integrand which oscillates and decays like 1/u for large u and it cannot, at least in any
obvious sense, be evaluated analytically. However if we use Eq. (23) we find the alternative
expression

∆Kµ(x1 + awe, x1 + bwe) =
λ∗

πwe

∫ ∞

c
du Im

ge(a+ u, u)ge(u, b+ u)
1−λ∗ge(u, u)

, c =
x1 − xe

we
, (119)

which converges quickly for u→ +∞ allowing an efficient numerical integration (see below).

7.1 Density at the edge

Of particular interest is how the density is modified by the presence of a delta function at
the edge. The average density of the Fermi gas around the impurity, can now be obtained by
setting coinciding points in the total kernel which, in terms of the scaled position a measured
from the position of the delta impurity, leads to

ρµ(x) =
n(a, c,λ∗)

we
, a =

x − x1

we
, (120)
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where

n(a, c,λ∗) =

∫ ∞

c
du

�

Ai(u+ a)2 +
λ∗

π
Im

ge(a+ u, u)2

1−λ∗ge(u, u)

�

, c =
x1 − xe

we
(121)

and c is the scaled relative position of the delta impurity with respect to the edge. In the above,
when λ∗ = 0 we recover the usual edge density of the Airy gas which, in random matrix theory,
corresponds to the eigenvalue density for the Gaussian Unitary Ensemble at the edge where
the Wigner semi-circle law vanishes [44]. Using (35) the integrand in the second term can be
written more explicitly as

D(a, u) =
λ∗

π
Im

ge(a+ u, u)2

1−λ∗ge(u, u)
(122)

=











−πλ∗Ai(u+ a)2Ai(u)πλ
∗Ai(u)3+πλ∗Ai(u)Bi(u)2+2Bi(u)

(1+πλ∗Ai(u)Bi(u))2+(πλ∗)2Ai(u)4 , a > 0

−πλ∗Ai(u)2 πλ
∗Ai(u)2(Bi(u+a)2−Ai(u+a)2)+2Ai(u+a)Bi(u+a)(1+πλ∗Ai(u)Bi(u))

(1+πλ∗Ai(u)Bi(u))2+(πλ∗)2Ai(u)4 , a < 0 .

(123)

Let us recall the asymptotic behavior of the Airy functions. For u→ +∞ one has

Ai(u)'
exp(−2

3u
3
2 )

2
p
πu

1
4

, Bi(u)∼
exp(2

3u
3
2 )

p
πu

1
4

, (124)

which implies that Ai(u)Bi(u) ' 1
2π
p

u , and so we see that for u → +∞ the r.h.s. of (123)

behaves as ' −2πλ∗Ai(u)3Bi(u) and thus decays very quickly. On the other side, for u→−∞
both Ai(u) and Bi(u) decay as 1/|u|1/4 with oscillating prefactors. Hence it seems that the inte-
gral can be easily evaluated numerically (apart from a subtlety arising from the denominator
for large negative λ∗ see below). Note also that as a→±∞ the change in the density due to
the impurity decays to zero.

In Fig. 7 we have plotted n(a, 0,λ∗) as a function of a for the values λ∗ = 0, the case
where there is no impurity at the edge, and for value λ∗ = 1 (repulsive impurity) and the
value λ∗ = −1 (attractive impurity) for an impurity placed exactly at the edge c = 0. We see
that in all cases, the density oscillates in the region to the left of the edge (as one moves to-
wards the bulk) but decays monotonically to the right as one moves away from the bulk. The
presence of a repulsive impurity decreases the density, as expected, and induces a small phase
shift in the oscillations to the left. However the attractive impurity increases the density at the
original edge and leads to a larger density of fermions to the right, again with monotonic de-
cay. In addition, the oscillations in the density experience a substantial phase shift with respect
the the case of no impurity and a repulsive impurity. The presence of an impurity introduces a
discontinuity in the derivative of the density at x1, i.e. at a = 0. Similar effects are seen when
the impurity is not placed exactly at the edge x1 6= xe. For an attractive impurity placed on
the right of the edge, the density increases around the impurity.

Filling transition of an attractive impurity located far from the edge. Here we examine,
within the edge region, the filling transition already discussed in Section 5 in the context of
the bulk. Clearly if the delta impurity is placed far to the right of the edge, i.e. c = x1−xe

we
� 1,

the local potential at the position of the impurity, V (x1), is large compared to the value V (xe)
at the edge. Being well above the Fermi sea it should play no role in the Fermi gas, un-
less the amplitude of the delta impurity, λ = −λA < 0, is tuned to be sufficiently attrac-
tive. Indeed, in that case we can revisit the qualitative argument given in Section 5. An
attractive delta impurity in a uniform potential produces a bound state with a binding energy
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Figure 7: The rescaled density n(a, 0,λ∗) as a function of the rescaled distance a, for
a delta function interaction placed at the edge of a trap c = 0 on top of a potential
which is locally linear at the edge. In black solid is the case where λ∗ = 0, that is to
say no perturbation. In dashed is shown the case where λ∗ = 1 (repulsive impurity)
while the case λ= −1 (attractive impurity) is shown by the dotted line.

Eb = −
ħh2

2mλ
2
A = mα2

e w2
eλ
∗2
A /(2ħh

2), hence its total energy is V (x1) + Eb. We can now surmise
that when this energy is lowered below the Fermi energy µ = V (xe), this bound state should
be filled and be part of the ground state of the Fermi gas. If one equates this binding energy
with the energy shift V (x1)−V (xe) = V ′(x1)(x1− xe) = V ′(x1)wec by linearizing the potential
near the edge, one finds that the transition should occur at

λ∗A ' 2
p

c (125)

for large c� 1. It turns out that the estimate (125) is quantitatively correct, as we now show.
To see this we return to the formula (121) and (123) for the density around the impurity

and recall from (35) that ge(u, u) = −πAi(u)[−iAi(u) + Bi(u)]. If c � 1, then the integration
region is u > c � 1 and we can use the asymptotics (124), and Ai(u)Bi(u) ' 1

2π
p

u for u� 1.
We see that the denominator in (123) becomes at large u

1
1−λ∗ge(u, u)

'
1

1+ λ∗

2u
1
2
− iλ∗

exp(− 4
3 u

3
2 )

4u
1
2

. (126)

We see that the real part of the denominator vanishes at u = uc = λ∗2A /4 when λ∗ = −λ∗A < 0,
i.e. for an attractive impurity. To study the transition, from (125) we should consider λA
large, hence uc � 1. In this case since the imaginary part is very small we can make the
approximation

1
1−λ∗ge(u, u)

' P
1

1− λ∗A

2u
1
2

− iπδ

�

1−
λ∗A

2u
1
2

�

= P
1

1− λ∗A

2u
1
2

−
iπλ∗2A

2
δ(u− uc) , (127)

where P denotes the Cauchy principle part. This means that the local density of states has
a sharp resonance at u = uc . Inserting into (123) and (121) we see that the term which
converges to a delta function gives a contribution

Dδ(a, u) = −
λ3

2
(Re[ge(a+ uc , uc)])

2 ' δ(u− uc)
λ∗A
2

exp(−λ∗A|a|). (128)
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Using Re[ge(a+uc , uc)]'
1

2
p

uc
e−2a

p
uc for large uc , we find that the corresponding contribution

to the local density reads

nδ(a, c)' θ (uc − c)
λ∗A
2

exp(−λ∗A|a|). (129)

This contribution was obtained under the assumption that uc � 1. We see that it is non zero
if uc > c, that is for λ∗A > 2

p
c, exactly the same condition as (125). In that case the above

contribution (129) corresponds precisely to a total of one particle, since its integral over a is
equal to 1. Hence for λ∗A > 2

p
c there is a local density peak corresponding to a total of one

fermion. When λ∗A < 2
p

c this extra fermion is no longer present.
We see that this transition is very sharp for c � 1 and thus coincides with the transition

discussed in section 5. One can perform a slightly more precise estimate of the above formula
(121) and (123) for the density near the impurity and obtain for aλ∗A = O(1) and c � 1, the
Lorentzian dependence in the impurity position c near the transition at c = uc

n(a, c,−λ∗A)'
λ∗A
2

exp(−λ∗A|a|)
∫ +∞

c
du

1
π

η

(u− uc)2 +η2
, (130)

where

η=
π(λ∗A)

3

2
Ai(uc)

2 , uc = λ
2
A/4 . (131)

Hence the width η is exponentially small, i.e. η' e−
4
3 u3/2

c .

Note that from the denominators in (123) we see that the effect described above persists
for smaller values of c = O(1), at the location uc of the root of Ai(uc)Bi(uc) = −

1
πλA

. However
it is broader if both c, uc = O(1). Hence it is a crossover for c = O(1) and becomes a sharp
transition as c→ +∞.

It is important to also compute the fermion density at the position of the impurity, e.g. to
derive the effective potential in the next section. It is obtained by setting x1 = x and thus
a = 0 in (132). Recalling that the first term is the imaginary part of 1

π ge(u, u) we see that the
formula simplifies into

ρµ(x1) =
1
we

1
π

Im

∫ ∞

c
du

ge(u, u)
1−λ∗ge(u, u)

=
1

weλ∗
1
π

Im

∫ ∞

c
du

1
1−λ∗ge(u, u)

. (132)

In the limit where c = (x1 − xe)/we →−∞, i.e. when the position of the impurity enters the
bulk, one can easily check, using the explicit expression of we in Eq. (34) and of λ∗ in Eq.
(115), that ρµ(x1) ' kF (x1)/π, independently of the sign of λ, i.e. both for a repulsive and
an attractive impurity. This behavior matches perfectly with the behavior found in the bulk
in Eqs. (63) and (66) in the limit |λ| � kF . This is expected since the edge scaling form in
Eq. (132) holds for finite λ∗, which implies λ ' 1/we [see Eq. (115)], and thus |λ| � kF
(since we� 1/kF for large µ).

7.2 Effective potential at the edge

We now calculate the effective potential felt by an impurity in the edge region, as defined in
(74). We can again use the Hellmann-Feynman theorem as in (80) which requires the density
at the location of the impurity as given in (132). Since this density is expressed in terms of λ∗

it is convenient to write the Hellmann-Feynman formula in terms of λ∗ using (115). It reads

∂ Veff(x1,λ)
∂ λ

=
ħh2

mαewe

∂ Veff(x1,λ)
∂ λ∗

=
ħh2

m
ρµ(x1). (133)
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Figure 8: The scaled potential Wedge(c,λ∗) felt by an impurity at the edge as a func-
tion of the distance c from the edge measured in units of we as give in Eq. (135).
Shown from top to bottom is the potential for λ∗ = 1, 0.5, −0.5, −1.

This equation can then easily be integrated with respect to λ∗ using Eq. (132) to obtain

Veff(x1,λ) = αeWedge(
x1 − xe

we
,λ∗), (134)

with

Wedge(c,λ∗) =
1
π

∫ ∞

c
du tan−1

�

λ∗πAi(u)2

1+λ∗πAi(u)Bi(u)

�

. (135)

The function Wedge(c,λ∗) can be evaluated numerically and is plotted in Fig. 8 as a function
of c for several values of λ∗. At large negative values of λ∗ the numerical evaluation becomes
difficult, presumably due to the formation of a bound state about the impurity to the left of
the edge. A more detailed analysis of this regime would be interesting to pursue and we leave
this for future work. One can also verify, numerically, that Eq. (135) matches with the bulk
form given in Eq. (13) as it should (see the discussion below Eq. (132)), although an analytic
demonstration is not obvious given the highly oscillatory nature of the integrand.

8 Discussion

In this paper we studied non interacting fermions in a trap at zero temperature, in the presence
of a singular potential created by delta function impurities. The presence of these impurities
changes the density of the Fermi gas around the impurities. For a single impurity the change
in the density profile has been studied using a number of techniques from condensed matter
physics. These methods have allowed the characterization of the density at distances far from
the impurity, which shows the celebrated Friedel oscillations. In this paper, using a Green’s
function method developed in our previous work we have computed the exact form of the
density at all distances from the impurity. Furthermore our method goes beyond the one point
function and also allowed to obtain the quantum correlations by computing the central object
known as the kernel. In addition this allowed us to compute the effective potential felt by the
impurity.
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We have shown how the behavior of the density and of the effective potential changes as
one moves the impurity from the bulk of the Fermi gas to the edge created by the confining
potential. We also unveiled an interesting filling transition which occurs when the impurity is
moved outside of the support of the density of the Fermi gas. All these results are exact and
non-perturbative in the strength of the impurity.

In addition when a pair of impurities is placed in the bulk of the Fermi gas at a distance r
from each other, the fermion background gives rise to an effective interaction Vint(r) between
them, much like the Casimir effect in quantum electrodynamics. We have calculated exactly
this effective interaction Vint(r) at all distances, and our formula agrees with previous results
known only for large distances.

In this paper all calculations in the presence of impurities are performed in the ensemble
where the Fermi energy µ is fixed, and the system is in contact with a reservoir, so that the
number of fermions can vary. This corresponds to the grand-canonical ensemble (here at zero
temperature). In the Appendix B we briefly discuss the possible differences which may appear
if instead one works in the canonical ensemble where the number of fermions is fixed (isolated
system) as the impurity strength and position may vary.

We have focused here on the zero temperature limit, however it is important to derive the
results at finite temperature since experiments are usually conducted at finite temperature.
Indeed, the results derived here can be extended to finite temperature T in a straightforward
way. As shown in [10, 45] the kernel at finite temperature in the grand canonical ensemble
at chemical potential µ̃ can be obtained from the zero temperature kernel, a relation which in
the present framework can be written as

Kµ̃(x , y) =
1
π

∫

dµ′
1

1+ eβ(µ′−µ̃)
Im Gµ′(x , y) , (136)

with β = 1/(kB T ). Using this expression, integral formulas can be obtained for all of the
quantities studied in this paper. It would be challenging to analyse these formulas in the
future.

Another line of investigation would be to study the Wigner function [47,48] in the neigh-
borhood of impurities both in the bulk and at the edge [49]. As well as being interesting in
its own right, this might be a first step to understand the dynamics of systems in the presence
of impurities as the Wigner function turns out to be a useful tool in the context of dynam-
ics [50,51].

Finally, another interesting problem for further investigation is the question about a mobile
impurity in a Fermi gas. This problem has been studied in several works, notably by McGuire
[30,31]. It would be interesting to see if one could develop a general theory which extrapolates
between the static impurity case studied here and the mobile impurity problem, which could
explain the similarities between the two cases which we unveiled in Eq. (86).
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A Comparison with the results of Ref. [18]

In this appendix, we compare our exact result for the density in the presence of a delta-function
impurity in the bulk, given in Eq. (60), to the formula obtained in Ref. [18] by a quite different
method. For this purpose, it is convenient to start from the formula given in Eq. (57). This
formula can also be represented using the contour Γ ′2 (see Fig. 3) which yields

∆Kµ(x , y) = −
λ

π
Im

∫

Γ ′2

dk
exp(−ik[|x |+ |y|])

k− iλ
. (137)

Note however that this representation is only valid for uniform systems, as it assumed that the
bulk approximation for the Green’s function is valid for small k, which in general is not.

The case λ > 0: in this case there is no bound state and there is no contribution to ∆Kµ(x , y)
in Eq. (137) coming from the part of Γ ′2 along the negative imaginary axis. Assuming that the
system is homogeneous, taking the imaginary part in Eq. (137) we find

∆Kµ(x , y) =
1
π

∫ kF

0

dk
kλ sin(k[|x |+ |y|])−λ2 cos(k[|x |+ |y|])

k2 +λ2
. (138)

Using this representation when one sets x = y we obtain the formula of [18] for the change in
the density - however we note that there is a factor of 2 difference as in [18] spin 1/2 fermions
were treated.

The case λ < 0: When λ < 0 the integral over the contour Γ ′2 in (137) picks up a half pole
contribution at k = iλ, we thus find

∆Kµ(x , y) = −
λ

π
Im

∫ kF

0

dk
exp(−ik[|x |+ |y|])

k− iλ
−λθ (−λ)exp(λ[|x |+ |y|]) , (139)

where the last term comes from the negative imaginary axis and corresponds to a bound state.
The contribution from this bound state was in fact overlooked in Ref. [18]. In fact the formula
Eq. (138) was computed in [18] via a direct summation of eigenfunctions, however when
λ < 0 this formula misses the bound state which is introduced by an attractive impurity. Note
however that the omission of this bound state does not affect the behavior at large distance
from the impurity of the Friedel oscillations since the contribution of the bound state to the
density decays exponentially at large distance.

The small λ limit: We note that taking the small λ limit in Eq. (60) gives, to order O(λ)

∆ρµ(x)≈
λ

π
Im E1(2ikF |x |) =

λ

π
si(2kF |x |), (140)

where

si(z) = −
∫ ∞

z
d t

sin(t)
t

, (141)

is the sine integral [39]. This matches perfectly with the linear response formula derived
in [18].
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B Canonical ensemble

We discuss here how one would approach the problem of adding impurities in the canonical
ensemble where the number of particles if fixed and equal to N . Consider for example adding
one impurity of strength λ. The number of single particle energy levels below the Fermi energy
µ (i.e. the integrated density of states) is given by

N(µ,λ) =
∑

j

θ (µ− ε j(λ)), (142)

which is a function of λ. In order that N be fixed µ must be a function of λ, µ(λ) such that

N(µ(λ),λ) =

∫

d x ρµ(λ)(x ,λ) = N . (143)

Let us define the change, due to the introduction of the impurity, in the integrated density of
states as

∆N(µ,λ) = N(µ,λ)− N(µ, 0). (144)

Given that the energy change is of order 1 and that the perturbation in the density is local it
is clear that ∆N(µ,λ) is also of order 1 2. Denoting ∆µ = µ(λ)−µ(0) with µ(0) = µ we can
rewrite (143) as

N(µ+∆µ, 0) +∆N(µ+∆µ,λ) = N = N(µ, 0), (145)

where ∆µ is the shift in the Fermi energy due to the impurity. To analyse what happens in the
canonical ensemble one must carry out the computations in this paper at chemical potential
µ+∆µ, so the total fermion number is fixed upon adding the impurity. However, if∆µ is zero,
then the results in this paper can simply be applied to the canonical ensemble.

A first example of where the canonical and grand canonical ensembles are equivalent is
in a bulk system of volume V where one has a total particle number N = N(µ, 0) = kF (µ)V

π .

Now using Eq. (26) for a bulk system, kF (µ) =
p

2mµ/ħh, we see that µ = ħh2π2 N2

2mV 2 and so

∆µ' −ħh2π2 N∆N(µ+∆µ,λ)
mV 2 . From this we see that∆µ→ 0, since∆N(µ+∆µ,λ) is of order one,

in the thermodynamic limit where N →∞ and with N/V fixed. Note that a bulk system can
have a varying periodic potential, and so the results given here are not just valid for constant
potentials.

For a generic trap, we assume that for large µ one has N(µ, 0) = ( µµ0
)z , where µ0 is an

intrinsic energy scale, and as N(µ, 0) must increase with µ we must have z > 0. Indeed, using
the LDA in the bulk to compute N(µ, 0) as a function of µ for potentials of the form V (x)∼ x p

we find

N(µ, 0) =

∫

d xρ0µ(x) =
p

2m
πħh

∫

B
d x
Æ

µ− V (x) , (146)

where B denotes the bulk region where
p

µ− V (x) is real. Writing V (x) = v|x |p then gives

N(µ, 0) =
p

2m
πħh

∫ ( µv )
1
p

−( µv )
1
p

d x
p

µ− vx p =

p

2mµ

πħh

�µ

v

�
1
p

∫ 1

−1

d y
p

1− y p , (147)

2Physically this can be understood by considering an impurity placed in the middle of a symmetric well. The
odd parity states are unaffected by the impurity and their energy thus remains fixed. The energy of the even
parity states does change. However, as level crossing cannot occur in a one dimensional system, their energies in
the presence of the impurity remain trapped between the energies of the odd states from below and above. This
means that at most one particle can move above or below the Fermi energy.
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so we find

N(µ, 0)'
�

µ

µ0

�
1
2+

1
p

, (148)

and thus see that z = 1
2 +

1
p . For µ large the condition in Eq. (145) reads

∆µ

µ
= −
∆N(µ,λ)
zN(µ, 0)

= −
∆N(µ,λ)

zN
, (149)

and so we see that in the thermodynamic limit ∆µµ → 0. However

∆µ= −
∆Nµ0

z
N

1
z−1, (150)

and so only when z > 1 or, equivalently, when p < 2 we see that ∆µ→ 0.
In essence the results here are valid when the large energy states near the Fermi energy

can be described as a continuum and the effects of discreteness can thus be neglected. Here a
local analysis suffices to understand the physics. It would be interesting to extend the analysis
to the cases where ∆µ remains finite (for instance the case of the harmonic trap p = 2) or
indeed diverges, traps with p > 2 and where, depending on the strength of the perturbation,
the effects of discreteness in the spectrum of H0 can be expected to play a role.
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