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Abstract. We consider a one-dimensional run-and-tumble particle, or persistent

random walk, in the presence of an absorbing boundary located at the origin. After

each tumbling event, which occurs at a constant rate γ, the (new) velocity of the

particle is drawn randomly from a distributionW (v). We study the survival probability

S(x, t) of a particle starting from x ≥ 0 up to time t and obtain an explicit expression

for its double Laplace transform (with respect to both x and t) for an arbitrary velocity

distribution W (v), not necessarily symmetric. This result is obtained as a consequence

of Spitzer’s formula, which is well known in the theory of random walks and can

be viewed as a generalization of the Sparre Andersen theorem. We then apply this

general result to the specific case of a two-state particle with velocity ±v0, the so-called

persistent random walk (PRW), and in the presence of a constant drift µ and obtain an

explicit expression for S(x, t), for which we present more detailed results. Depending

on the drift µ, we find a rich variety of behaviours for S(x, t), leading to three distinct

cases: (i) subcritical drift −v0<µ<v0, (ii) supercritical drift µ < −v0 and (iii) critical

drift µ = −v0. In these three cases, we obtain exact analytical expressions for the

survival probability S(x, t) and establish connections with existing formulae in the

mathematics literature. Finally, we discuss some applications of these results to record

statistics and to the statistics of last-passage times.

Keywords : Run-and-tumble, Telegraphic process, Survival probability, First-passage

time, Drifted process.
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1. Introduction, model and summary of the main results

1.1. Introduction

Brownian motion (BM) is certainly the most popular stochastic process to model

particles in interaction with their surrounding environment [1]. In its simplest form,

BM is driven by an uncorrelated white noise ξ(t) induced by thermal fluctuations.

Thanks to its universality, BM has been shown to be at the heart of many complex

systems ranging from colloidal solutions [2, 3] to financial stock markets [4, 5], and all

the way to applications in astrophysics [6]. On the theoretical side, BM has attracted a

considerable amount of interest, in particular because of its numerous connections with

other problems in theoretical physics and probability theory [7,8] — a case in point being

the extreme statistics of Brownian motion [9]. Related to extreme value questions, the

survival probability of a Brownian motion in the presence of an absorbing boundary

has been extensively studied [10–15]. The first-passage time to an absorbing boundary

plays a crucial role in various phenomena such as animals searching for food, financial

stocks reaching a stop price or rivers overflowing their banks. Consider for instance a

one-dimensional Brownian motion with diffusion constant D, starting from x > 0 and

in the presence of an absorbing boundary located at the origin. It is well known that

the survival probability S(x, t) of this Brownian particle up to time t is given by [10,11]

S(x, t) = erf

(
x√

4D t

)
, (1)

where erf(z) = 2√
π

∫ z
0

e−u
2
du is the error function. Starting from x > 0, the BM

inevitably crosses the origin as the survival probability decays to 0 as S(x, t) ∝ t−1/2

at late times. Biasing the motion away from the absorbing boundary, e.g., by turning

on a positive drift, increases the survival probability and has been the subject of recent

works [16–20].

While the survival probability of the Brownian motion has been known since a

long time, general results are few and far between in the case when the particles are

driven by correlated noise [21]. An example of much current interest concerns the

so-called active particles that naturally emerge in the context of living matter such

as E. coli bacteria [22] and fish schools or bird flocks [23]. A tremendous amount of

numerical and experimental work has been devoted to them [22–27]. The ability of active

particles to move autonomously renders them inherently different from the Brownian

particles which are usually driven by collisions with the molecules in the surrounding

medium. One model of active particle, currently of much interest, is the run-and-tumble

particle (RTP), also known as the telegraphic process [28] or the persistent random

walk [29, 30], which are driven by exponentially correlated noise. Interacting active

particles are known to exhibit a plethora of collective phenomena. Interestingly, active

particles also display quite rich behaviors, already at the level of a single particle or

of noninteracting RTP’s. These include non-trivial density profiles [31–37], dynamical

phase transitions [38,39] or anomalous transport properties [38, 40–42].
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Of particular relevance are the first-passage properties of RTP models, which

have been widely studied both in mathematics [43–47] as well as in physics [48–58].

Remarkably, it was recently realized [57, 58] that for a wide class of symmetric RTP

models, the survival probability S(x = 0, t) for a particle starting from the origin,

i.e., exactly where the absorbing boundary is located, exhibits a universal behavior

for all time t, reminiscent of the celebrated Sparre Andersen theorem, well known in

the literature on one-dimensional discrete time random walks [7, 59]. Such universal

behavior was then shown to hold for a certain class of discrete time persistent random

walk models [60]. In fact, most of the results for the survival probability of RTP models

concern the case of symmetric RTP models, where the velocity distribution W (v) of the

particle is symmetric, i.e. W (v) = W (−v). In contrast, much less is known about the

survival probability for asymmetric velocity distributions. There has been however a

few studies devoted to first-passage times of asymmetric RTP’s both in physics [38, 40]

(e.g. for the mean first-passage time) as well as in the mathematics literature [45,46,61].

In particular, in [45], S(x, t) was obtained for the special simpler case of the two-state

RTP in the presence of a constant drift [see (2) below]. Even in this special case, the

physical implications of the obtained formulae in [45] were not discussed in detail.

In this paper, we obtain an explicit formula for the double Laplace transform of

the survival probability S(x, t) – with respect to both x and t – for an RTP in one-

dimension with an arbitrary velocity distribution W (v), which can be either symmetric

or asymmetric [see (8)]. Our formula thus generalizes, to the case of RTP, the well-

known Spitzer’s formula valid for one-dimensional discrete time random walks with

arbitrary jump distribution. We then apply this general formula to various examples of

W (v). This includes in particular the simpler case of the two-state RTP in the presence

of a constant drift µ, where our method recovers the previously known result [45]. In

addition, we discuss the physical implications of the behaviour of S(x, t) as a function

of both the starting position x as well as the time t, unveiling very rich behaviours

depending on the strength of the drift µ.

1.2. The generalized run-and-tumble model

We consider an RTP in one-dimension starting from the initial position x ≥ 0. The

initial point is considered as a tumble. The particle chooses a velocity v from a

distribution W (v) (which can be asymmetric) and runs ballistically with this chosen

velocity v during a random run time τ drawn from an exponential distribution p(τ) =

γ e−γτ where γ−1 is the persistence time, i.e. the typical life-time of a run between two

consecutive tumblings. At the end of the run, the particle tumbles instantaneously and

chooses a new velocity v drawn again from the same distribution W (v). It then runs

again during an exponentially distributed random time τ drawn from the same p(τ).

This run-and-tumble process continues till the fixed time t.

Another well studied model in the literature is the so-called persistent random

walk (PRW) [28–30] where the position x(t) of a particle, starting at x(0) = x, evolves
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0
σ

σ (t)

1

−1

τ

t

Figure 1: Telegraphic noise σ(t) with σ0 ≡ σ(0) = 1 whose evolution is given in (3). The time

between two consecutive switches τ is drawn from an exponential distribution p(τ) = γ̃ e−γ̃τ .

stochastically as

ẋ(t) = µ+ v0 σ(t) , (2)

where µ is a drift and σ(t) is a telegraphic noise that switches between the values 1 and

−1 according to a Poisson process with rate γ̃ (see figure 1). The initial value of the

telegraphic signal is denoted by σ0 ≡ σ(0). During an infinitesimal time interval dt, the

signal changes sign with probability γ̃ dt and remains constant with the complementary

probability 1− γ̃ dt

σ(t+ dt) =

{
σ(t) , prob. = 1− γ̃ dt ,
−σ(t) , prob. = γ̃ dt .

(3)

The time τ between two consecutive switches is thus distributed according to an

exponential distribution p(τ) = γ̃ e−γ̃ τ . The autocorrelation function of the telegraphic

noise can be easily computed (see e.g. Appendix A) and one obtains

〈σ(t1)σ(t2)〉 = e−2 γ̃ (t2−t1) . (4)

The autocorelation function (4) is said to be colored because it has a finite correlation

time γ̃−1 which is called the persistence time. This will be reflected in the motion of

the run-and-tumble particle x(t) (2) which will in turn exhibit memory effects. This

persistence, also called activity, renders the process non-Markovian and hence does

not fall into the universality class of the Brownian motion, which makes this process

challenging to study. Nevertheless, it is possible to recover the Brownian diffusive regime

by taking the scaling limit

γ̃ →∞ , v0 →∞ ,
v2

0

2 γ̃
≡ D , (5)

such that the effective diffusion coefficient D is finite. In this limit, the persistence time

γ̃−1 tends to zero and the run-and-tumble particle behaves like a Brownian motion.

Indeed, in this limit, the driving noise in the equation of motion (2) becomes

〈v0 σ(t1) v0 σ(t2)〉 = v2
0 e−2γ̃(t2−t1) → 2D δ(t2 − t1) , (6)
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x

t
0

(a) Subcritical drift −v0 < µ < v0

t

x

0

(b) Supercritical drift µ < −v0

t

x

0

(c) Critical drift µ = −v0

Figure 2: Typical trajectories x(t) of an RTP, starting at x(0) = x, with velocity v0 in the

presence of a drift µ [see (2)] and an absorbing boundary at the origin. The velocity of the

particle ẋ(t) given by the equation of motion (2) can take two values: µ + v0 and µ − v0.

Depending on the strength of the drift, the sign of these two values can either be positive and

negative (a), both negative (b) or zero and negative (c). In the three panels, the blue and

the green trajectories have not crossed the origin at time t and will contribute to the survival

probability Sσ0(x, t) while the red and the yellow ones will not (with σ0 = σ(t = 0)).

which is the well-known uncorrelated white noise.

It is easy to see that this PRW model is a special case of the more general RTP

model defined earlier. Indeed it corresponds to choosing a velocity distribution and a

tumbling rate

W (v) =
1

2
δ(v − µ− v0) +

1

2
δ(v − µ+ v0) , and γ = 2 γ̃ . (7)

Note that in the general model, γ denotes the rate of tumbling, i.e., the process renews

with rate γ. Thus, after each tumbling, the velocity may either flip sign or retain the

same sign with equal probability. Therefore, the rate at which the velocity changes sign

is γ/2. This explains the relation γ̃ = γ/2 in (7).

In the present work, we are interested in computing the survival probability S(x, t)

of a general RTP with velocity distribution W (v). Here S(x, t) is the probability that

the particle, starting at x ≥ 0, does not cross the origin up to time t. Since the paper

is long, it is useful to provide a summary of our main results. After deriving a general

result for S(x, t) with arbitrary W (v), we will focus on the special case of the PRW

in (7). For this case, we are able to derive detailed results for S(x, t). Furthermore, to

illustrate the usefulness of our general formula valid for arbitrary W (v), we show how

explicit results for S(x, t) can be derived in another example of W (v).

1.3. Summary of the main results

For an RTP with arbitrary W (v), we obtain a closed-form expression for the double

Laplace transform of the survival probability S(x, t)∫ ∞
0

dx

∫ ∞
0

dt S(x, t) e−ux−s t

=
γ + s

γ u s
exp

(
− i

2π

∫
iR
dz ln

(
z + u

z

) ∫∞
−∞ dv

vW (v)
(γ+s+z v)2

1
γ
−
∫∞
−∞ dv

W (v)
(γ+s+z v)

)
− 1

γu
, (8)

where iR denotes the imaginary axis in the complex z plane. Even though this formula

may look a bit formal, one of the goals of this paper is to show that in various special
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cases of W (v), it is possible to extract S(x, t) explicitly from (8), an example being the

two-state PRW model defined in (2). As shown in Appendix C, we also obtain formulae

similar to (8) for the survival probabilities for a generic RTP conditioned to start with

a negative or positive velocity [see (C.12) an (C.13)].

Let us present our results for the specific PRW [see (2)], where the velocity ẋ(t)

can take only two values µ + v0 and µ − v0. In this case, it is also natural to consider

the survival probabilities S±(x, t), which are the survival probabilities up to time for a

PRW starting from x with an initial velocity given respectively by ẋ(0) = µ± v0, i.e.,

S+(x, t) = Pr.
[
x(τ) ≥ 0 ,∀τ ∈ [0, t]

∣∣∣x(t = 0) = x, ẋ(0) = µ+ v0

]
, (9a)

S−(x, t) = Pr.
[
x(τ) ≥ 0 ,∀τ ∈ [0, t]

∣∣∣x(t = 0) = x, ẋ(0) = µ− v0

]
. (9b)

We find that these probabilities display a rich behavior, as function of x and t, depending

on the two parameters µ and v0 (see figure 3):

• µ ≥ v0 (trivial): ẋ(t) is always positive which means that the particle always moves

away from the origin. The survival probability in this case is trivially 1.

• −v0 <µ< v0 (subcritical): ẋ(t) can be positive or negative which means that the

particle alternates between up runs, away from the origin, and down runs, towards

the origin (see figure 2a). Due to the down runs, it is now possible that the particle

crosses the origin and its survival probability decays exponentially with time. More

precisely, it decays to 0 if −v0<µ<0 or to a finite positive value if 0<µ<v0.

• µ<−v0 (supercritical): ẋ(t) is always negative which means that the particle always

moves towards the origin (see figure 2b) and the survival probability decays to 0 in

a finite time.

• µ =−v0 (critical): the two possible values for ẋ(t) are 0 and −2 v0 which means

that the particle alternatively waits and runs towards the origin (see figure 2c). In

this case, the survival probability decays anomalously to 0. The precise form of

this anomalous decay will be discussed in section 5.

This leads us to divide the presentation of our results into three parts: (i) subcritical

drift −v0<µ<v0, (ii) supercritical drift µ<−v0 and (iii) critical drift µ=−v0. These

three parts are summarized in the phase diagram in figure 3.

Before presenting our results, let us set v0 = 1 and γ̃= 1 for the remaining of this

section. This simply amounts to rescale all the times by γ̃ and all the positions by v0/γ̃.

It is always possible to reintroduce the units by performing the replacements

x→ γ̃ x

v0

, t→ γ̃ t , µ→ µ

v0

. (10)

In these dimensionless units, the velocity ẋ(t) of the run-and-tumble particle evolving

according to the equation of motion (2) can take the two values µ + 1 and µ − 1. The

drift is subcritical when −1< µ< 1 (figure 2a), supercritical when µ <−1 (figure 2b)

and critical when µ =−1 (figure 2c). Our main results for the two-state RTP in the

presence of a drift can be summarized as follows:
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µ

v0−1 0 1
subcritical supercritical

S(t)

t

S(t)

t

S(t)

t

S(t)

t

trivial

Figure 3: Phase diagram illustrating the schematic decay profiles of the survival probability

S(t) ≡ S(x=1, t) at a fixed starting point, say x=1, as a function of t, for different values of the

ratio µ/v0. When −v0<µ<v0, the drift is subcritical and the motion of the particle consists

of up and down runs (see figure 2a). When µ<−v0, we say that the drift is supercritical and

the particle always moves towards the origin (see figure 2b). At the critical point µ=−v0, the

drift exactly balances the internal speed of the particle leading to an effective wait-and-run

motion (see figure 2c). When µ>v0, the particle always moves away from the origin and the

survival probability is trivially 1 at all times.

Subcritical drift (−1<µ< 1). In the case of a subcritical drift (see figure 2a and 3),

we find that the survival probability is

S+(x, t) =

{
1 , t < tm ,

1−
∫ t
tm
dt′ e−t

′

g(t′,x)

(
x I0 [h(t′, x)] + (1 + µ)

√
f(t′,x)
g(t′,x)

I1 [h(t′, x)]
)
, t ≥ tm ,

(11a)

S−(x, t) =

{
1 , t < tm ,

1− e−tm −
∫ t
tm
dt′ e−t

′ x
h(t′,x)

I1 [h(t′, x)] , t ≥ tm ,
(11b)

where I0(z) and I1(z) are the modified Bessel functions and

tm =
x

1− µ , (12a)

f(t, x) = t (1− µ)− x , (12b)

g(t, x) = t (1 + µ) + x , (12c)

h(t, x) =
√
f(t, x) g(t, x) . (12d)

These results in (11a) and (11b) are in agreement with the ones derived in [45] by

a different method using coupled Fokker-Planck equations which works only for this

particular class of two-state models, where the magnitude of the velocity is a constant

v0. However, our method is more general and applies to RTP models with arbitrary

velocity distribution W (v). The survival probability is illustrated in figure 4. The

first-passage time distribution F±(x, t) = −∂tS±(x, t) has a simple analytical expression

that enables us to compute the mean first-passage time to the origin which is infinite

when 0 < µ < 1 and finite when −1 < µ < 0 (54). Finally, we remark that for µ = 0

(the unbiased case), our result in (11a) and (11b) reduces to the well-known result for

unbiased PRW [43,44,48–50,53–58].
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(a) σ0 = −1
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(b) σ0 = +1

Figure 4: Survival probability Sσ0(x=1, t), with σ0 = ±1, in the presence of a subcritical drift

−1<µ< 1 for a particle starting in the state σ0. Sσ0(x= 1, t) only starts to decrease after a

time tm = 1/(1 − µ) (12a) which is the minimum time it takes for the particle to reach the

origin. S−(1, t) has a sudden drop at t = tm which is due to the trajectory that goes straight

to the origin without tumbling (this happens with a finite probability weight e−tm). This

trajectory is not present for S+(x, t). In the long-time limit, both S+(x, t) and S−(x, t) tend

towards a finite probability when 0<µ<1 (45) or decay exponentially when −1<µ≤0 (46).

Supercritical drift (µ < −1). In the case of a supercritical drift (see figure 2b and

3), the drift outweighs the internal velocity of the particle v0 = 1, making it effectively

always move in the direction of the drift but with two different speeds µ+ 1 and µ− 1.

The particle will surely not survive and reach the origin before a maximum time tM .

Indeed, even if the internal velocity of the particle remains opposite to the drift during

the whole motion, it will eventually reach the origin by a time tM = −x/(1 + µ). The

final result for the survival probability in the presence of a supercritical drift is

S+(x, t) =


1 , t < tm ,

1−
∫ t
tm
dt′ e−t

′
(

1−µ
2
I0 [h(t′, x)]− 1+µ

2

√
f(t′,x)
g(t′,x)

I1 [h(t′, x)]
)
, tm ≤ t < tM ,

0 , t ≥ tM ,

(13a)

S−(x, t) =


1 , t < tm ,

1− e−tm −
∫ t
tm
dt′ e−t

′
(

1−µ
2

√
g(t′,x)
f(t′,x)

I1 [h(t′, x)]

−1+µ
2
I0 [h(t′, x)]

)
, tm ≤ t < tM ,

0 , t ≥ tM ,

(13b)

where tm, f(t, x), g(t, x) and h(t, x) are given in (12) and

tM = − x

1 + µ
(14)

is the maximum time to reach the origin. The survival probability is illustrated in

figure 5. The first-passage time distribution Fσ0(x, t) = −∂tSσ0(x, t) has a simple
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Figure 5: Survival probability Sσ0(x=1, t) in the presence of a supercritical drift µ=−3/2<−1

for a particle starting in the state σ0. The particle certainly reaches the origin after the

minimum time tm = 1/(1−µ) = 0.4 (12a) and before the maximum time tM = −1/(1+µ) = 2

(14). S−(x=1, t) has a sudden drop at t = tm and S+(x=1, t) has a sudden drop at t = tM = 2.

These drops are due to the trajectories that go straight to the origin without tumbling: these

events happen respectively with probabilities e−tm and e−tM .

expression that enables us to compute the mean first-passage time to the origin, which

is always finite in this case (62).

0 1 2 3 4 5
t

0.00

0.25

0.50

0.75
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−
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=
1,
t)

µ = −1

(a) σ0 = −1
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+
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µ = −1

(b) σ0 = +1

Figure 6: Survival probability Sσ0(x = 1, t) in the presence of a critical drift µ = −1

for a particle starting in the state σ0. Sσ0(x = 1, t) only starts to decrease after a time

t = tm = 1/(1 − µ) = 0.5 (12a) which is the minimum time it takes for the particle to reach

the origin. S−(x= 1, t) has a sudden drop at t = tm = 0.5 which is caused by the trajectory

that goes straight to the origin without tumbling: this event happens with probability e−tm .

This trajectory is not present for S+(x, t). In the long-time limit, S+(x=1, t) and S−(x=1, t)

decay anomalously to 0.
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Critical drift (µ=−1). In this case, for the survival probabilities S±(x, t), we obtain

the exact results

S+(x, t) =

{
1 , t < x/2 ,

1−
∫ t
x/2

dt′ e−t
′
I0

[√
x (2t′ − x)

]
, t ≥ x/2,

(15a)

S−(x, t) =

{
1 , t < x/2 ,

1− e−x/2 −
∫ t
x/2

dt′ e−t
′
√
x√

2t′−x I1

[√
x (2t′ − x)

]
, t ≥ x/2 .

(15b)

These functions are plotted in figure 6 and their asymptotic behaviors are discussed in

detail in section 5. Finally, in the same section, we also discuss the cross-over between

the critical and off-critical behaviors as time progresses by setting µ close to the critical

value µ = −1.

The rest of the paper is organized as follows. In section 2, we outline a derivation

of the survival probability of a particle with an arbitrary velocity distribution and apply

it on the PRW model in the presence of a drift. In section 3 we study the survival

probability for the case of a subcritical drift −1<µ< 1 and discuss its long-time limit

along with the mean first-passage time to the origin. In section, 4, we study the survival

probability for the case of a supercritical drift µ<−1. We discuss the mean first-passage

time to the origin as well as an alternative derivation for the survival probability based

on the propagator of the particle. In section 5, we study the survival probability in the

presence of a critical drift µ=−1 and derive some scaling functions close to criticality.

In section 6, we show how our method can be applied to another asymmetric velocity

distribution. In section 7, we discuss applications of our results to emptying times and

record statistics. Finally, we conclude in section 8. Some technical calculations are

relegated in Appendix A to I.

2. Survival probability for a particle with an arbitrary velocity distribution

We start with a generalized RTP model, with an arbitrary velocity distribution W (v)

and tumbling rate γ. Following [57,58], we will first map the RTP motion to a discrete

time random walk on the line with a jump distribution that depends on the velocity

distribution W (v). Under this mapping, the survival probability (in the Laplace space

with respect to time t) of the RTP gets related to the survival probability of a one-

dimensional discrete-time random walk with a specified jump distribution. The latter

can then be computed by adapting Spitzer’s formula [62], valid for one-dimensional

random walk with arbitrary jump distribution. This will lead to the result mentioned

in (8). We then use this general formula to derive explicitly S(x, t) for a specific W (v)

corresponding to the two-state RTP mentioned earlier (7).

2.1. Mapping of the run-and-tumble process to an effective discrete-time random walk

In this model, since the total time is fixed, the actual number of tumblings n in the

trajectory of the process is a random variable and fluctuates from one trajectory to
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τ
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τ
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τ
3

τ
4

t
x

0

Figure 7: Trajectory of a generalized run-and-tumble model starting at x ≥ 0 with n = 4

tumblings (by convention, the first tumbling happens at t = 0). The time intervals τ1, τ2 and

τ3 are called the run-times – and they are identically distributed exponential random variables

of parameter γ. The last run τ4 is not finished and thus behaves differently from the first run

times (see the discussion in the text).

another. Consider a particular trajectory of total duration t with n runs, n ≥ 1. Of

these runs, the first n − 1 are complete while the last one is not since the process has

been stopped exactly at the observation time t. For each of the first n− 1 runs, the run

time τi is chosen independently from the distribution p(τi) = γ e−γτi , i = 1, 2, . . . , (n−1).

In contrast, the probability weight associated to the last run τn is
∫∞
τn
dτ p(τ) = e−γ τn

(see figure 7). During each run, the velocity vi is chosen independently from W (v).

Consequently, the run lengths `i = viτi are also random variables. For the brevity

of notations, we will denote the collection of n run lengths together by the vector
~̀= {`1, `2, · · · , `n}. We first note that the survival probability S(x, t) of the continuous

time process x(τ) starting at x is identical to the probability of the event that the

positions at the end of each tumbling up to time t is nonnegative. This is easy to see

because if two consecutive tumbling positions are both positive, the particle could not

have gone to the negative side in between. Similarly, if the position of the RTP during

a run between two successive tumblings stays positive, then obviously the two end-

positions of the run are also nonnegative. Hence we just have to compute the probability

of the event that these tumbling positions {x+ `1, x+ `1 + `2, . . . , x+ `1 + `2 + . . .+ `n}
are simultaneously nonnegative. Hence,

S(x, t) =
∑
n

∫
d~̀P (~̀, n|t) θ(x+ `1)θ(x+ `1 + `2) · · · θ(x+ `1 + `2 + · · ·+ `n) , (16)

where θ(z) is the Heaviside theta function and P (~̀, n|t) denotes the joint distribution of

run lengths ~̀ and the number of tumblings n, given a fixed time t. The product of the

theta functions ensures that the trajectory stays nonnegative up to time t. This joint

distribution P (~̀, n|t) can be written down explicitly as [57,58]

P (~̀, n|t) =

[
n−1∏
i=1

∫ ∞
0

dτi

∫ ∞
−∞

dviW (vi)γ e−γτi δ(`i − viτi)
]
×

×
[∫ ∞

0

dτn

∫ ∞
−∞

dvnW (vn) e−γτn
]
δ

(
t−

n∑
i=1

τi

)
. (17)
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This formula is easy to understand. The product in the first line corresponds to the

probability weight of the first (n − 1) complete and independent runs. On the second

line, the first factor corresponds to the probability weight of the last (incomplete)

run. Finally, the global delta function ensures that the total time t is fixed. Note

the inequivalence between the probability weight of any of the (n − 1) complete runs

and the one of the last run since they differ by a factor γ. In order to make them

equivalent, it is convenient to divide by a global factor γ and rewrite (17) as

P (~̀, n|t) =
1

γ

[
n∏
i=1

∫ ∞
0

dτi

∫ ∞
−∞

dviW (vi)γ e−γτiδ(`i − viτi)
]
δ

(
t−

n∑
i=1

τi

)
(18)

The presence of the global delta function in (18) suggests that the joint distribution

factorizes in the Laplace space with respect to time t. Thus taking the Laplace transform

of (18) we get∫ ∞
0

P (~̀, n|t)e−s t dt =
1

γ

(
γ

γ + s

)n n∏
i=1

∫ ∞
0

dτi

∫ ∞
−∞

dvi (γ + s) e−(γ+s)τiW (vi)δ(`i − viτi)

=
1

γ

(
γ

γ + s

)n n∏
i=1

φs(`i) , (19)

where in the first line we have multiplied and divided by a factor (γ + s) and defined

φs(`) =

∫ ∞
0

dτ

∫ ∞
−∞

dv (γ + s) e−(γ+s)τ W (v)δ(`− v τ) . (20)

The reason behind this manipulation is that one sees immediately that φs(`) in

(20) is nonnegative for all ` and normalized to unity, i.e.
∫∞
−∞ d` φs(`) = 1 using∫∞

−∞ dvW (v) = 1 as well as
∫∞

0
(γ + s)e−(γ+s)τ dτ = 1. Hence one can interpret φs(`) as

a PDF of the random variable ` which is parametrized by s. Indeed the double integral

in φs(`) can be reduced to a single integral by performing the integral over v. This gives

φs(`) = (γ + s)

∫ ∞
0

dτ

τ
e−(γ+s) τ W

(
`

τ

)
. (21)

Finally taking the Laplace transform (16) with respect to t, defining S̃(x, s) =∫∞
0
S(x, t) e−st dt and using (19) one obtains

S̃(x, s) =
1

γ

∞∑
n=1

(
γ

γ + s

)n ∫
d~̀θ(x+`1)θ(x+`1+`2) · · · θ(x+`1+`2+· · ·+`n)

n∏
i=1

φs(`i) .

(22)

We now recognize the integral

qn(x) =

∫
d~̀θ(x+ `1)θ(x+ `1 + `2) · · · θ(x+ `1 + `2 + · · ·+ `n)

n∏
i=1

φs(`i) (23)

as the survival probability up to step n of a discrete time random walk starting at x

and with jumps {`1, `2, · · · , `n}, each drawn independently at each step from the PDF
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φs(`). Therefore the expression in (22) reduces to

S̃(x, s) =
1

γ

∞∑
n=1

(
γ

γ + s

)n
qn(x) . (24)

Defining the generating function of the survival probability of the effective random walk

q̄(x, r) =
∞∑
n=0

rn qn(x) , (25)

we can then express the Laplace transform of the survival probability of the original

RTP problem in terms of the generating function of the 1d random walk problem with

jump distribution φs(`)

S̃(x, s) =
1

γ
q̄

(
x,

γ

γ + s

)
− 1

γ
, (26)

where the term −1/γ appears because the sum in (24) only starts at n = 1 and we used

q0(x) = 1. This relation (26) is very general and holds for arbitrary velocity distribution

W (v), including asymmetric ones. The dependence on W (v) enters only through the

jump distribution φs(`) of the random walk problem [as in (21)].

2.2. Survival probability of the effective discrete-time random walk using Spitzer’s

formula

Spitzer established a general formula to obtain the distribution of the minimum of a

discrete-time random walk after n steps [62]. As the survival probability of the discrete-

time random walk qn(x) after n steps starting from x can be seen as the probability

that its minimum remains above the origin during n steps, his formula can be used to

obtain qn(x). The formula states that the Laplace transform with respect to x of the

generating function q̄(x, r) in (25) is given by (see Appendix B for details)∫ ∞
0

dx q̄(x, r) e−ux =
1

u(1− r) exp

(
Φs(0, r)− Φs(u, r)

2π

)
, (27a)

where the function Φs(u, r) reads

Φs(u, r) =

∫ ∞
−∞

dk

u+ ik
ln
(

1− r φ̂s(k)
)
, (27b)

and φ̂s(k) is the Fourier transform of the jump distribution φs(`)

φ̂s(k) =

∫ ∞
−∞

d` φs(`) e−i k ` . (27c)
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Inserting the expression of the jump distribution φs(`) (21), we find that its Fourier

transform is given by

φ̂s(k) =

∫ ∞
−∞

d` e−i k `(γ + s)

∫ ∞
0

dτ

τ
e−(γ+s) τ W

(
`

τ

)
, (28)

(29)

= (γ + s)

∫ ∞
−∞

dv
W (v)

(γ + s+ i k v)
. (30)

We can slightly simplify the integral in the expression of Φs(u, r) (27b) upon integrating

it by parts. Evaluating the difference Φs(u, r)−Φs(0, r) (the boundary terms do vanish)

we get

Φs(u, r)− Φs(0, r) = −i

∫ ∞
−∞

dk ln

(
ik + u

ik

)
∂kφ̂s(k)

1
r
− φ̂s(k)

. (31)

Inserting the Fourier transform φ̂s(k) (30) in this function (31) and changing variable

z = i k, we find

Φs(u, r)− Φs(0, r) = i

∫
iR
dz ln

(
z + u

z

) ∫∞
−∞ dv

vW (v)
(γ+s+z v)2

1
r(γ+s)

−
∫∞
−∞ dv

W (v)
(γ+s+z v)

, (32)

where the integration domain iR is now the imaginary axis. Finally plugging this

function (32) in Spitzer’s formula (27a), we find∫ ∞
0

dx q̄(x, r) e−ux =
1

u(1− r) exp

(
− i

2π

∫
iR
dz ln

(
z + u

z

) ∫∞
−∞ dv

vW (v)
(γ+s+z v)2

1
r(γ+s)

−
∫∞
−∞ dv

W (v)
(γ+s+z v)

)
.

(33)

2.3. Survival probability of the run-and-tumble particle using the mapping

Using Spitzer’s formula (33) and the relation between the survival probability of the

run-and-tumble process and the discrete-time random walk (26), we obtain

∫ ∞
0

dx

∫ ∞
0

dt S(x, t)e−st−xu =

=
γ + s

γ u s
exp

(
− i

2π

∫
iR
dz ln

(
z + u

z

) ∫∞
−∞ dv

vW (v)
(γ+s+z v)2

1
γ
−
∫∞
−∞ dv

W (v)
(γ+s+z v)

)
− 1

γu
, (34)

where iR denotes the imaginary axis in the complex z-plane.

The formula (34) is very general and can be used to compute the survival probability

of a particle with an arbitrary velocity distribution W (v). In particular, when W (v) has
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a positive bias, the particle will have a finite non-zero survival probability which can be

easily computed from (34) by extracting the 1/s factor in its small-s limit and yields∫ ∞
0

dx lim
t→∞

S(x, t) e−ux =
1

u
exp

(
− i

2π

∫
iR
dz ln

(
z + u

z

) ∫∞
−∞ dv

vW (v)
(γ+z v)2

1
γ
−
∫∞
−∞ dv

W (v)
(γ+z v)

)
− 1

u
,

(35)

which in principle can be analyzed for various velocity distributions with a positive bias.

It is also interesting to compute the survival probability S↑(x, t) (respectively

S↓(x, t)) for an RTP with an arbitrary velocity distribution W (v), starting from x ≥ 0

with a positive (respectively negative) initial velocity. One expects indeed that they

behave rather differently: for instance, S↑(0, t) > 0 while S↓(0, t) = 0 for all time t > 0

since the particle starting at x = 0 with a negative velocity gets immediately absorbed.

As we show in Appendix C, explicit expressions for the double Laplace transforms of

S↑(x, t) and S↓(x, t) can be obtained for arbitrary velocity distributions W (v). They are

given respectively in (C.12) and (C.13).

2.4. Survival probability of a two-state persistent random walk

Let us now apply this general result (34) to the case describing the two-state PRW,

corresponding to the velocity distribution given in (7). In this case, one finds that the

formula in (34) reads∫ ∞
0

dx

∫ ∞
0

dt S(x, t) e−ux−s t =
γ + s

γu s
exp

(
− i

2π

∫
iR
dz ln

(
z + u

z

) 4∑
j=1

(−1)j

z − zj

)
− 1

γ u
.

(36)

with

z1 =
(γ + s)

v0 − µ
, (37a)

z2 =
µ(γ + 2s)−

√
4 s2v2

0 + 4 γ sv2
0 + µ2γ2

2 (v2
0 − µ2)

, (37b)

z3 = −(γ + s)

µ+ v0

, (37c)

z4 =
µ(γ + 2s) +

√
4 s2v2

0 + 4 γ sv2
0 + µ2γ2

2 (v2
0 − µ2)

. (37d)

The integral in the general formula for the survival probability (36) can now be easily

done by using the residue theorem and closing the integration contour from the right.

We find∫ ∞
0

dx

∫ ∞
0

dt S̃(x, s) e−ux−s t =
γ + s

γ u s
exp

(
4∑
j=1

θ(zj) (−1)j+1 ln
zj + u

zj

)
− 1

γ u
. (38)
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The result (38) is quite different depending on the strength of the drift as it will affect

the signs of the poles zj (37). This leads us to treat separately three different cases:

(i) subcritical drift −v0 < µ< v0, (ii) supercritical drift µ <−v0 and (iii) critical drift

µ=−v0.

3. Survival probability in the presence of a subcritical drift −v0 < µ < v0

In this section we consider a subcritical drift (see figure 2a and 3). In this case, we

note that the poles z1 and z4 are positive while z2 and z3 are not (37). The survival

probability (38) simplifies to∫ ∞
0

dx

∫ ∞
0

dt S(x, s) e−ux−s t =
γ + s

γ u s

u+ z1

u+ z4

z4

z1

− 1

γ u
. (39)

The Laplace transform with respect to x is easily inverted, yielding the result

S̃(x, s) =

∫ ∞
0

dt S(x, t) e−s t =
γ + s

γ s

z1 + (z4 − z1) e−z4 x

z1

− 1

γ
. (40)

Upon injecting the expressions for z1 and z4 (37) which we write in terms of γ̃ = γ/2,

we find

S̃(x, s) =
1

2 s

(
2− γ̃ e−x (η+λ)

(µ+ v0)(λ+ v0 η/µ)
− e−x (η+λ)

)
, (41)

where

λ =

√
s v2

0 (2γ̃ + s) + µ2γ̃2

v2
0 − µ2

, (42a)

η =
µ (γ̃ + s)

v2
0 − µ2

. (42b)

For clarity purposes, we denote λ and η as single variables but it is important to keep

in mind that they depend explicitly on the Laplace variable s and the drift µ. For

later purposes, we also provide an explicit expression for the generating function q̄(x, r)

defined in (25). Using the relation (26) and the result in (41) we get, e.g. for x = 0

q̄

(
x = 0,

γ

γ + s

)
=
µ(γ + 2s) +

√
4s(γ + s)v2

0 + γ2µ2

2s(µ+ v0)
. (43)

For this two-step PRW, it is also interesting to study the survival probabilities

S±(x, t) conditioned on the initial velocity ẋ(0) = µ ± v0, defined respectively in (9a)

and (9b). Since in this subcritical case one has µ + v0 > 0 and µ − v0 < 0, S+(x, t)

coincides with the survival probability S↑(x, t) (which is the survival probability for a

particle starting with a positive velocity, see (C.1a)) while S−(x, t) coincides with the

survival probability S↓(x, t) (which is the survival probability for a particle starting with
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a negative velocity, see (C.1b)). Specifying our general results (C.12) and (C.13) to the

two-state PRW corresponding to the velocity distribution in (7), we find

S̃+(x, s) =

∫ ∞
0

dt e−s tS+(x, t) =

∫ ∞
0

dt e−s tS↑(x, t) =
1

s

(
1− γ̃ e−x (η+λ)

(µ+ v0)(λ+ v0 η/µ)

)
,

(44a)

S̃−(x, s) =

∫ ∞
0

dt e−s tS−(x, t) =

∫ ∞
0

dt e−s tS↓(x, t) =
1

s

(
1− e−x (η+λ)

)
, (44b)

where λ and η are given in (42) and we stress again that they depend explicitly on the

Laplace variable s. These results coincide with the one obtained in [45] by a completely

different method. By inverting these Laplace transforms (see Appendix H), we find the

survival probabilities presented in the introduction in (11a) and (11b).

In the remainder of this section, we will set v0 = γ̃ = 1 for simplicity of notations.

3.1. Long-time limit of the survival probability

We now discuss the long-time limit of the survival probability (11b) separately for the

case of a positive subcritical drift 0<µ< 1 and the case of a negative subcritical drift

−1<µ<0.

Positive subcritical drift ( 0 < µ < 1). In the case of a positive subcritical drift, the

particle might eventually survive due to the fact that the drift pushes it away from the

origin. The large time behavior of S±(x, t) can be conveniently obtained by analyzing

the small s behavior of the Laplace transforms S̃±(x, s) in (44a) and (44b). Using that

η → µ/(1 − µ2) as well as λ → |µ|/(1 − µ2) as s → 0 [from (42b) and (42a], setting

v0 = γ̃ = 1), the expressions in (44a) and (44b) yield straightforwardly

lim
t→∞

S+(x, t) = 1− 1− µ
1 + µ

e
−x 2µ

1−µ2 , (45a)

lim
t→∞

S−(x, t) = 1− e
−x 2µ

1−µ2 . (45b)

Negative subcritical drift (−1 < µ < 0). In the case of negative subcritical drift, the

particle will surely die and S±(x, t) both decay to 0 at large time. To obtain the large

time behavior of S±(x, t), it is convenient to analyze its derivative with respect to t, i.e.,

the first-passage time density F±(x, t) = −∂tS±(x, t), which has a simpler expression

[see (11a) and (11b)], and integrate it back to obtain S±(x, t). Using the asymptotic

expansion of the Bessel function I0,1(x) ∼ ex /
√

2πx for x→∞ we find

S+(x, t) ∼ x+
√

1− µ2

[(1− µ2)1/4 − (1− µ2)3/4]

1

1 + µ

1√
2π

e
− xµ√

1−µ2
e
−t

(
1−
√

1−µ2
)

t3/2
, (46a)

S−(x, t) ∼ x

[(1− µ2)3/4 − (1− µ2)5/4]

1√
2π

e
− xµ√

1−µ2
e
−t

(
1−
√

1−µ2
)

t3/2
. (46b)
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Note that, contrary to S−(x, t), the survival probability S+(x, t) does not vanish when

the particle starts right at the origin x = 0. This is a signature of the “activity” of

the PRW and it is reminiscent of the fact that an initial positive velocity gives the

particle a chance to survive. As pointed out in [56], one needs to extrapolate x to

x = −ξMilne ≡ −
√

1− µ2 for the survival probability to vanish. The notation ξMilne is

borrowed from neutron scattering and we refer to [56] for further explanations. Another

interesting fact is that the ratio of S+(x, t) and S−(x, t) in (46) tends, when t→∞, to

a non-trivial function of x and µ which shows that the influence of the initial condition

persists up to arbitrary large times. Finally, upon reintroducing the units (10) and

taking the Brownian limit (5) in the survival probability (45) and (46), we recover the

well-known Brownian results [11,17]

S±(x, t) ∼ 1− e−
µx
D , 0 < µ < 1 , (47a)

S±(x, t) ∼
√

4Dt

π

x

(µt)2
e−

µx
2D e−

µ2t
4D , −1 < µ < 0 , (47b)

as expected.

3.2. Mean first-passage time to the origin

A key information to extract from the survival probability is the mean first-passage

time to reach the origin, which is infinite in the case of zero drift. A convenient way

to compute this integral is to consider the Laplace transform of the first-passage time

distribution F±(x, t) = −∂tS±(x, t) and expand it for small s. We get

F̃±(x, s) =

∫ ∞
0

dt F±(x, t) e−s t , (48)

∼
∫ ∞

0

dt F±(x, t) + s 〈T (x)〉± , (49)

∼
(

1− lim
t→∞

S±(x, t)
)

+ s 〈T (x)〉± . (50)

We observe that the constant term in the expansion (50) is the probability that the

particle eventually reaches the origin and the coefficient of the linear term gives the

mean first-passage time directly. On the other hand, we can compute the exact

expression of the Laplace transform F̃±(x, s) based on the one of the survival probability

S̃±(x, s). In Laplace domain, the relationship between F±(x, t) and S±(x, t) becomes,

using integration by parts,

F̃±(x, s) = −
∫ ∞

0

dt ∂tS±(x, t)e−s t , (51)

= 1− s S̃±(x, s) , (52)

where we used that S±(x, t = 0) = 1. Making use of the relation between the first-

passage time and the survival probability (52) in the Laplace transforms of the survival
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probabilities (44), we find

F̃+(x, s) =
1

(µ+ 1) (λ+ η/µ)
e−x(η+λ) , (53a)

F̃−(x, s) = e−x(η+λ) . (53b)

We can now expand the first-passage distributions (53b) around s=0 to find the average

time 〈T (x)〉± using the observation made in (50). We find quite different behaviors

depending on the sign of the drift.

Negative subcritical drift (−1<µ< 0). In the case of a negative subcritical drift, we

find that the particle will certainly reach the origin with average times

〈T (x)〉+ =
x

|µ| +
1

|µ| , (54a)

〈T (x)〉− =
x

|µ| . (54b)

The first term in the average times (54) originates from the mean ballistic motion. The

second term in (54a) is a correction accounting for the positive initial velocity of the

particle. Apart from this correction, the mean first-passage time is the same as the one

for a drifted Brownian motion. Note that the average time 〈T (x)〉+ does not vanish

when the particle starts exactly at the origin. One needs to extrapolate to x=−1 for

the average time to vanish. This is another appearance of the ”Milne extrapolation

length” [56] that arises from the persistent feature of the motion.

Positive subcritical drift ( 0 < µ < 1). In the case of a positive subcritical drift, the

constant term in the expansion of the Laplace transform of the first-passage distribution

(50) is less than 1 which means that there is a non-zero probability that the particle

never reaches the origin. This is of course due to the fact that the drift blows the particle

away from the origin. It is still possible to define a first-passage time by conditioning

the trajectories to eventually reach the origin. This is done by dividing the linear term

by the constant term in the expansion of the Laplace transform of the first-passage

distribution (50) and yields

〈T (x)〉c,+ =
x (1 + µ2)

µ (1− µ2)
+

1

µ
, (55a)

〈T (x)〉c,− =
x (1 + µ2)

µ (1− µ2)
, (55b)

where the subscript c refers to the conditioned average over the trajectories that

eventually reach the origin. In this case, the conditional mean first-passage time differs

from the one of the Brownian motion 〈T 〉 = x/µ due to the µ2 terms which means that

the duality found in [63] does not extend to the run-and-tumble process. Nevertheless,

the Brownian conditional mean first-passage time is recovered upon reintroducing the

units (10) and taking the Brownian limit (5).
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4. Survival probability in the presence of a supercritical drift µ < −v0

In this section, we consider a subcritical drift (see figure 2a and 3) and we start with the

formula for the double Laplace transform of the survival probability given in (38). In

this case, the poles z1, z2, z3 and z4 are all positive (37) and the survival probability (38)

simplifies to ∫ ∞
0

dx S̃(x, s) e−ux =
γ + s

γ u s

(u+ z1)(u+ z3)

(u+ z2)(u+ z4)

z2 z4

z1 z3

− 1

γ u
, (56)

which, after an inverse Laplace transform from u to x, reads

S̃(x, s) =
γ + s

γ s

z4(z2 − z1)(z2 − z3)e−z2x + z2(z1 − z4)(z4 − z3)e−z4x + z1z3(z2 − z4)

z1z3(z2 − z4)
− 1

γ
(57)

where z1, z2, z3 and z4 are given in (37). Rewriting it in terms of γ̃ = γ/2 [see (7)], we

find

S̃(x, s) =
1

2 s

(
2− γ̃ e−η x

s

(
cosh(λx)− µ γ̃

λ(µ2 − v2
0)

sinh(λx)

))
, (58)

where λ and η are given in (42). The inverse Laplace transform with respect to s can

be performed explicitly (see Appendix H) to obtain S(x, t) = (S+(x, t) + S−(x, t))/2

with S±(x, ) given – setting v0 = γ̃ = 1 – in (13). In fact, in this supercritical case,

S(x, t) can be computed in an alternative way, which as we show below, also allows us

to compute easily the conditioned survival probability S±(x, t) ‡. For simplicity, we set

v0 = γ̃ = 1 for the rest of this section.

As mentioned in the introduction, the supercritical drift forces the particle to always

move in the same direction (see figure 2b). Therefore, once the particle reaches the origin

for the first time, it will also be the last time that it reaches it. This means that the

probability that the particle reaches the origin for the first time at time t is equal to the

probability that the particle is located at the origin at time t (see also [45])

Fσ0(x, t) dt = P (y = 0, t|x, σ(0) = σ0) dy , (59)

where Fσ0(x, t) = −∂tSσ0(x, t) is the first-passage time distribution while P (y, t|x, σ0) is

the probability that the particle is located at y at time t given that it started at x in

the state σ(0) = σ0 = ±1. When the particle is located at the origin at time t, it can

be in either states σ(t) = 1 or σ(t) = −1, so we expand the right hand side of (59) over

these two cases, namely

Fσ0(x, t) dt = P (y = 0, t,+|x, σ0) dy + P (y = 0, t,−|x, σ0) dy , (60)

where P (y, t, σ|x, σ0) is the probability that the particle is located at y at time t in the

state σ(t) = σ = ±1 given that it started at x in the state σ0. This propagator is well

‡ Note also that in this case S+(x, t) and S−(x, t) do not coincide anymore with S↑(x, t) and S↓(x, t),

as they do in the subcritical case since in this case the initial velocity is always negative.
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known [45] and is also reproduced in Appendix D for the sake of completeness. Using

that dy = (µ+ σ(t)) dt in (60), we find

Fσ0(x, t) = |µ+ 1|P (y = 0, t,+|x, σ0) + |µ− 1|P (y = 0, t,−|x, σ0) . (61)

Inserting the expressions for the propagator (D.24), and integrating over t we obtain

the expression for S±(x, t) given in (13).

From these expressions for the survival probabilities S±(x, t) (13), one can compute

the mean first-passage time to reach the origin 〈T (x)〉σ0 for a particle starting at x in

the state σ0 in the presence of a supercritical drift µ < −1. It can be computed in the

same way as we did for the case of a subcritical drift in section 3.2. We find (we recall

that µ < −1)

〈T (x)〉+ =
x

|µ| +
(1− µ) (1− e

2µx

µ2−1 )

2µ2
, (62a)

〈T (x)〉− =
x

|µ| +
(1 + µ) (1− e

2µx

µ2−1 )

2µ2
. (62b)

The first term in both expressions in (62) comes from the mean ballistic motion and the

second term is a correction that decays exponentially as the intensity of the supercritical

drift is increased.

5. Survival probability in the presence of a critical drift µ = −v0

In this part, we set v0 = 1 for convenience, and study the particular case of a critical

drift µ = −1 (see figure 2c and 3) which is the transition point between a subcritical

drift −1 < µ < 1 and a supercritical drift µ < −1. Such drift exactly balances the

internal velocity of the particle when it is in the σ(t) = +1 state, making it effectively

motionless. In the other state σ(t)=−1, the particle moves towards the origin with an

effective speed that is twice its internal speed. The process is therefore equivalent to

a wait-and-run model, where the particle waits for a random time after which it runs

towards the origin for another random time and starts this cycle over again [see figure

(2c)]. Setting µ=−1 in the expressions for the survival probability in the presence of a

subcritical drift (11) or in the presence of a supercritical drift (13), we obtain in both

cases the same result

S+(x, t) =

{
1 , t < x/2 ,

1−
∫ t
x/2

dt′ e−t
′
I0

[√
x (2t′ − x)

]
, t ≥ x/2,

(63a)

S−(x, t) =

{
1 , t < x/2 ,

1− e−x/2 −
∫ t
x/2

dt′ e−t
′
√
x√

2t′−x I1

[√
x (2t′ − x)

]
, t ≥ x/2 .

(63b)

It is then natural to ask how the survival probabilities S±(x, t) decay at large times,

for fixed x. We show in Appendix F that, indeed, this late time behavior has a unusual
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form given by

S+(x, t) ∼ x−1/4

23/4
√
π

1

t1/4
e−t+

√
2x t , (64a)

S−(x, t) ∼ x1/4

25/4
√
π

1

t3/4
e−t+

√
2x t . (64b)

These results are anomalous in two ways: (i) the decay is not purely exponential

but rather is an exponential modulated by a time-dependent amplitude that grows

anomalously as t−α e
√

2x t, (ii) the exponent α is different for S+(x, t) and S−(x, t). In

the former case, α = 1/4 while in the latter case α = 3/4.

The above behavior holds at late times t and at fixed x. One can also ask how the

survival probability behaves for t large but fixed and x small (x = O(1/t)) or x large

(x = O(t)). In the first case, when x = O(1/t), by analyzing (63a), we find that there

is a scaling behavior

S+(x, t) ∼ e−tI0(
√

2x t) . (65)

This scaling form holds for t large, x → 0 but with the product x t fixed. In the limit

where t � 1/x – or equivalently z = x t → ∞ – using the asymptotic behavior of the

Bessel function I0(z) ∼ ez/
√

2πz, our scaling result (65) indeed reduces to (64a).

0 1 2
y

0.0

0.5

1.0

S
+
(y

=
x t
,t
)

Figure 8: Plot of the exact survival probability S+(x, t) (63a) as a function of the scaled initial

distance y = x/t evaluated at large time, e.g. here for t = 50. As t grows, the fluctuations are

washed out and the survival probability tends towards a step function corresponding to the

ballistic behavior.

We now consider the opposite limit when t is large and x = O(t). This means that

in figure 8, we are zooming in near the “shoulder” of the curve when y = x/t = 1.

It turns out that the typical width of the shoulder regime scales as 1/
√
t for large t.
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Analysing (8) close to this point, we find the following behavior of S+(x, t)

S+

(
y =

x

t
, t
)
∼



√
ϕ(y)√

2π y (ϕ(y)−1)
1√
t
e−tΨ(y) , y < 1 and |y − 1| = O(1) ,

1
2

erfc
(√

t(1−y)√
2

)
, |y − 1| = O(1/

√
t) ,

1−
√
ϕ(y)√

2π y (ϕ(y)−1)
1√
t
e−tΨ(y) , y > 1 and |y − 1| = O(1) ,

(66)

where ϕ(y) =
√

(2− y)/y. Here the second line provides the late time behavior of the

typical survival probability, i.e., when (y − 1) = O(1/
√
t). When |y − 1| � 1/O(

√
t),

the survival probability is described by a large deviation form as in the first and third

line of (66). The large deviation function Ψ(y) is given by

Ψ(y) = 1−
√
y (2− y) . (67)

In fact, the central regime |y − 1| = O(1/
√
t) in (66) matches smoothly with

the regimes |y − 1| = O(1) both on the left and right. Consider first the left

regime, where 1 − y � O(1/
√
t). In this case, we can use the asymptotic behaviour

erfc(z) ∼ e−z
2
/
√

2πz as z → +∞. Plugging this behaviour in the second line of (66),

we get

1

2
erfc

(√
t(1− y)√

2

)
∼ 1√

2π (1− y)

1√
t
e−t

(1−y)2
2 , (1− y)� O(1/

√
t) . (68)

In contrast, setting (1 − y) � O(1) in the first line of (66), and using that Ψ(y) ∼
(1− y)2/2 in this limit [from (67)], we get√

ϕ(y)√
2π y (ϕ(y)− 1)

1√
t
e−tΨ(y) ∼ 1√

2π (1− y)

1√
t
e−t

(1−y)2
2 , y → 1 , (69)

where we used that ϕ(y) ∼ 1− y when y → 1. The limiting behaviours in (69) and (68)

agree and therefore the first and the second regimes in the scaling (66) match. Similarly,

when (y − 1)� O(1/
√
t), using the asymptotic behavior erfc(z) ∼ 2 − e−z

2
/
√

2π|z| as

z → −∞, we can easily verify that the second and the third lines in (66) also match

smoothly with each other.

Scaling behavior near the critical point. So far, we discussed the late time behavior of

the survival probability exactly at the critical point µ = −1, as well as in the off-critical

phases where µ 6= −1. Thus it is interesting to ask what happens, as a function of time,

if one stays in the off-critical phase by setting µ close to the critical value µ = −1. In

this case, one would expect that the system, at relatively early times, behaves as if it

is at the critical point and beyond a cross-over time scale the system “realizes” that it

is off-critical. This cross-over from early time critical behaviour to late time off-critical
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behaviour for µ close to µ = −1 can be described by cross)-over scaling functions as we

show below. This can be done, by setting the value of µ either on the subcritical side

(µ > −1) or in the supercritical side (µ < −1).

We start with the sub-critical side and evaluate the survival probability in the

scaling limit t→∞, x→ 0 and µ→ −1 while keeping the scaling variables

z = t x , (70)

u =
√
|1 + µ| t , (71)

fixed. To do so, we first rewrite, from (11a), the survival probability as S+(x, t) =∫∞
t
dt′ F+(x, t′)

S+(x, t) =

∫ ∞
t

dt′
e−t

′

g(t′, x)

(
x I0 [h(t′, x)] + (1 + µ)

√
f(t′, x)

g(t′, x)
I1 [h(t′, x)]

)
, (72)

which is valid for t>tm. Then, we change variable t′ = t+v and note that in the scaling

limit considered here, we have

x

g(t+ v, x)
∼ z

u2 + z
, (73)

1 + µ

g(t+ v, x)

√
f(t+ v, x)

g(t+ v, x)
∼

√
2u2

(u2 + z)3/2
, (74)

so that S+(x, t) can be written in terms of a scaling function Ssub(z, u) as

S+(x, t) ∼ e−t Ssub(z = t x, u =
√
|1 + µ| t) , (75)

with

Ssub(z, u) =
z

u2 + z
I0(
√

2(u2 + z)) +

√
2u2

(u2 + z)3/2
I1(
√

2(u2 + z)) . (76)

We can then check that the scaling function contains the different regimes that we have

already found. For instance, when u → 0 and z → 0, we find S+(x, t) ∼ e−t which

is indeed the no-tumbling probability. Another check is to take the limit u → 0 and

z → ∞, in which case we recover the long time limit of the survival probability in the

presence of a critical drift (64a). Finally, we can take the limit u → ∞ and z → 0

so that we recover the long time limit of the survival probability in the presence of a

subcritical drift (46a) when x→ 0 and µ→ −1. Physically, the scaling variable u gives

us the cross-over time

tc =
1√
|1 + µ|

. (77)

When the drift is close to criticality µ = −1 + ε, with ε > 0, the particle behaves like if

the drift was critical µ = −1 until a time tc after which it behaves like if the drift was

subcritical µ > −1.
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An analogous scaling function can be found upon evaluating the survival probability

S+(x, t) in the presence of a supercritical drift (13a). Performing similar steps, we find

a scaling function Ssup(z, u) such that

S+(x, t) ∼ e−t Ssup(z = t x, u =
√
|1 + µ| t) , (78)

with

Ssup(z, u) = I0(
√

2(u2 + z)) , u2 < z , (79)

where the constraint u2 < z comes from the fact that we must have t < tM in the

presence of a supercritical drift (13). Analogously, when the drift µ = −1 − ε, with

ε > 0, is close to the critical value µ = −1 (in the limit ε→ 0), the particle behaves like

if the drift was critical until the time tc (77) after which it behaves like if the drift was

supercritical µ < −1.

6. Another example of the velocity distribution W (v)

To illustrate the generality of the formula obtained for the survival probability (34), we

apply it to another two-state velocity distribution with unequal weights

W (v) =

(
1

2
+ c

)
δ(v − µ− 1) +

(
1

2
− c
)
δ(v − µ+ 1) , (80)

with −1
2
< c < 1

2
. When c = 0, we recover the velocity distribution (7) discussed in

the main part of this work. Using the general formula for the survival probability (34),

we find a similar pole structure as for the survival probability (36). For the sake of

conciseness, we will restrict ourselves to a subcritical drift −1< µ< 1 in this section.

In this case, only two poles are positive. Performing similar steps to the ones done in

section (3), we find that the Laplace transform of the survival probability is given by

S̃(x, s) =
1

2s

2−

 4c(s+1)
µ−1

+ 1

(µ+ 1)
(
− 2c

1−µ2 + η
µ

+ λc

) + 1

 exp

(
−x
(
λc + η +

2 c

1− µ2

)) ,

(81)

where η is given in (42b) and

λc =

√
4c2 + 4cµ(s+ 1) + µ2 + s(s+ 2)

1− µ2
. (82)

As we did in section 3, we can use the identities (C.5) and obtain the survival

probabilities conditioned over the initial state

S̃+(x, s) =
1

s

1−
4c(s+1)
µ−1

+ 1

(µ+ 1)
(
− 2c

1−µ2 + η
µ

+ λc

) exp

(
−x
(
λc + η +

2 c

1− µ2

)) , (83a)

S̃−(x, s) =
1

s

(
1− exp

(
−x
(
λc + η +

2 c

1− µ2

)))
. (83b)
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Inverting these Laplace transforms, we find

S−(x, t) =


1 , t < tm ,

1− e−tm (2 c µ+1)−2 c x

−
√

1− 4 c2
∫ t

0
dt′ e−t

′ (2 c µ+1)−2 c x x
h(t′,x)

I1

[√
1− 4 c2 h(t′, x)

]
, t ≥ tm ,

(84a)

and

S+(x, t) =



1 , t < tm ,

1− (1− 2 c)
∫ t

0
dt′ e−t (2 c µ+1)−2 c x

g(t′,x)

×
(
x I0

[√
1− 4 c2 h(t′, x)

]
+ 1+µ√

1−4 c2

√
f(t′,x)
g(t′,x)

I1

[√
1− 4c2 h(t′, x)

])
, t ≥ tm ,

(84b)

where tm, f(t, x), g(t, x) and h(t, x) are given in (12). When c = 0, we recover the

survival probabilities (11b) obtained previously. The finite weight of the trajectory that

crosses the origin at t= tm and creates a drop in the survival probability (84a), is now

given by

e−tm(2cµ+1)−2cx =
∞∑
n=0

(
1

2
− c
)n

(2 tm)n

n!
e−2 tm . (85)

We see that it is a sum over all possible numbers of tumbling events n. For n tumbling

events, it is a product of the probability that the particle has tumbled n times during a

time tm, given by the Poisson distribution (A.3) (with γ̃ = 2), and the probability that

the velocity v = µ− 1 was chosen at every tumbling events.

We find that the condition for the particle to have a finite survival probability is

now given by

2 c+ µ > 0 , (86)

which yields the following finite survival probabilities

lim
t→∞

S−(x, t) = 1− e
−2x

(2c+µ)

1−µ2 , (87a)

lim
t→∞

S+(x, t) = 1− 1− 4 c− µ
1 + µ

e
−2x

(2c+µ)

1−µ2 . (87b)

We see that the uneven weight c in the velocity distribution (80) creates an additional

bias in the run-and-tumble motion.

7. Applications

7.1. Maximum of a persistent random walk with a drift in a given time interval

From a general point of view of extreme value statistics of correlated variables, it is

interesting to study the maximum of a stochastic process in a given time interval [9].
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For this PRW model with a drift, the distribution of the maximum M(t) was recently

studied by Cinque and Orsingher [46]. One would expect that this survival probability

studied here is closely related to the cumulative distribution of the maximum. This

is actually very general and is true for any stochastic process. To see this, consider a

process y(t) starting at y(0) = y0. Let M(t) = max0≤τ≤t{y(τ)} denote the maximum of

the process y(τ). Let us consider the cumulative distribution of this maximum

Pr. [M(t) ≤M |y(0) = y0] = Pr. [y(τ) ≤M, ∀τ ∈ [0, t] |y(0) = y0] . (88)

We now consider a new process x(t) = M − y(t). In terms of the x-process, the

cumulative distribution in (88) can be expressed as

Pr. [M(t) ≤M |y(0) = y0] = Pr. [x(τ) ≥ 0, ∀τ ∈ [0, t] |x(0) = M − y0] . (89)

Thus the cumulative distribution of the maximum of the process y(τ) is identical to the

survival probability S(x, t) of the process x(τ) = M − y(τ), starting at x = M − y0.

Therefore, we would expect that, for the PRW with a drift, the survival probability

studied here must coincide with the distribution of the maximum studied in [46].

However, at first sight, the expressions provided in [46] seem rather different from

ours. We show, however, that they are indeed identical. This requires some nontrivial

intermediate steps that are given in Appendix I. We believe that the mathematical tricks

used here to prove the equivalence of the two approaches might be useful in other related

problems.

7.2. Last-passage time and emptying time

Let us consider N independent run-and-tumble particles initially uniformly distributed

in a box, defined by the region [ 0, ` ]. We study the emptying time τ of this box in the

presence of a drift µ (see figure 9). The emptying time is the time it takes for all the

particles to permanently leave the box. The presence of a drift makes this notion well

defined as it ensures that the process is transient and that the particles will eventually

never return to the box. We take the number of particles N and the size of the box `

to be large while the density of particles ρ ≡ N/` is fixed. Without loss of generality,

we will choose a negative drift µ < 0. In this case the particles can exit the box several

times from either sides 0 or ` but the drift will force the last exit to be made at the

origin (see figure 9).

A key quantity to study this emptying time is the no-return probability Πσ0(xi, t)

for a single particle, which is defined as the probability that a particle never returns

to the origin after a time t given that it started at x in the state σ0. The cumulative

distribution for the emptying time Pr.(τ < t | {xi}N |σ0) given the initial positions {xi}N
of the particles in the box [ 0, ` ], can be related to Πσ0(xi, t) by stating that for the box

to be empty at a time t, all the particles must never return to the origin again after a
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Figure 9: Typical trajectories of N = 4 independent particles initially uniformly distributed

in a box [ 0, ` ]. The emptying time τ is the time it takes for all the particles to permanently

leave the box. A negative drift µ < 0 makes this notion well defined as it ensures that the

process is transient and that the particles will eventually never return to the box.

time t:

Pr.(τ ≤ t | {xi}N , σ0) =
N∏
i

Πσ0(xi, t) . (90)

The subscript σ0 refers to the initial state which, for the sake of simplicity, is considered

to be the same for all particles. Integrating over uniformly distributed initial positions

{xi}N in the box [ 0, ` ] and taking the limit N → ∞ and ` → ∞ with ρ ≡ N/` fixed,

the cumulative distribution of the emptying time is given by

Pr.(τ ≤ t|σ0) = lim
`→∞

N=ρ `∏
i

1

`

∫ `

0

dxi Πσ0(xi, t) . (91)

As a side note, the average taken over the initial positions in (91) is referred to as

an annealed average in the context of disordered systems. It is also possible to study

the quenched average which is obtained by averaging the logarithm of the cumulative

distribution of the emptying time (90) over the initial positions. We will restrict

ourselves to the annealed average but we expect similar results for the quenched average.

Similarly to the survival probability, the no-return probability Πσ0(x, t) can be

expressed in terms of its probability density function, the last-passage time distribution

Πσ0(x, t) =

∫ t

0

dt′ Lσ0(x, t
′) . (92)

The last-passage distribution Lσ0(x, t) is an interesting observable per se since

Lσ0(x, t) dt is the probability that the particle reaches the origin for the last time in

the time interval [ t, t + dt] given that it started at x in the state σ0. The last-passage

time distribution Lσ0(x, t) can be obtained from our previous results on the survival

probability by observing that for a particle to reach the origin for the last time at time

t, it must first be located at the origin at time t and then never reach the origin again by

surviving in the interval ]−∞, 0 [ (see figure 10). Taking into account that the particle

can either be in the state σ(t)=+1 or σ(t)=−1 when it is located at the origin at time
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x

t
0

Figure 10: Typical trajectories that reach the origin for the last time at time t given that the

particle started at x in the state σ0 =−1. These trajectories are those that start from x in the

state σ0 =−1 and end at the origin at time t followed by all the trajectories that start at the

origin at time t and never reach the origin again. The motion can therefore be decomposed

into a free particle that is initially at x in the state σ0 = −1 and propagates to the origin in a

time t followed by a particle that starts from the origin and is constrained to stay on ]−∞, 0 [

forever.

t, it reads [64]

Lσ0(x, t) dt = P (y = 0, t,+|x, σ0) dy S∗+ + P (y = 0, t,−|x, σ0) dy S∗− , (93)

where P (y, t, σ|x, σ0) dy is the probability that the particle is located at y at time t in

the state σ given that it started at x in the state σ0 and S∗σ0 is the probability that a

particle survives forever in the region ] − ∞, 0 [ given that it started at the origin in

the state σ0. Note that it is possible to obtain the distribution of the last-passage time

during a finite observation time window and generalize the results obtained in [64] in

the presence of a drift (see Appendix G).

The propagator P (y, t, σ|x, σ0) is computed in Appendix D and S∗σ0 is related to

our results on the survival probability derived in the previous sections. One last step to

perform in the relation (93) is to match the time volume element dt in the left hand side

with the space volume element dy in the right hand side. To do so, we proceed as in

section 4 and use the fact that dy/dt = µ+ σ(t), where σ(t) is the state of the particle

at time t to obtain

Lσ0(x, t) = |µ+ 1|P (y = 0, t,+|x, σ0)S∗+ + |µ− 1|P (y = 0, t,−|x, σ0)S∗− . (94)

We will now rely on the relation (94) and on our previous results to derive the last-

passage time distribution for the case of a subcritical and supercritical negative drift.

Subcritical negative drift (−1<µ<0). For the case of a subcritical negative drift (see

figure 2a and 3), we use our results on the long-time limit of the survival probability

found in section 3.1. As we are interested in the survival probability in the region

(−∞, 0 [, we evaluate the eventual survival probability (45) for x = 0 and substitute

µ→ −µ to get

S∗− = 1− 1 + µ

1− µ , (95a)

S∗+ = 0 . (95b)
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Figure 11: The probability distribution L−(x, t) of the last-passage time to the origin, starting

at x = 5 and σ0 = −1, plotted as a function of t for a subcritical drift µ = −0.2. The numerical

results (crosses) agree perfectly with the analytical results given in (96b). Note that the Dirac

delta function in (96b) is not shown to fit the data within the limited window size.

Using the relation (94) and the propagator derived in Appendix D, we find

L+(x, t) =

{
0 , t < tm ,

|µ| e−t I0(h(t, x)) , t ≥ tm ,
(96a)

L−(x, t) =

 0 , t < tm,

2 |µ| e−t
(
δ(t− x+ |µ|t) +

√
g(t,x)√
f(t,x)

I1(h(t, x))/2

)
, t ≥ tm ,

(96b)

where f(t, x), g(t, x), h(t, x) and tm are given in (12). Upon reintroducing the units

(10) and taking the Brownian limit, we recover the well-known result for the Brownian

motion (see e.g. [65])

Lσ0(x, t) ∼
|µ|√
4πDt

e−
1

4Dt
(x+µ t)2 . (97)

A numerical check shows that our results (96) are in excellent agreement with simulations

(see figure 11). It is interesting to compute the mean last-passage time. This is done

by taking the average of the last-passage distribution (96). As we saw in section 3.2,

it is easier to extract this information from a series expansion of the Laplace transform

L̃σ0(x, s) for small s, which is given by

L̃+(x, s) =
|µ|

(1 + µ2)λ
e−(η+λ)x , (98a)

L̃−(x, s) = − η + µλ

(1− µ)λ
e−(η+λ)x , (98b)

where η and λ are given in (42). To obtain (98), we inserted the Laplace transform of

the propagator, given in Appendix E into the Laplace transform of the last-passage time

distribution given in (94). As we did in section 3.2, we expand the Laplace transform
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(98) close to s = 0 and we find that the average last-passage time 〈T̂ (x)〉σ0 to the origin,

given that the particle started at x in the state σ0, is given by

〈T̂ (x)〉+ =
1

µ2
− x

µ
+

1

µ
, (99a)

〈T̂ (x)〉− =
1

µ2
− x

µ
. (99b)

Upon reintroducing the units (10), we notice that beside the correction 1/µ in 〈T̂ (x)〉+
(99a), the mean last-passage time is the same as the one of a drifted Brownian motion

(see e.g. [65])

〈T̂ (x)〉 =
2D

µ2
− x

µ
. (100)

Therefore, as it was the case for the mean first-passage time in section 3.2, the mean last-

passage time is not enough to distinguish a run-and-tumble particle from a Brownian

motion. The signature of persistence of the run-and-tumble particle will only be observed

in higher order cumulants.

The no-return probability is then obtained as the cumulative density function of

the last-passage distributions (96):

Π+(x, t) =

{
0 , t < tm ,

|µ|
∫ t

0
dt′ e−t

′
I0(h(t′, x)) , t ≥ tm ,

(101a)

Π−(x, t) =

 0 , t < tm,

2 |µ| e− x
1−µ + |µ|

∫ t
0
dt′ e−t

′
√
g(t′,x)√
f(t′,x)

I1(h(t′, x)) , t ≥ tm .
(101b)

Because the emptying time of the box (91) will be essentially governed by particles

starting far away from the origin, we consider the limit x� 1 of the no-return probability

(101). The last-passage distributions (96) are normalized, therefore we can rewrite the

no-return probabilities as Πσ0(x, t) = 1 −
∫∞
t
dt′ Lσ0(x, t

′) as we did in section 3.1 and

replace the integrand by its large x limit. Note that a large x limit implies a long t

limit due to the presence of the lower bound t ≥ tm = x/(1 − µ) in (101). Using the

asymptotic expansion of the Bessel function I0,1(z) ∼ ez /
√

2πz for z →∞, we find

Π+(x, t) ∼ 1− |µ|
∫ ∞
t

dt′
1√

2π h(t′, x)
e−t

′+h(t′,x) , (102a)

Π−(x, t) ∼ 1− |µ|
∫ ∞
t

dt′
√
g(t′, x)√

2π f(t′, x)h(t′, x)
e−t

′+h(t′,x) . (102b)

These integrals can be evaluated using the saddle-point method. The key point to note

is that the argument of the exponential in the no-return probability (102) is minimized

for t∗ = x/|µ| and is locally approximated by

−t+ h(t, x) ∼ µ3

2x
(t− t∗)2 , t→ t∗ , (103)
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which means that the last-passage distribution is a Gaussian distribution centered

around the mean value t∗ and with a standard deviation w given by

t∗ =
x

|µ| , w =

√
x

|µ|3 . (104)

Therefore, the no-return probability (102) is simply the cumulative distribution of a

Gaussian distribution with parameters (104):

Πσ0(x, t) ∼ 1− 1

2
erfc

(
t− t∗√

2w

)
, x→∞ . (105)

The no-return probability (105) can now be used to compute the cumulative distribution

of the emptying time of the box by averaging it over uniformly distributed {xi}N and

plugging it into the expression (91). These steps were recently taken in [65] where the

authors studied the emptying time for a box of Brownian particles. As the steps to be

taken here are identical, we quote their final result which takes the form of a Gumbel

distribution

Pr.

(
τ ≤ `

|µ| +

√
`

2 |µ|3
(
b(ζ) +

z

b(ζ)

) ∣∣∣∣σ0

)
= e− e−z , (106)

where

b(ζ) = 2

√
W
(

ζ

2
√
π

)
, ζ = ρ

√
`

2 |µ| (107)

and W(x) is called the Lambert function that satisfies W(x) exp(W(x)) = x. The

distribution for the emptying time for a box of run-and-tumble particles (106) is therefore

the same as the one for a box of Brownian particles. This is essentially because the

emptying time will be dominated by the particles that start far away from the origin

and such particles are well approximated by Brownian particles in the long-time limit

when they will exit the box. This approximation might not hold for a different initial

distribution. As pointed out in [65], the Gumbel distribution in (106) appears as a

consequence of taking the maximum of a large number of independent but non-identically

distributed random variables (91). This distribution is well-known in the field of extreme

value statistics [66] and we refer the reader to [9] for a recent review on extreme value

statistics.

Supercritical drift (µ < −1). For the case of a supercritical drift (see figure 2c and

3), the survival probability S∗σ0 = 1 as the particle always moves in the same direction.

Therefore the last-passage distribution (93) simplifies to the expression of the first-

passage distribution (60) found in section 4. As expected, the first-passage and last-

passage distributions coincide. We display our previous results (13) applied here to the
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last-passage distribution

L+(x, t) =


0 , t < tm ,

e−t
(
δ (t− tM)− 1+µ

2

√
f(t,x)
g(t,x)

I1 [h(t, x)] + 1−µ
2
I0 [h(t, x)]

)
, tm ≤ t ≤ tM ,

0 , t > tM .

(108a)

L−(x, t) =


0 , t < tm ,

e−t
(
δ (t− tm) + 1−µ

2

√
g(t,x)
f(t,x)

I1 [h(t, x)]− 1+µ
2
I0 [h(t, x)]

)
, tm ≤ t ≤ tM ,

0 , t > tM ,

(108b)

where tm, tM , f(t, x), g(t, x) and h(t, x) are given in (12). The analysis of the last-

passage time is the same as the one done for the first-passage time in section 4. The

no-return probability is obtained as the cumulative density function of the last-passage

time distributions (108). Performing similar steps as for the case of a subcritical drift

(102), we find that the large x limit of the no-return probability (108) is given by

Π+(x, t) ∼ 1−
∫ ∞
t

dt′
1√

2π h(t′, x)

(
1− µ

2
− 1 + µ

2

√
f(t′, x)

g(t′, x)

)
e−t

′+h(t′,x) , (109a)

Π−(x, t) ∼ 1−
∫ ∞
t

dt′
1√

2π h(t′, x)

(
1− µ

2

√
g(t′, x)

f(t′, x)
− 1 + µ

2

)
e−t

′+h(t′,x) . (109b)

These integrals can be evaluated using the saddle-point method and yields the same

Gaussian result as for the case of a subcritical drift in (105). The distribution for the

emptying time is therefore the same as the one for the subcritical drift (106).

7.3. Record statistics

Let us consider a single run-and-tumble particle in the presence of a drift µ and study

the statistics of the number of records R(t) as a function of time. We define the records

as follows [57]. We consider a trajectory of the RTP up to time t starting from 0 and

having n tumblings. We mark the positions {0, `1, `1 + `2, · · · , `1 + `2 + · · ·+ `n} at the

end of each tumbling of this trajectory. In this discrete sequence with n + 1 entries,

we say that an entry is a lower record if the position at the instant of the tumbling

is lower than all the previous entries. Note that the number of tumblings n is also a

random variable for a given fixed t. Hence, the total number of records R(t) is obtained

by counting the number of records in every trajectory with n tumblings and finally

summing over all possible values of n (see figure 12). A similar procedure has been used

to define the number of records in continuous time random walks model (CTRW) [67].

Note that, by symmetry, the lower records become upper records upon switching the

sign of the drift µ. In the absence of drift, the statistics of the number of lower records

have been recently studied in [57]. Extending the approach devised in [68], the authors
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Figure 12: A typical run-and-tumble trajectory, starting at the origin, with its lower records

marked in red.

in [57] have obtained the generating function of the average number of lower records

R(t) and found that the average number of records grows like

〈R(t)〉 ∼ 2
√
t√
π
, t→∞. (110)

In this section, we study how this result (110) deviates from the square root growth in

the presence of a drift. We restrict ourselves to the case of a subcritical drift −1<µ<1

(see figure 2a and 3) as a supercritical drift µ < −1 would yield to the trivial result of

records being broken at every tumbling. For simplicity, we will further assume that the

particle starts in the state σ0 = +1.

To study the average number of records 〈R(t)〉, we rely again on the mapping to a

discrete-time random walk developed in section 2. After n tumbles, the average number

of lower records 〈R(t)〉n done during a time t can be written as

〈R(t)〉n =

∫
d~̀P (~̀, n| t)

(
n∑
j=0

χj

)
, (111)

where χj is a binary variable which takes values χj = 1 if the position of the random

walker at step j, i.e., xj = `1 + `2 + · · ·+ `j is a record and χj = 0 otherwise. In (111),

P (~̀, n| t) is the joint distribution of the run lengths and the number of tumblings n

within time t. We use the convention that the initial position is a record, as illustrated

in figure 12. Taking the Laplace transform of (111) with respect to t and summing over

n (following the same steps as in section 2.1), we get

〈R̃(s)〉 =
∞∑
n=0

〈R̃(s)〉n =
1

γ

∞∑
n=0

(
γ

γ + s

)n
〈R〉n , (112)

where 〈R〉n denotes the average number of records for a RW of n steps and with jump

distribution φs(`) (20). Therefore, on the right hand side, we recognize the generating

function of the average number of records of the effective random walk
∑∞

n=0 〈R〉n rn
evaluated at r = γ/(γ + s). This generating function can be expressed in terms of the

generating function of the survival probability q̄(x=0, r) presented in (25). The relation
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is given by [16,69]

∞∑
n=0

〈R〉n rn =
1

(1− r)2 q̄(0, r)
. (113)

Evaluating it at r = γ/(γ + s) gives

〈R̃(s)〉 =
1

γ

1(
1− γ

γ+s

)2

q̄
(

0, γ
γ+s

) . (114)

Using explicitly the result for q̄(0, γ/(γ + s)) given in (43), we get

〈R̃(s)〉 = (v0 + µ)
(2γ̃ + s)(λ− η)

γ s2
, (115)

where we recall that γ̃ = γ/2 and λ and η are given in (42a) and (42b). For simplicity we

set v0 = γ̃ = 1 and by performing the Laplace inversion we obtain the large t behavior

of the average number of lower records

〈R(t)〉 ∼
{

2 (1+µ)
µ

, 0 < µ < 1 ,
4µ
µ−1

t+ 2 (1+µ2)
µ (µ−1)

, −1 < µ < 0 .
(116)

For a positive subcritical drift 0<µ< 1, the average number of lower records 〈R(t)〉 is

constant (116). This is explained by the fact that, typically, the particle breaks a finite

number of lower records in the beginning of the process while its position is still close to

the negative axis, then has almost no chances to break newer records due to its position

being drifted away from the negative axis. For a negative subcritical drift −1<µ< 0,

〈R(t)〉 has a linear growth (116) which is expected due to the drift pushing the particle

towards breaking new lower records. Notice that the limit µ→ 0 in the average number

of lower records (116) does not match with the results for µ = 0 (110). This indicates

the existence of a scaling regime when µ→ 0 and t→∞. Indeed comparing the result

for µ = 0 in (110) and the result in (116) for −1 < µ < 0, we anticipate a scaling form

〈R(t)〉 ∼
√
tF(z = µ

√
t) , (117)

where F(z) is a scaling function with asymptotic behaviors

F(z) ∼



−4z , z → −∞ ,

2√
π

, z → 0 ,

2

z
, z → +∞ .

(118)

These asymptotic behaviors ensure a smooth matching of (110) and (116), with all three

regimes being part of the scaling form in (117). We first insert this scaling form (117)
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Figure 13: Plot of the scaling function F(z) (119) that describes the scaling behavior of the

average number of records 〈R(t)〉 in the scaling limit t → ∞, µ → 0 keeping µ
√
t fixed. We

have also indicated the asymptotic behaviors for z → −∞ and z →∞ as given in (118).

on the left hand side of (115) and evaluate the Laplace transform 〈R̃(s)〉. Then, on

the right hand side of (115) we substitue the explicit forms of λ and η from (42a) and

(42b) and then take the scaling limit s→ 0, µ→ 0 keeping the ratio µ/
√
s fixed (which

corresponds to µ → 0, t → ∞ keeping µ
√
t fixed). This gives an integral equation for

the scaling function F(z) which can be fortunately inverted explicitly leading to

F(z) = 2

(√
2

π
e−z

2/2 − z +

(
1

z
+ z

)
erf

(
z√
2

))
. (119)

A plot of this scaling function F(z), together with its asymptotic behaviors, (118) is

shown in figure 13. Interestingly, the same scaling function F(z), up to a multiplicative

factor, coincides with the scaling function that describes the expected maximum of a

Brownian motion in the presence of a drift µ over the time interval [0, t] in the same

scaling limit µ → 0, t → ∞, keeping z = µ
√
t fixed [18]. This coincidence can be

qualitatively understood by noting that the expected number of records Rn of a random

walk in the presence of a drift µ after n steps is, for large n, proportional to the expected

maximum of this random walk Mn, i.e. 〈Rn〉 ∼ α 〈Mn〉 where α is independent of n [69].

In the scaling limit n→∞, µ→ 0 keeping z = µ
√
n fixed, it was shown [18] that 〈Mn〉

is described by a scaling form similar to (117), if t is replaced by n, with the same scaling

function F(z). The same scaling form thus also holds for 〈Rn〉. Applying this result to

the random walk underlying the RTP (see figure 12) explains qualitatively the scaling

form obtained in (117).

8. Summary and conclusion

In this paper, we first studied the survival probability of a run-and-tumble particle with

an arbitrary velocity distribution using Spitzer’s formula. We then focused on the two-

state run-and-tumble particle in the presence of a drift. We distinguished the subcritical

drift from the supercritical drift and obtained exact analytical results in both cases. In
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the former case, a comparison with the drifted Brownian motion was drawn and the main

differences were highlighted. While the mean first-passage time coincides, the signature

of activity of the run-and-tumble motion can be observed in the tail of the survival

probability. In the latter case, we saw that a supercritical drift yields to a finite support

for the first-passage time distribution, which has no diffusive equivalent. Additionally,

it was shown that this distribution also coincides with the position distribution and the

last-passage time distribution. The transition between subcritical and supercritical drift

was discussed and several scaling regimes were found. Finally, we illustrated our results

by applying them to the study of the emptying time of a box and the record statistics

of a particle.

This work opens up several perspectives for further research. As suggested by our

derivation of the survival probability using Spitzer’s formula in section 2, we would like

to generalize our results to higher dimensions. For instance, it would be interesting to

extend the results on the convex hull of the run-and-tumble motion obtained in [70] for

a run-and-tumble particle with an asymmetric velocity distribution. Another natural

generalization is to replace the constant drift by a space dependent force [36], which can

even be a random function in space as in the models of a particle moving in a random

environment [17,40].
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Appendix

Appendix A. Some properties of the telegraphic noise

For pedagogical purposes, the telegraphic noise σ(t) is briefly discussed here. During an

infinitesimal time interval dt, the signal changes sign with probability γ̃ dt and remains

constant with the complementary probability 1− γ̃ dt:

σ(t+ dt) =

{
σ(t) , with prob. = 1− γ̃ dt ,
−σ(t) , with prob. = γ̃ dt .

(A.1)

The time τ between two consecutive switches is thus distributed according to an

exponential distribution p(τ) = γ̃ e−γ̃ τ . This can be seen from (A.1) by dividing τ

into n small intervals dt = τ/n during which the signal does not change sign and a last

interval dτ during which the change of sign occurs. This yields

p(τ) dτ = lim
n→∞

(
1− γ̃τ

n

)n
γ̃ dτ = γ̃ e−γ̃τ dτ . (A.2)
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More generally, in any time interval [t1, t2] with t2 > t1, it is easy to show that the

distribution of the number of sign changes m is given by a Poisson distribution

Pr.(“number of sign changes = m”) =
γ̃m (t2 − t1)m

m!
e−γ̃ (t2−t1) . (A.3)

In particular, the probability that σ(t1) has the same (respectively the opposite) sign

as σ(t2) is given by the probabilities (A.3) summed over even (respectively odd) values

of m. The autocorrelation function 〈σ(t1)σ(t2)〉 is therefore given by:

〈σ(t1)σ(t2)〉 = Pr.[σ(t1) = σ(t2)] + (−1)Pr.[σ(t1) = −σ(t2)] ,

=
∑
m even

γ̃m(t2 − t1)me−γ̃(t2−t1)

m!
−
∑
m odd

γ̃m(t2 − t1)me−(t2−t1)

m!
,

= e−2 γ̃ (t2−t1) . (A.4)

Appendix B. Derivation of the double Laplace transform of the survival

probability of a 1d random walk

We consider a discrete time random walker on the line, starting at the initial position

x ≥ 0 and jumping at each step by a random length ` drawn from a normalized PDF

φs(`), not necessarily symmetric. Let qn(x) denote the probability that the walker does

not cross the origin up to step n. Given φs(`), can one calculate qn(x) for arbitrary

x ≥ 0? In fact, this can be done by adapting a formula derived by Spitzer for the PDF

of the maximum of a random walk up to n steps starting initially at the origin. This is

the goal of this appendix.

As a first step, we want to relate the survival probability qn(x) of the random walk

with the jump distribution φs(`) with the PDF of the maximum of a related random

walk starting at the origin. Once we establish this relation, we can then directly use

Spitzer’s formula. Indeed, let us consider a random walk starting at the origin and

performing jumps drawn from a normalized PDF φs(−`). Let yk denote the position

of the walker at step k with y0 = 0. Let Mn denote the maximum up to step n, i.e.,

Mn = max{y1, y2, · · · , yn}. Let C(M,n) = Pr.(Mn ≤M) be the cumulative distribution

of the maximum up to step n. Since the event that “the maximum Mn is smaller than

M” is equivalent to the one where all the positions up to step n are smaller than M , we

can write

C(M,n) = Pr.[y1 ≤M, y2 ≤M, · · · , yn ≤M |y0 = 0] . (B.1)

Let us now make the change of variable xk = M − yk. Then we see that xk also denotes

the position of a random walker at step k, starting initially at x0 = M − y0 = M and

with jumps distributed via φs(`). Hence from (B.1) we obtain

C(M,n)
∣∣∣
with jump distribution φs(−`)

= θ(M) qn(M)
∣∣∣
with jump distribution φs(`)

(B.2)

where we recall that θ(M) is the Heaviside theta function.
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Our next goal is to relate the Laplace transform of the PDF of the maximum with

that of qn(M). The PDF of the maximum Mn is simply P (M,n) = ∂C(M,n)/∂M .

Taking the Laplace transform with respect to M and using integration by parts one

gets ∫ ∞
0

dM e−uM P (M,n)
∣∣∣
φs(−`)

= u

∫ ∞
0

dM e−uM qn(M)
∣∣∣
φs(`)

(B.3)

Spitzer derived an expression for the generating function of the quantity on the left hand

side of (B.3) for arbitrary jump distribution φs(−`). This formula reads [62]
∞∑
n=0

rn
∫ ∞

0

dM e−uM P (M,n)
∣∣∣
φs(−`)

=
1

1− r exp

(
1

2π

∫ r

0

dτ

∫ ∞
−∞

u

k(k − iu)

φ̂s(k)− 1

(1− τ)(1− τ φ̂s(k))
dk

)
, (B.4)

where

φ̂s(k) =

∫ ∞
−∞

d` φs(`) e−ik ` (B.5)

is the Fourier transform of the jump distribution. In the integral over k in (B.4) one

should interpret the integrand 1/k as 1/(k − iε) where ε is a regulator and eventually

take the ε → 0 limit after performing the integral over k. Indeed, this formula (B.4)

can be further simplified using a trick developed in [18] (see Appendix C) where it was

used for a specific distribution (where the drift is just a constant). However, the same

trick can used for arbitrary jump distribution φs(`) as outlined below.

We start with the right hand side of (B.4) and denote it simply by RHS. We first

perform the integral over τ explicitly. This gives

RHS =
1

1− r exp (T1 + T2) (B.6)

where

T1 =
u ln(1− r)

2π

∫ ∞
−∞

dk

(k − iε)(k − iu)
(B.7)

T2 = − u

2π

∫ ∞
−∞

dk

(k − iε)(k − iu)
ln
(

1− rφ̂s(k)
)
. (B.8)

It turns out that, conveniently, T1 = 0 (it simply follows by computing the residues at

the two poles k = iε and k = iu which cancel each other exactly). Furthermore, T2 can

be simplified also by using u/(k(u+ ik)) = 1/k− i/(u+ ik). Using this expression of T2

given in (B.8) we obtain an explicit expression for RHS in (B.6). Finally, plugging this

expression in (B.3) we get our final simplified formula

∞∑
n=0

rn
∫ ∞

0

dM e−uM qn(M)
∣∣∣
φs(`)

=
1

u(1− r) exp

(
Φs(0, r)− Φs(u, r)

2π

)
, (B.9)

where Φs(u, r) is given by

Φs(u, r) =

∫ ∞
−∞

dk

u+ ik
ln
(

1− r φ̂s(k)
)
. (B.10)
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The formula (B.9) together with (B.10) yields the result given in (27a)-(27c) in the text.

Finally, using the result in (26) we get∫ ∞
0

dx

∫ ∞
0

dt S(x, t)e−st−xu =
γ + s

γ u s
exp

(
Φs(0,

γ
γ+s

)− Φs(u,
γ
γ+s

)

2π

)
− 1

γ u
(B.11)

Using the expression for Φs(u, r) in (32) yields the expression in (34) in the text.

Appendix C. Survival probability conditioned on the sign of the initial

velocity

In this Appendix, we study the survival probabilities up to time t for a general RTP with

a velocity distribution W (v), conditioned to start from x with a positive (respectively

negative) velocity: we will denote this probability S↑(x, t) (respectively S↓(x, t)). More

formally, they can be written as

S↑(x, t) = Pr.
[
x(τ) ≥ 0 ,∀τ ∈ [0, t]

∣∣∣x(t = 0) = x, ẋ(0) > 0
]
, (C.1a)

S↓(x, t) = Pr.
[
x(τ) ≥ 0 ,∀τ ∈ [0, t]

∣∣∣x(t = 0) = x, ẋ(0) < 0
]
. (C.1b)

Of course, S(x, t) can be obtained from S↑(x, t) and S↓(x, t) via the relation

S(x, t) = Pr.(v > 0)S↑(x, t) + Pr.(v < 0)S↓(x, t) , (C.2)

where Pr.(v > 0) =
∫∞

0
dvW (v) and Pr.(v > 0) =

∫ 0

−∞ dvW (v).

As done for the full survival probability S(x, t) in section 2.1, we use the mapping

between the RTP and a discrete-time random walk to relate the conditioned survival

probabilities S↑(x, t) and S↓(x, t) to conditioned survival probabilities in the random

walk problem. Indeed, let us consider the discrete-time random walk with jump

distribution φs(`) starting from the initial position x. We define q+
n (x) (respectively

q−n (x)) as the survival probability up to step n given that the first jump is positive

(respectively negative). Following the same reasoning as explained in section 2.1 leading

to the relation in (26), we have here

S̃↑(x, s) =

∫ ∞
0

dt S↑(x, s)e
−st =

1

γ
q̄+

(
x,

γ

γ + s

)
− 1

γ
(C.3a)

S̃↓(x, s) =

∫ ∞
0

dt S↑(x, s)e
−st =

1

γ
q̄−
(
x,

γ

γ + s

)
− 1

γ
. (C.3b)

in terms of the generating functions q̄±(x, r)

q̄±(x, r) =
∞∑
n=0

rnq±n (x) . (C.4)

To compute these generating functions q̄±(x, r), we notice that q±n (x) satisfies the

following backward equations

q+
n+1(x) =

1∫∞
0

d` φs(`)

∫ ∞
0

d` φs(`) qn(x+ `) , (C.5a)
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and

q−n+1(x) =
1∫ 0

−∞ d` φs(`)

∫ 0

−x
d` φs(`) qn(x+ `) , (C.5b)

which are easily derived by considering what happens at the first step of the random

walk. Note that in the equation for q−n+1(x) in (C.5b) the integral over ` is bounded

from below by −x because the particle cannot cross zero at the first step and hence

x + ` > 0 (such a condition does not exist for q+
n+1(x) in (C.5b) since in this case the

condition x + ` > 0 is automatically satisfied for all ` > 0). Note also that, from the

definition of φs(`) in (20), one easily obtains∫ ∞
0

d` φs(`) =

∫ ∞
0

dvW (v) = Pr.(v > 0) , (C.6a)∫ 0

−∞
d` φs(`) =

∫ 0

−∞
dvW (v) = Pr.(v < 0) , (C.6b)

as expected.

To proceed, we notice that (C.5b) can be written, by performing the change of

variable `→ −`, as

q−n+1(x) =
1

Pr.(v < 0)

∫ x

0

d` φs(−`)qn(x− `) , (C.7)

Interestingly, this equation (C.7) has a convolution structure which we can exploit to

solve it. First we introduce the generating function

q̄−(x, r) =
∞∑
n=0

rnq−n (x) . (C.8)

The relation (C.7) thus yields

q̄−(x, r) = 1 +
r

Pr.(v < 0)

∫ x

0

d` φs(−`) q̄(x− `, r) (C.9)

where we have used that q−0 (x) = 1. Let us denote φ̃−s (u) the Laplace transform of

φs(−`)

φ̃−s (u) =

∫ ∞
0

d` e−u`φs(−`) . (C.10)

By taking the Laplace transform of (C.9) with respect to x one finds∫ ∞
0

dx e−uxq̄−(x, r) =
1

u
+

r φ̃−s (u)

Pr.(v < 0)

∫ ∞
0

dx e−uxq̄(x, r)

=
1

u
+

1

Pr.(v < 0)

r φ̃−s (u)

u(1− r) exp

(
Φs(0, r)− Φs(u, r)

2π

)
(C.11)

where in the second line we have used the result in (B.9) in terms of Φs(u, r) given

in (B.10). Finally, using the relation (C.3b) together with (C.11) we obtain∫ ∞
0

dx

∫ ∞
0

dt S↓(x, t)e
−ux−st =

1

Pr.(v < 0)

φ̃−s (u)

u s
exp

(
Φs(0,

γ
γ+s

)− Φs(u,
γ
γ+s

)

2π

)
(C.12)



Survival probability of a run-and-tumble particle in the presence of a drift 44

Finally, using the relation (C.2) together with C.12 and (B.11) we get∫ ∞
0

dx

∫ ∞
0

dt S↑(x, t)e
−ux−st =

=
1

Pr.(v > 0)

[
1

us

(
γ + s

γ
− φ̃−s (u)

)
exp

(
Φs(0,

γ
γ+s

)− Φs(u,
γ
γ+s

)

2π

)
− 1

γu

]
. (C.13)

Appendix D. Transition kernel

We compute the transition kernel of a run-and-tumble particle in the presence of a

drift. The approach used here is applicable to both supercritical and subcritical drift

(see figure 2). The transition kernel P (y, t, σ|x, σ(0) = σ0) is the probability distribution

that the particle is in a state σ at position y at a time t, given that it started at x in a

state σ0. Because of translational invariance, we have that:

P (y, t, σ|x, σ0) = P (y − x, t, σ|x = 0, σ0) , (D.1)

and we will use the shorthand notation P (y, t, σ|σ0) ≡ P (y, t, σ|x = 0, σ0). One can

show that the transition kernel satisfies the forward master equations

∂tP (y, t,+|σ0) = −(1 + µ)∂yP (y, t,+|σ0)− P (y, t,+|σ0) + P (y, t,−|σ0) , (D.2a)

∂tP (y, t,−|σ0) = −(−1 + µ)∂yP (y, t,−|σ0) + P (y, t,−|σ0)− P (y, t,+|σ0) , (D.2b)

with the initial condition

P (y, t = 0, σ|σ0) = δσ0,σδ(y) , (D.3)

where we use a different notation to distinguish a Kronecker delta δ·,· from a Dirac

delta δ(·). To solve the system (D.2), it is convenient to go in a reference frame that

moves along with the drift µ to cancel the effect of the drift. After a Galilean transform

y → y − µ t, the system (D.2) reads

∂tP (y, t,+|σ0) = −∂yP (y, t,+|σ0)− P (y, t,+|σ0) + P (y, t,−|σ0) , (D.4a)

∂tP (y, t,−|σ0) = ∂yP (y, t,−|σ0) + P (y, t,−|σ0)− P (y, t,+|σ0) , (D.4b)

and the initial condition remains

Pσ0(y, t = 0, σ|σ0) = δσ0,σ δ(y) . (D.5)

We solve this system in the Laplace domain. Noting that

L[∂tP (y, t, σ|σ0)](s) =

∫ ∞
0

dt ∂tP (y, t, σ|σ0)e−st , (D.6a)

= s

∫ ∞
0

dt P (y, t, σ|σ0)e−st − [P (y, t, σ|σ0)e−st]t=∞t=0 , (D.6b)

= s

∫ ∞
0

dt P (y, t, σ|σ0)e−st − δσ0,σ δ(y) , (D.6c)
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where we integrated by parts to go to the second line and used the boundary condition

(D.5) to go to the last line, we find that the system (D.2) writes in Laplace domain

[∂y + 1 + s]P̃ (y, s,+|σ0) = P̃ (y, s,−|σ0) + δσ0,+δ(y) , (D.7a)

[−∂y + 1 + s]P̃ (y, s,−|σ0) = P̃ (y, s,+|σ0) + δσ0,−δ(y) . (D.7b)

To solve the system (D.7), we first restrict y to be either into ] −∞, 0[ or ]0,∞[. On

these intervals, the delta term is not present and the system reduces to

[∂y + 1 + s]P̃ (y, s,+|σ0) = P̃ (y, s,−|σ0), (D.8a)

[−∂y + 1 + s]P̃ (y, s,−|σ0) = P̃ (y, s,+|σ0) . (D.8b)

Then, we decouple the equations by applying the bracketed differential operator from

the first equation to the second equation, and conversely:

[∂y + 1 + s][−∂y + 1 + s]P̃ (y, s,+|σ0) = P̃ (y, s,+|σ0) , (D.9a)

[−∂y + 1 + s][∂y + 1 + s]P̃ (y, s,−|σ0) = P̃ (y, s,−|σ0) . (D.9b)

We notice that P̃ (y, s,+|σ0) and P̃ (y, s,−|σ0) satisfy the same telegraphic equation,

whose general solution is

A eλ0 y +B e−λ0 y , (D.10)

where λ0 =
√
s(s+ 2) and A and B are integration constants. In total, there are 8

integration constants to fix for P̃ (y, s,+|σ0) and P̃ (y, s,−|σ0) split into two sub-domains

] −∞, 0 [ and ] 0,∞[. We use the fact that the solution must be bounded at y → ±∞
to eliminate four of them:

P̃ (y, s,+|σ0) =

{
A e−λ0 y , y > 0 ,

B eλ0 y , y < 0 ,
(D.11a)

P̃ (y, s,−|σ0) =

{
C e−λ0 y , y > 0 ,

D eλ0 y , y < 0 .
(D.11b)

Then, we inject (D.11b) into (D.8) to relate C with A and D with B:

P̃ (y, s,+|σ0) =

{
A e−λ0 y , y > 0 ,

B eλ0 y , y < 0 ,
(D.12a)

P̃ (y, s,−|σ0) =

{
(−λ0 + 1 + s)A e−λ0 y , y > 0 ,

(λ0 + 1 + s)B eλ0 y , y < 0 .
(D.12b)

Finally, we impose a ’continuity condition’ between the two sub-domains by

integrating (D.7) around a small volume element centered on the origin. This ’continuity

condition’ writes

P (y = 0+, s,+|σ0)− P (y = 0−, s,+|σ0) = δσ0,+ , (D.13a)

P (y = 0+, s,−|σ0)− P (y = 0−, s,−|σ0) = −δσ0,− . (D.13b)
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Upon applying it, we find

P̃+(y, s,+) = P̃−(−y, s,−) =
1 + s+ sign(y)λ0

2λ0

e−λ0 |y| , (D.14a)

P̃+(y, s,−) = P̃−(−y, s,+) =
1

2λ0

e−λ0 |y| . (D.14b)

Finally, we carefully invert the Laplace transforms (D.14). We find

L−1

[
1

λ0

e−λ0|y|
]

(t) = L−1

[
1√

s(2 + s)
e−|y|
√
s(2+s)

]
(t) , (D.15)

= L−1

[
1√

(s+ 1)2 − 1
e−|y|
√

(s+1)2−1

]
(t) , (D.16)

= e−tL−1

[
1√
s2 − 1

e−|y|
√
s2−1

]
(t) , (D.17)

=

{
0 , t < |y| ,
e−t I0(

√
t2 − y2) , t ≥ |y| . (D.18)

where we completed the square to go to the second line, used the Laplace transform

property (H.7) to go to the next one and finally used formula (36) from the integral

tables [71] to perform the last step. We also have that

L−1
[
e−λ0 |y|

]
(t) = −sign(y) ∂yL−1

[
1

λ0

e−λ0 |y|
]

(t) , (D.19)

=

 0 , t < |y| ,
e−t
(

sign(y) δ(t− |y|) + y√
t2−y2

I1(
√
t2 − y2)

)
, t ≥ |y| ,

(D.20)

where we took the derivative of (D.18) to go from the first line to the second one. The

Dirac delta function appeared from the derivative of the Heavyside function Θ(t− |y|)
that represents the constraint t ≥ |y| in (D.18). Furthermore, we have that

L−1

[
s

λ0

e−λ0|y|
]

(t) = ∂tL−1

[
1

λ0

e−λ0|y|
]

(t) (D.21)

=

 0 , t < |y| ,
e−t
(
δ(t− |y|)− I0(

√
t2 − y2) + t√

t2−y2
I1(
√
t2 − y2)

)
, t ≥ |y| .

(D.22)

Combining these results, we find

P (y, t,+|+) = P (−y, t,−|−) =

{
0 , t < |y| ,
e−t
(
δ(t− y) +

√
t+y√
t−y I1(

√
t2 − y2)/2

)
, t ≥ |y| ,

(D.23a)

P (y, t,−|+) = P (−y, t,+|−) =

{
0 , t < |y| ,
e−t I0(

√
t2 − y2)/2 , t ≥ |y| . (D.23b)
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Finally, switching back to the original reference frame y → y + µ t gives

P (y, t,+|+) =

 0 , y < ym or y > yM ,

e−t
(
δ(t− y + µt) +

√
f(t,−y)√
g(t,−y)

I1(h(t,−y))/2

)
, ym ≤ y ≤ yM ,

(D.24a)

P (y, t,−|+) =

{
0 , y < ym or y > yM ,

e−t I0(h(t,−y))/2 , ym ≤ y ≤ yM
(D.24b)

P (y, t,−|−) =

 0 , y < ym or y > yM ,

e−t
(
δ(t+ y − µt) +

√
g(t,−y)√
f(t,−y)

I1(
√
h(t,−y))/2

)
, ym ≤ y ≤ yM ,

(D.24c)

P (y, t,+|−) =

{
0 , y < ym or y > yM ,

e−t I0(h(t,−y))/2 , ym ≤ y ≤ yM ,
(D.24d)

where ym = (µ− 1) t, yM = (µ+ 1) t and f(t, y), g(t, y), h(t, y) are given in (12).

Appendix E. Laplace transform of the transition kernel

We compute the Laplace transform of the transition kernel of a run-and-tumble particle

in the presence of a subcritical drift. The approach used here is the same as the one in

Appendix D except that we do not perform the change of reference frame in order to

obtain the Laplace transform of the kernel taking the drift into account. As in Appendix

D, we use the translation invariant notation P (y, t, σ|x, σ0) = P (y − x, t, σ|x = 0, σ0)

(D.1). Following the same reasoning as in the beginning of Appendix D, we find that

the Fokker-Plank equations in Laplace domain are

[(µ+ 1)∂y + 1 + s]P̃ (y, s,+|σ0) = P̃ (y, s,−|σ0) + δσ0,+δ(y) , (E.1a)

[(µ− 1)∂y + 1 + s]P̃ (y, s,−|σ0) = P̃ (y, s,+|σ0) + δσ0,−δ(y) . (E.1b)

To solve them, we first restrict y to be either into ]−∞, 0[ or ]0,∞[. On these intervals,

the delta term is not present:

[(µ+ 1)∂y + 1 + s] P̃ (y, s,+|σ0) = P̃ (y, s,−|σ0), (E.2a)

[(µ− 1)∂y + 1 + s] P̃ (y, s,−|σ0) = P̃ (y, s,+|σ0) . (E.2b)

Then, we decouple the equations by applying the bracketed differential operator from

the first equation to the second equation, and conversely:

[(µ+ 1)∂y + 1 + s][(µ− 1)∂y + 1 + s] P̃ (y, s,+|σ0) = P̃ (y, s,+|σ0) , (E.3a)

[(µ− 1)∂y + 1 + s][(µ+ 1)∂y + 1 + s] P̃ (y, s,−|σ0) = P̃ (y, s,−|σ0) . (E.3b)

We notice that P̃ (y, s,+|σ0) and P̃ (y, s,−|σ0) satisfy the same telegraphic equation,

whose general solution is

A e(η−λ) y +B e(η+λ) y , (E.4)
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where λ and η are given in (42) and A and B are integration constants. In total, there

are 8 integration constants to fix for P̃ (y, s,+|σ0) and P̃ (y, s,−|σ0) split into two sub-

domains ] −∞, 0[ and ]0,∞[. We use the fact that the solution must be bounded at

y → ±∞ to eliminate four of them:

P̃ (y, s,+|σ0) =

{
A e(η−λ) y , y > 0 ,

B e(η+λ) y , y < 0 ,
(E.5a)

P̃ (y, s,−|σ0) =

{
C e(η−λ) y , y > 0 ,

D e(η+λ) y , y < 0 .
(E.5b)

Then, we inject (E.5b) into (E.2) to relate C with A and D with B:

P̃ (y, s,+|σ0) =

{
A e(η−λ) y , y > 0 ,

B e(η+λ) y , y < 0 ,
(E.6a)

P̃ (y, s,−|σ0) =

{
[(µ+ 1)(η − λ) + 1 + s]A e(η−λ) y , y > 0 ,

[(µ+ 1)(η + λ) + 1 + s]B e(η+λ) y , y < 0 ,
(E.6b)

Finally, we impose a ’continuity condition’ between the two sub-domains by integrating

(E.1) around a small volume element centered on the origin. This condition is

P (y = 0+, s,+|σ0)− P (y = 0−, s,+|σ0) =
δσ0,+
µ+ 1

, (E.7a)

P (y = 0+, s,−|σ0)− P (y = 0−, s,−|σ0) =
δσ0,−
µ− 1

. (E.7b)

Upon applying it, we find

P̃ (y, s,+|+) =
η/µ+ sign(y)λ

2 (1 + µ)λ
eη y−λ |y| , (E.8a)

P̃ (y, s,−|−) =
η/µ− sign(y)λ

2 (1− µ)λ
eη y−λ |y| , (E.8b)

P̃ (y, s,−|+) = P̃ (y, s,+|−) =
1

2 (1− µ2)λ
eη y−λ |y| . (E.8c)

Appendix F. Long-time limit of the survival probability at the transition

µ = −v0

We take the long-time limit of survival probability when µ = −1 (63). As in section

3.1, we know that the particle will eventually not survive so that we can rewrite (63) as

Sσ0(x, t) =
∫∞
t
dt′ Fσ0(x, t

′) and find

S+(x, t) ∼
∫ ∞
t

dt′e−t
′
I0(
√
x(2 t′ − x)) , (F.1a)

S−(x, t) ∼
∫ ∞
t

dt′ e−t
′
√
x√

2t′ − x I1

[√
x (2t′ − x)

]
. (F.1b)
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Using the asymptotic expansion of the Bessel function I0,1(x) ∼ ex /
√

2πx for x → ∞
gives

S+(x, t) ∼ x−1/4

23/4
√
π

∫ ∞
t

dt′
e−t

′+
√

2x t′

t′1/4
, (F.2a)

S−(x, t) ∼ x1/4

25/4
√
π

∫ ∞
t

dt′
e−t

′+
√

2x t′

t′3/4
. (F.2b)

We now evaluate the integral in (F.2a) for large t. The second one can be done in a

similar fashion. Let us first change variable u = t′ − t:∫ ∞
0

du
e−t−u+

√
2x (u+t)

(u+ t)1/4
. (F.3)

Then we factor out t in the denominator and in the argument of the exponential

I(t) =
e−t

t1/4

∫ ∞
0

du
e−u+

√
2x t(1+u/t)1/2

(1 + u/t)1/4
, (F.4)

and expand (1 + u/t)1/2 and (1 + u/t)1/4 for large t

I(t) =
e−t

t1/4

∫ ∞
0

du

(
1− 4u

t
+ . . .

)
e−u+

√
2x t (1+ u

2t
+...) , (F.5)

=
e−t+

√
2x t

t1/4

∫ ∞
0

du

(
1− 4u

t
+ . . .

)
e
−u+ u

√
x√

2 t
+...

, (F.6)

where the dots correspond to higher order terms. Finally, we expand the exponential

for large t

I(t) =
e−t+

√
2x t

t1/4

∫ ∞
0

du

(
1− 4u

t
+ . . .

)
e−u

(
1 +

u
√
x√

2 t
+ . . .

)
, (F.7)

and neglect the higher order term in the parenthesis to find

I(t) ∼ e−t+
√

2x t

t1/4

∫ ∞
0

du e−u =
e−t+

√
2x t

t1/4
. (F.8)

This yields the long time limit of the survival probability (64) displayed in the main

text.

Appendix G. Last-passage distribution with a finite observation time

For a supercritical drift, the finite observation time does not play a role as the the first-

passage time is also the last-passage time. We therefore restrict ourselves to a subcritical

drift −1<µ< 1 in this section. The formula for the last-passage distribution (93) can

be adapted to take a finite observation time to into account:

Lσ0(x, t) = (µ+ 1)P (y = 0, t,+|x, σ0)S+(to − t) + (1− µ)P (y = 0, t,−|x, σ0)S−(to − t) .
(G.1)
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where S+(t) is the probability to survive on [0,∞[ starting from the origin in the σ = +1

state and S−(t) is the probability to survive on [−∞, 0[ starting from the origin in the

σ = −1 state. From the results on the survival probability in the presence of a subcritical

drift (11b), we have

S+(to − t) = 1−
√

1− µ
1 + µ

∫ to−t

0

dt′ e−t
′
I1(t′

√
1− µ2) , (G.2a)

S−(to − t) = 1−
√

1 + µ

1− µ

∫ to−t

0

dt′ e−t
′
I1(t′

√
1− µ2) . (G.2b)

Upon defining

R(y = 0, t|x, σ0) = P (y = 0, t,+|x, σ0) + P (y = 0, t,−|x, σ0) , (G.3a)

Q(y = 0, tx, σ0) = P (y = 0, t,+|x, σ0)− P (y = 0, t,−|x, σ0) , (G.3b)

we find that the relation (G.1) simplifies to

Lσ0(x, t) = µQ(y = 0, t|x, σ0) (G.4)

+R(y = 0, t|x, σ0)

(
1−

√
1− µ2

∫ to−t

0

dt′ e−t
′
I1(t′

√
1− µ2)

)
.

Plugging the definitions of R(y = 0, t|x, σ0) and Q(y = 0, t|x, σ0) (G.3) and the

expressions for the propagator derived in Appendix D, we obtain the last-passage

distribution with a finite observation time to. In particular, when µ = 0 and x = 0,

we find

Lσ0(x = 0, t) = R(y = 0, t|x, σ0)

(
1−

∫ to−t

0

dt′ e−t
′
I1(t′)

)
, (G.5)

= R(y = 0, t|x, σ0) et−to(I0(to − t) + I1(to − t)) , (G.6)

= e−to
(
δ(t) +

I1(t) + I0(t)

2

)(
I0(to − t) + I1(to − t)

)
, (G.7)

where we used the expressions for the propagator derived in Appendix D to go from the

second to the third line. The result (G.7) matches with the one obtained in [64].

Appendix H. Laplace transform inversions

Appendix H.1. L−1[e−x(λ+η)](t)

We start with the expression of λ and η given in (42a) and (42b) and set v0 = γ̃ = 1

which we recall here

λ =

√
s (2 + s) + µ2

1− µ2
, (H.1a)

η =
µ (1 + s)

1− µ2
. (H.1b)
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Denoting y = x/(1− µ2), we find

L−1[e−xη](u) = e−u δ (u− yµ) = e−yµ δ (u− yµ) , (H.2)

and

L−1[e−xλ](u) = L−1[e−y
√
s(2+s)+µ2 ](u) , (H.3)

= L−1[e−y
√

(s+1)2+µ2−1](u) , (H.4)

= e−u L−1[e−y
√
s2−(1−µ2)](u) , (H.5)

=

 0 , u < y ,

e−u
(
δ(u− y) +

√
1−µ2 y√
u2−y2

I1(
√

1− µ2
√
u2 − y2)

)
, u ≥ y .

(H.6)

where we completed the square to go to the second line, use the Laplace transform

property

L−1[f(s+ b)](t) = e−b tL−1[f(s)](t) , (H.7)

to go to the third line and used formula (35) from the integral table [71] to go to the

fourth line. We obtain F−(x, t) by taking the convolution of these two functions:

L−1[e−x(λ+η)](t) =

∫
duL−1[e−xλ](t− u)L−1[e−xη](u) , (H.8)

= e−y µL−1[e−xλ](t− y µ) , (H.9)

=

{
0, t < tm ,

e−t
(
δ (t− tm) + x

h(t,x)
I1 [h(t, x)]

)
, t ≥ tm .

(H.10)

where tm and h(t, x) are given in (12).

Appendix H.2. L−1[e−ηx cosh(λx)](t)

Developing cosh(x) = (ex + e−x)/2, we find:

L−1[e−ηx cosh(λx)](t) =
1

2

(
L−1[e−x(η+λ)](t) + L−1[e−x(η−λ)](t)

)
. (H.11)

The first term has been computed in Appendix H.1 and the second term term can be

obtained from the first one by switching the sign of x and µ. This gives

L−1[e−ηx cosh(λx)](t) =


0 , t < tm ,
e−t

2

(
δ (t− tm) + δ (t− tM) + x

h(t,x)
I1 [h(t, x)]

)
, tm ≤ t ≤ tM ,

0 , t > tM .

(H.12)

where tm, h(t, x) and tM are given in (12a), (12d) and (14) respectively.
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Appendix H.3. L−1
[

1
λ
e−ηx sinh(λx)

]
(t)

Developing sinh(x) = (ex − e−x)/2, we find:

L−1

[
1

λ
e−ηx sinh(λx)

]
(t) =

1

2

(
L−1

[
1

λ
e−x(η−λ)

]
(t)− L−1

[
1

λ
e−x(η+λ)

]
(t)

)
. (H.13)

Note that the second term term can be obtained from the first one by switching the sign

of x and µ. The first term can be computed using the formula (36) from the integral

tables [71]). We find

1

(µ2 − 1)
L−1

[
1

λ
e−ηx sinh(λx)

]
(t) =


0 , t < tm ,

e−tI0 [h(t, x)] /2 , tm ≤ t ≤ tM ,

0 , t > tM .

(H.14)

Appendix H.4. L−1
[
s
λ
e−ηx sinh(λx)

]
(t)

We use the Laplace transform property

L[∂tf(t)](s) = sL[f(t)](s) , (H.15)

to note that this inverse Laplace transform is the time derivative of the one derived in

Appendix H.3:

1

(µ2 − 1)
L−1

[ s
λ

e−ηx sinh(λx)
]

(t) =
1

(µ2 − 1)
∂t L−1

[
1

λ
e−ηx sinh(λx)

]
(t) (H.16)

=


0 , t < tm ,
e−t

2

(
δ (t− tm) + δ (t− tM) + t(1−µ2)−xµ

h(t,x)
I1 [h(t, x)]− I0 [h(t, x)]

)
, tm ≤ t ≤ tM ,

0 , t > tM .

(H.17)

Appendix I. Equivalence with the results from Cinque and Orsingher

We consider a PRW process y(s) with s ∈ [0, t]. The process starts at the initial

position y(0) = 0 with initial velocity ẏ(0). Cinque and Orsingher obtained the following

results [46] for the cumulative distribution of the maximum in the subcritical regime

(−1 < µ < 1)

Pr. [max0≤s≤t y(s) ≤M | ẏ(0) = c1] = (I.1)

e−λt
∞∑
r=1

Ir

(
2λ

c1 + c2

√
(c1t−M)(c2t+M)

)[(√
c2t+M

c1t−M

)r

−
(
c2

c1

√
c1t−M
c2t+M

)r]
(I.2)
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for 0 ≤M ≤ c1t, where Ir(z) is the modified Bessel function of index r and

Pr. [max0≤s≤t y(s) ≤M | ẏ(0) = −c2] = (I.3)

e−λt
[ ∞∑
r=0

Ir

(
2λ

c1 + c2

√
(c1t−M)(c2t+M)

)(√
c2t+M

c1t−M

)r

(I.4)

− c1

c2

∞∑
r=2

Ir

(
2λ

c1 + c2

√
(c1t−M)(c2t+M)

)(
c2

c1

√
c1t−M
c2t+M

)r ]
. (I.5)

for 0 ≤M ≤ c1t. Converting to our notations [and using the relation (89)],

c1 = 1− µ , (I.6a)

c2 = 1 + µ , (I.6b)

M = x , (I.6c)

λ = 1 , (I.6d)

Pr. [max0≤s≤t y(s) ≤M | ẏ(0) = c1] = S−(x, t) , (I.6e)

Pr. [max0≤s≤t y(s) ≤M | ẏ(0) = −c2] = S+(x, t) , (I.6f)

it becomes

SCO
− (x, t) = e−t

∞∑
r=1

Ir (h(t, x))

[(√
g(t, x)

f(t, x)

)r

−
(

1 + µ

1− µ

√
f(t, x)

g(t, x)

)r]
, (I.7a)

where the superscript ’CO’ refers to Cinque and Orsingher, and

SCO
+ (x, t) = e−t

[ ∞∑
r=0

Ir (h(t, x))

(√
g(t, x)

f(t, x)

)r

− 1− µ
1 + µ

∞∑
r=2

Ir (h(t, x))

(
1 + µ

1− µ

√
f(t, x)

g(t, x)

)r ]
, (I.7b)

where f(t, y), g(t, y) and h(t, y) are given in (12). We recall that in (I.6e) and (I.6f)

the expression for S−(x, t) and S+(x, t) are given in (11b). A numerical comparison of

the survival probabilities (I.7) derived by Cinque and Orsingher with the one derived in

this work (11b) shows an excellent agreement (see figure I1).

It is actually possible to show analytically that the two formulae coincide, i.e.

SCO
− (x, t) = S−(x, t) and SCO

+ (x, t) = S+(x, t). Below we derive in detail the first

equality – actually it is more convenient to show that ∂tS
CO
− (x, t) = ∂tS−(x, t). Let us

write the survival probability (I.7a) as

SCO
− (x, t) = SCO

−,1(x, t)− SCO
−,2(x, t) , (I.8)

where

SCO
−,1 (x, t) = e−t

∞∑
r=1

Ir (h(t, x))

(√
g(t, x)

f(t, x)

)r

, (I.9)

SCO
−,2(x, t) = e−t

∞∑
r=1

Ir (h(t, x))

(
1 + µ

1− µ

√
f(t, x)

g(t, x)

)r

. (I.10)
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Figure I1: Numerical comparison between the results obtained by Cinque and Orsingher (CO)

and our results (DMS) for both initial states σ0 = ±1 and different values of subcritical drift µ.

where f(t, y), g(t, y) and h(t, y) are given in (12). We start by converting the series in

(I.9) into an integral by using the formula 5.8.3.1 p. 694 from the table of integrals [72]:

∞∑
k=0

tk Ik+ν(z) = z−ν et z/2
∫ z

0

τ ν e−
t τ2

2 z Iν−1(τ) dτ , (I.11)

specified to z = h(t, x), t =
√
g(t, x)/f(t, x) and ν = 1. It gives

SCO
−,1(x, t) =

e−t+
g(t,x)

2

f(t, x)

∫ h(t,x)

0

dτ τ e−
τ2

2f(t,x) I0(τ) . (I.12)

Performing integration by parts in (I.12) yields

SCO
−,1(x, t) = e−t+

g(t,x)
2

[
1− I0(h(t, x)) e−

h(t,x)2

2f(t,x) +

∫ h(t,x)

0

dτ e−
τ2

2f(t,x) I1(τ)

]
. (I.13)

where we used the fact that ∂τI1(τ) = I0(τ). In a similar way, we find for SCO
−,2(x, t) that

SCO
−,2(x, t) = e−t+

f(t,x)
2

1+µ
1−µ

[
1− I0(h(t, x)) e−

h(t,x)2

2g(t,x)
1+µ
1−µ +

∫ h(t,x)

0

dτ e−
τ2

2g(t,x)
1+µ
1−µ I1(τ)

]
.

(I.14)

Taking the difference of the two results (I.13) and (I.14), and noting that h(t, x)2 =
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f(t, x) g(t, x) we obtain

SCO
− (x, t) =e−t+

g(t,x)
2

[
1 +

∫ h(t,x)

0

dτ e−
τ2

2 f(t,x) I1(τ)

]

− e−t+
f(t,x)

2
1+µ
1−µ

[
1 +

∫ h(t,x)

0

dτ e−
τ2

2g(t,x)
1+µ
1−µ I1(τ)

]
.

(I.15)

As a check, we evaluate (I.15) at t = tm. Noting that

tm =
x

1− µ , (I.16)

g(tm, x) = 2 tm , (I.17)

f(tm, x) = 0 , (I.18)

h(tm, x) = 0 , (I.19)

we find

SCO
− (x, tm) = 1− e−tm , (I.20)

which matches with our results. We will now take the time derivative of (I.15). Noting

that

−t+
g(t, x)

2
=
x

2
+
µ− 1

2
t , (I.21)

−t+
µ+ 1

µ− 1

f(t, x)

2
=

µ+ 1

2(µ− 1)
x+

µ− 1

2
t , (I.22)

∂tf(t, x) = 1− µ , (I.23)

∂tg(t, x) = µ+ 1 , (I.24)

we find

∂tS
CO
− (x, t) =

µ− 1

2
e−t+

g(t,x)
2

[
1 +

∫ h(t,x)

0

dτ e−
τ2

2 f(t,x) I1(τ)

]

+
µ− 1

2
e−t+

f(t,x)
2

1+µ
1−µ

[
1 +

∫ h(t,x)

0

dτ e−
τ2

2 g(t,x)
1+µ
1−µ I1(τ)

]

− µ− 1

2
e−t+

g(t,x)
2

∫ h(t,x)

0

dτ
τ 2

f(t, x)2
e−

τ2

2 f(t,x) I1(τ)

− µ− 1

2
e−t+

f(t,x)
2

1+µ
1−µ

∫ h(t,x)

0

dτ
(1 + µ)2

(1− µ)2

τ 2

g(t, x)2
e−

τ2

2 g(t,x)
1+µ
1−µ I1(τ) .

(I.25)

Note that the terms coming from taking the derivative in the upper-bound of the

integrals cancel out. Combining the first line with the third one, and the second one

with the fourth one, and noting that

1+

∫ h(t,x)

0

dτ

(
1− τ 2

f(t, x)2

)
e−

τ2

2 f(t,x) I1(τ) =(
I0(h(t, x)) +

h(t, x)

f(t, x)
I1(h(t, x))

)
e−

h(t,x)2

2 f(t,x) ,

(I.26)
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along with

1+

∫ h(t,x)

0

dτ

(
1− (1 + µ)2

(1− µ)2

τ 2

2 g(t, x)2

)
e−

1+µ
1−µ

τ2

2 g(t,x) I1(τ) =(
I0(h(t, x)) +

1 + µ

1− µ
h(t, x)

g(t, x)
I1(h(t, x))

)
e−

h(t,x)2

2 g(t,x) ,

(I.27)

we find

∂tS
CO
− (x, t) =

e−t

2

[
(µ− 1)

√
g(t, x)

f(t, x)
+ (µ+ 1)

√
f(t, x)

g(t, x)

]
I1(h(t, x)) , (I.28)

=
e−t

2

1

h(t, x)
[(µ− 1)g(t, x) + (µ+ 1)f(t, x)] I1(h(t, x)) , (I.29)

= −e−t
x

h(t, x)
I1(h(t, x)) , (I.30)

= ∂tS−(x, t) , (I.31)

which is the desired result. The second equality SCO
+ (x, t) = S+(x, t) can be proved

along the same lines.
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