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Abstract

In this paper, we propose a methodology to detect the topology of a dynamic network that is based on the analysis of the
uncertainty of an estimate of the static characteristic of the matrix of transfer functions between the external excitations and
the node signals. We also show that the reliability of the proposed network topology detection methodology can be improved
by an appropriate design of the experiment leading to the estimate of the static characteristic.
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1 Introduction

This paper contributes to the efforts of developing
techniques for the identification of large-scale or inter-
connected systems. In these efforts, we can distinguish
two main lines of research. The first line consists in de-
termining a model of the network when the interconnec-
tion structure (i.e. the topology) of the network is known
(see e.g, [16,24,14,12]). The second line consists in deter-
mining the topology of the unknown network (see e.g.
[15,25,22,21]). This paper belongs to this second line of
research.

We consider a dynamical network made up of Nmod
nodes. A given node wi of such a network can be writ-
ten as a function of the other nodes wk (k 6= i) and as
a function of known external excitations and unknown
noise excitations [24]. In this paper, we are interested in
determining the topology of such a network i.e. in de-
termining for each possible pairs of nodes wi and wk
whether there exists a non-zero causal transfer function
G0,ik(z) linking these two nodes. To achieve this objec-
tive, one can of course use the node measurements to
identify these transfer functions in a direct manner [24]
or in an indirect way (i.e. by first estimating the transfer

? This work was supported by the Swedish Research Council
through the research environment NewLEADS—New Direc-
tions in Learning Dynamical Systems (contract 2016-06079)
and the the project 2019-04956.

between the external excitations and the different nodes
and then by back-computing the transfer between the
nodes) [25,22]. Due to the presence of the unknown noise
excitations, even if a given transfer function G0,ik(z) is
identically zero, its estimate will not be equal to zero.
Consequently, it may be difficult in practice to determine
the exact topology of the network if we only look at the
estimates of the different transfer functions G0,ik(z). In
order to avoid these issues, different sparsity-inducing
approaches have been considered. In [10,21], one consid-
ers algorithms that favour sparse solutions. In [25] and
in another section of [21], one considers algorithms that
compare the quality of models identified when supposing
that some of the transfer functions G0,ik(z) are indeed
equal to zero. In [21], a forward selection approach is
used while, in [25], all possible topologies are tested and
the quality of the identified models are compared using
a criterion penalizing a large number of connections.

In this paper, we develop a topology detection method
that is based on the analysis of the uncertainty of the
identified network model. For this purpose, we will take
inspiration from [25] that shows that the topology of
the network can be determined via the inversion of the
static characteristic of the transfer matrix between the
external excitations and the different nodes signals (the
method in [25] is thus an indirect approach). We will
however not only consider the estimate of this static
characteristic but also its uncertainty. Using this uncer-
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tainty, we will be able to derive an uncertainty interval
for the static gain of each transfer function G0,ik(z).
If this uncertainty interval contains zero, we will then
conclude that G0,ik(z) is equal to zero. We analyze the
property of this decision rule and we show that we can
increase our confidence in this decision rule by keeping
the length of the confidence intervals below a certain
threshold. Since the length of these confidence inter-
vals can be linked to the experimental conditions of the
identification experiment yielding the network model,
we subsequently determine the experimental conditions
of the identification experiment with the least powerful
excitation signal that nevertheless yields confidence in-
tervals with a length smaller than the chosen threshold.
This optimal experiment design procedure is the main
contribution of this journal paper with respect to its
conference version [5].

Notations: The matrix In denotes the identity matrix of
dimension n. The matrix

X1 0 0

0
. . . 0

0 0 Xn


will be denoted diag(X1, ..., Xn) when the elements
Xi (i = 1, ..., n) are scalar quantities, while it will be
denoted bdiag(X1, ..., Xn) when the elements Xi (i =
1, ..., n) are matrices.. For a matrix A, AT denotes the
transpose of A. Finally, ⊗ denotes the Kronecker prod-
uct.

2 Network description

We consider a dynamic network made up of Nmod
nodes that are each characterized by a scalar valued
measurable signal wi(t) (i = 1, ..., Nmod). The vector
w̄(t) = (w1(t), w2(t), ..., wNmod

(t))T obeys the following
equation [24]:

w̄(t) = G0(z) w̄(t) + r̄(t) + v̄(t), (1)
with

G0(z) =


0 G0,12(z) ... G0,1Nmod(z)

G0,21(z) 0 ... G0,2Nmod(z)

... ... ... ...

G0,Nmod1(z) G0,Nmod2(z) ... 0

 .

(2)

In (1), r̄(t) = (r1(t), r2(t), ..., rNmod
(t))T is a vec-

tor of external excitation signals that can be freely
chosen by the user e.g., for identification purposes
(r̄(t) = 0 in normal operations) while the vector
v̄(t) = (v1(t), v2(t), ..., vNmod

(t))T represents the pro-
cess noise acting on the network. In this paper, we will
assume that v̄(t) is a wide-sense stationary process with
a strictly positive definite power spectrum matrix at all
frequencies.

For the sequel, we will need the following closed-loop
expression of (1):

w̄(t) = T0(z)r̄(t) + v̄cl(t) (3)

where v̄cl(t) = T0(z)v̄(t) and where the transfer matrix

T0(z) = (INmod
−G0(z))

−1
is assumed to be stable and

to have a frequency response T0(ejω) that is full rank
at all frequencies ω. Given the (standard) assumptions
on T0(z) and v̄(t) given above, the wide-sense stationary
process v̄cl(t) has a strictly positive definite power spec-
trum matrix at all frequencies and can thus be modeled
as [1]:

v̄cl(t) = H0(z)ē(t) (4)

for some matrix of transfer functions H0(z) that
is stable, inversely stable and that is also monic
(i.e. H0(∞) = INmod

) and for some white noise
vector ē(t) = (e1(t), e2(t), ..., eNmod

(t))T such that
Eē(t)ēT (t) = Σ0 > 0 and Eē(t)ēT (t − τ) = 0 for all
τ 6= 0. It is important to note that T0(z) and H0(z) can
be both very complex matrices of transfer functions.

Remark. The stochastic process v̄(t) in (1) can also be
written as v̄(t) = D0(z)ē(t) with a transfer matrixD0(z)
which is stable, inversely stable and monic. If G0(z) is
stable and if G0(∞) = 0, then the transfer matrix H0(z)
describing vcl(t) is given by T0(z)D0(z). If G0(z) does
not have these two properties, H0(z) will have a more
complex expression.

3 Topology detection problem

As mentioned in the introduction, in this paper, we
wish to determine the topology of the network, i.e. we
wish to determine which off-diagonal elements G0,ik(z)
are identically equal to zero. In other words, the topology
detection problem consists in discriminating between the
following hypotheses:

H0 : G0,ik(z) = 0

H1 : G0,ik(z) 6= 0

(5)

for all off-diagonal elements G0,ik(z) of G0(z) in (1). In
this paper, we will develop a topology detection proce-
dure under the following assumption on G0(z):
Assumption 1 Consider the network configuration de-
scribed in Section 2. For any arbitrary transfer function
G0,ik(z) in G0(z) (see (2)), if the static gain G0,ik(1)
of G0,ik(z) is equal to zero, then the transfer function
G0,ik(z) is also equal to zero.

There exists physical systems violating this assumption,
i.e. they have system zeros corresponding to the zero
frequency. A typical example is a system with a piezo-
actuator. However, we believe that Assumption 1 covers
a wide range of real world systems. We will return to
how to relax this assumption in the conclusions.
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As shown in [25], under Assumption 1, we can derive
the topology of the network by simply inspecting the in-
verse Q0 of the static characteristic T0 = T0(1) of the
closed-loop transfer matrix T0(z). This inverse Q0 is in-
deed given by:

Q0 = T −1
0 = (INmod

−G0(1)) (6)

Consequently, we see that, under Assumption 1, any
arbitrary transfer function G0,ik(z) (i 6= k) in G0(z)
(see (2)) is equal to zero if and only if

Q0,ik = 0 (7)

where Q0,ik is the (i, k)-entry of the matrix Q0 ∈
RNmod×Nmod . In other words, under Assumption 1, (5)
is equivalent to: 

H0 : Q0,ik = 0

H1 : Q0,ik 6= 0

(8)

4 Estimate of T0 and its uncertainty

To be able to discriminate between H0 and H1, since
Q0 is unknown, we will use an estimate Q̂ of Q0. This
estimate Q̂ of Q0 will be given as:

Q̂ = T̂ −1 (9)

where T̂ is an estimate of T0. It is very difficult to de-
rive a reliable decision rule for the hypothesis test (8)
based on such an estimate. Indeed, even if the actual off-
diagonal entry Q0,ik of Q0 is identically equal to zero,

the off-diagonal entry Q̂ik of Q̂ will not be equal to zero.
Consequently, in this paper, we will propose a decision
rule for (8) by combining Q̂ik with its uncertainty. For

this purpose, we need to specify an estimator T̂ of T0

and its uncertainty. Since we are only interested in an
estimate of the static characteristic of T0(z) (and not
an estimate of T0(z)), the identification problem can be
strongly simplified.

Since we wish to characterize the uncertainty of T̂ , we
will nevertheless need to derive a model of H0(z). Using
time series analysis [8], this can be done in advance based
on normal operation data (i.e., data w̄(t) collected on (1)
when r̄(t) = 0). In order to simplify the identification of
this model of H0(z), we will here use an AR structure
for this model. This indeed allows to estimate a model 1

Ĥ(z) = Â(z)−1 of H0(z) by solving a least-squares op-
timization problem. Referring to Theorem 3.1 in [20],

Ĥ(ejω) will tend to H0(ejω) if the number of estimation
data tends to infinity and if the order of the AR model
increase at a suitable rate with this number of estima-
tion data. In practice, the order of the AR model must

1 In an AR structure, Ĥ(z) is modeled as the inverse of a

matrix of polynomials Â(z).

be chosen in such a way that the residuals Ĥ−1(z)w̄(t)
are whitened. The obtained AR model will be used to
derive the estimate of T0.

The estimate of the static matrix T0 will be deter-
mined via Nmod identification experiments leading each
to an estimate of one column of T0. More precisely, the
jth experiment (j = 1, ..., Nmod) allows to determine an

estimate T̂j of the jth column T0,j of T0. For this purpose,
we apply to the network (1) an excitation vector r̄(t)
where all the elements except rj(t) are zero and where
rj(t) is equal to the constant αj for all t:

r̄(t) = αj m̄j ∀t (10)

where m̄j (j = 1, . . . , Nmod) denotes a unit (column)
vector of dimensionNmod for which the jth entry is equal
to 1 and the other entries are equal to zero. After the end
of the transient, the vector w̄(t) that is collected during
such an experiment obeys the following relation:

w̄(t) = T0,j αj +H0(z)ē(t) (11)

Moreover, if we filter the data w̄(t) collected in such an

experiment with the inverse of the AR model Ĥ(z) of
H0(z), we have also that, after the end of the transient 2 ,

w̄H(t) = Ĥ−1(z)w̄(t) = Φj T0,j + Ĥ−1(z)H0(z)ē(t)
(12)

where Φj = αjĤ
−1(1), and where the last term is near

white since it approximately equals ē(t). Using (12), it

is clear that an estimate T̂j of T0,j (and an estimate Σ̂ of
the covariance matrix Σ0 of ē) can be obtained by con-
sidering the following simple prediction error criterion
[19]:

min
Tj , Σ

1

N

Nj+Nj,ss∑
t=Nj,ss

ε̄Tj (t, Tj) Σ−1 ε̄j(t, Tj) (13)

ε̄j(t, Tj) = w̄H(t)− Φj Tj (14)

where Tj is a column vector of dimension Nmod, Σ is
a square matrix of dimension Nmod, Nj,ss is the mo-

ment where w̄H(t) = Ĥ−1(z)w̄(t) reaches the steady-
state (12), and Nj +Nj,ss is the duration of the jth ex-
periment. The criterion (13) can be solved using the it-
erative least-squares procedure in [14, page 485] 3 .

2 The end of the transient for w̄(t) is the moment where
w̄(t) starts to oscillate around a fixed offset (which is equal

to T0,j αj (see (12)). Since Ĥ−1(z) is a polynomial matrix,
the end of the transient for w̄H(t) is given by tw + th where
tw is the end of the transient for w̄(t) and th is the order of

the polynomial of highest order in Ĥ−1(z).
3 Alternatively, Σ̂ can be first estimated using the residuals

from the AR-model Ĥ(z) and T̂j can then be obtained using
weighted least-squares.
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Using the framework of [20] described above, Ĥ(ejω)
can be made to converge to H0(ejω) at a sufficiently fast

rate so that the estimate T̂j obtained via (13) is asymp-
totically normally distributed around T0,j with covari-

ance matrix PTj = (1/Nj)
(
ΦTj Σ−1

0 Φj
)−1

[19]. Using the

estimate Σ̂ of Σ0, PTj can thus be estimated as:

PTj ≈
1

α2
j Nj

(
Ĥ(1) Σ̂ ĤT (1)

)
(15)

Combining the estimates of the columns of T0 obtained
in the Nmod experiments, we can form the following es-
timate T̂ of T0:

T̂ =
(
T̂1, T̂2, ..., T̂Nmod

)
(16)

Let us also analyze the variance/uncertainty of this esti-

mate. For this purpose, let us denote by θ0 (resp. θ̂) the
vector of dimension N2

mod made up of the vectorization

of the columns of T0 (resp. T̂ ) i.e.

θ0 =
(
T T0,1, T T0,2, ..., T T0,Nmod

)T
(17)

θ̂ =
(
T̂ T1 , T̂ T2 , ..., T̂ TNmod

)T
(18)

As the estimates of the different columns of T0 are as-
sumed to be obtained from independent experiments, θ̂
is (asymptotically) normally distributed around θ0 with
a covariance matrix Pθ given by:

Pθ = bdiag
(
PT1 , PT2 , ..., PTNmod

)
(19)

with PTj (j = 1, ..., Nmod) defined in (15).

Remark. The identification procedure described above
is in two steps: normal operation data are used to iden-
tify Ĥ(z) and then data collected by exciting the system

with r̄(t) are used to identify T̂ . If you do not wish to use

normal operation data to identify Ĥ(z), this AR model
can also be identified with the data collected under a
nonzero excitation (see (11)) by computing the average
µ of the steady-state data w̄(t) over the available sam-
ples. We can then perform the AR identification based
on w̄(t)− µ. We have indeed w̄(t)− µ ≈ H0(z)ē(t). An-
other possible least-squares approach is to use the semi-
parametric weighted null-space fitting approach of [13].

5 Decision rule for (8)

As we will show in the next section, using θ̂ and its
covariance matrix Pθ, we will be able to derive, for each
off-diagonal entry Q0,ik of Q0, an uncertainty interval
Iik = [Qminik , Qmaxik ] that containsQ0,ik (modulo a given
probability level). Based on this uncertainty interval Iik,
we propose the following decision rule for the hypothesis
test (8) (equivalent to (5)):


0 ∈ Iik =⇒ H0

0 6∈ Iik =⇒ H1

(20)

When we assume that Q0,ik ∈ Iik, this decision rule
has the following properties for an uncertainty interval
Iik of length Lik = Qmaxik − Qminik . If Q0,ik = 0 (i.e.,
under H0), this decision rule will always yield the right
decision i.e., to decide H0. If Q0,ik 6= 0 (i.e., under H1),
the properties of (20) will depend on the absolute value
|Q0,ik| of the unknown Q0,ik. If |Q0,ik| is larger than
the length Lik of the interval Iik, the decision rule (20)
will always yield the right decision i.e., to decide H1. If
Q0,ik 6= 0 and |Q0,ik| < Lik, the decision rule (20) may
yield, depending on the actual value of Iik, to a correct
or an incorrect decision.

We can also formulate these properties from another
point of view. When we assume that Q0,ik ∈ Iik, the
decision rule (20) will always yield to the right decision
(i.e., H1) when 0 6∈ Iik while the decision (i.e., H0) may
be wrong when 0 ∈ Iik since (20) cannot distinguish
between an element Q0,ik which is exactly equal to zero
and an element Q0,ik 6= 0 such that |Q0,ik| < Lik.

From the above analysis, it is thus clear that a small
Lik will increase the reliability of the decision rule (20).
We will see in the sequel that the smaller Pθ, the smaller
the lengths Lik of the intervals Iik will be. Consequently,
the reliability of the decision rule (20) can be improved
by an appropriate design of the identification experi-
ments described in Section 4.

To be able to use the decision rule (20), we need
a manner to determine the intervals Iik for each pair
(i, k). This is done in the next section.

Remark. One could wonder whether we could not also
derive a decision rule based on the inverse of the AR
model Ĥ(z) of H0(z) and its uncertainty. This is indeed
the case, but only under more restrictive assumptions on
the network described in Section 2. For this let us refer
to the remark at the end of Section 2. If G0(z) is stable
and satisfies G0(∞) = 0, we have H−1

0 (1) = D−1
0 (1)Q0.

Consequently, if, in addition, D0(z) is assumed diago-
nal, the topology of the network can be determined by
inspecting H−1

0 (1) and an alternative decision rule can
thus be determined by considering the uncertainty of the
identified model Ĥ(z) of H0(z).

6 Determination of the uncertainty intervals

6.1 Introduction

Using the statistical properties of θ̂ (see Section 4), it
is clear that the following ellipsoid U is a β%-confidence

region for the modeling error δ0 = θ0 − θ̂:

U :=
{
δ ∈ RN2

mod | δTP−1
θ δ < χ

}
(21)
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where χ is defined by Pr(χ2(N2
mod) < χ) = β where

χ2(N2
mod) is the χ2-distribution with N2

mod degrees of
freedom. This ellipsoid U can be considered as an uncer-
tainty set for the unknown modeling error δ0. From now

onwards, we will therefore assume that δ0 = θ0 − θ̂ ∈ U
or, in other words, that θ0 ∈ {θ | θ = θ̂ + δ and δ ∈ U}.
If, for a given vector δ ∈ U , we denote by T (δ), the
matrix obtained from the de-vectorization of the vector
θ := θ̂+δ, we have that T̂ = T (0) and T0 = T (δ0). More-
over, since Q0 = T (δ0)−1 and δ0 ∈ U , we have also that
the unknown (i, k)-entryQ0,ik ofQ0 lies in the following

set Iorigik =
{
Qik(δ) ∈ R | Q(δ) = T (δ)−1 and δ ∈ U

}
where Qik(δ) is the (i, k)-entry of Q(δ).

The set Iorigik defined in the previous paragraph is an
interval since the matrix inversion is a continuous oper-
ation. Consequently, this interval could be used in the
decision rule (20) since Iorigik contains Q0,ik (modulo a
certain probability level). However, this will not be pos-
sible since we cannot compute an explicit expression for
Iorigik . To show this, let us observe that Iorigik is also equal

to [copt,origik −
√
ρopt,origik , copt,origik +

√
ρopt,origik ] where

copt,origik and ρopt,origik are the solutions of the following
optimization problem:

min
cik, ρik

ρik (22)

s.t. (Qik(δ)− cik)
2
< ρik ∀δ ∈ U (23)

As usual in robustness analysis [26], we cannot determine
exactly the solutions of the above optimization problem.
However, we can use convex relaxation to replace the
constraint (23) by an alternative constraint that is linear
in the decision variables cik and ρik and that implies (23).

If we denote by coptik and ρoptik the solutions of the convex
optimization problem consisting in minimizing ρik un-
der the convex constraint mentioned above. Then, the

computable interval Iik = [coptik −
√
ρoptik , c

opt
ik +

√
ρoptik ]

is such that Iorigik ⊆ Iik and can thus be used in the
decision rule (20). In the next subsections, we show how
we can derive a convex constraint that implies (23).

Remark. From the above analysis, it is clear that the
smaller the size Pθ of U , the smaller the length Lik of
the intervals Iorigik and Iik will be.

6.2 LFT description of Qik(δ)

To be able to determine a convex alternative for (23),
a first step is to rewrite the quantity Qik(δ) in an Linear
Fractional Transform (LFT) in the variable δ. As we
will see below, this can be done by first rewriting T (δ)
as an LFT in δ. For an arbitrary δ ∈ U , the mapping
ȳ = T (δ)ū can be expressed in the LFT framework as
follows:

p̄ = INmod
⊗ δ︸ ︷︷ ︸

=∆(δ)

q̄ (24)

(
q̄

ȳ

)
=

Z11 Z12

Z21 Z22


︸ ︷︷ ︸

=Z

(
p̄

ū

)
(25)

where Z is given by:

Z =

 Z11 Z12

Z21 Z22

 =


0 INmod

(m̄T
1 , ..., m̄

T
Nmod

)⊗ INmod T̂


with m̄j (j =, 1, ..., Nmod) and T̂ = T (0) as defined in

Section 4. In the sequel, we will use ȳ = F(Z,∆(δ))ū as
a shorthand notation for the LFT (24)-(25).

Let us consider the same δ ∈ U as well as the inverse
mapping ū = Q(δ)ȳ = T−1(δ)ȳ. This inverse mapping
can also be expressed in the LFT framework with (24)
and: (

q̄

ū

)
=

M11 M12

M21 M22


︸ ︷︷ ︸

=M

(
p̄

ȳ

)
(26)

where M can be derived from Z:

M =

M11 M12

M21 M22

 =

 Z11 − Z12Z
−1
22 Z21 Z12Z

−1
22

−Z−1
22 Z21 Z−1

22


In other words, we have ū = Q(δ)ȳ = F(M,∆(δ))ȳ.

This LFT of the inverse mapping can be adapted to each
entry of the matrix Q(δ). For this purpose, let us note

that Q(δ) = M22 + M21∆(δ) (I −M11∆(δ))
−1
M12.

Consequently, the (i, k)-entry Qik(δ) = m̄T
i Q(δ)m̄k of

Q(δ) is equal to Qik(δ) = m̄T
i Q(δ)m̄k = m̄T

i M22m̄k +

m̄T
i M21∆(δ) (I −M11∆(δ))

−1
M12m̄k. Consequently,

the scalar mapping ui = Qik(δ)yk can be rewritten as
the LFT made up of (24) and:

(
q̄

ui

)
=

M ik
11 M ik

12

M ik
21 M ik

22


︸ ︷︷ ︸

=Mik

(
p̄

yk

)
(27)

where M ik is the following function of M :

M ik =

M ik
11 M ik

12

M ik
21 M ik

22

 =

 M11 M12 m̄k

m̄T
i M21 m̄

T
i M22 m̄k


In other words, we have that Qik(δ) = F(M ik,∆(δ))

for any δ ∈ U .
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6.3 Set of multipliers related to the uncertainty set U

Another crucial ingredient to determine a convex
alternative for (23) is to associate, with the set U , a
so-called set of multipliers [23] that takes into account
how δ appears in the LFT representation F(M ik,∆(δ))
of Qik(δ) (see (24)).

Definition 1 Consider the set U defined in (21). We
define the set of multipliers AU as a set of affinely
parametrized symmetric matrices A (of dimension
Nmod(N

2
mod + 1) × Nmod(N2

mod + 1)) that all have the
following property:

 INmod

INmod ⊗ δ

T

A

 INmod

INmod ⊗ δ

 ≥ 0 ∀δ ∈ U (28)

In other words, A ∈ AU =⇒ (28).

We have derived an extensive parametrization of the
set of multipliersAU corresponding to U in our previous
contribution [2, Proposition 2]. That the parametriza-
tion of AU is extensive is important since the more
extensive the parametrization of the set of multipliers,
the tighter the embedding Iik of Iorigik will be [23]. In
the next proposition, we give the parametrizion of the
set of multipliers AU given in [2, Proposition 2]. Note
that, unlike in [2, Proposition 2], this parametrization
is here restricted to real multipliers A = AT since the
LFT’s introduced in Section 6.2 are entirely real.

Proposition 1 Consider Definition 1 and the set U de-

fined in (21). The matrices A =

(
A11 A12

AT12 A22

)
belonging

to the set AU corresponding to U are parametrized as
follows:

A11 = W̃ A22 = −W̃ ⊗
P−1
θ

χ
− B̃ (29)

A12 =


0 ṽT12 . . . ṽT1Nmod

−ṽT12 0 . . .
...

... . . .
. . . ṽT(Nmod−1)Nmod

−ṽT1Nmod
. . . −ṽT(Nmod−1)Nmod

0


where W̃ is a square matrix of dimension Nmod that can

take any value as long as W̃ is a positive definite sym-
metric matrix, where ṽlr are column vectors of dimen-
sion N2

mod that can take any value (l = 1, .., Nmod and

r = 1, .., Nmod) and finally where B̃ is a square matrix
of dimension N3

mod that can take any values as long as:

B̃ =


0 K12 . . . K1Nmod

−K12 0 . . .
...

...
. . . K(Nmod−1)Nmod

−K1Nmod . . . −K(Nmod−1)Nmod
(ω) 0


with the constraint that Ki,j = −KT

i,j ∈ RN2
mod×N

2
mod .

The set of multipliers AU consists thus in the set of
all matrices A that can be parametrized with the fixed
variables Pθ and χ defining U and with the free variables
W̃ , B̃, ṽlr (l = 1, .., Nmod and r = 1, .., Nmod) satisfying
the above constraints.

6.4 LMI optimization to determine the uncertainty in-
terval

We have now all the elements to derive the convex
alternative for (23). We will for this purpose adapt a
result in [11] to our situation.

Proposition 2 Consider the LFT F(M ik,∆(δ)) for
Qik(δ) (see (24)-(27)) and the set of multipliersAU asso-
ciated to U (see Definition 1). Then, the constraint (23)
holds for given cik and ρik if we can find a matrixA ∈ AU
such that the following LMI constraint holds:

−1 X (cik)

X (cik)T KTAK +

(
0 0

0 −ρik

) < 0 (30)

withX (cik) =
(
M ik

21 M ik
22 − cik

)
andK =

(
M ik

11 M ik
12

I 0

)
.

Proof. First, let us observe that the matrix inequal-
ity (30) is linear in the decision variables A, cik and ρik.
Consequently (30) is indeed an LMI. Subsequently, us-
ing the Schur complements, (30) is equivalent to:

KTAK +

(
0 0

0 −ρik

)
+ X (cik)TX (cik) < 0 (31)

Let us now consider the LFT (24)-(27) for a given δ ∈ U
and for yk = 1 and let us consider the corresponding
signals p̄, q̄ and ui = Qik(δ). Let us then pre- and post-
multiply the constraint (31) with (p̄T , 1) and (p̄T , 1)T ,
respectively. Using (27), this yields:

(
q̄

p̄

)T
A

(
q̄

p̄

)
+ (ui − cik)2 < ρik (32)

Since p̄ = (INmod
⊗ δ)q̄ and ui = Qik(δ), we can
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rewrite (32) as follows:

q̄T

(
INmod

INmod
⊗ δ

)T
A

(
INmod

INmod
⊗ δ

)
q̄+(Qik(δ)−cik)2 < ρik

(33)
The above reasoning can be done for any value of δ ∈ U .
In other words, for the matrix A ∈ AU for which (30)
holds, (33) holds true for all δ ∈ U . Consequently, using
Definition 1, we have therefore that the existence of A ∈
AU such that (30) holds implies that, for each δ ∈ U ,
(Qik(δ)− cik)2 < ρik; which is the desired result.

Using Proposition 1, we can now compute the uncer-
tainty interval Iik containing Q0,ik for each pair (i, k)
such that i 6= k. Indeed, this interval Iik is given by

Iik = [coptik −
√
ρoptik , c

opt
ik +

√
ρoptik ] where coptik and ρoptik

are the solutions of the LMI optimization problem con-
sisting in finding the smallest value of ρik for which we
can find a scalar cik and a matrix A ∈ AU such that
the LMI constraint (30) holds. In this LMI optimization
problem, when we speak of finding a matrix A ∈ AU , we
more precisely mean finding the free parameters in the
affine structure of the matrix A.

7 Numerical illustration

Let us consider a network (1) with Nmod = 3 nodes
and

G0(z)
∆
=


0 0 G0,13(z)

G0,21(z) 0 0

G0,31(z) G0,32(z) 0

 (34)

with G0,21(z) = 0.095z−1

1−0.905z−1 , G0,31(z) = 0.181z−1

1−0.819z−1 and

G0,32(z) = 0.259z−1

1−0.741z−1 and G0,13(z) = 0.3 G0,32(z).

Moreover, v̄(t) = (I3 ⊗ 1
1−0.7z−1 )ē(t) (i = 1, 2, 3) with

ē(t) a white noise vector of covariance matrix Σ0 = 0.1I3.
Since G0(z) is stable and G0(∞) = 0, the transfer ma-
trix H0(z) in (4) is given by T0(z)(I3 ⊗ 1

1−0.7z−1 ) (see

the remark at the end of Section 2).
In this network, we see that the transfer functions

G0,ik (i 6= k) that are equal to zero are the transfer func-
tion G0,12(z) and G0,23(z). Let us compute the inverse
Q0 of the static gain matrix T0 of the transfer matrix
T0(z) = (INmod

−G0(z))
−1

:

Q0 =


1 0 −0.3

−1 1 0

−1 −1 1

 . (35)

We indeed observe that Q0,12 and Q0,23 are the sole
entries Q0,ik in Q0 that are equal to zero.

Following the procedure in Section 4, we identify an
AR model Ĥ(z) = Â−1(z) of H0(z) using 10000 sam-
ples of w̄(t) collected on (1) with r̄(t) = 0. Using the
whiteness test of [19, page 512], we observe that a poly-

nomial matrix Â(z) having entries of degree one is suffi-

cient to whiten Ĥ−1(z)w̄(t) = Â(z)w̄(t). This AR model
is then used to subsequently identify the columns of T0

via three identification experiments and the identifica-
tion criterion (13). In these three experiments, we choose
αj = 0.5 and Nj = 800 (j = 1, 2, 3). This allows to de-

duce an estimate T̂ of T0 (see (16)) and we then obtain
the following estimate of Q0:

Q̂ = T̂ −1 =


0.9905 0.0522 −0.3106

−0.9693 0.9847 −0.0269

−1.2323 −1.0247 1.1004

 (36)

We observe that Q̂12 = 0.0522 and Q̂23 = −0.0269 are
smaller than the other Q̂ik (i 6= k), but not extremely
small. To have an idea of the uncertainty of the estimates
Q̂ik (i 6= k), the estimate of the covariance matrix Pθ
of θ̂ (see (18) and (19)) is used to determine the uncer-
tainty ellipsoid U (the confidence level is chosen equal to
95% and χ is thus chosen equal to 16.919). In our case, U

indeed contains δ0 = θ0 − θ̂. We then use the procedure
described in Section 6 to derive the uncertainty intervals
Iik corresponding to each non-diagonal entry Q̂ik of Q̂.
In Table 1, we give these intervals Iik = [Qminik , Qmaxik ]
together with their length Lik, the decisions of the deci-
sion rule (20) and the true coefficientsQ0,ik. We observe
that, for all pairs (i, k), the true coefficient Q0,ik lies in
its confidence interval Iik which was to be expected since
δ0 ∈ U . We also observe that the lengths Lik of these
intervals are relatively large with respect to |Q0,ik| and
this has as consequence that the decision rule (20) is not
able to yield to the right decision for the non-diagonal
entry Q0,13 of Q0. Indeed, 0 not only lies in I12 and I23,
but also in I13. Note however that, even if Lik is large,
the decision rule (20) allows to definitely exclude the hy-
pothesis that Q0,21, Q0,31, Q0,32 are equal to zero. In-
deed, zero is not an element of the corresponding (large)
intervals.

Let us check, via Monte Carlo simulations, whether
the observations of the previous paragraph contain some
generalities. For this purpose, we have repeated the
above procedure 500 times with different realizations of
the noise vector ē in each step (i.e. the identification of

Ĥ(z) and of T̂ ) and we have observed that δ0 lies in U in
90.6% of these Monte Carlo simulations (which is close
to the prescribed confidence level of 95%) 4 . We have
also observed that the decision rule (20) is only able
to determine the correct topology in 51% of the cases

4 The difference is certainly to be explained by the low order

AR model Ĥ(z) for the relatively complex H0(z).
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with the chosen experimental conditions. In the sequel,
we will show that we can increase the performance of
the decision rule (20) by an appropriate design of the
amplitudes αj (j = 1, ..., Nmod) of the excitation signals
used in the identification procedure of Section 4.

Table 1
Intervals for the experiment in Section 7

(i, k) Q0,ik Qmin
ik Qmax

ik Lik H

(1, 2) 0 -0.4665 0.5578 1.0242 H0

(1, 3) -0.3 -0.8244 0.0220 0.8463 H0

(2, 1) -1 -2.0406 -0.4102 1.6304 H1

(2, 3) 0 -0.4626 0.5247 0.9873 H0

(3, 1) -1 -2.4219 -0.6720 1.7499 H1

(3, 2) -1 -1.8308 -0.5469 1.2839 H1

8 Optimal experiment design for topology de-
tection

In the previous sections, we have derived a topology
detection procedure that is based on a decision rule in-
volving uncertainty intervals. We have seen that the de-
cision rule can become unreliable if the length Lik of the
intervals containing zero is large. In the sequel, we will
assume that a nonzero Q0,ik cannot have an absolute
value |Q0,ik| smaller than a known small threshold ε. If
we make this additional assumption together with the
assumption thatQ0,ik ∈ Iik, it is clear from the analysis
in Section 5 that the decision rule (20) will then always
lead to the right decision if each interval Iik contain-
ing zero has a length Lik < ε. Since the lengths Lik of
the intervals are directly related to the covariance ma-

trix Pθ of the identified parameter vector θ̂ and thus
directly related to the amplitudes αj (j = 1, ..., Nmod)
of the excitation signals used to collect the data yield-

ing θ̂ (see (15) and (19)), we can achieve this accuracy
objective by an appropriate design of these amplitudes.
In particular, we wish to determine the amplitudes αj
(j = 1, ..., Nmod) corresponding to the smallest identifi-

cation cost J =
∑Nmod

j=1 α2
j that nevertheless guarantees

that this accuracy objective will be respected after an
identification procedure of fixed duration.

Like in all optimal experiment design problems, the
optimal experiment design problem described in the pre-
vious paragraph will require some initial information on
the to-be-identified network. This information will be
here gathered by an initial identification procedure with
small αj (j = 1, ..., Nmod). This initial identification pro-
cedure has led to intervals Iinitik having relatively large
lengths Lik (such as the one in Section 7). Let us denote
by X the set of all pairs (i, k) such that the interval Iinitik
contains zero and such that its length is larger than ε.
As an example, if the initial identification procedure is
the one described in Section 7 and if ε is chosen equal
to 0.1, the set X is given by X = {(1, 2), (1, 3), (2, 3)}.
The set X describes the intervals whose length has to be

reduced in a to-be-designed second identification proce-
dure in order to increase the confidence in the decision
rule (20). Besides X , this initial identification procedure

has also led to an AR model Ĥ(z) of H0(z) and initial
estimates of T0 and Σ0 that will also be used to opti-
mally design the second identification procedure i.e., to
design the amplitudes αj (j = 1, ..., Nmod) of this second
identification procedure that corresponds to the small-
est value of J for which we have still the guarantee that
the intervals Iik (that will be computed after this sec-
ond identification procedure) are such that Lik < ε for
all (i, k) ∈ X .

If we denote the LMI (30) by X(A, ρik, cik,M
ik) < 0

and if we denote γj = α2
j (j = 1, ..., Nmod), then the op-

timal amplitudes can be determined using the following
optimization problem with as decision variables Nmod
real scalars γj > 0 and, for each (i, k) ∈ X , a scalar cik
and a matrix Aik ∈ AU :

min

Nmod∑
j=1

γj (37)

X(Aik,
ε2

4
, cik,M

ik) < 0 ∀ (i, k) ∈ X (38)

The optimal amplitudes αoptj are given by
√
γoptj

(j = 1, ..., Nmod) where γoptj are the solutions of the
above optimization problem. These optimal amplitudes
correspond well to the desired ones since, via Proposi-
tion 2, (38) implies that, for each (i, k) ∈ X , the interval
Iik that can be obtained via this new identification ex-

periment has a length Lik smaller than 2
√

ε2

4 = ε. In

the above optimization problem, for each (i, k) ∈ X , the
free variables in the matrix Aik can be chosen differently
while the fixed variable P−1

θ is replaced by its linear
expression in function of γj = α2

j (j = 1, ..., Nmod) i.e.

P−1
θ = bdiag

(
P−1
T1 , P

−1
T2 , ..., P

−1
TNmod

)
(39)

with P−1
Tj = γj Nj

(
H0(1) Σ0 H

T
0 (1)

)−1
.

There are a number of issues with the optimization
problem (37)-(38). First, like in all optimal experiment
design problem, (38) depends on a number of unknown
variables (the so-called chicken-and-egg issue). Indeed,
the matrices M ik defined in (27) depend on the to-be-
identified estimate of T0 while the expression (39) of
P−1
θ depends on H0(z) and Σ0. This issue can, e.g.,

be resolved by replacing, in (38), these unknown quan-
tities by their estimates obtained during the initial
identification procedure. The second issue is related
to the particular parametrization of one term in Aik.
We indeed observe, in (29), the Kronecker product of

the decision variable W̃ik and of P−1
θ , which is a linear

function of the decision variables γj (j = 1, . . . , Nmod).
The optimization problem (37)-(38) is thus bilinear. To
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tackle this bilinearity, we will use the iterative approach
given in Algorithm 1 below which is inspired by the so
called D-K iterations [26] (see also [6]). Before present-
ing Algorithm 1, we note that, if we arbitrarily choose
the squared amplitudes γj (j = 1, . . . , Nmod), we can
use (39) and the solution to the chicken-and-egg issue
given above to compute the corresponding P−1

θ . With

this P−1
θ and M ik (that can also be evaluated via the so-

lution to the chicken-and-egg issue given above), we can
easily determine Iik for each (i, k) ∈ X using the proce-
dure of Section 6 and verify that these intervals Iik have
all a length smaller than ε. If that is the case, we will
say that these squared amplitudes γj (j = 1, . . . , Nmod)
are validated.

Algorithm 1. The algorithm is made up of an initial-
ization step (step S.0) and each iteration consists of the
two steps S.1 and S.2.

S.0. We initialize the algorithm by arbitrarily choos-
ing positive values for the squared amplitudes γj
(j = 1, . . . , Nmod).

S.1. Using a subdivision algorithm, we determine, using
the notion of validation defined above, the minimal
positive scalar κ ∈ R such that the squared amplitudes
κγj (j = 1, . . . , Nmod) remain validated. Denote this
minimal κ by κmin. To validate κminγj, we have used,
for each (i, k) ∈ X , the LMI optimization problem
given at the end of Section 6.4. The optimal values of
W̃ik ((i, k) ∈ X ) in these LMI optimization problems
are conserved for Step S.2.

S.2. The optimal experiment design problem (37)-(38) is
transformed into an LMI optimization problem by
fixing the decision variables W̃ik to the ones deter-
mined in Step S.1. The optimal values γoptj of γj
(j = 1, . . . , Nmod) of this transformed optimization
problem can then be used in Step S.1 for a new itera-
tion.

The algorithm is stopped when the optimal cost

Jopt =
∑Nmod

j=1 γoptj in Step S.2 no longer decreases
significantly after each iteration. The optimal squared
amplitudes are then the ones corresponding to this last
iteration (Step S.1 is used a last time to further refine
the solution).

Since the squared amplitudes γj (j = 1, . . . , Nmod) deliv-
ered by Algorithm 1 are validated, they are guaranteed
to lead to a covariance matrix Pθ and an uncertainty
set U for which the intervals Iik have a length smaller
than ε for all (i, k) ∈ X (modulo the chicken-and-egg
issue). However, there is no guarantee that the corre-
sponding cost Jopt is the smallest possible. In order to
approach the optimal cost of the original optimization
problem (37)-(38), it is important to choose, in Step S.0
of Algorithm 1, initial values of γj that are as close as
possible to the optimal solution of (37)-(38). In order to
do that, we can use the procedure in Appendix A. This
procedure consists in a convex formulation of the opti-

mization problem (37)-(38) based on the linearization
of the relationship between δ and Q(δ).

Remark. In order to further reduce the cost of the second
identification procedure, the information obtained dur-
ing the initial identification procedure can be combined
to the information obtained during the second identifi-
cation procedure to derive the identified parameter vec-

tor θ̂ and the corresponding covariance matrix Pθ (see
[19, page 464]). The above experiment design approach
can be easily adapted to this case (see e.g., [4]).

9 Numerical illustration (cont’ed)

Let us illustrate the results of the previous section by
supposing that the threshold ε is chosen equal to 0.1
and that the initial identification procedure is the iden-
tification procedure described in Section 7 for which
X = {(1, 2), (1, 3), (2, 3)}. We wish to design a sec-
ond identification procedure with a duration Nj = 800
(j = 1, 2, 3) that is such that Lik ≤ 0.1 for all (i, k) ∈ X .
To initialize Algorithm 1, we use the procedure in Ap-
pendix A which leads to γ1 = 4.0245, γ2 = 20.2858
and γ3 = 25.1854. Using this initialization, Algorithm 1
is then used for one iteration 5 yielding γopt1 = 4.0939,

γopt2 = 20.5735 and γopt3 = 25.2335. With respect to
its initialization with Appendix A, Algorithm 1 thus
only slightly modify the experimental conditions. This
could indicate that the approach in Appendix A allows
to closely approach the global optimum of the optimiza-
tion problem (37)-(38). The obtained experimental con-

ditions correspond to αopt1 = 2.0233, αopt2 = 4.5358 and

αopt3 = 5.0233. Using these experimental conditions, we

collect data and, using the AR model Ĥ(z) identified in
the initial identification procedure, we identify the fol-
lowing estimate Q̂ = T̂ −1 of Q0:

Q̂ =


0.9689 −0.0081 −0.2866

−0.9708 1.0131 −0.0138

−1.0009 −1.0069 1.0029

 (40)

To have an idea of the uncertainty of the estimates
Q̂ik (i 6= k), we follow the same procedure as in Sec-
tion 7 and we obtain Table 2 where the intervals
Iik = [Qminik , Qmaxik ] are given together with their length
Lik, the decisions of the decision rule (20) and the true
coefficients Q0,ik. From Table 2, it is clear that the sec-
ond identification procedure leads to intervals Iik with
satisfactory lengths i.e., Lik ≤ 0.1 for all (i, k) ∈ X .
Moreover, unlike in Section 7, the decision rule (20) al-
lows now to correctly conclude that the true unknown

5 Further iterations do indeed not reduce the optimal
cost Jopt. Note also that, in the step S.1 of the single iteration
of Algorithm 1, κmin = 1.006 which shows that the squared
amplitudes obtained via the procedure of Appendix A are
nearly validated.
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non-diagonal entries Q0,13, Q0,21, Q0,31, Q0,32 are all
non-zero (since 0 is not an element of their confidence
interval) and that both Q0,12 and Q0,23 are equal to
zero (since 0 lies in both I12 and I23).

Let us check, via Monte Carlo simulations, whether
the observations of the previous paragraph contain
some generalities. For this purpose, we have repeated
500 times the procedure consisting in first identifying
the AR model Ĥ(z) and then subsequently in identi-

fying T̂ with the optimal amplitudes αoptj (j = 1, 2, 3)
given above. In each of these Monte-Carlo simulations,
different realizations of the noise vector ē are used in
each step. Like in the particular case described above,
all these Monte Carlo simulations have also yielded
intervals Iik with which the decision rule (20) can deter-
mine the correct topology of the network. The optimal
experiment design procedure presented in Section 8 is
thus effectively efficient to increase the performance of
the decision rule (20).

Table 2
Intervals for the experiment in Section 9

(i, k) Q0,ik Qmin
ik Qmax

ik Lik H

(1, 2) 0 -0.0568 0.0395 0.0962 H0

(1, 3) -0.3 -0.3265 -0.2502 0.0763 H1

(2, 1) -1 -1.0864 -0.8645 0.2218 H1

(2, 3) 0 -0.0601 0.0345 0.0946 H0

(3, 1) -1 -1.1025 -0.9041 0.1983 H1

(3, 2) -1 -1.0609 -0.9550 0.1059 H1

10 Conclusion

In this paper, we have presented an optimal identifi-
cation experiment approach that allows to increase the
performance of a topology detection methodology that
is based on the identification of the static characteristic
of the closed-loop matrix T0(z). This topology detection
methodology is based on Assumption 1. This assumption
can however be easily relaxed by deriving uncertainty
intervals for the frequency response T0(ejω) of T0(z) at
other frequencies than ω = 0. The identication proce-
dure of Section 4 can be easily adapted by considering
excitations r̄(t) = sin(ωt) m̄j (j = 1, ..., Nmod) and the
procedures of Sections 6 and 8 can also be adapted to
this setting.
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A Initialization of Algorithm 1

As mentioned at the end of Section 8, it is advanta-
geous to initialize Algorithm 1 using values of γj that are
as close as possible to the optimal solution of (37)-(38).
For this purpose, building on techniques introduced
in [18] and later generalized in [7,17], we propose in this
section an alternative approach to tackle the experiment
design problem. This alternative approach is based on a
first-order approximation, but, unlike in Section 8, with
this alternative approach, the optimal amplitudes can
be determined using convex optimization.

Let us consider the interval Iorigik defined in Section 6.1

i.e., Iorigik =
{
Qik(δ) ∈ R | Q(δ) = T (δ)−1 and δ ∈ U

}
where Qik(δ) = m̄T

i Q(δ)m̄k is the (i, k)-entry of Q(δ).
Using a first-order Taylor approximation, Qik(δ) can be
approximated byQik(δ) ≈ Qik(0)+ΓTik δ with, as shown
in Appendix B,:

Γik =
dQik(δ)

dδ

∣∣∣∣
δ=0

= −(Q(0) m̄k) ⊗ (m̄T
i Q(0))T

(A.1)
where m̄j (j = 1, ..., Nmod) is defined in Section 4 and
Q(0) = Q(δ = 0). Consequently, after an identification

experiment yielding a parameter vector θ̂ having a co-

variance matrix Pθ (recall that θ̂ is the vectorization of

the estimate T̂ of T0), the interval Iorigik can be approx-

imated by the interval Ifoik having the following analyt-
ical expression [3]:

Ifoik = [copt,foik −
√
ρopt,foik , copt,foik +

√
ρopt,foik ] (A.2)

where copt,foik = Qik(0) = Q̂ik i.e. the (i, k)-entry of

Q̂ = T̂ −1 and where ρopt,foik = χ ΓTik Pθ Γik with

Γik = −(Q̂ m̄k) ⊗ (m̄T
i Q̂)T .

Based on this first-order approximation Ifoik of the in-

terval Iorigik , the accuracy constraints considered in Sec-

tion 8 can be reformulated as 2
√
ρopt,foik < ε for all

(i, k) ∈ X . Using the Schur complements [9] and the ex-

pression for ρopt,foik given above, these constraints can
be equivalently re-formulated as the following matrix in-
equalities: (

ε2

4χ ΓTik

Γik P
−1
θ

)
> 0 ∀ (i, k) ∈ X (A.3)

where P−1
θ is given by (39). Since P−1

θ is linear in the
decision variables γj (j = 1, ..., Nmod), the optimiza-

tion problem consisting in minimizing J =
∑Nmod

j=1 γj
subject to (A.3) is an LMI optimization problem (the
chicken-and-egg issue can be solved in the same way as

in Section 8) and the solutions γopt,foj (j = 1, ..., Nmod)
of this LMI optimization problem can be used to initial-
ize Algorithm 1.

B Derivation of (A.1)

The gradient Γik is a column vector of dimensionN2
mod

whose jth entry Γjik is given by

Γjik =
∂Qik(δ)

∂δj

∣∣∣∣
δ=0

where δj is the jth entry of δ. SinceQik(δ) = m̄T
i Q(δ)m̄k

and Q(δ) = T−1(δ), we have that:

Γjik = −m̄T
i Q(0)

∂T (δ)

∂δj

∣∣∣∣
δ=0

Q(0)m̄k

Recall now that

T (δ) =


δ1 δNmod+1 ... δ(Nmod+1)Nmod+1

δ2 δNmod+2 ... δ(Nmod+1)Nmod+2

... ... ... ...

δNmod δ2Nmod ... δN2
mod


Consequently, if δj is for example an element of the first
column of T (δ), we have that:

Γjik = −m̄T
i Q(0) m̄jm̄

T
1 Q(0)m̄k = −Qij(0) Q1k(0)

and consequently the column vector (Γ1
ik,Γ

2
ik, ...,Γ

Nmod

ik )T

containing the Nmod first elements of Γik is given by
−Q1k(0) (m̄T

i Q(0))T . Repeating the above argument
for each column of T (δ) leads to the expression (A.1).
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