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Recently, we showed that optimization problems, both in infinite as well as in finite dimensions,
for continuous variables and soft excluded volume constraints, can display entire isostatic phases
where local minima of the cost function are marginally stable configurations endowed with non-
linear excitations [1, 2]. In this work we describe an athermal adiabatic algorithm to explore with
continuity the corresponding rough high-dimensional landscape. We concentrate on a prototype
problem of this kind, the spherical perceptron optimization problem with linear cost function (hinge
loss). This algorithm allows to ’surf’ between isostatic marginally stable configurations and to
investigate some properties of such landscape. In particular we focus on the statistics of avalanches
occurring when local minima are destabilized. We show that when perturbing such minima, the
system undergoes plastic rearrangements whose size is power law distributed and we characterize
the corresponding critical exponent. Finally we investigate the critical properties of the unjamming
transition, showing that the linear interaction potential gives rise to logarithmic behavior in the
scaling of energy and pressure as a function of the distance from the unjamming point. For some
quantities, the logarithmic corrections can be gauged out. This is the case of the number of soft
constraints that are violated as a function of the distance from jamming which follows a non-trivial
power law behavior.
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I. INTRODUCTION

Marginally stable minima are of central importance in glassy physics and non-convex optimization problems. Low
temperature relaxation dynamics of infinite-dimensional glassy models fails to reach low energy absolutely stable
minima and the system remains stuck on a manifold of marginal minima. An important conjecture is that when
variables have sufficiently long range interactions, any local optimization algorithm can only reach marginally stable,
maybe sub-optimal, minima. This is certainly true for gradient descent, simulated annealing [3, 4], and has recently
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shown to be the case also for message passing algorithms [5]. While we know that in general not all marginal minima
are dynamically accessible, the full characterization of the dynamic marginal manifold of high dimensional models
is an open problem. This is for example the case of optimization problems appearing both in spin or structural
glass models where low lying states are marginal but appear to be separated by extensive barriers [6–8], suggesting
exponential relaxations times for generic local algorithms [9–12].

Given that, it is important to understand the properties of marginally stable states in generic random optimization
problems and how search algorithms behave when falling into such states. A related and important question is how
the landscape of such states changes once it is perturbed in some way [13–16].

Among marginally stable minima, we can distinguish two classes. On the one hand one has linear marginally stable
configurations which are harmonic minima whose properties are controlled by the Hessian of the cost function in those
minima. Belong to this class for example spherical spin glass models for which a picture of local search algorithms
such as gradient descent has emerged with new interesting spinoffs very recently [3, 4, 17, 18].

However there are situations in which either the Hessian of local minima is not well defined, or where it is so
singular that the relevant excitations above those minima are non-linear in nature. Such non-linear marginally stable
states appear when variables are discrete, e.g. in Ising fully connected spin-glasses [19–22]. More importantly, this
situation has been shown also to be present in continuous systems at jamming critical points. Originally found in the
investigation of random packing of low dimensional spheres [23–25] (see [26–28] for reviews), jamming critical points
have been shown to appear in a large class of non-convex constraint satisfaction problems with continuous variables,
that includes high-dimensional models such as high-dimensional spheres [29–31], non-convex neural networks and
continuous colouring [32–35]. The jamming point can be reached by an adversarial competition: one defines a cost or
energy, function, usually chosen with a harmonic or ’Hertzian’ shape [24, 25], that penalizes violated constraints. Then
one finds the maximum possible number of constraints such that the minimum energy is zero. Therefore jamming
is a fine tuned point where the energy of the optimization problem is still zero, but no constraints can be added
without avoiding some of them becoming unsatisfied. As soon as the system is compressed beyond jamming, either by
increasing the number of constraints or by rendering them more difficult, most of the critical features of the jamming
point disappear.

This picture has been recently modified in [1, 2] where we showed that by properly choosing the cost for constraint
violation the critical properties of the jamming transition survive in an entire critical, self-organized, marginally stable
phase. In [1] we have shown that in the spherical perceptron optimization problem with linear cost function (hinge
loss) in addition to a non-critical jammed phase, there is a whole region in the phase diagram which is made of
jammed non-linear marginally stable minima with critical properties similar to the jamming point. This has shown
that the universality class of jamming does not require fine tuning of the parameters, but can emerge generically in
an optimization setting if the cost function is not differentiable. Moreover, in [2] it was found that such new phase is
also present in systems of soft spheres with a linear cost for overlap between the particles. It goes with this line that
one can ask what is the fate of those non-linear minima when perturbations to the system are applied by tilting the
cost function and how the corresponding energy landscape is explored by greedy algorithms. Non-linear marginally
stable states generically give rise to scale free avalanches [36, 37] whose statistical properties can be studied in detail.

The purpose of the present work is to develop an algorithm allowing to explore adiabatically the isostatic landscape
of the perceptron problem with linear cost function. We define an athermal adiabatic procedure, similar in its
architecture to the one developed to follow packings of hard spheres under strain [38–43]. The evolution of the system
is tracked by computing the points where marginally satisfied constraints (contacts) destabilize. The avalanche that
is triggered is followed till a new stable configuration is found.

We use this algorithm to start from a configuration at jamming and perform a progressive compression to enter the
jammed phase. We analyze both the situation in which the compression is performed from a convex (meaning not-
critical) jamming point as well as when the system is prepared at the non-convex jamming point. The two situations
are rather different: while in the former case the jamming point can be followed with continuity when it is progressively
compressed, in the latter such state following situation is not possible since local minima are marginally stable and
undergo avalanches. The evolution of the energy landscape is rather chaotic with crossing between different minima
at different energy levels. We characterize the statistics of avalanches showing that we get the same as for strained
packings of hard spheres. Finally the algorithm allows to investigate the properties of the unjamming transition.
Remarkably, the unjamming transition in this case does not fall in the general framework developed in [25, 44, 45]
where the linear cost function we are using corresponds to a marginal situation. Thermodynamic quantities develop
logarithmic singularities at jamming and new considerations are necessary to understand this behavior.
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II. THE SPHERICAL PERCEPTRON WITH LINEAR COST FUNCTION

The perceptron is one of the oldest models in machine learning [46] to perform binary classification of patterns. The
problem of classification of random patterns has been studied extensively in statistical mechanics starting from the
’80s [47–49]. Our main interest here is that it provides the simplest model of random constraint satisfaction problem
(CSP) with continuous variables [32]. While CSPs with discrete variables are important to model combinatorial
optimization problems which are central in algorithmic complexity theory, problems with continuous variables are less
studied from this point of view, but are central from the optimization viewpoint. The perceptron problem that we
consider here has been recently investigated for the same reasons in the the computer-science/mathematical literature,
see [50–52]. For our purposes, we define the perceptron problem in terms of an N -dimensional state vector X on the
N -dimensional sphere |X |2 = N subject to M = αN random soft constraints. The constraints, are build from a set

of M N -dimensional vectors ξµ ∈ RN with µ = 1, ...,M , usually called patterns that we take as random points on the

sphere. Each component ξiµ, i = 1, . . . N is a Gaussian random number with zero mean and unit variance. The total
number of random vectors, M , scales with the dimension of the phase space as M/N = α and α is a O(1) control
parameter of the problem. Given the vector X and the set of patterns and a real number σ, one can construct M gap
variables hµ = ξµ ·X/

√
N − σ and a cost function, or Hamiltonian, as

H[X] =
∑
µ

|hµ|aθ(−hµ) (1)

where a ≥ 0 is a positive exponent. The gap variables represent soft constraints as according to Eq. (1), there is an
energy penalty whenever a gap is negative. The variable σ, that quantifies the difficulty in satisfying the constraints,
is an important control parameter in the problem and is called margin1. In the classification problem, σ > 0 and
each constraint defines a convex zero energy region around a pattern. For σ < 0 the problem is still well defined, but
it cannot be interpreted as a classification problem any more. Rather the patterns can be seen as obstacles that the
configuration of the system should avoid. The zero energy region of each pattern is non-convex, |σ| is the radius of
exclusion around each obstacle and can be seen as a density parameter analogous to packing fraction in the packing
of spheres (see [33, 53] for a detailed comparison between the sphere model and perceptron).

Regarding the exponent a in the cost function, in this paper we concentrate on the case a = 1, and the amount
of energy that is payed is linear in the absolute value of the gap. This linear case separates the case where H is
convex in each of the h from the case it is concave. Correspondingly, the Hamiltonian is not differentiable in hµ = 0,
and contacts can sustain forces without any energy increase. We have discussed these properties and some of the
consequences in detail both for the perceptron and for soft spheres in Refs. [1, 2]. Here follows a summary of the
main results of the analysis.

The perceptron model is exactly solvable, e.g. with the replica method, its ground state of H has been studied in
[1, 32, 33, 54, 55]. In Fig.1 we reproduce its phase diagram in the hinge loss case.

At small α and σ the problem is Satisfiable (SAT); configurations exits where all gaps are positive and there is a
degeneracy of ground states of H[X] with zero energy. Increasing α or σ, the ground state meets a jamming transition,
beyond which the problem becomes Unsatisfiable (UNSAT), where some gaps are negative in the ground state and
the energy density is positive. The properties of the SAT phase, and the jamming line itself are independent of the
choice of the loss function. We focus here on the nature of the UNSAT or jammed phase, which, conversely, is deeply
affected by the choice of the exponent a.

For a ≥ 1 the UNSAT phase is divided in a region where landscape is effectively convex and the cost function (1) has
a unique minimum, and of a region which is non-convex and glassy with marginally stable minima [1]. Technically the
two UNSAT phases, with rather different properties, are separated by a replica-symmetry-breaking (RSB) transition
line. Within this framework, the case of hinge loss emerges as a particularly interesting case. This can be realized
looking at the distribution of the gap variables. As soon as one enters the UNSAT phase, for a > 1 the probability of
exact contacts hc = 0 is zero. Contacts are destabilized by any small applied forces and one finds either positive gaps
that do not contribute to the energy or negative gaps. For a = 1 conversely, contacts c can sustain forces fc provided
that they lie in the interval fc ∈ (0, 1). The jammed configurations are then characterized by a finite density of gaps
that are identically zero. In the convex phase the ground state of the problem is hypostatic: the total number C of
such contacts is sufficient to insure mechanical stability and C/N < 1. In the non-convex phase conversely, minima
are isostatic meaning that C = N .

1 Also this name comes from the machine learning interpretation. In that context one uses the variable σ to make sure that the hyperplane
separating the points is at least σ far from each point.
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FIG. 1: The phase diagram of the spherical perceptron problem with linear cost function [1]. The blue dashed curve is a
topology trivialization transition line (that coincides with the onset of Replica Symmetry Breaking). Above this line the
landscape is non-covex with many local minima while below it is convex with just one unique minimum. The isostaticity index,
defined as the number of contacts divided by N is c = 1 in the glassy/non-convex phase while c < 1 in the convex phase. In
the glassy phase one has isostatic minima which are marginally stable. In the SAT phase, we indicated with a black dashed
line the point where the solutions to the satisfiability problem gets clustered in far away lumps and replica symmetry breakes.

Analogously to what happens on the non-convex jamming line, isostaticity implies marginal stability. The properties
of isostatic configurations are characterized by a critical distribution of the gaps, ρh(h) = 1

M

∑
µ δ(h− hµ)/M , which

for both small positive and negative value presents a critical power form ρh(h) = A±|h|−γ where with A± two constants
and γ is a parameter independent exponent that coincides critical exponent that controls the positive gap at jamming
γ = 0.41269 . . . [29, 56]. Therefore local minima are such that there is an isostatic number of contacts, namely gaps
that are strictly equal to zero, and an abundance of both small positive and negative gaps. Correspondingly, the
contact forces fµ ∈ (0, 1), whose empirical distribution ρf (f) =

∑
µ δ(f − fµ)/C has support in f ∈ (0, 1) and in

the thermodynamic limit develops two pseudogaps close to the edges of the support ρf (f) ∼ B0f
θ for f → 0 and

ρf (f) ∼ B1(1− f)θ for f → 1. Again, the amplitudes B0 and B1 are two constants while numerically we find that θ
is close to θ = 0.42311 . . . which can be obtained by assuming a continuous RSB solution. The exponent θ does not
depend on the parameters and is equal to the critical exponent controlling the small contact forces at the jamming
point [29, 56]. Isostaticity makes local minima of Eq. (1) marginally stable in the thermodynamic limit, and barely
stable for finite sizes. In order to understand qualitatively why this is so, we can consider the system sitting in one
of such isostatic minima. Isostaticity and non-convexity imply that if one of the contacts is removed, the system
looses mechanical stability and moves away. Due to the pseudogaps in the force distribution, a perturbation that
is vanishingly small in the thermodynamic limit is sufficient to push one of the contact forces outside the stability
interval (0, 1). Force balance is now off by one contact and the system moves away. A new equilibrium configuration
is obtained at the expense of rearrangements. New contacts need to be formed either by positive gaps that become
contacts, or by negative gaps that cross zero. The probability of having a system off by a contact when perturbed
is controlled by the two pseudogaps in the force PDF close to zero and one. Analogously the distance the system
travels from the unstable configuration to a new stable one is controlled by the abundance of the small positive and
negative gaps, which are most likely to form new contacts. The two effects counterbalance and, as we have shown in
[1, 2], the system is marginally stable. This argument is similar to the one used to rationalize the response to shear
perturbations in jammed hard spheres [41, 57], which also lead isostatic configurations into isostatic configurations
and, as we will see, can be analyzed qualitatively in a similar way.

In the following we would like to model quasi-static compression-decompression dynamics within the jammed phase,
follow isostatic local minima till the verge of stability and then, when the minimum is lost, understand the plastic
events that lead to the next one. Compression could be achieved modifying σ or increasing the number of constraints.
However, any increase of σ, however small, could not be considered a small perturbation, as it would break all the
contacts at the same time and imply a complete rearrangement of the system. In the same way the addition of
constraints would modify the landscape in a discontinuous way. It is then convenient to define a pressure variable p,
Legendre conjugate to σ in the energy, and consider σ as a dynamic variable on the same level as the X. We have



5

then to minimize the Legendre function L[X, σ] = H − Nσp. As we will see, small enough increases in pressure do
not destablize the minima.

Constitutive equations for local minima, a Lagrangian formulation

In order to write the conditions of minimum that properly take into account contacts, it is useful to define a
Lagrangian function as a function of the system’s variable and the forces, thought as Lagrange multipliers that
enforce the contacts

L =
∑
o∈O

(
σ − ξo ·X√

N

)
+
∑
c∈C

fc

(
σ − ξc ·X√

N

)
+
µ

2

(
|X |2 −N

)
− pσN (2)

where we have defined the set of overlaps and contacts, respectively

O = {o : ho < 0} C = {c : hc = 0}. (3)

We often indicate contacts with indexes c and overlaps with indexes o leaving understood the set they belong to. The
first term of Eq. (2) is just the Hamiltonian and by itself it pushes σ to be small in order to make the gaps positive.
The second term instead is made of the Lagrange multipliers fc associated to the contacts. The third term is another
Lagrange term which enforces the spherical constraint on X through the Lagrange parameter µ. Finally, the fourth
term, for p ≥ 0, fixes σ by compressing the system. The tradeoff between the energetic payoff and the last term is set
by the pressure p. Once fixed the sets O and C , the extrema of the Lagrangian satisfy the first-order conditions

∂Xi L =
∑
o

−ξo,i√
N

+
∑
c

fc
−ξc,i√
N

+ µXi = 0

∂σ L =
∑
o

1 +
∑
c

fc − pN = 0


∂fc L = −hc = σ − ξc ·X√

N
= 0 ∀c ∈ C

∂µ L =
1

2
(X2−N) = 0

(4)

The first set of these equations states the force balance conditions on each of the variables and fact that the pressure
is the average force due to contacts and overlaps. The second sets of equations describes the conditions that hc = 0 for
all contacts and the spherical constraint for X. From the costitutive equations (4) we can derive a ’1st principle’-like
relation between p, σ, µ, and the intensive energy due to the overlaps e =

∑
o |ho|/N . Indeed, if we consider Eqs. (4)

and we multiply them by X we obtain

0 =
∑
i

Xi∂Xi L = N(µ− pσ + e) (5)

and taking the derivatives we get

p =
de

dσ

∣∣∣∣
p,µ

σ =
dµ

d p

∣∣∣∣
σ,e

. (6)

The first relation is consistent with the definition of pressure. The second one tells that µ has a minimum for σ = 0:
indeed we know that µ = 0 at jamming and µ < 0 for σ < 0 [1]. It so happens that µ > 0 in the convex phase and
µ < 0 in the non-convex phase [1], therefore we have E < pσ in the convex phase and E > pσ in the non-convex
phase. According to (4), the pressure cannot exceed the value of α, corresponding to having all negative gaps; in
correspondence to that value, σ should be divergent.

Note that the total number of equations is N +C + 2, which coincides, as it should, with the number of variables.
Generically, for any given disjoint sets O and C one should expect one or more solutions to these equations. However,
only the points where ho < 0 for all o ∈ O and fc ∈ (0, 1) for all c ∈ C correspond to physically stable solutions. For
a given sets of external parameters, only appropriate choices of the sets O and C give rise to physical solutions. We
need therefore an algorithm that allows to update these sets and find physical solutions as the pressure is changed.

In order to proceed, it is useful to define a more compact notation grouping variables and Lagrange multipliers. We
renumber the patterns in such a way that the set of contacts becomes C = {1, ..., C} and define a C + 1 dimensional

vector f =

f1

...
fC
µ

 so that the first N +1 extrema equations can be formally written under the form of linear conditions
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for f ,

∇L =

∂X1
L

...
∂XN L
∂σ L

 ≡ S f −v = 0. (7)

Where the (N + 1)× (C + 1) matrix S is defined as

S =

[
− ξ1√
N

− ξ2√
N

... − ξC√
N

X

1 1 ... 1 0

]
. (8)

and the N + 1 dimensional vector

v =

[ 1√
N

∑
o ξo

pN −O

]
(9)

Notice that for choices of C such that C = N , we formally seek an isostatic configuration. One can first solve the
second set of equations for X and σ and then, for fixed values of these variables find the corresponding forces from
the first set of equations.

If this configuration is also a physically meaningful one, then fc ∈ (0, 1) for every c ∈ C and all gaps in O are
negative. In the following section we describe an algorithm to find new physical states after the destabilization of a
physical isostatic configuration.

III. ALGORITHM: SURFING ON ISOSTATIC MINIMA

We will mainly focus on studying the quasi-static compression of a configuration starting from an isostatic jamming
point and entering in the non-convex jammed phase. Therefore, according to the phase diagram, we will fix α > 2 and
start a compression from the jamming line. Note that the location of the jamming point is algorithm dependent, as in
the non-convex RSB phase there is no guarantee to find the absolute minimum of the system. We want to design an
algorithm that given an isostatic configuration at jamming is able to follow the same configuration when the pressure
is progressively increased. The step zero of the algorithm is therefore to produce a configuration at jamming. Given
that we will describe how to perform a compression.

A. Step zero: producing a configuration at jamming

An easy way to produce a configuration at jamming is to follow [1] and to consider the smoothed version of the
Lagrangian

L ε =
∑
o

(
σ − ξo ·X√

N

)
+
∑
c

1

2ε

(
σ − ξc ·X√

N

)2

+
λ

4

(
|X |2 −N

)2 − pσN (10)

where we have introduced a regularization of the interaction at contacts and of the spherical constraint. The extrema
of the Lagrangian Eq. (2) are recovered from the one of the smoothed one in an appropriate limit ε→ 0 and λ→∞.
Once the number of patterns α and a value of p small enough are chosen, we run a gradient descent on the cost function

in Eq. (10) with the degrees of freedom

[
X
σ

]
: this produces a configuration

[
X
σ

]
J

. The pseudocode corresponding to

this part of the algorithm is in Fig.2.
In the thermodynamic limit, jamming points are only stable for pressure p → 0. However, as it will become clear

in a moment, for a finite size system configurations at jamming can sustain small pressures without moving, and they
can be compressed till the point where the largest of the contact forces leaves the stability interval (0, 1). Therefore
a finite size configuration at jamming is stable in an interval of pressure values p ∈ [0, pJ(N)] where pJ(N) → 0 as
N →∞. Given a configuration at jamming, we can compute the contact forces from Eq. (4): For p strictly equal to
zero all the contact forces are zero. Increasing p, since the set of overlaps is empty O = ∅, the solution of the linear

system has the form fc = pf̂c with f̂c independent of pressure. The force distribution therefore progressively invades

the stability interval (0, 1), and the solution is stable till pressures pJ(N) = 1/f̂max where the largest contact force
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Algorithm 1: Step zero: producing a configuration at the jamming point

Initialize (X, σ) at a random with the contraint |X |2 = N ;
set p small enough: p < pJ(N);
initialize ε = εi;
while ε > εf do
(X, σ)← arg min L ε (X, σ);
ε← ε/2;

end
Result: (X, σ) is a configuration at the jamming point.

FIG. 2: The pseudocode to produce random configurations at jamming. The minimization of L ε (X, σ) is performed with an
approximated conjugate-gradient method (L-BFGS) [58, 59]. The parameters we used for the system sizes we have studied are:
εi = 10−2; εf = 10−8; p = 0.1.
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FIG. 3: Left panel: The scaled force distribution at jamming for different system sizes at α = 4. Inset: zoom on its tail. In
both cases we plot with a black line a simple scaling form that retains the critical properties fo the distribution for f̂ → 0 as
well the exponential behavior for large forces. Right panel: the scaling of pJ(N) as a function of the system size. In the inset

we plot the maximum scaled force f̂max as a function of the system size. In black lines we show a logarithmic fit. Only at
jamming we also include the results of simulations for N = 2048.

exits the stability interval and we enter the jammed phase. In Fig. 3-left panel, we show the empirical distribution

ρf (f̂) of the rescaled forces f̂ = f/p at jamming for α = 4.

The distribution displays the critical pseudogap for f̂ → 0 [33] in analogy with hard spheres at jamming, see [30]
for a review. In addition, similarly to what found in [25] for jamming points in spheres, we empirically observe a large
argument tail which is compatible with a Gaussian. Usual extreme value statistic arguments, supposing independence

of the contact forces, imply that f̂max ∼
√

lnN , or pJ(N) = 1/f̂max ∼ (lnN)−1/2. Fig.3-right panel shows that such
a scaling is in agreement with numerical simulations, and gives rise to rather large critical pressures for the system
sizes we have studied. When the pressure reaches p = pJ(N) the system becomes unstable because at least one of the
contact forces goes out from the stability interval (0, 1) and we enter the jammed phase.

Notice that the argument for finite volume stability of isostatic configuration under small pressure changes extends
without changes into the jammed phase. In fact, also for isostatic jammed configurations, despite now the forces are

not simply proportional to pressure, we still have that for fixed

[
X
σ

]
a small pressure change δp induces small force

changes δfc ∼ δp. Since generically all forces are strictly smaller then one, this does not cause destabilization if δp is
small enough.
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B. Inside an avalanche: simulating a plastic event

Once the pressure destabilizes the configuration at jamming we enter the UNSAT phase. Let us describe the
algorithm in the case of compression, the case of decompression would be specular. Suppose that we are in an
isostatic configuration at jamming or in the jammed phase. We can increase the pressure p→ p+ δp, until the larger
of the contact forces computed from Eq. (4) hits the right edge of stability support (0, 1). The corresponding contact,
corresponding say to pattern ξk, is not stable anymore and becomes an overlap. This destabilization of the weakest
contact leads to an avalanche. The system then needs to moves away through a plastic event, where the pattern of

contacts changes. Following the destabilization, the vector

[
X
σ

]
is modified in the direction of the unstable mode [41]:

the unique direction that preserves the N − 1 remaining contacts. The motion can be followed till a new contact is
formed; we need at this point to update C , recompute the forces and stop if all the forces are in the physical support.
It may happen however that one or more of the forces get unphysical values. We should then iterate the procedure of
breaking the unphysical contacts and the avalanche must go on. If the number of contacts C < N − 1, the ’soft-mode
manifold’ of moves that conserves the physical unbroken contacts, is multidimensional and we should decide in which
direction to move. One possibility is simply to use the present values of the forces and follow the projection of the
gradient on the soft manifold. We found however that this procedure converges very slowly. A better prescription
can be obtained observing that, while for C < N in general the gradient ∇L cannot be made equal to zero by a
choice of the forces, it can be rendered orthogonal to the ’hard manifolds’ of moves that modify the contacts. This is
achieved imposing that

ST∇L = STS f −STv : (11)

which is a system of C + 1 equations that can be solved for f , the vector of forces and µ. Let us call f∗ the solution

and ∇∗L the corresponding gradient. It is natural then to define moves of

[
X
σ

]
that follow ∇∗L until a new contact

is created.

δ

[
X
σ

]
= −η∇∗L (12)

where η is chosen in such a way that a new contact appears, either a gap that closes, or an overlap that becomes a
contact. We remark that the choice (11) corresponds to minimize (∇L )2 with respect to f : the resulting variation

δ

[
X
σ

]
is the smoothest one in the soft manifold. We have now a new configuration

[
X
σ

]
→
[
X +δX
σ + δσ

]
, but the spherical

constraint is not respected by X+δX. A configuration on the sphere can be simply obtained by contemporary rescaling
of X and σ which by definition does not affect the contact conditions. This procedure of adding and removing contacts
can be iterated until a new physical isostatic configuration is found. We are then ready for further pressure increase.
The pseudocode to perform such compression steps is in Fig.4.

The algorithm in the convex phase

In the convex phase, since the landscape has a unique minimum, any minimization algorithm would produce the
same configuration upon compression. For example, one could use gradient descent minimization at each time the
pressure is changed. While this is possible, it remains interesting to study the adiabatic contact-breaking dynamics
in this case.

Differently from the isostatic case, when following the minimum for fixed contact and overlap sets C and O, in the
hypostatic case the contact conditions only specify C < N variables and both the contact forces and the position
move as a consequence of the pressure variation. As a consequence, in principle, the system can become unstable in
two ways, either by a contact force that exits its support, or by a gap that changes sign. As in the isostatic case, we
should follow a minimum for fixed C and O to the first instability and then iteratively change the contact and overlap
set till a new stable solution is found.

Suppose to start from the minimum at pressure p and increment the pressure to p+ δp. We can find the variation
of the force vector projecting the equations on the patterns as in the previous section:

STSδf = ST
[

0
δp

]
. (13)
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Algorithm 2: Compression step

Consider a stable configuration at (X, σ) and p0;
δp∗ ← compute critical pressure variation at fixed (X, σ);
p← p0 + δp∗ + δδp;

f∗ = arg min
f ,fc∈[0,1]

|∇L (f) |2 at fixed configuration (X, σ);

∇∗L ← ∇L (f∗) ;
while |∇∗L | > τ̂ do

δhµ = −(ξµ /
√
N,−1) · ∇∗L ;

t∗ ← min
µ
{tµ : hµ + tµδhµ = 0 ∧ tµ > 0 ∧ µ /∈ C };

η ← t∗;
if µ > 0 then

η ← min{t∗, 1
µ
};

end
(δX, δσ)← −η∇∗L ;

K ←
√
N/|X +δX |;

(X, σ)← K [(X, σ) + (δX, δσ)];
get the new sets C , O;

f∗ = arg min
f ,fc∈[0,1]

|∇L (f) |2 at fixed configuration (X, σ);

∇∗L ← ∇L (f∗) ;

end
Result: (X, σ) is a stable configuration at pressure p0 + δp∗ + δδp

FIG. 4: The critical pressure variation δp∗ is computed as the positive δp so that δfTSTS = (0, δp)ST gives fc + δfc = 1 or
fc+δfc = 0 for only one contact force c ∈ C (this coincides with the point in which the first one among the perturbed forces gets
out of the stability interval). Setting the new pressure at p0 +δp∗ would put the configuration at the verge of instability but still
with zero gradient. Therefore we add a small destabilizing push δδp that we fix to 10−8. Computing f∗ = arg min

f ,fc∈[0,1]
|∇L (f) |2 is

a constrained least-squares problem that we solve using the algorithm described in [60] and implemented in [59]. The tolerance

τ̂ for the gradient is set to 10−11
√
N .

As in the previous section we can determine the minimal pressure variation that leads one of the forces outside the
physical support. Once solved the (13), the gradient ∇L is orthogonal to the patterns and we can determine δX by
the condition

δXi = −η∇i L [f + δ f ,X, σ] . (14)

Notice that if we choose η = 1/µ, the gradient is zero in the new configuration. If this gives rise to a physical solution
we can make this choice. If instead we find that there at least one gap that has changed sign, we reduce η to the
value where till no gap has changed sign. The final step, consists in rescaling the variables together with σ to bring
the new configuration on the sphere. We need now to change the set C and O and iterate the procedure till a stable
configuration is found.

IV. SIMULATING COMPRESSION

In this section we discuss the results obtained by running the algorithm we just presented. We simulated compression
from jamming point for the perceptron for values of α as specified below. We mainly simulated systems with α > 2
where the jamming point lies in the non-convex domain of the phase diagram, but for comparison also values α < 2
were considered. In the non-convex region we first show that local minima that are found by the adiabatic compression
algorithm display the same universal properties as the ones found using gradient descent-like minimization [1]. Indeed
local minima are found to be isostatic and in Fig.5 we show the singular distribution of forces and gaps in the jammed
phase at finite pressure. This singular behavior is both consistent with mean field theory as well as with the numerical
simulations of [1]. Therefore our surfing algorithm explores minima that share the same universal features of local
minima obtained by different greedy local algorithms.

We simulated sizes N = 64, 128, 256, 512, 1024, all quantities were averaged over 100 independent samples.
We will first show the behavior of bulk physical quantities across the full compression cycle and then we will consider

the statistics of avalanches. Finally we will discuss what happens close to unjamming.



10

10−4

10−3

10−2

10−1

1

10−3 10−2 10−1 1

C
D
F

|h|

h > 0
h < 0
|h|1−γ

10−4

10−3

10−2

10−1

1

10−2 10−1 1

C
D
F

f , 1− f

f
1− f
f1+θ

FIG. 5: Right panel : the cumulative distribution of forces close to the two edges of the stability interval, namely f = 0, 1. Left
panel : the cumulative distribution of both positive and negative gaps close to the origin. Both forces and gaps display singular
behavior of the same kind of the local minima found in [1]. The figure is produced out of 10 samples, with N = 1024 at σ = 0
and p = 1.37.

A. Following jammed configuration across the phase diagram: the topology trivialization transition

We are interested in studying the behavior of the system following a compression from the jamming point. We will
fix therefore the value of α, and starting from the jamming point σJ we will increase the pressure entering the jammed
phase. We will consider only the case in which α > 2 so that the initial configuration is at a non-convex jamming
transition point. Therefore, compressing the system we expect, based on the phase diagram of Fig.1, that the system
undergoes a transition form a glassy phase to the convex phase where the landscape reduces to a unique minimum.

In Fig.6 we plot the evolution of both the number of contacts as well as the value of the Lagrange multiplier µ that
we use to enforce the spherical constraint. We plot the corresponding behaviors both as a function of the pressure
and as a function of the distance from the algorithmic jamming point σJ . It is clear from the figure that there are two
regimes. For p < p∗ one has that the isostaticity index defined as c = C/N is strictly equal to one. In this regime the
system surfs on isostatic minima. Correspondingly the Lagrange multiplier µ is negative. This can be understood as
follows. The cost function in Eq. (2) is effectively linear in the degrees of freedom apart from the term proportional to
µ. Therefore the convex or non-convex nature of the problem is self-generated and mirrors in the sign of the Lagrange
multiplier µ. The region where µ < 0 corresponds to the glassy phase where the optimization problem is non-convex
while µ > 0 corresponds to the convex phase where the landscape is made of a unique attractive minimum. Therefore
the replica symmetry breaking transition point at which µ changes sign is the point of a topology trivialization: it
separates a region where the landscape is very rough and the dynamics surfs on marginally stable states from a region
where the landscape is convex.

B. Statistics of avalanches in the non-convex UNSAT phase

In this section we consider the statistics of jumps when we follow the evolution of a local minimum upon increasing
the pressure. Indeed, as we have already seen, as soon as the pressure increases the system undergoes a series of
avalanches, that are directly induced by the fact that some of the contact forces may exit the support (0, 1) leading to
a rearrangement of the contact network, with consequent jumps in σ and energy see Fig.7. In order to quantitatively
describe the statistics of avalanches, we need to establish both the typical finite size amplitude of the variation of
the pressure that lead to a rearrangement, δp, as well as the one of the jumps of δσ that take place when the
rearrangements happen.

1. The jumps of the pressure

As we have seen, minima have a small range of stability when the pressure is changed. We would like to estimate
here the order of magnitude of pressure changes δp needed to destabilize a minimum. This is different at jamming
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FIG. 6: Left panel : The evolution of the the number of contacts normalized by N and the Lagrange multiplier µ as a function
of p (top plot) and σ − σJ (bottom plot) at α = 4 and N = 256. The dotted lines correspond to the topology trivialization
transition point (a.k.a. the RSB transition) where the landscape changes from being glassy to being convex. Left panel :
Behavior of the absolute value of the Lagrange multiplier µ near the unjamming transition with respect to p (top plot) and
σ − σJ (bottom plot). We observe a linear dependence on µ in p, µ ' σJp, and a logarithmic dependence in σ − σJ , see
discussion of section V.

and in the jammed phase. We have seen that at jamming, supposing a Gaussian tail of the force distribution,
δpJ ∼ 1/

√
logN . In the jammed phase, where we concentrate here, the situation is different. The force distribution

has a pseudo-gap rather than an exponential tail, namely ρf (f) ∼ (1 − f)θ, and one can expect that typically δp to
behave as an inverse power of N , δp ∼ N−β .

In order to estimate the exponent β we start from Eq. (5). Since in the interval [p, p + δp] the system does not
move, we have that

δµ = σδp (15)

(remember that σ does not change either before an avalanche). Therefore the force balance condition, upon increasing
pressure by δp reads

−vi +
∑
c

(fc + δfc)
−ξc,i√
N

+ (µ+σδp)Xi = 0. (16)

vi =
∑
o

ξo,i√
N
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jamming. The vertical dashed line signals the point where µ changes signs and the landscape of the model becomes convex.
Correspondingly, coming from jamming, one looses the jerky staircase profile that characterizes the non-convex phase and
signals crackling noise.

or, defining ξ̃c,i =
ξc,i√
N

δfc = δpσ
∑
i

(ξ̃−1)c,iXi. (17)

We would like to argue that, while 1
N

∑
c δfc = δp, the typical values of fc are of order O(δp

√
N). An increase of

pressure results in a additional force on each variable i proportional to Xi. These forces need to be compensated by
variations in the contact forces fc. These forces are correlated with the ξc by the contact conditions. In order to
proceed, we would like to argue that the effect of a pressure change is statistically similar to the application of random
forces on the variables 2. Let us then slightly modify the problem, imagining to perturb the equilibrium equations by
a random term εYi with Y a vector of random variables independent of the patterns with 〈Y 2

i 〉=1. Since the resulting
δfc will have both signs, we can estimate the order of magnitude of each term, by studying

1

N

∑
c

(δfc)
2 = ε

1

N

∑
i,j

Yi(M
−1)ijYj (18)

where the matrix Mij is

Mij =
1

N

∑
c

ξc,iξc,j . (19)

This matrix is known to be close to a Wishart matrix with quality factor 1 [53]. In the thermodynamic limit its spectral
density behaves as ρ(λ) ∼ λ−1/2 for small λ, and, for finite N , the minimum eigenvalue is of order λmin ∼ N−2.
Moreover, the eigenvectors |n〉 of M are just random points on the sphere of radius 1 independent from the eigenvalues,
orthogonal to each other and weakly correlated with X. Let us use the spectral representation of M and write:

1

N

∑
i,j

Yi(M
−1)ijYj =

1

N

∑
n

1

λn
〈Y |n〉2. (20)

2 In infinite dimension, it is clear that any direction is effectively a random direction from the perspective of the system. While it can be
shown analytically for thermodynamic observables [61], it is much less obvious for mesoscopic quantities, meaning quantities that scale
in a nontrivial way with the system size as we are showing.
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FIG. 8: Left panel: Statistics of the scaled jumps of the pressure δ̂p = Nβδp. Right panel: Average cumulative number of
plastic events up to pressure p, rescaled by N−β , as a function of p. It shows that the number of plastic events scales as Nβ

for finite pressure variation ∆p.

The random factors 〈Y |n〉 are Gaussian variables with unit variance, so that, the expected value over Y of this
quantity is

1

N
Tr M−1 =

∫ 4

λmin

ρ(λ)

λ
∼ λ−1/2

min ∼ N, (21)

leading to δfc = O(εN1/2). We verified that the calculation of higher moments confirms this scaling. We can go now
back to the original perturbation proportional to X. Here the situation is more subtle as we have that

fc =
∑
i

(ξ̃−1)c,ivi + µ
∑
i

(ξ̃−1)c,iXi ∈ (0, 1). (22)

We notice now that the contribution from the overlaps vi =
∑
o ξ̃o,i is a random term essentially independent of the

choice of the contacts. If O ∼ N , vi is of order O(1) and the result of (22) must come from the cancellation of terms

both of O(
√
N).

We conclude therefore that, δfc, which is proportional to the second term in the r.h.s. of (22), is δfc = O(δpN1/2).
This scaling does not apply close to jamming, there |vi| � |Xi| and there is no cancellation, the second contribution
in (22) dominates the sum and δfc = δpfc. We notice that this argument has an interesting byproduct: it shows that
in the bulk of the jammed phase, the effect of a small compression is statistically equivalent to a random perturbation.
Some implications of this observation will be discussed in the conclusions.

We can now estimate the order of magnitude of a destabilizing pressure variation δp. Following a compression, the
first force that exits the stability support (0, 1) is one close to the edges in the unperturbed configuration; standard
extreme statistics tells us that the corresponding δf is of the order δfc ∼ N−1/(1+θ). We therefore obtain the scaling

N−1/(1+θ) ∼ N1/2δp (23)

or,

δp ∼ N−β β =
1

2
+

1

1 + θ
(24)

In Fig.8, we show the histogram of the rescaled pressure jumps δp̂ = Nβδp between plastic events, collected from
all the jumps taking place when the pressure lies in the interval p ∈ [0.2, 1.2]3 for different system sizes and we
observe an excellent data collapse. Notice that the tail of the distribution at large argument seem to converge to zero
exponentially and in any case much faster than (δp̂)−2. The first moment of δp̂, 〈δp̂〉 remains finite for N →∞, and

3 We verified that in this interval of pressure the statistics of jumps is reasonably stationary.
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that the number N (∆p) of plastic event that occur when pressure is increased by a small but finite amount ∆p scales
as,

N (∆p) =
∆p

〈δp〉 ∼ ∆pNβ (25)

The left panel of Fig. 9 shows the average 〈δp〉 as a function of pressure. As expected the scaling 〈δp〉 ∼ N−β is
well respected except for the vicinity of jamming.
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FIG. 9: Left panel: Average jump 〈δp〉, rescaled by Nβ as a function of p−pJ(N) for N = 64, 128, 256, 512, 1024. The first point
is the pressure jump at jamming pJ ∼ 1√

logN
. All the subsequent jumps are much smaller. Notice that the scaling 〈δp〉 ∼ N−β

is very well verified far away from jamming. Close to jamming there are small deviations to this behavior. It is not clear to us
if these are due to next to leading finite-size corrections or to genuine changes in the leading behavior. Right Panel: Average
rescaled avalanche size 〈δσ〉Nβ as a function of ∆σ = σ − σJ for the same values of N . The scaling is well respected till the
jamming point.

2. Statistics of the jumps of σ

In a similar way we can relate the order of magnitude of the jumps in σ after a plastic event to the exponent γ of
the gap distribution. For N →∞, the statistics of the small jumps of σ shrinks to zero as δσ ∼ N−ω. To determine
ω, let us consider the variation of σ that ensue a process where a weak single contact, say contact c, becomes a small
gap or overlap. Therefore we have that for the special contact c that has been opened∑

i

ξ̃c′,iδXi − δσ = δc,c′δhc (26)

where using again extreme statistics we can estimate the magnitude of the smallest gaps δhc ∼ N−1/(1−γ). Inverting
such relation we get

δXi =
∑
c′

ξ̃−1
c′,i (δc,c′δhc + δσ) (27)

Multiplying both sides by Xi

X · δX = −1

2
δX · δX =

1

σδp

(
δfcδhc + δσ

∑
c′

δfc′ .

)
(28)

If we impose that the two terms in the r.h.s. of (28) are of the same order of magnitude, much larger than the one of
l.h.s, the we get

δσ ∼ N− 1
2−

1
1−γ ω =

1

2
+

1

1− γ (29)



15

Using the scaling relation γ = (2 + θ)−1 [62] we get

ω =
3

2
+

1

1 + θ
= 1 + β . (30)

Our argument could be extended to compression of jammed configurations of soft linear spheres giving rise to identical
exponents. In fact, we notice that both Eq. (24) and Eq. (30) coincide with the ones obtained for hard spheres at
jamming under shear strain [41, 57]. This indicates that any destabilizing perturbation that leads isostatic states to
new isostatic states with self-similar distributions of forces and gaps close to the edges gives rise to the same kind
of avalanche statistics. Notice that the scaling of (29) is incompatible with a distribution of the rescaled jumps δσ̂
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FIG. 10: Left Panel. Main plot: statistics of the scaled avalanche size δ̂σ = Nωδσ. The dotted line the power law ρ(δ̂σ) ∼ δ̂σ
−τ

.

Right Panel. The scaling of δ̂σM as a function of the system size. The green dashed line is a fit to δ̂σM ∼ N
1

2−τ .

which admits a finite first moment in the thermodynamic limit. In fact, a finite pressure increase ∆p = N〈δp〉, should
correspond to a finite jump ∆σ = N〈δσ〉. This tells that 〈δσ〉 = N−ω〈δσ̂〉 ∼ N−β and that the finite N average of
δσ̂ should diverge as 〈δσ̂〉 ∼ N for large N . As it can be seen in the right panel of Fig. 9 the scaling 〈δσ〉 ∼ N−β is
observed already right after jamming. The divergence of the first moment indicates that the distribution of avalanches
δσ̂ should exhibit in the thermodynamic limit a power law at large argument

ρ(δσ̂) ∼ δσ̂−τ δσ̂ � 1. (31)

The exponent τ should be in the interval 1 < τ ≤ 2, such that the the distribution has a divergent first moment. For
finite N however, the distribution should be cut-off around a value δσ̂M so that

〈δσ̂〉 ∼
∫ δ̂σM

0

dδ̂σ(δ̂σ)1−τ ∼ (δ̂σM )2−τ ∼ N. (32)

It follows that

δ̂σM ∼ N
1

2−τ (33)

The statistics of avalanches in mean-field disordered systems has been fully characterized using equilibrium techniques
[14, 36], where instead of studying the change of local minima following a destabilizing perturbation, one studies the
discontinuities in the evolution of the actual ground state of the system when this is in a fullRSB region. In this case,
the exponent τ can be related to the force pseudogap exponent by the relation

τ =
3 + θ

2 + θ
' 1.41. (34)

Differently from the scaling with N , that we have obtained by purely local considerations, this form for the avalanche
distribution with the specific value of τ depends on the statistical properties of the neighborhood of the ground state,
something that is captured by the replica solution. Remarkably we find that within numerical precision, the value (34)
coincides with the one found for avalanches of sheared hard spheres at jamming [42] and soft spheres close to jamming
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[14]. Our simulations indicate that the remarkable coincidence between static and dynamic avalanche statistics also

holds in this case. In Fig.10-Left Panel we show the statistics of the rescaled jumps of δ̂σ = Nωδσ collected from all
the plastic events taking place when the pressure lies in the interval [0.2, 1.2] when a minimum at jamming is followed
upon compression. For small enough size the numerical results collapse onto each other and approach the expected
power law distribution (31). In the right panel we show that the maximum δσ̂M around which the power law is cut-off
respects the expected scaling with N .
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2 .

All in all the results of Fig.10 strengthen the observation that non-convex jammed phase of the linear perceptron
is marginally stable, self-organized critical and belongs to the jamming universality class.

C. Energy and Overlap avalanches

A similar analysis as in the previous section allows to analyze the jumps in energy, and in position. It is easy to see
that the jumps in energy density follow exactly the same scaling as the ones in σ, namely δe ∼ N−ω. As in the case
of σ a power law avalanche distribution with divergent first moment follows, and it is possible to see that the static
avalanche exponent coincides with τ

As far as the jumps in positions are concerned, we can estimate the typical steps of the square displacement (δX)2

to scale as

δq =
1

N
(δX)2 ∼ N−2/(1−γ) = N−(1+2β). (35)

Also in that case we have a power law distribution of jumps. The static avalanche exponent [14, 36], is in this case
τ ′ = τ+1

2 . In Fig. 11 we display the probability distributions of energy and displacement jumps, which confirm the
above scaling, and shows that also in this case the dynamical avalanche exponents coincide with the static ones.

V. THE UNJAMMING TRANSITION

In this section we study the unjamming transition, that occurs when pressure vanishes from positive values p→ 0+.
From the study of unjamming in soft spheres, the features of this transition when the exponent a in the interaction
potential is larger than unity are known [25, 44, 45]. The analysis can be extended to the perceptron along the line
of [33] for the harmonic case. Using, as customary, the distance from the jamming point ∆σ = σ − σJ as a control
parameter the pressure and the energy close to the transition behave as

p ∼ ∆σa−1 (36)

E ∼ ∆σa (37)
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valid anymore. Anyway, we fit the numerical curves with the replica symmetric approximation and we see a good agreement,
signaling the fact that for the energy the scaling behavior as a function of the distance from jamming is preserved. In the inset
we plot the same quantities divided by σ− σJ . This way we reveal the presence of logarithmic corrections to the linear scaling
of the energy with respect to σ − σJ . Right Panel. The behavior of the scaled pressure p/α as a function of the distance from
jamming ∆σ = σ − σJ . As for the energy, the replica symmetric theory gives a good prediction for the pressure also in the
non-convex region. Data obtained with N = 2048 for α = 1.5, N = 512 (N = 1024 in the inset) for α = 4. Error bars are
sample to sample fluctuations.
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FIG. 13: The scaled number of overlaps no/α as a function of the distance from jamming. In this case, the replica symmetric
prediction clearly holds only in the convex region while the non-convex one shows the appearance of a non-trivial power law
behavior. The dotted line represent the prediction form the scaling analysis. Data has been produced with N = 2048 for
α = 1.5 and N = 1024 for α = 4. Error bars are sample to sample fluctuations.
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while the variation in the density number of overlaps ∆z with respect to the isostatic value z = 1, shows a square
root singularity independently of a

∆z ∼
√

∆σ. (38)

The Lagrange multiplier µ, according to eq. (5) is dominated by the pressure variation µ ≈ σJ p ∼ ∆σa−1. The laws
(36) are a consequence of the fact that for a > 1, an increase of the margin ∆σ causes all the contacts to become
overlaps with |hc| ∼ ∆σ, independently of a, [44, 45]. Simple dimensional analysis gives then (36). In the compressed
phase the leading excitations are linear. Relation (38) expresses a condition of stability for the linear modes [44].

These relation should break down in the linear potential case a = 1, as it manifest from the facts that (1) the
pressure has to vanish for ∆σ → 0 and (2) all excitations are non-linear even away from jamming. The vanishing of
the exponent relating p to ∆σ suggests that a logarithmic behavior could appear

p ∼ 1/ log(1/∆σ)b (39)

E ∼ ∆σ/ log(1/∆σ)b (40)

with b a positive exponent. Again µ ≈ σJp ∼ 1/ log(1/∆σ)b.
The behavior of the different quantities close to jamming should be in principle accessible from the analysis of the

exact mean-field equations of the replica method [1]. This analysis is rather simple for α < 2, where replica symmetry
holds. In that case, we get that close to jamming the pressure, energy, and density of overlaps behave as4

e ∼ ∆σ√
| ln(∆σ)|

p ∼ 1√
| ln((∆σ)|

no =
O

N
∼ ∆σ

(42)

In Fig.12-Left Panel we plot such scaling for α = 1.5 showing a good agreement. The predictions (42) could be
questioned in the non-convex case. Notice that in the case a > 1, the replica symmetric analysis gives the correct
scaling (36) of energy and pressure, while it predicts a linear behavior ∆z ∼ ∆σ, rather than the square-root of the
non-convex case.

In our case, if we look at the number of overlaps n0 in numerical simulations, we find in the non-convex case we do
not find either linear nor square root behavior. In Fig.13 we plot no vs ∆σ close to jamming for α = 4 in double-log
scale. We observe power law behavior no ∼ ∆σν , with an an exponent ν smaller than one but larger than 1/2, that
we estimate ν ' .83, compatible with the value ν = 1/β. The origin of 1/β can be traced to the behavior with N ,
of δn0 and δσ in avalanches close to jamming. Typical avalanches produce there a small number of contacts and
δno ∼ 1/N . The statistics of jumps in σ on the other hand is likely to give 〈δσ〉N−β till jamming. If we suppose that
the scaling behavior for δno ∼ 1/N remains valid for small but finite δno we find

∆no ∼ ∆σ1/β . (43)

The appearance of the logarithms in the behavior of pressure and energy can also be rationalized by qualitative
scaling. The destabilizing jumps in pressure depend on the tail of the distribution of forces, which for the perceptron
close to jamming has a Gaussian tail p(f/p) ∼ exp(−A(f/p)2), implying δp ∼ 1√

logN
, supposing again, that scaling

holds till to the very first events, we obtain, using (43), the relation

p ∼ 1√
| ln((∆σ)|

, (44)

and by dimensional reasons, e ∼ ∆σ√
| ln((∆σ)|

. We remark, that these relations depend critically from the Gaussian tail

of the distribution of the scaled forces at large argument. With a different tail this argument would give a different
dependence, e.g. a stretched exponential with stretching exponent 1/b, would give rise to a log with a power −b as in
(39). It would be interesting to see if such a situation could produce in a physical system.

4 more precisely, we can determine the leading behavior as:

e ' α
1 + τJ√

2π

∆σ√
2| ln((1 + τJ )∆σ)|

p ' α
2−σ

2
J/2 + τJ√

2π

1√
2| ln((1 + τJ )∆σ)|

no =
O

N
' α

1 + τJ√
2π

∆σ τJ = σJ

√
π

2

(
1 + erf

(
σJ√

2

))
.

(41)
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VI. CONCLUSIONS AND PERSPECTIVES

We used the athermal adiabatic compression algorithm to surf on isostatic marginally stable minima that arise in
the jammed phase of a prototype random continuous optimization problem, the spherical perceptron with linear cost
function. Using this algorithm we have studied the statistics of plastic events that arise when the system is compressed
from the jamming transition inside the non-convex jammed phase. We found that inside the jammed phase, such
plastic events follow a statistics similar to hard sphere packings under quasi-static strain, which suggests that any
local dynamics that destabilizes isostatic states and leads into other isostatic states has the same critical properties.

Furthermore we have characterized the critical properties of the unjamming transition where there are logarithmic
corrections to the scaling theory developed in [25, 45]. The detailed form of these corrections are due to the Gaussian
tail of the force distribution at jamming. In addition we have shown that the scaling of the number of overlaps as a
function of the distance from jamming follows a power law behavior which is very different from what is found for
harmonic spheres.

The approach we have developed suggests new ways to study landscapes with isostatic marginally stable minima.
In our model it is possible to set up a landscape computation of the complexity of isostatic minima. Following [63],
we can fix the control parameters α and σ (or equivalently p) and count the number of solutions of the constitutive
equations for local minima, see Eqs. (4), that respect the stability condition. In the same way fixing the isostatic
index C/N away from one, we could count the solutions -if any- which are either hyperstatic or hypostatic. Note that
hyperstatic (namely solutions with a number of contacts greater then N) solutions are likely to exist, see [64, 65], but
are expected to not be endowed with critical pseudogaps and cannot be dynamically reached5.

On the numerical side, it will be interesting to use the algorithm to simulate compression-decompression cycles and
see whether one can anneal the system by a gentle driving. In this case it could be interesting to understand the span
of the energy levels of local minima that can be achieved by using such algorithms as a function of the amplitude
and speed of the compression cycles. It could well be that the dynamically accessible marginal manifolds at different
energy levels are connected by small barriers, or at least barriers that scale as N t being t an exponent that is t < 1.
This is for example the case of simple spin glasses as the Sherrington-Kirkpatrick model where t = 1/3 [67–69].

Finally we would like to comment more broadly on our findings. We have used a quasistatic algorithm that explores
isostatic minima of the linear perceptron. The present algorithm allows to study the statistics of the plastic events
that follow a destabilizing perturbation. The minima that are explored appear to have the same universal marginal
stability features of the ones found by the rather different gradient descent dynamics that we used in [1]. While the
proof of such universality from the actual solution of the dynamics of specific algorithms may be probably achieved
in some particular cases, notably the ones whose state evolution is described by the replica equations [5, 70] a generic
picture of why such universality emerges beyond the algorithmic schemes employed (being gradient descent [71],
message passing or any local algorithm as in the present case) is partially lacking. Indeed powerful local stability
arguments [26, 27, 37], that are rather generic being independent on the algorithmic schemes, allow to obtain a set
of non-trivial scaling relations between the critical exponents that describe isostatic points. However local stability
alone does not lead to a complete theory and probably it is not enough constraining to fix the value of the static
critical exponents, nor the avalanche one τ .

In order to get these quantities one needs to do something more. The replica approach, provides a detailed
scaling theory that predicts the numerical values of the exponents [1, 29]. However, with replicas one either assumes
Boltzmann sampling of the states or some large deviations [72, 73] and therefore while providing a set of situations
for which one can go beyond local stability and get critical exponents, it is still restrictive to those cases.

Seen this situation, we would like here to twist the usual perspective and propose a different point of view. One
of the outcomes of our analysis is that, in the jammed phase, the statistical properties of the avalanches induced by
a compression are essentially indistinguishable from those obtained from whatever random local perturbations that
brings isostatic minima to isostatic minima with similar statistical properties. This is a property of stochastic stability.
Stochastic stability, that has been studied extensively in the context of spin glasses [74], is an important property
of marginally stable disordered systems. Roughly speaking, it states that a small random perturbation leaves the
relevant statistics of the system unchanged. In other words, random perturbations move the system to points that
may be well far away in configuration space, but that have the same statistical properties of the old ones. Stochastic
stability has been proven for the Gibbs measure in spin glasses [75–78]. At any finite temperature, when the system
is at equilibrium, it implies that the static and dynamical responses are controlled by the overlap distribution that

5 Unless some smart algorithms are employed and the nature of the problem is conserved only on average. In particular, following [64–66]
we need to promote σ to a fluctuating σµ which changes from gap to gap and impose that on average the statistics of σµ is conserved.
This opens a new relaxing channel and therefore one can sensibly decrease the energy and increase the number of contacts.
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can be extracted from the equilibrium computation [79, 80]. A natural extension at zero temperature would imply
that, starting from the ground state, the dynamic and static avalanches share the same statistics.

A unifying way to address the universality properties of marginally stable minima could be to reverse the usual way
of proceeding. Rather than trying to analyze the asymptotic probability distribution of a given class of algorithms and
show that it is stochastically stable, we may think to stochastic stability as a physical requirement and characterize the
invariant probability distributions over marginally stable states. We emphasize that this way of treating the problem
leads directly toward a statistical mechanics of marginally stable states. In order to fix the ideas let us consider a
modified Hamiltonian for our model

H∆ = H +
∆√
N

Z ·X (45)

with Z being a random vector whose components Zi are Gaussian with zero mean and unit variance. The perturbation
is of relative order 1/N with respect to H and therefore it does affect thermodynamic quantities (such as energy and
pressure) only with subleading corrections in N . However it changes the equations for local minima. In particular
the equations for forces gets shifted by a random term∑

o

ξo,i√
N

+
∑
c

fc
ξc,i√
N

= µXi +
∆√
N
Zi . (46)

At this point we can start from a solution of the equilibrium equations at ∆ = 0 and try to follow it when ∆ is
increased. The perturbation is much larger than N−β that triggers avalanches and therefore following it we will get
to many other marginal states far away from the original one. Stochastic stability states that the minima obtained
by following such perturbations till to the larger distances have the very same properties of the starting one. In order
to look at the statistics of those minima, we could try to sample the random vector Z. Very likely once the averages
over Z are taken, the dependence on the specific realization of the random patterns and the starting point X, namely
the particular solution at ∆ = 0 are washed out, and the only leftover is in the energy level (and pressure and µ) at
which the original minimum is taken. We believe that the replica scaling theory is a prominent candidate for the scale
invariant distribution that could be obtained imposing stochastic stability. One possibility is that averaging over Z
the universal part of the replica scaling solution should emerge. We leave the analysis of this conjecture as a program
for forthcoming work.
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