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Abstract: The use of topographic airborne LiDAR data has become an essential part of archaeological
prospection, and the need for an archaeology-specific data processing workflow is well known.
It is therefore surprising that little attention has been paid to the key element of processing: an
archaeology-specific DEM. Accordingly, the aim of this paper is to describe an archaeology-specific
DEM in detail, provide a tool for its automatic precision assessment, and determine the appropriate
grid resolution. We define an archaeology-specific DEM as a subtype of DEM, which is interpolated
from ground points, buildings, and four morphological types of archaeological features. We introduce
a confidence map (QGIS plug-in) that assigns a confidence level to each grid cell. This is primarily
used to attach a confidence level to each archaeological feature, which is useful for detecting data
bias in archaeological interpretation. Confidence mapping is also an effective tool for identifying the
optimal grid resolution for specific datasets. Beyond archaeological applications, the confidence map
provides clear criteria for segmentation, which is one of the unsolved problems of DEM interpolation.
All of these are important steps towards the general methodological maturity of airborne LiDAR in
archaeology, which is our ultimate goal.

Keywords: archaeology; airborne LiDAR; airborne laser scanning; ALS; DEM; DTM; digital feature
model; DFM; confidence map; QGIS plug-in

1. Introduction

The use of topographic airborne LiDAR data (also known as airborne laser scanning
or ALS) has become an essential part of archaeological prospection [1], e.g., [2–4]. Ar-
chaeologists interpret enhanced visualizations of high-resolution digital elevation models
(DEMs) interpolated from classified point clouds [5–7]. The results have proven to be very
efficient in detecting archaeological features, and have already drastically changed our
understanding of archaeological sites, monuments, and landscapes, especially in forested
areas, as seen in [8–16].

The need for an archaeology-specific data processing workflow is well
established [4,17–21], as are the main reasons for it [1]:

• The main method is visual inspection of enhanced raster visualization, possibly
supported by machine learning tools.

• Archaeological features are, morphologically, anomalies
• The time, effort, equipment, and human resources invested in airborne LiDAR data

processing represent only a small fraction of a typical archaeological project.
• We are currently witnessing an unprecedented expansion of the archaeological appli-

cations of airborne LiDAR, much of which is based on low- or medium-density data
acquired for general purposes.

Direct application of existing generic data processing methods is therefore not ideal,
and the development of archaeology-specific processing is the subject of active develop-
ment [1,4,22]. To provide context, a recent paper summarized the archaeology-specific
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data processing workflow in 18 steps. These steps range from raw data acquisition and
processing, through point cloud processing and product derivation, to archaeological inter-
pretation, dissemination, and archiving [7]. It is important to emphasize that the subject
of this paper concerns only a small part of this workflow: interpolation and, to a lesser
degree, enhanced visualization (steps 2.4 and 2.5). Nevertheless, for a fruitful result, the
whole archaeology-specific processing pipeline must be considered.

It is therefore surprising that little attention has been paid to the digital elevation
model (DEM), which is the key element of processing. Such is the neglect that even the
basic terminology has not been clarified. In archaeological practice there is confusion over
the terms DEM and digital terrain model (DTM). Both DTM and DEM refer to a regular
grid of ground elevations, but DTM is used mostly in Europe, while DEM is mostly used
in the US [4,20]. To add to the confusion, in the current practice of LiDAR data processing,
DEM is considered to be an umbrella term for DTM and DSM [23].

In geoscience the applicable terminology was first established decades ago. DTM
was defined as an ordered array of numbers that represent the spatial distribution of
terrain attributes as a continuous surface [24]. Terrain attributes consist of all elements that
describe the topographic surface, such as slope, aspect, and curvature [25–27].

DEMs have been initially defined in geoscience as a subset of DTMs that only represent
terrain elevations [25,26]. Elevation is represented by a real number in each cell of the
continuous grid, which limits the modelling to terrain without overhangs, arches, or
caves [28]. According to their data structure, DEMs are either regular grids, digital contour
lines, or triangulated irregular networks [24,29]. Regular grids or gridded DEMs are
by far the most popular types due to their simple and orderly data structure, and the
term DEM now usually refers to a gridded DEM. A wealth of topographic parameters
can be derived from DEMs, such as measures of local surface shape (for example, slope
gradient and curvature), orientation (for example, slope aspect), and the related concepts
of ruggedness and relative topographic position [30]. In other words, most DTM attributes
can be computed from DEMs. When airborne LiDAR data are used, the DEM is generated
from ground points (classified according to the American Society for Photogrammetry
and Remote Sensing classification scheme [31] as class 2; henceforth ASPRS class). In this
paper we use the term DEM according to its definition and the most common usage in GIS
science: a DEM is a regular grid with an elevation value (height above sea level) of the
ground associated with each square cell.

The term digital surface model (DSM) refers both to a general expression for any
mathematically defined surface and to a terrain modelling product that represents the
elevation of the tops of all non-ground features [27]. For example, a DSM models vegetation
cover as well as building roofs, bridges, etc. Only in areas where non-ground features are
not present, such as a well-maintained lawn, will the DSM include ground points. DSMs
are rarely used in archaeology. When LiDAR data is used, the DSM is generated from the
first return points.

However, the use of the terms DEM and DTM in general practice depends on the
sensors and methods used for the data acquisition, the methods of data processing, the
type of representation, and the countries or environments in which these datasets are used.
Moreover, the definition of these terms changes over time (note the change over 35 years
between [25,26] and [23]). The translation of these terms between different languages is also
problematic. The current generally accepted definition that we adhere to states that DEM
is an umbrella term for DSMs and DTMs, while the DTM represents the bare ground [23].

Finally, 3D polygon models need to be mentioned. None of the digital models dis-
cussed are capable of representing caves, overhangs and the like. Thus, this data structure
is less and less suitable to represent the data from modern data acquisition sources, such as
full waveform airborne LiDAR data. Therefore, methods to voxelize point cloud data into
3D polygon models are being actively explored, e.g., [32]. For archaeological analysis, how-
ever, the usability of the 3D model currently lags far behind DEMs due to the availability
of suitable software tools and processing pipelines.
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None of the above, however, describe an archaeology-specific gridded surface model.
Archaeology-specific LiDAR data processing produces an archaeology-specific DEM. It
combines ground data with archaeologically relevant micro-relief features or potential
archaeological features: standing walls and stones, roads, channels, and earthworks [4].
Modern buildings are included to provide contextual information during the process of
interpretative mapping, and to expedite orientation in the field [7]. Such an “archaeological
digital elevation model” [4] has been called a digital feature model (DFM; Figure 1) [33]. It
should be mentioned that although DFMs are commonly used in archaeological practice,
they are usually referred to either as DEMs, e.g., [34,35] or DTMs, e.g., [4,36].

1 
 

 
Figure 1. An outline of the differences between DEMs, DFMs, DTMs, and DSMs.

DFMs, then, are by definition archaeology-specific, and thus require the attention of
archaeologists. Accordingly, the first aim of this paper is to describe DFMs in detail. The
second goal is to contribute to archaeology-specific LiDAR data processing by providing
the pipeline and tools for the automatic precision assessment of DFMs, which we have
named the DFM confidence map. The DFM confidence map provides metadata that is a
necessary part of the workflow documentation [7], helps in the process of interpretative
mapping, and also enables the determination of the appropriate DFM resolution. The latter
is a theoretical task, and another area that is neglected in the archaeological literature. To
accommodate it, we have adapted the structure of this paper by adding the Theory section.

2. Materials and Methods
2.1. Test Sites

Four test sites were selected in order to simulate the most common archaeological
uses of airborne LiDAR data (Figure 2). Due to the availability of data and first-hand
experience, all of the datasets are from Europe. For the comparison of the different steps of
data processing, these are the same test sites we have already used and outlined in other
studies [1,7]. The description of the test sites is therefore only briefly repeated.
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sky view factor (RVT 2.2, default settings; after [1], Figure 1; CC-BY 4.0). 

The test data from Austria (AT), Slovenia (SI1, SI2), and Spain (ES) were selected 
based on their archaeological and morphological similarity. Each site has a hilltop settle-
ment (archaeology), buildings (modern), vegetation on steep slopes, and sharp disconti-
nuities. An additional test site (SI2) was selected as an example of relentlessly dense low 
vegetation. Each test site is 1000 × 1000 m, but only the most relevant windows are shown 
in figures. All datasets are from nationwide data acquisitions and are in the public domain 
under various licences. The main difference between them is the average point density 
(Table 1). Therefore, the datasets represent, high, medium, and low point density scenar-
ios, respectively. 

Table 1. Data point density for test sites. Pnts 106: No. of all data points in millions; Pnts/m2: me-
dian point density per m2 (average density is in this case equal to Pnts 106); Pnts 106 class 2&6: No. 
of points used for interpolation (ASPRS classes 2 and 6); Pnts/m2: median density of points used 
for interpolation per m2 (ASPRS classes 2 and 6); Spacing: average spacing between the points 
used for interpolation (ASPRS classes 2 and 6). 
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The fact that significant areas of DFMs derived from airborne LiDAR data are inter-

polated from undersampled points has important implications for all subsequent steps in 
the workflow. Most vulnerable to these implications are interpretative mapping and cer-
tain methods of “deep” interpretation—for example, hydrological analysis. An experi-
enced operator is able to visually identify undersampled areas and, to some extent, the 
severity of the undersampling. By observing undersampled areas, the interpolator, or at 
least the family of interpolators, can also be identified in most cases. However, in order to 
achieve the necessary scientific integrity for archaeological interpretation, the quality of 
the DFM must be quantified. Given the high internal variability of DFMs, quality assess-
ment must be done on a cell-by-cell basis. 

Figure 2. Test data: (a) location of test sites: AT—46◦53′05′′N, 15◦30′48′ ′E, SI1—45◦40′21′′N,
14◦11′40′ ′E, SI2—45◦40′56′′N, 14◦12′25′′E, ES—42◦44′30′′N, 8◦33′02′′E; (b) test site AT; (c) test sites
SI1 and SI2; (d) test site ES. (b–d): shown at 100% crop size; left-digital orthophoto; middle-enhanced
visualization of manually processed DFM; right-archaeological features (blue: embedded features;
green: partially embedded features; red: standing features). DFMs are visualised using sky view
factor (RVT 2.2, default settings; after [1], Figure 1; CC-BY 4.0).

The test data from Austria (AT), Slovenia (SI1, SI2), and Spain (ES) were selected based
on their archaeological and morphological similarity. Each site has a hilltop settlement
(archaeology), buildings (modern), vegetation on steep slopes, and sharp discontinuities.
An additional test site (SI2) was selected as an example of relentlessly dense low vege-
tation. Each test site is 1000 × 1000 m, but only the most relevant windows are shown
in figures. All datasets are from nationwide data acquisitions and are in the public do-
main under various licences. The main difference between them is the average point
density (Table 1). Therefore, the datasets represent, high, medium, and low point density
scenarios, respectively.

Table 1. Data point density for test sites. Pnts 106: No. of all data points in millions; Pnts/m2: median
point density per m2 (average density is in this case equal to Pnts 106); Pnts 106 class 2&6: No. of
points used for interpolation (ASPRS classes 2 and 6); Pnts/m2: median density of points used for
interpolation per m2 (ASPRS classes 2 and 6); Spacing: average spacing between the points used for
interpolation (ASPRS classes 2 and 6).

Filter Pnts 106 Pnts/m2 Pnts 106

(Class 2&6)
Pnts/m2

(Class 2&6)
Spacing (m)
(Class 2&6)

AT 12.11 15.54 7.52 8.96 0.33
SI1 5.37 5.91 3.23 4.37 0.68
SI2 5.39 5.81 4.65 5.23 0.62
ES 1.03 1.26 0.54 0.63 1.26

2.2. DFM Quality Assessment

The fact that significant areas of DFMs derived from airborne LiDAR data are interpo-
lated from undersampled points has important implications for all subsequent steps in the
workflow. Most vulnerable to these implications are interpretative mapping and certain
methods of “deep” interpretation—for example, hydrological analysis. An experienced
operator is able to visually identify undersampled areas and, to some extent, the severity
of the undersampling. By observing undersampled areas, the interpolator, or at least the
family of interpolators, can also be identified in most cases. However, in order to achieve
the necessary scientific integrity for archaeological interpretation, the quality of the DFM
must be quantified. Given the high internal variability of DFMs, quality assessment must
be done on a cell-by-cell basis.
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This can be achieved using classification and regression tree analysis (CART). CART
is a technique used in data mining that is commonly used as a rule-based classification
design. The output of a CART analysis is a set of logical if–then conditions that end in
terminal nodes and predict the value of the response variable. These conditional rules can
be implemented using map algebra to create a quality assessment map. CART analysis is
commonly applied to remote sensing data because it makes no assumptions about input
data or their statistical distribution, and is well suited for dealing with collinear datasets,
outliers, and potentially insignificant predictors [37–41].

CART was successfully used to derive the DEM uncertainty prediction map. Bater
and Coops used CART analysis and identified ground point density and slope as the two
conditions that have the greatest impact on error when the DEM is interpolated from
airborne LiDAR data. They also tested vegetation structure, but found that it had the
least effect on prediction [40]. However, Montealegre and colleagues found slope to be the
most important factor, and that land cover type had a significant effect on the quality of
DEM in forests [41]. Simpson and colleagues further refined this by finding that accuracy
in flat terrain is primarily influenced by dense understory vegetation, such as ferns and
brambles. Specifically, the error was associated with the density of vegetation up to a height
of 3.5 m [42]. However, vegetation height is specific to each case study, and in our tests the
difference between 3.5 m and 2.0 m (ASPRS class 3, low vegetation, which is defined as
being 0.5–2.0 m above ground) was negligible.

Therefore, we propose a modified CART classification tree with which to extract the
DFM prediction uncertainty map, which we refer to as the DFM confidence map (Figure 3).
Our CART tree is modelled after the proposal of Bater and Coops, who considered point
density to be more important than slope. We modified the starting value for the ground
point density according to the DFM specifications: The point density must be approximately
equal to the grid density. The interpolator used is IDW. The slope conditions follow Bater
and Coops, who defined thresholds at 12.5, 22.5, and 42.5◦. To this, low vegetation was
added following the decision tree structure of Montealegre and colleagues, but with
vegetation height between 0.5 and 2.0 m. We defined the threshold for low vegetation
density with the grid density: Vegetation is significant if its density is higher than the grid
density, for example, more than 1 point per m2 for a grid cell size of 1 m2. This estimate
roughly corresponds to a forest with a dense or very dense understory ([42]: structural
categories C and D). The DFM confidence map has six confidence levels, with one being
the lowest and six being the highest confidence.

We also provide visual precision testing of the DFM confidence maps. The accuracy of
the DFM map is not questionable, since the method is derived from the statistical analysis
of DEM accuracy tests [40–42]. More importantly, we argue that visual precision is more
important for archaeology. Why? DEMs in general are used for analysis, visualization, or
both [43]. Accuracy is the most important factor for analysis and precision of visualization.
Since the primary application of DFMs in archaeology is visual analysis, precision is more
important for us.

Our visual precision test of the DFM confidence maps was conducted by comparing
DFM visual quality at different levels of confidence. The four test sites provide a good
estimation of typical archaeological data at four levels of data quality.
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Figure 3. Classification tree resulting from a CART analysis of absolute errors for 0.5 m DFM. The
model is read from top to bottom until the terminal nodes, which predict the confidence level of the
selected variables (one: lowest confidence; six: highest confidence).

2.3. Software Tool

The tools required to compute a DFM confidence map—reclassification, slope, and
raster calculator—are included in most GIS packages, and the process involves relatively
low computational costs. However, the pipeline is relatively complex, consisting of 21 indi-
vidual steps and 40 connections (Figure 4).

To facilitate the computation, we developed an open source tool in the form of a QGIS
plug-in, which is available as a ZIP file via the Github repository [44]. In the first step,
we built the pipeline in the QGIS graphical model designer. The first calculation uses the
GRASS r.resample algorithm to unify the cell size (default 0.5 m) and the extent of the
input rasters (DFM, vegetation density, and ground point density). The slope was then
calculated using the QGIS slope algorithm. Each raster was then reclassified based on the
above parameters or ranges using QGIS reclassify by table. The GDAL raster calculator
was used to calculate the resulting confidence maps, which were styled according to the
colour scheme introduced in this article (Figures 3 and 4). The results were loaded as layers
into QGIS. In the second step, the pipeline was implemented in the Python programming
language to create a QGIS plug-in [45]. The plug-in has been tested in the latest long-term
release of QGIS 3.16.x on Windows 10, macOS Big Sur, and Linux.

After installing the tool using the “Install from ZIP” dialog, the user first selects the
input layers, either from files or from already loaded map layers. Depending on the options
selected, the tool delivers up to four DFM confidence maps for resolutions of 0.25 m, 0.5 m
(default), 1 m, and 2 m.
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3. Theory
3.1. DFM

A DFM is an archaeology-specific gridded surface model—a product of archaeology-
specific LiDAR data processing. It combines ground features with archaeological micro-
relief features and buildings. To properly describe a DFM, therefore, archaeological features
need to be specified. There are many different archaeological features, but four morpholog-
ical types can be distinguished (Table 2; Figure 5). Most archaeological features detected
using airborne LiDAR data fall into the first two types—embedded or partially embedded
features—which are to some degree part of the ground and, hence, the DTM. This explains
why archaeologists are able to detect many archaeological features using a general purpose
DTM. However, standing features and standing objects are off-terrain features. As such,
they are intentionally excluded from DTMs. In addition, partially embedded features may
be misrepresented in a general purpose DTM because of smoothing or similar. Furthermore,
while standing objects in point clouds can often be correctly classified using algorithms
designed for buildings, there is currently no off-the-shelf solution for detecting standing
features in areas with even modest low and medium vegetation (ASPRS classes 3 and 4,
respectively). As a consequence, in many cases DFM-specific data processing must include
ample manual reclassification [7].
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Table 2. Morphological types of archaeological features typically represented in a DFM (after [1], CC-BY 4.0).

Type Description Examples DFM DTM

Embedded f. Slight positive or negative bulges typically
with up to 0.5 m rise over 5 to 20 m run. Trench, ditch, fossil field, past land division, track Y Y

Partially
embedded f.

Positive or negative spikes typically with
more than 0.5 m rise over 5 m run. Dwelling, rampart, terrace, burial mound Y Y/N 1

Standing f. Off-terrain objects characterized by a
sharp discontinuity in the ground. Individual wall, castle ruins, collapsed building Y N

Standing
objects

Large non-ground structures
characterized by a sharp discontinuity in

the ground and a significant diameter.

Mayan monumental architecture at Aguada
Fénix, Khmer temples in Angkor Y N

1 If the DTM is smoothened, which is often the case with general purpose airborne LiDAR derived DTMs, features may be diminished or
even erased.  

3 

 
Figure 5. Morphological types of archaeological features detectable via DFM (Bottom-right figure
after [22], Figure 8, CC-BY 4.0).
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It should be noted that standing features and standing objects are either relict (aban-
doned elements of earlier phases of landscape use that survive above ground) or fossilized
features (elements of earlier phases of landscape use that are integrated into the later
historic landscape, for example a linear earthwork re-purposed as a field boundary) [46].

We therefore use the term DFM as a subtype of DEM to describe the archaeology-
specific gridded surface model of elevations that has been interpolated from ground points,
buildings (ASPRS classes 2 and 6, respectively), and archaeological features.

3.2. Optimal DFM Resolution

In spatial sciences, the term “resolution” initially referred to the level of detail or
to the smallest object that can be recognized on an aerial photograph. In a DEM or
DFM, it refers to the grid cell size, and is expressed in terms of ground spacing. The
smaller the grid size, the higher the resolution [47]. The selection of resolution is based
on point density and distribution, horizontal accuracy, spatial autocorrelation, terrain
complexity, or a combination of these. The computational cost and data storage should
also be considered [48].

The first problem in generating a DEM is to determine a resolution that can represent
the terrain features at the desired level of detail [49]. There are a number of studies on this
topic, but they are field- and case-study specific (overview in [47]). For example, landscape
scarps are identified on 1 m or 2 m DEMs [50], while a 10 to 30 m DEM is sufficient for an
unbiased prediction of the landscape terrain [51]. There are no archaeology-specific studies
that address the determination of the optimal resolution to represent the archaeological
features that we are aware of. However, there have been several studies that have looked at
point density. Two studies showed a significant improvement in point cloud classification
success when the point density was increased from one to five data points per square
meter (hereafter pnts/m2), and a slight improvement when the point density was further
increased to 10 pnts/m2. It was the identification of the larger structures that benefited
most from the increased resolution of the DEM [52,53]. In another study, the recognition
rate of archaeological features was found to decrease slowly when the point density was
reduced from 7.3 to 1.8 pnts/m2, and to decrease more rapidly with further reduction [54].
A Slovenian study demonstrated a decrease in the precision of DEMs when the pulse
density was halved from 16 to 8 pulses per m2 [55]. A comparison of datasets at 0.7 and
2 pnts/m2 with a UAV dataset at 22 ground pnts/m2 showed little improvement in
detection success [56]. Similarly, a comparison of a 0.5 pnt/m2 dataset with a 13 pnts/m2

dataset showed that the accuracy of archaeological interpretation was significantly better
with the latter [57]. Some ongoing studies in Finland demonstrated stark improvement
and numerous new features observed when comparing a 2 m DEM with 0.02 m and 0.1 m
DEMs [58]. Based on these studies, we would cautiously agree that the effect of point
density is not purely exponential, and that it has a breaking point at around 5 pnts/m2 [58]
for most archaeological features that are not standing objects.

These results cannot be directly applied to DFM resolution. Both the reduction in point
density and the reduction in DEM resolution have detrimental effects on visual precision,
but the effects of each are very different. Our own experiment has shown that the amount
of archaeological information deteriorates significantly when the resolution is reduced
from 0.5 to 1 m (Figure 6).
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Figure 6. Test site AT, the effects of reducing ground point density (left) and reducing DFM resolution (right). The ground
point density and DEM/DFM resolution are indicated in each image. The processing pipeline is the same for all instances
(point cloud processing according to [1]; OK interpolation; sky view factor visualization with default settings in RVT v.2.2).
However, to demonstrate the effect of reduced point density on ground point filtering, the data in the left column lacks
manual reclassification.
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This is consistent with the vast majority of published studies that use grids with 0.5 or
1 m resolution. Lower resolution is only used when better data are not available, and there
are no examples that clearly show significant benefits of increasing resolution beyond 0.5 m.
It can be said that 0.5 m DEM is currently the gold standard in archaeological practice.
Archaeology-specific data acquisition is usually planned to produce a 0.5 m DFM or better.
The types of archaeological features that can be recorded with such data can be estimated by
applying the cardinal theorem of interpolation [59] and its implementation in archaeological
field survey practice: The survey grid must be half the size of the archaeological features
to be recorded. Therefore, current archaeological practice most commonly uses airborne
LiDAR data to detect features either at least 1 m in diameter or linear features at least
approximately 0.5 m wide. In practice, the most commonly acquired features are larger.

The second problem is determining the appropriate source data density. It is believed
that for DEMs with lower resolution—for example, 5 m or lower—a point density as low
as 0.36 points per grid cell may be sufficient [51]. For high-resolution DEMs, one point
per grid cell is required [60]. Above this value, there is no appreciable improvement in
accuracy [61]. On the other hand, if the point density is much lower, the surface will be
representative of the specific interpolator used rather than the target terrain, because there
will be many interpolation artefacts [62].

However, aside from data point density, there are several factors that affect the ac-
curacy of DEMs: the morphology of the terrain, the interpolation method [63], and the
distribution of the data points [64]. In the case of airborne LiDAR data, the latter is very
important. This is because of non-uniform point distribution due to inter-scan-line spacing
and flight strip overlap (Figure 7: AT) [20,65], and because data points are typically under-
sampled in non-vegetated areas and oversampled in densely vegetated areas (Figure 3: SI1
and SI2). This makes the typical airborne LiDAR data an inefficient data source, to say the
least. For example, 4 pnts/m2 measured in a regular grid is a data source superior to a
typical airborne LiDAR dataset with an average density of 4 ground pnts/m2. In a typical
airborne LiDAR project, this fact is compensated for by brute force, so to speak—namely,
by oversampling. In the above example, the LiDAR dataset would have to be densified
to about 20 pulses/m2 in order to match the use case scenario of 4 manually measured
ground pnts/m2.

However, many, if not most archaeologists use LiDAR data that have been acquired
for non-archaeological purposes. For example, general purpose data are available for many
countries and regions. For such projects, the question of resolution arises in reverse: How
to determine the resolution that maximizes the use of the available data? The simplified
answer is that the resolution should be approximately equal to the average point density; for
example, a 0.5 m DFM should be interpolated if the data have 4 pnts/m2. For archaeology,
a minimum of 2 pnts/m2 for a 0.5 m DFM is suggested [18]. However, as mentioned above,
airborne LiDAR point data are extremely unevenly distributed. This is exacerbated to an
extreme in terrain where densely forested steep slopes are mixed with fields and meadows
interspersed with hedgerows. For example, in SI2 the density varies between 0.3 and
15 pnts/m2 within the boundaries of a single archaeological site, let alone a single 1 km2

tile (Figure 7: SI2).
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4. Results
4.1. DFM Confidence Map

We have produced DFM confidence maps for each of our test sites at resolutions
suitable to the data quality: 0.25 m for AT, 0.5 m for SI1 and SI2, and 1 m for ES (Figure 8).
Looking at the structure of the maps it immediately becomes apparent that “orange” areas
(confidence level two) are predominantly defined by steep slopes. As a consequence,
these tend to appear in contiguous areas. Additionally, smaller—but still contiguous—
“red” areas (confidence level one) that have been caused by dense vegetation or very low
point density—for example, those caused by water bodies—are also apparent. These two
landscape types are where the key differences between DFM confidence maps (Figure 7)
and ground point density maps (Figure 6) appear. Other areas are often highly dispersed
and directly comparable to ground point density.
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We also tested the concordance of the DFM confidence map with visual precision
assessment of DFM visualizations. For this we used the triangulated irregular network
with linear interpolation (TLI) and sky view factor visualization (SVF). The TLI provides
stark differences between undersampled and oversampled areas [66,67], while SVF is an
established standard tool in archaeology [68].

In “red” areas, the terrain could not be accurately predicted by any algorithm, and only
algorithm artefacts were observed [62]—in this case, the triangular pattern. In “orange”
areas this effect was still discernible (Figure 9a,b). Following the artefacts, both the “red”
and the “orange” areas were a good match to the artefacts on the DFM. The same can be
said for the “blue” areas (confidence levels five and six), which were perfect matches for
the areas of highest visual quality (Figure 9b). “Transition” areas (confidence three and
four) did not exhibit direct visual artefacts. However, looking at the selected features in
detail confirmed the established confidence levels. We turned, for example, to the tracks
left by heavy machinery clearing the forest after the ice rain disaster (Figure 9c). These
tracks were about as wide as the size of the grid cell, but more pronounced than typical
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archaeological features. The fact that the tracks were not reproduced in full is proof that
the quality of the DFM in that area was indeed not perfect, which is in line with confidence
levels three and four.
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Figure 9. Visualizations of DFMs (left) and DFM confidence maps (right) for selected areas at 
200% crop size. See Figure 8 for the location. The processing pipeline is the same for all instances 
(point cloud processing according to [1]; TLI interpolation; 0.5 m DFM resolution; sky view factor 
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Figure 9. Visualizations of DFMs (left) and DFM confidence maps (right) for selected areas at
200% crop size. See Figure 8 for the location. The processing pipeline is the same for all instances
(point cloud processing according to [1]; TLI interpolation; 0.5 m DFM resolution; sky view factor
visualization with default settings in RVT v.2.2).
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We can therefore conclude that the visual assessment of the DFM confirms that the
DFM confidence map is accurate in describing the DFM’s quality.

Obviously, the DFM confidence map has its limitations. The biggest problem with the
CRAN method, as with any decision tree, is that it is based on binary decisions. In reality,
for example, the quality of the DFM is not 15% worse at a slope of 12.4◦ than at a slope of
12.6◦. Cell by cell, the method provides only rough estimates. However, when looking
at a whole map—for example, a 1 km2 tile—it provides a good approximation and is an
excellent indicator of the problem areas.

4.2. DFM Resolution

As mentioned, airborne LiDAR point data are extremely unevenly distributed, and it
is difficult to determine optimal DFM resolution. There are several possible approaches
to this [69]: (1) The conventional wisdom for DEM interpolation described above would
suggest a grid resolution suitable for the vast majority of the dataset—for example, by
fitting to the 95th percentile of point spacing in the dataset. The disadvantage is the loss of
archaeological information in areas of locally high data density, such as meadows. (2) The
second option is to segment the data into areas of similar point density, interpolate each
area separately, and merge them for a final DEM. However, the result of this complex
procedure would hardly differ from the simple (3) interpolation of the whole dataset
with the resolution suitable for the areas with the highest continuous point density. The
latter solution is more or less established in archaeological practice, mainly because of
its practicality.

Archaeological DFMs are therefore interpolated at approximately the resolution cor-
responding to the areas with the highest continuous point density (not to be confused
with the highest local point density, which occurs in narrow strips or small patches where
flight lines overlap or intersect, respectively). Significant areas are therefore interpolated
from undersampled points, making the choice of interpolator for archaeology much more
important than in most LiDAR use case scenarios [70].

DFM confidence mapping can be used as a tool to determine the optimal DFM resolu-
tion. Based on the above results, and on our experience in interpretative mapping, ideally
about 1

2 of the map should have a confidence level of three or four, and the remainder
should be approximately evenly distributed among the other levels. However, if processing
time and storage space are not limited, the resolution can be increased as long as at least
one contiguous area of archaeological interest, such as a meadow complex, is level six.

5. Discussion and Conclusions

We set three goals for this work: to describe the archaeology-specific DFM in detail,
to provide a tool for automatic precision assessment of the DFM, and to determine the
suitable DFM resolution.

To date, very little attention has been paid to the specifics of archaeology-specific
DEMs, although this has been a recurring topic in discussions at workshops and the like.
Therefore, we first defined a DFM as a subtype of DEM, describing the archaeology-specific
gridded surface model of elevations; this is interpolated from airborne LiDAR-derived
ground points, buildings (ASPRS classes 2 and 6, respectively), and archaeological features.
To achieve this, we defined for the first time the morphological types of archaeological
features. This is not a trivial task, for two reasons: (1) there are a large number of archae-
ological features in different landscape contexts, and (2) with the increasing availability
of hyper-resolution DFMs obtained via UAV–LiDAR, the list is likely to expand. We have
therefore taken care to ensure that our definitions are broad enough to encompass all
existing morphological types of archaeological features, and potentially those that we are
not yet aware of.
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The meaning of DFM, we believe, extends beyond the mere dictionary definition. It
seems that the “revolution” that airborne LiDAR data have achieved in archaeology to
date has been largely due to the enormous amount of archaeological information that has
been obtained from general-purpose DEMs. This was possible because the vast majority of
archaeological features are embedded features that form part of any general purpose DEM.
We hope that these and other studies calling for archaeology-specific data processing will
spur the next “evolutionary” step that will bring additional data by mapping archaeological
features that can only be detected in DFMs. An accurate definition of DFMs is a prerequisite
for an appropriate archaeology-specific data processing pipeline.

DFM quality assessment is a critical tool that enables such a processing pipeline. For
example, DFM interpolation has not yet been addressed. Archaeologists have previously
used tools and processing pipelines developed for DEMs or DSMs. IDW has been suggested
as one of the more suitable interpolators for both, and the same is true for DFMs. However,
IDW power variable two is best for DSMs and power three for DEMs [41]. Which is best
for DFMs? Which has been used most often by archaeologists?

We do not provide answers to these questions in this paper, but we do provide
the tools to answer them. The DFM confidence map is a tool (QGIS plug-in: [44]; see
Supplementary Materials) for evaluating DFM quality. The primary application of the
DFM confidence map is interpretive mapping, or the archaeological interpretation of
DFMs. In particular, it allows the (automatic) determination of the confidence level for
each mapped archaeological feature. This does not replace the confidence level determined
by the operator, but can be used either in addition to it or as part of it. It also provides
important metadata for interpretive mapping. For example, the density of a particular type
of archaeological feature mapped in a given area may reflect past human activity, but it
may also reflect bias in the data—e.g., fewer features in areas with a lower quality DFM—
and such bias can be revealed by the DFM confidence map. In fact, any archaeological
interpretation based on feature density and not matched with data quality (e.g., [71]) can
be considered incomplete.

The third issue, which has been largely neglected in the archaeological literature, is
the question of optimal DFM resolution. Regardless, in archaeological practice 0.5 m is
an established gold standard. We have reasoned that the archaeology-specific optimal
resolution should lean heavily towards undersampling in order to extract the maximum
amount of archaeological information from a given dataset. The DFM confidence map can
be used as a tool to determine the optimal DFM resolution. As defined above, the optimal
archaeology-specific resolution for visualization will have a confidence level of three or
four for approximately 1

2 of the map. If there are no computational cost constraints, the
optimal resolution can be increased until at least one contiguous area remains at confidence
level six, regardless of undersampling in other areas. DFMs intended for the analysis of
GIS (or any DEM) will strive to be predominantly populated with confidence levels four
or higher.

To this end, the DFM confidence map can serve another purpose: providing clear
criteria for DEM or DFM segmentation into zones within which positioning accuracy
assessment can be evaluated and reported. In this way, accuracy indices can be offered for
each of the considered zones, which is one of the open issues in the field of DEM accuracy
assessment [72] and interpolation.

We believe that these are all important steps towards a general methodological matu-
rity of airborne LiDAR in archaeology, which is our ultimate goal.

Supplementary Materials: The QGIS plug-in is available online at https://github.com/stefaneichert/
OpenLidarTools.

https://github.com/stefaneichert/OpenLidarTools
https://github.com/stefaneichert/OpenLidarTools
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