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Abstract: Decoupling of multivariate functions is an important problem in block-structured
system identification. In the literature, different tensor-based solutions have been proposed to
solve this problem using a canonical polyadic decomposition (CPD) of a Jacobian tensor. In a
recent work, it has been proposed to add polynomial constraint on the model, which leads to a
constrained CPD model with two factors depending nonlinearly on each other. In this work, we
are interested in the estimation of the static nonlinearities with polynomial constraints. Using
the reformulation as a structured CPD, we propose an alternating least squares algorithm with
constrained rank-one terms. Numerical simulations show the performance and the usefulness of
the proposed method compared to a competing approach.

Keywords: polynomial decoupling, tensor decomposition, canonical polyadic decomposition,
structured tensors.

1. INTRODUCTION

In this paper, we focus on the decoupled representation
problem [Dreesen et al., 2015b] of multivariate polynomial
function. This problem has a great interest in block-
structured nonlinear system identification [Schoukens and
Tiels, 2017, Schoukens and Rolain, 2012, Schoukens and
Ljung, 2019, Karami et al., 2021] and signal processing
[Comon et al., 2015, Deville and Duarte, 2015], to mention
a few. In this context, the aim is to represent a given
multivariate polynomial function as linear transformations
of univariate polynomials in linear forms of the inputs.
Decoupling such functions is very useful for revealing
insights into the mechanisms of polynomial mapping and
for reducing the number of parameters.

Several methods use tensor decompositions [Kolda and
Bader, 2009, Comon, 2014] to find the decoupled repre-
sentation. Tensor decompositions are powerful tools from
multilinear algebra, which are used in a wide variety
of applications, notably in multisensor signal processing
[Miron et al., 2020]. The use of tensors presents several
advantages over matrices, such as uniqueness [Stegeman
and Sidiropoulos, 2007], i.e., the guarantee of identifiabil-
ity of the retrieved parameters, or even the availability of
powerful tools to perform tensor decompositions.

To compute decoupled representation, two classes of
tensor-based methods exist. First, the methods [Mulders
et al., 2014, Schoukens and Rolain, 2012, Schoukens et al.,
2014] that build a tensor from the coefficients of the
polynomial map. Second, methods [Dreesen et al., 2015b,a]
which consider the first-order derivatives of the cou-
pled nonlinear function. All methods lead to a canonical
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polyadic decomposition (CPD) [Harshman, 1970, Hitch-
cock, 1928] to retrieve the decoupled representation.

While the original methods of [Mulders et al., 2014,
Dreesen et al., 2015b] are based on unstructured CPD,
in practice we need to take the structure into account for
several reasons: first, to reconstruct the static nonlineari-
ties (especially in the noisy case), and second to improve
the identifiability of the model. In [Hollander, 2018], the
authors propose to parametrize the univariate nonlinear
functions of the decoupled model using the polynomial
coefficients. This results in introducing a polynomial con-
straint on the third factor of a 3-order Jacobian tensor.
Unfortunately, this may have negative implications since
this third factor depends nonlinearly on the second factor
of the tensor [Dreesen et al., 2015b].

In this paper, we propose a reformulation of the problem
which consists in enforcing the structure on the tensors
in the CP decomposition, in the spirit of structured low-
rank matrix approximation [Markovsky, 2012, 2008]. For
this, we use the correspondence between the polynomial
structure and a structural constraint on the rank-one
terms, based on results from [Usevich et al., 2020]. Our
numerical experiments show that this solution leeds to a
better convergence of the alternating least squares (ALS)
algorithm [Bro et al., 1999] for the CP decomposition.

This work brings the following contributions: (i) a novel
type of constraints on rank-one tensors resulting in a
new algorithm for decoupling multivariate polynomial
functions, (ii) two new projection methods of rank-one
tensors onto sets of rank-one tensors and structure tensors,
and (iii) an alternating projections estimation scheme to
impose the desired constraints. Note that in the structured
CP approximation problem we consider, the structure is
imposed on tensors and not on the factors as typically done



in the literature. In the context of the decoupling problem,
the advantage is that we replace the nonlinear constraint
on the factors with a linear constraint on the tensor.

The notations used in this paper are as follows. Scalars,
vectors, matrices and tensors are represented by x, x, X
and X , respectively. The symbols (·)T , (·)† and rank(·)
denote, respectively, the transpose, the pseudo-inverse and
the rank. The Frobenius norm is defined by || · ||F . I3,r

denotes the 3-order identity tensor of size r × r × r.
The matrix unfoldkX of size nk × n1 · · ·nk−1nk+1 · · ·nD
refers to the k-mode unfolding of X of size n1 × · · · ×
nD. The operator diag(·) forms a diagonal matrix from
its vector argument. The operator vec(·) forms a vector
by stacking the columns of its matrix argument. The
Kronecker, Khatri-Rao, outer and n-mode products are
denoted to by ⊗, �, ◦ and ×n.

The rest of the paper is organized as follows. Section 2
formalizes the problem of decoupling multivariate polyno-
mials. In Section 3, we recall the different tensor-based de-
coupling approaches and the link between them. Section 4
describes the proposed solution. The performance of this
latter is evaluated in Section 5. Finally, the conclusions
and some perspectives for future research are drawn in
Section 6.

2. MULTIVARIATE POLYNOMIAL DECOUPLING

The decoupling problem refers to the decomposition of
multivariate real polynomials as linear combinations of
univariate polynomials in linear forms of the input vari-
ables. In the sequel, the problem is formally expressed.
Let f : Rm → Rn be a multivariate polynomial map, with

f(u) = [f1(u) · · · fn(u)]T ,

and u = [u1 · · ·um]T .

It is said that f has a decoupled representation, if we have

f(u) = Wg(VTu), (1)

or equivalently,

f(u) = w1 · g1(vT1 u) + · · ·+ wr · gr(vTr u),

where V ∈ Rm×r, W ∈ Rn×r are transformation matrices,
vl and wl, for 1 ≤ l ≤ r, are respectively the columns of
V and W, and g : Rr → Rr follows

g(t1, · · · , tr) = [g1(t1) · · · gr(tr)]T ,
with gl : R → R is a univariate polynomial of degree at
most d expressed as:

gl(t) = c1,lt+ · · ·+ cd,lt
d.

Some results on the identifiability of (1) can be found in
[Comon et al., 2017], in which the authors show that this
decomposition is a special case of the X-rank decomposi-
tion [Landsberg, 2012].

3. TENSOR-BASED APPROACHES

There are several tensor-based methods in the literature
to find the decoupled representation of a given function.
These methods can be classified into two categories. In the
first category, there are methods which construct a tensor
from the polynomial coefficients [Schoukens and Rolain,
2012, Mulders et al., 2014], while in the second category
[Dreesen et al., 2015b], the solution is to build a tensor
from the Jacobian matrices of the function evaluated at a
set of different sampling points.

3.1 Tensor of unfoldings:

The first approach in [Mulders et al., 2014] proposes to
construct a n × m × δ tensor Q from the coefficients of
the polynomial map. Tensor Q follows a PD and can be
expressed as:

Q = I3,r ×1 W ×2 V ×3 Z, (2)

where δ =
∑d
k=1m

k−1, and we have

zl = [c1,l|c2,lvTl |c3,l(vl ⊗ vl)
T | · · · |cd,l(vl ⊗ · · · ⊗ vl︸ ︷︷ ︸

(d−1) times

)T ]T .

Based on [Usevich et al., 2020], tensor Q is a structured
tensor with

Qi,:,: = [ψ
(1)
i |ψ

(2)
i |unfold1ψ

(3)
i | · · · |unfold1ψ

(d)
i ], (3)

for 1 ≤ i ≤ n, where ψ
(k)
i is a k-order symmetric

tensor of size m × · · · × m, which can be constructed
from the coefficients of the polynomials. It has been
proven in [Mulders et al., 2014] that tensor Q has a CP
decomposition from which we can obtain the decoupled
representation.

3.2 Tensor of Jacobian matrices:

The second approach was proposed in [Dreesen et al.,
2015b]. This approach uses the first-order information of
f(u), and it relies on the observation that

Jf (u) : =


∂f1
∂u1

(u) · · · ∂f1
∂um

(u)

...
...

∂fn
∂u1

(u) · · · ∂fN
∂um

(u)


= W · diag

(
g′1(vT1 u) · · · g′r(vTr u)

)
·VT .

The n×m×N Jacobian tensor J is then constructed by
stacking the Jacobian evaluation at N different sampling
points u(j) ∈ Rm, for 1 ≤ j ≤ N , where

J :,:,j = Jf (u
(j)).

Therefore, J admits a CPD expressed as

J = I3,r ×1 W ×2 V ×3 H, (4)

where the columns of H ∈ RN×r have the following
structure

hl = [g′l(v
T
l u

(1)), · · · , g′l(vTl u(N))]T .

As with tensor Q, tensor J can also be used to extract
the decoupled representation of f(u).
One way to do this is to decompose the Jacobian tensor
J with a polynomial constraint on the columns hl as
proposed in [Hollander, 2018]. In the latter, the authors
have proposed to modify the relaxed ALS algorithm with
an intermediate projection of each column hl on the
column space of a Vandermonde matrix Xl expressed as

Xl =

1 2vTl u
(1) 3(vTl u

(1))2 · · · d(vTl u
(1))d−1

...
...

...
. . .

...

1 2vTl u
(N) 3(vTl u

(N))2 · · · d(vTl u
(N))d−1.


The coefficients in [Hollander, 2018] are then estimated as
follows.

ĉ = min
c

∥∥vec
(
unfold3J

)
− vec

(
H(V �W)T

)∥∥ ,
with cl = [c1,l, · · · , cd,l]T , H = [X1c1, · · · ,Xrcr], and
c = vec([c1, · · · , cr]).



3.3 Relation between tensors Q and J :

It has been shown in [Usevich et al., 2020] that the CP
decompositions in (2) and (4) are related, and we have

H = ATZ,

or equivalently,

J = Q×3 A
T ,

where A ∈ Rδ×N is a Vandermonde-like matrix whose
columns expressed as

aj = [1|2u(j)T |3(u(j) ⊗ u(j))T | · · · |d(u(j) ⊗ · · · ⊗ u(j)︸ ︷︷ ︸
(d−1) times

)T ]T .

It is worth recalling that if matrix A has its maximal rank
then the three following statements are equivalent [Usevich
et al., 2020]:

(1) the polynomial map f(u) admits the decomposition
(1),

(2) the tensor Q(f) admits the structured CPD

Q = Q1 + · · ·+ Qr, rank(Ql) = 1, Ql ∈ LQ,

(3) the tensor J (f) admits the structured CPD

J = J 1 + · · ·+ J r, rank(J l) = 1, J l ∈ LJ ,

where LQ ⊂ Rn×m×δ and LJ ⊂ Rn×m×N are, respec-
tively, the linear subspaces of tensors with the structure of
Q and J , Ql = wl ◦ vl ◦ zl and J l = wl ◦ vl ◦ hl.

4. PROPOSED SOLUTION

In this section, we rely on the results recalled in Section
3.3 to propose a new algorithm for the Jacobian tensor
decomposition, which imposes polynomial constraints on
both factors V and H simultaneously. In this paper, we
propose to decompose the tensor J while imposing a
structural constraint on the rank-one terms of J , denoted
J l, instead of imposing it only on the factor H as in
[Hollander, 2018], while two factors are linked. Based on
that, the proposed solution tries to solve the following
criterion:

min
W,V,H

‖J − [|W,V,H|]‖ s.t. rank(J l) = 1, J l ∈ LJ .

(5)

It should be noted that so far the structure of tensors in
LJ has not been defined, contrary to that of tensors in LQ,
which is known and has been given in (3). Consequently,
and to facilitate the task, we propose to reformulate
the problem (5) into an equivalent problem which is the
following

min
W,V,H

‖J − [|W,V,H|]‖ s.t. rank(J l) = 1, Ql ∈ LQ,

while keeping in mind that Ql = J l ×3 (AT )†.

4.1 Generic solution

To solve the problem (5), we propose an alternating least
squares algorithm with constrained rank-one terms, using
iterated projections on LQ and on the set of rank-one
tensors. The idea of this solution is to decompose tensor
J using a relaxed ALS, and then, by iterated projections
[Cadzow, 1988] find a rank-one solution that satisfies

J l = πLJ∩S1(wl ◦ vl ◦ hl), (6)

where πV denotes the projector onto V, and S1 is the set of
rank-one tensors. A standard approach to solve (6) is the
method of iterated projections, where we first project J l

onto LJ and then onto S1, i.e., we compute J l such that
J l = πS1πLJ (wl◦vl◦hl), and re-iterate until convergence.
In Algo. 1, we provide the algorithmic description of a
generic ALS-based solution to solve the problem (5). This
solution is composed of two parts, a first part to find
an unconstrained decomposition of the tensor J , then a
second part to ensure that tensors J l satify (6).

Algorithm 1 Generic Projected ALS (PALS)

Input: Tensor J of size n×m×N
Output: Factors W, V, H.

1: Initialize V, H
2: repeat

3: update W with min
W

∥∥∥∥unfold1J −W
(
H�V

)T∥∥∥∥2
4: update V with min

V

∥∥∥∥unfold2J −V
(
H�W

)T∥∥∥∥2
5: update H with min

H

∥∥∥∥unfold3J −H
(
V �W

)T∥∥∥∥2
6: for l = 1 · · · r do
7: J l = πLJ∩S1(wl ◦ vl ◦ hl)
8: end for

9: until a convergence test is satisfied or maximum
iterations exhausted

Alternatively to Algo. 1, one can avoid updating all
components in the same iteration and then project rank-
one terms sequentially, by using the Hierarchical ALS
(HALS) [Cichocki and Phan, 2009] algorithm. In Algo. 2,
we present an HALS-based solution for the problem (5).
By using HALS, instead of ALS, one can update only one
component per factor matrix and then project the rank-
one term before processing the next one. The rank-one
terms J l used in steps 4-6 of the HALS are computed
using J l = J − Σt6=l

(
wt ◦ vt ◦ ht

)
.

In the next subsections, we will go into more details on the
method of projections and on the details of the algorithm
PALS as a whole.

4.2 Projection of rank-one tensors

Projection onto LQ: Before presenting the details of the
PALS algorithm which solves the problem (5), we present
in Algo. 3 a pseudo-code of a solution which allows to
project tensors Ql onto subspace LQ (or equivalently J l

onto subspace LJ ). Based on the structure presented in
(3), the presented solution, referred to as rank-one tensor
rectification (R1R), allows to rectify the horizontal slices
of Ql, by imposing symmetry on the d blocks of matrices
Ql(i, :, :) as described in Algo. 3. In this algorithm, and
in order to match the structure (3), each block of the
horizontal slices is reshaped to a hypercubic tensor, which
is transformed to a symmetric tensor. Here, Gk denotes the
group of all possible permutations of {1, · · · , k}.



Algorithm 2 Generic Projected HALS (PHALS)

Input: Tensor J of size n×m×N
Output: Factors W, V, H.

1: Initialize W, V, H
2: repeat
3: for l = 1 · · · r do

4: update wl with min
wl

∥∥∥∥unfold1J l −wl

(
hl � vl

)T∥∥∥∥2
5: update vl with min

vl

∥∥∥∥unfold2J l − vl

(
hl �wl

)T∥∥∥∥2
6: update hl with min

hl

∥∥∥∥unfold3J l − hl

(
vl �wl

)T∥∥∥∥2
7: J l = πLJ∩S1(wl ◦ vl ◦ hl)

8: end for
9: until a convergence test is satisfied or maximum

iterations exhausted

Algorithm 3 Rank-one tensor rectification (R1R)

Input: Unstructured rank-one tensor A = w ◦ v ◦ z of
size n×m× δ
Output: B ∈ LQ of size n×m× δ
1: for i = 1 · · ·n do
2: F = A(i, :, :)
3: δ′ = 1
4: for k = 1 · · · d− 1 do
5: T = reshape

(
F(:, δ′ + 1 : δ′ +mk), [m, · · · ,m︸ ︷︷ ︸

(k+1) times

]
)

6: T = 1
(k+1)!

∑
σ∈Gk+1

σ(T )

7: F(:, δ′ + 1 : δ′ +mk) = unfold1T
8: δ′ ← δ′ +mk

9: end for
10: B(i, :, :) = F
11: end for

Remark 1. One should be cautious that, if B = R1R(A),
then

rank(A) = 1 6⇒ rank(B) = 1. (7)

Projection onto S1: As mentioned in Remark 1, project-
ing rank-one tensors Ql onto subspace LQ (or equivalently
J l onto LJ ) will cause a change of rank, i.e., the projected
tensor will no longer be in S1. Another projection onto
S1 is therefore necessary to ensure (6). It is worth noting
that when R1R is applied, the rectification is applied on
the horizontal slices of the tensors, which only rectify the
structure of the second and third modes factors. Formally,
this means that

πLQ

(
wl ◦ vl ◦ zl

)
= wl ◦ πLQ

(
vl ◦ zl

)
,

where LQ is the linear subspace of matrices having the
same structure as the slice matrices in (3). Thus, the mode-
1 factors wl remain unchanged after this rectification.
Based on that and to find a rank-one decomposition of
the projected tensor, it will therefore be sufficient to find
a rank-one approximation of matrix πLQ

(
vl◦zl

)
, using the

SVD, instead of finding a rank-one approximation of the
whole tensor using the ALS for instance.

4.3 Solution with iterated projections

In this part, we present Algo. 4, which details the solution
of iterated projections. This solution is to be used in line
7 in algorithms PALS and PHALS to ensure that J l =
πLJ∩S1(wl ◦ vl ◦ hl), or equivalently Ql = πLQ∩S1(wl ◦
vl ◦ zl). In this algorithm, we project the estimated rank-
one tensors onto the desired subspaces, while keeping in
mind that if we project Ql onto LQ, this does not mean
that the resulting Ql is a rank-one tensor as explained
in (7), and vice versa, i.e., if Ql is a rank-one tensor,
this does not means that Ql ∈ LQ. To solve this issue
several iterations are needed to find a solution Ql that
satisfies both Ql ∈ LQ and Ql ∈ S1. The idea of this
solution is to make an indirect projection of J l onto LJ
and S1. To do this, we use the tensor Ql, according to
the relation Ql = J l ×3 (AT )†, we project Ql onto the
desired subspaces and then go back to J l. Using this

Algorithm 4 Iterated projections solution

Input: Unstructured factors wl, vl and hl, matrix A of
size δ ×N as defined in 3.3
Output: Structured factors vl and hl.

1: Ql = [|wl,vl, (A
T )†hl|]

2: repeat . Projection of rank-one tensors Ql onto LQ
and S1 recursively

3: Ql = R1R(Ql)

4: [vl, zl] = SVD
(

unvecm×δ
(
(w†l · unfold1Ql)

T
)
, 1
)

5: until a convergence test is satisfied or maximum
iterations exhausted

6: hl = AT zl

solution in line 7 of the PALS algorithm, splits it in two
parts. The first one consists in computing a relaxed CP
decomposition with r components that best approximates
J , and the second part consists in projection steps which
perform a rectification of rank-one terms toward a desired
structure. A similar solution can be used for an HALS-
based algorithm, referred to as PHALS. The interest of
this type of approach is to impose the desired constraints
jointly and simultaneously on both factors; which has
positive implications on the convergence of the algorithm
as will be shown in the simulations.

5. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed solution by means of numerical computer simula-
tions. First, we generate a decoupled multivariate polyno-
mial function as in (1). The transformation matrices V
and W were randomly generated, with elements drawn

from a uniform distribution. Let f
(
Ĵ

(t))
= ||J − Ĵ

(t)
||F ,

where Ĵ
(t)

denotes the estimated tensor at the t-th it-
eration. We say that an algorithm has converged when∣∣∣f(Ĵ (t)

)
−f
(
Ĵ (t+1)

)∣∣∣
f
(
Ĵ (t)

) < ε or when the number of iterations

exceeds 1000. In the following experiment, we fix the order
d = 3, and vary the parameters m, n and r. Table 1 gives
the number of ill-converging experiments over 1000 runs.
In these experiments, we initialized all algorithms in a



random way, using the same initialization, and we counted
the number of ill-convering experiments.
One may remark that the number of ill-converging ex-
periments for the state-of-the-art solution is much higher
compared to the proposed PALS algorithm in the various
considered configurations. As explained before, this is due
to the fact that the algorithm proposed in [Hollander,
2018] does not take into account the nonlinear dependence
between V and H, meanwhile the proposed one does. In

Table 1. Number of ill-converging experiments
with d = 3 and N = 100.

(m,n, r) [Hollander, 2018] PALS PHALS

(2, 2, 3) 126 10 52

(3, 3, 3) 288 3 6

(4, 4, 3) 151 10 14

(4, 4, 4) 213 15 197

(5, 5, 5) 85 6 102

Figure 1, we plot f
(
Ĵ

(t))
, which corresponds to the MSE,

at each iteration t. For the plotted curves, all algorithms
have converged. It is worth noting that, although one iter-
ation of PALS or PHALS can be a little more expensive in
terms of computational complexity than one of [Hollander,
2018], PALS still has a faster convergence as shown in this
figure. Similar behavior was found in the majority of the
experiments that we ran. This means that PALS requires
less iterations to converge compared to [Hollander, 2018].
We have also noticed that PHALS has a similar rate of
convergence to PALS in the majority of cases, but it fails
much more often than PALS as shown in Table 1.

0 10 20 30 40 50 60 70 80 90 100
10-20

10-15

10-10

10-5

100

105

Fig. 1. MSE vs iterations.

In the second experiment, we simulate a multivariate poly-
nomial function which does not follow the representation
in (1). The coefficients of the function are generated ran-
domly. The parameters for this function are d = 3, m = 2
and n = 2. The NMSE is depicted in Figure 2 with respect

to rank r. The NMSE is defined as NMSE = ||Ĵ−J ||2
||J ||2 . We

note that the NMSE is high for low ranks, r ≤ 3, and
then we have a drop in the NMSE for a certain value of
the rank, namely r = 4 in this case. This shows that the
proposed method, from a certain value of the rank, works
as well for a polynomial function which follows (1) as for
a function which does not necessarily follow it.

In the last experiment, we consider a more realistic case,
where we simulate a decoupled multivariate polynomial as
in (1) with parameters d = 3, m = 2, n = 2 and r = 3, to
which we add a 2-D circular sine perturbation. Figure 3
represents the second output of the noisy function and

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10-20

10-15

10-10

10-5

100

Fig. 2. NMSE vs Rank.

its approximation using the proposed PALS algorithm.
The residual of the approximation is given in Figure 4.

Fig. 3. Left: the original function f2(u1, u2) with noise -
Right: the approximation of f2(u1, u2) using PALS
with r = 3.

In this figure, the residual has a circular sine shape, which
corresponds to the simulated perturbation.

Fig. 4. The residual of the approximation.

We give below the normalized factor matrices of the
original noise-free function and those of the approximation
of the noisy function with the trivial CPD ambiguities.

V =

[
0.8944 0.5547 0
0.4472 −0.8321 −1

]
, V̂ =

[
0.9017 −0.0226 −0.5780
0.4323 −0.9997 0.8160

]
W =

[
0 1 −0.8944
−1 0 0.4472

]
,Ŵ =

[
−0.0119 −0.8664 −0.9985
0.9999 0.4993 −0.0549

]
From this example, it can be shown that the proposed
solution is able to correctly estimate the factors V and
W, up to scaling and permutation ambiguities, which show



the effectiveness of the proposed solution for both, noisy,
as well as for non-noisy functions.

6. CONCLUSION

A new structured CPD based algorithm has been proposed
for decoupling multivariate polynomial functions. This
approach allows to simultaneously consider a nonlinear
dependence between two factors of a structured CPD
tensor. The proposed solution contraints the structure
of rank-one tensors, instead of constraining the factor
matrices. This type of constraint is new in the litterature,
and allows to impose structures on two factors of the
tensor jointly. The effectiveness of the proposed solution is
demonstrated by means of numerical simulations, in which
we showed that this method exhibits a better convergence
compared to the state-of-the-art. Also, we have shown that
the proposed solution has a faster convergence and works
well for non decoupled multivariate polynomial functions.
Possible applications of this work include the estimation
of nonlinearities in machine learning problems.
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