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Abstract Pore fluid pressurization, one of the main

causes of soil instability, is known to be anomalously

high for interstitial water in clay submitted to undrained

heating. This anomaly is attributed to the confinement

of water in nanometric micropores. In this work, we

use molecular simulation to investigate how confine-

ment affects the thermo-mechanical properties of water

and we use a new poromechanical formulation [5] to re-

late these confined properties to the macroscopic pres-

surization of water during undrained heating. This new

formulation considers the effects of confinement on the

thermo-mechanical moduli of water in micropores, and,

in particular, it accounts for the break of extensivity

with respect to the volume (Gibbs-Duhem equation not

valid). The predictions regarding water thermal pres-

surization are consistent with the available experimen-
tal data when considering a double porosity medium

(micro- and macro-pores) with osmotic equilibrium be-

tween the porosities. It suggests that the excess fluid

pressurization arises from the drainage of water from

the micro-porosity to the macro-porosity. The proposed

poromechanics offers the first quantitative thermo-hydro-

mechanical description of clay based on the physics

of adsorption with wide perspectives for applications

and transposition to other adsorption-sensitive materi-

als (cement-based materials, wood, bones, microporous

carbons etc.).
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1 Introduction

Water, the most common liquid on Earth, is ubiqui-

tous in soils and rocks. Groundwater is a vital resource

representing 30 % of all fresh water and it is key for a

wide variety of geological processes from faulting and

landslide to weathering. In particular, water strongly

affects the mechanics of clay-rich soils, notably swelling

clay hydration induces large deformations. This phe-

nomenon is the consequence of the strong confinement

of water in nanometer-large pores [3]. While the funda-

mentals behind swelling are reasonably well explained
through the concept of disjoining pressure [18, 33, 17],

other properties of confined water are still poorly un-

derstood. One such property is thermal pressurization.

Geomechanical experiments have shown that when sat-

urated clay is submitted to undrained heating, the pres-

surization of interstitial water exceeds what would be

expected from usual poromechanics [26] (see Figure 1).

The experiment of thermal pressurization as it is usu-

ally performed in geomechanics is a measure of the in-

crease of the interstitial pressure (water pressure) when

an undrained sample is heated under constant confining

stress. According to usual poromechanics, water pres-

surization during undrained heating is proportional to

the difference between the fluid and solid thermal ex-

pansions. A possible interpretation to explain the dis-

crepancy between poromechanics and experiment, is

that water adsorption in clay leads to an anomalously

high thermal expansion of the fluid [26] (see Figure 1).

Interestingly, similar water thermal expansion anoma-

lies have been reported in the literature for other mi-
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Fig. 1 (top) Interstitial water pressurization in Opalinus
Clay during an undrained heating experiments and compared
to the prediction with usual poromechanics assuming bulk
properties for water (adapted from [26]). (bottom) Experi-
mental results showing the anomalous thermal expansion of
confined water (adapted from [26] with data from [40] and
[16]).

croporous materials. Early evidence of the anomalous

thermal behavior of confined water were obtained in

the 1960’s for water in silica gels and in titanium ox-

ide powders [12, 13]. More recent investigations have

focused on cement paste [36, 16, 15] and porous sil-

ica [40, 14, 39] (Figure 1). Understanding water ther-

mal pressurization is key for a variety of applications,

since it can trigger instabilities such as shear bands or

cracking. For instance, typical values reported in the

literature for cement paste are circa 0.5 MPa.K−1 [16];

that is, even modest temperature changes can gener-

ate megapascals of pressure rapidly exceeding material

resistance. This is particularly critical for applications

with sudden temperature changes such as geothermal

energy, oil well cements [7], or concrete structures un-

der thermal stresses. This is also of critical importance

for the understanding of natural instabilities such as

earthquakes triggered by clay faults [9].

How confinement impacts the thermo-mechanical

properties of a fluid has been investigated by molec-

ular simulation techniques for both idealized systems

[29, 28] and realistic ones: porous silica [14, 39] and

cement paste [4, 23]. Oleinikova and Brovchenko [28]

show that the thermal expansion of hydration water at

the surface of model Lennard-Jones solutes is closely

anti-correlated with the density. The confined thermal

expansion can be several times larger or smaller than

the bulk thermal expansion for hydrophobic and hy-

drophilic surfaces, respectively. More precisely for hy-

drophilic surfaces (case of interest for clays), the con-

fined thermal expansion is lower than the bulk ther-

mal expansion except at low temperatures (below 350-

400K). Thermal expansion is not the only fluid property

affected by confinement. Notably, the results of [28] also

suggest that confined water is less compressible than

bulk water (hydrophilic case), which is of particular in-

terest for thermal pressurization. The interpretation of

[26], which attributes the pressurization to water ther-

mal expansion only, disregards other potential effects

of confinement such as the change of water compress-

ibility. Regarding more realistic systems, Garofalini et

al. [14] investigate the anomalous thermal expansion of

water in silica. In this work, anomalous expansion is

mostly attributed to the first layer of water at the solid

surface, part of which is dissociated, i.e., chemically

sorbed. These authors argue that water dissociation is

essential to explain the increase in thermal expansion.

In the case of Calcium Silicate Hydrates (C-S-H, bind-

ing phase of cement-based materials), Bonnaud et al.

[4] observe a confined thermal pressurization in meso-

pores very similar to the bulk thermal pressurization.

In the micropores of C-S-H, Krishnan et al. [23] observe

that anomalous thermal expansion depends on C-S-H

composition and correlates with the level of topological

constraint and density of water, whereas water dissoci-

ation is not regarded as a primary factor. The results

reported for silica and C-S-H are not easily transferable

to clays. On one hand, water does not usually dissociate

when adsorbed in clay [34, 25]. On the other hand, the

concept of topological constraint, relevant for the glassy

structure of C-S-H, makes little sense for crystalline clay

minerals with layered structure. Clay nano-structure

is layered like tobermorite, a crystalline mineral with

composition similar to C-S-H (Ca/Si of 1). Following

[23], confined water would have a slightly smaller ther-

mal expansion than bulk water, which seems consistent

with [28] for hydration water on hydrophilic solid sur-

faces. Accordingly, the interpretation proposed by Mon-

fared et al. [26] for the undrained heating experiment

(anomalously high thermal expansion) is questionable.
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In order to understand and predict quantitatively

thermal pressurization, one has to know 1- how the

thermo-mechanical properties of the confined fluid dif-

fer from that of the bulk fluid, and 2- how to upscale

those properties from the micropore to the porous medium.

In this respect, the framework of poromechanics [10]

has been extended to adsorption effect. In the particu-

lar case of clay, let us mention the work of Murad and

Cushman [27] which proposed a formulation adapted

to double porosities (micro- and macro-pores) in non-

isothermal conditions, in which the effect of adsorption

is accounted for through a contribution of micro-pore

size to fluid Helmholtz free energy. Yet, existing for-

mulations rely on Gibbs-Duhem equation (a modified

version in the work of [27]), which is not valid for wa-

ter adsorbed in clays. Gibbs-Duhem equation originates

from the extensive behavior of fluids, but the strong

confinement of adsorbed water in clay breaks the exten-

sivity. A clear evidence of this observation is the fact

that water disjoining pressure isotherm in clay varies

with the basal spacing (Fig. 3) [21]; so the pressure of

confined water is not only a function of temperature

and chemical potential, but also of fluid volume. As

we explain in section 2, a major consequence is that 6

moduli are needed in order to fully describe the thermo-

mechanical behavior of confined water instead of 3 for

usual bulk water (compressibility, thermal expansion,

and heat capacity). This fundamental change leads for

instance to distinguish the compressibility with respect

to the volume and that with respect to the number

of molecule. Thus, in isothermal conditions, pressure

of confined water has unrelated dependencies in vol-

ume and number of molecules, so that it is no more a

function of density only like bulk water (Fig. 3). The

formulation of poromechanics proposed by Murad and

Cushman [27] does recognize an effect of pore size on

pressure, but still considers density as a state parameter

to describe the confined fluid (Murad and Cushman [27]

restrict themselves to large micropores, ∼ 10 water lay-

ers, for which they reasonably assume the same density

for the bulk and adsorbed water). This leads to a mod-

ified Gibbs-Duhem equation that imposes constraints

on the thermo-mechanical description of the fluid. We

proposed recently a new formulation of poromechanics

extended to adsorption that does not assume Gibbs-

Duhem equation for the confined fluid [5]. In particular,

we showed that assuming Gibbs-Duhem or not is criti-

cal for the phenomenon of fluid thermal pressurization

in undrained conditions: assuming Gibbs-Duhem equa-

tion leads to an expression very close to usual porome-

chanics (which is known to significantly underestimate

the experiments of Monfared et al. [26]), whereas not

assuming Gibbs-Duhem equation significantly changes

the expression of pressurization which may provide an

explanation for the case of water in clays. Yet, any

quantitative application of this new theory requires to

first provide estimates of all 6 thermo-mechanical mod-

uli except heat capacity, at a scale hardly accessible to

experiments. In this paper, we use molecular simula-

tion techniques to do so and we apply quantitatively

the new poromechanics to the undrained heating test.

In section 2, we recall the new undrained thermo-

poro-mechanics [5] and we derive from it the expres-

sion of thermal pressurization during undrained heat-

ing. Section 3 is dedicated to the molecular simula-

tions and estimates of confined water properties. We

highlight the peculiarity of water by comparing with

a model Lennard-Jones fluid confined in a slit pore.

Finally, in section 4, we apply the new thermo-poro-

mechanics and confront the results to the experimental

thermal pressurization of Monfared et al. [26].

2 Poromechanical derivation of water thermal

pressurization

Let us consider a porous medium submitted to the

undrained heating experiment of Monfared et al. [26].

This experiment consists in measuring the increase of

fluid pressure when the porous medium is subjected to

an increase of temperature T while the amount of fluid

φρ in the medium (φ is the porosity, ρ is the fluid den-

sity in the pores) and confining stress σ are held con-

stant. Practical measurement of fluid pressure always

refers to the bulk fluid pressure Pb in osmotic equi-

librium with all the fluid in the pores: pressure is not

measured within a micropore, but the fluid confined

in micropores and the bulk fluid in larger pores share

the same chemical potential µ and temperature T . Ac-

cordingly, the quantity which is measured is ∂Pb
∂T

∣∣
σ,φρ

.

The appropriate thermodynamic quantity characteriz-

ing the fluid in the pore is not the pressure since micro-

pore pressure and bulk pressure can differ due to fluid

confinement in micropores. Chemical potential is the

appropriate quantity since osmotic equilibrium ensures

equality of the chemical potential throughout the poros-

ity. The derivative of bulk fluid pressure with respect to

temperature can be related to a derivative of chemical

potential µ thanks to Gibbs-Duhem equation:

∂Pb
∂T

∣∣∣∣
σ,φρ

= ρb
∂µ

∂T

∣∣∣∣
σ,φρ

+ sb (1)

where ρb and sb are the bulk fluid density and entropy

per unit volume. In order to relate this derivative to

the fluid and solid properties, one needs a constitu-

tive description of the porous medium relating fluid
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chemical potential to temperature, confining stress and

amount of fluid. Poromechanics [10], which is commonly

used in soil and rock mechanics, is well adapted. Here-

after, we derive the thermal pressurization following

usual poromechanics [10], and then following the new

poromechanics we developed to account for the effect

of confinement [5].

In usual poromechanics, the fluid filling the poros-

ity φ of a porous medium is supposed to have usual

’bulk’ properties: bulk modulus Kb, thermal expansion

αb, and volumetric heat capacity cvb . The undrained be-

havior of a porous medium is given by the following set

of constitutive equations relating the changes of spher-

ical stress σ, fluid chemical potential µ, and entropy

per unit volume s to the changes of volumetric strain

ε, amount of fluid φρb, and temperature T :


dσ = Kudε− Mb

ρb
d (φρb)−KuαudT

dµ = −Mb
ρb
dε+ M

ρ2b
d (φρb) +

Mαµ
ρb

dT

ds = dss + d (φsb) = Kuαudε− Mαµ
ρb

d (φρb) + cu
T dT

(2)

where:

– 1
M = 1

N + φ
Kb

is the undrained Biot modulus (N is

the drained Biot modulus),

– b is the Biot coefficient,

– Ku = K+Mb2 is the undrained bulk modulus (with

K the drained bulk modulus),

– Kuαu = Kαs + Mbαρφ is the undrained thermal

rigidity (with αs the thermal expansion of the solid

skeleton, αρφ = αφ + φαb the thermal expansion of

the fluid-solid mixture, and αφ = αs (b− φ)),

– Mαµ = Mαρφ−sb is the undrained thermo-chemical

coupling coefficient (with sb the fluid entropy per

unit volume),

– cu
T =

c+φcvb
T + Kb

φ (φαb)
2 −Mα2

ρφ is the undrained

heat capacity (with c the drained heat capacity).

Combining the constitutive equations (2) of usual

poromechanics with the expression of thermal pressur-

ization (Eq. 1), one obtains the following expression of

fluid thermal pressurization:

∂Pb
∂T

∣∣∣∣
σ,φρb

=
KMφ

Ku
(αb − αs) =

φ (αb − αs)
1/M + b2/K

(3)

Applying this relation, Monfared et al. [26] predict

a thermal pressurization much smaller than that mea-

sured (see Figure 1 top). Conversely, one can invert

equation (3) to estimate what should be the value of

the fluid thermal expansion (αb) that can lead to the

measured thermal pressurization. Doing so leads to the

anomalously high thermal expansion of water reported

in Figure 1 (bottom). As discussed in the introduction,

this back analysis is somewhat questionable since it as-

sumes that the fluid thermal expansion is the only pa-

rameter which is impacted by confinement. The expres-

sion (3) of thermal pressurization involves another fluid

property (Kb) which can also be affected by confine-

ment. The consequences of confinement are even more

complex since the non-validity of Gibbs-Duhem equa-

tion in micro-pores requires introducing additional fluid

properties. We addressed this issue by proposing a new

formulation of poromechanics adapted to confined flu-

ids without assuming Gibbs-Duhem equation [5]. In this

new formulation, the thermo-mechanical description of

the fluid confined in micropores requires to introduce a

total of 6 thermo-mechanical moduli:

1. the drained bulk modulus Kd = −V ∂P
∂V

∣∣
µ,T

2. the undrained bulk modulus KV = −V ∂P
∂V

∣∣
N,T

3. the rigidity with respect to the number of parti-

cles at constant volume and temperature KN =

−N ∂P
∂N

∣∣
V,T

4. the drained thermal expansion αd = 1
V

∂V
∂T

∣∣
P,Pb

5. the undrained thermal expansion αu = 1
V

∂V
∂T

∣∣
N,P

6. the volumetric heat capacity cv.

The special case of a fluid following Gibbs-Duhem

equation corresponds to Kd = 0, KV = KN , and

Kdαd = 0; so that one is left with a usual fluid de-

scription involving only 3 independent moduli. For the

sake of reability, in what follows, we use the follow-

ing notations : Kc = KN (subscript c for ’confined’),

γ = KV −Kd

KN , and δ = KV

KN . Therefore, assuming Gibbs-

Duhem equation is equivalent to considering γ = 1,

δ = 1, and (δ − γ)αd = 0. Let us now consider a

micro-porous medium in which the fluid in the pores

is described by this new set of properties. Adapting the

derivation of poromechanics to this new paradigm, the

set of constitutive equations (2) becomes [5]:


dσ = Keff

u dε− Meff beff

ρb
d (φρc)−Keff

u αeffu dT

dµ = −M
eff beff

ρb
dε+ Meff

ρ2b
d (φρc) +

Meffαeffµ

ρb
dT

ds = Keff
u αeffu dε− Meffαeffµ

ρb
d (φρc) +

ceffu

T dT

(4)

where:

– Meff = Meff

β

(
ρb
δρc

)2
is the effective undrained Biot

modulus (with 1
Meff = 1

N + φ
δKc

),

– beff = βbδρc
ρb

is the effective drained Biot coefficient

(with β = γ
δ−γ

φMd

δKc
and 1

Md = 1
N + 1

δ−γ
φ
Kc

),
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– Keff
u = Keff+Meff

(
beff

)2
is the effective undrained

bulk modulus (with Keff = K+Mdb2 the effective

drained bulk modulus),

– Keff
u αeffu = Kαs + Meff beff

β αeffρφ is the effective

undrained thermal rigidity (with αeffρφ = β δρcρb (αφ + φαuc )

the effective thermal expansion of the fluid-solid mix-

ture),

– αeffµ = αeffρφ +δ (1− β)φeff
(
αuc − αdc

)
− sb
Meff is the

effective undrained thermo-chemical coupling coef-

ficient (with φeff = φρc
ρb

an effective (apparent)

porosity),

– and
ceffu

T =
c+φcvc
T + δKc

φ (φαuc )
2 − Meff

β

(
αeffρφ

)2
is

the effective undrained heat capacity.

Based on this new formulation of poromechanics,

one obtains the following expression of the thermal pres-

surization (Eq. 1):

∂Pb
∂T

∣∣∣∣
σ,φρc

=

∂Pb
∂Pc

∣∣∣
T,φρc︷︸︸︷
ρb
δρc

∂Pc
∂T |σ,φρc︷ ︸︸ ︷

KMeff

Keff
u

φ (αuc − α)

+
ρb
ρc

δ − γ
γ

Kc

(
αuc − αdc

)
︸ ︷︷ ︸

∂Pb
∂T

∣∣∣
Pc,φρc

(5)

Comparing this expression of thermal pressurization

to the usual one (Eq. 3), it appears that the effect of

confinement is much more complex than just the change

of thermal expansion (αb → αuc ). One can interpret

the different contributions as a combination of partial

derivatives. The first term combines the increase of bulk

pressure due to the increase of confined pressure with

the increase of confined pressure due to undrained heat-

ing. This term is analogous to the usual expression (Eq

3), but involves the effective properties of the porous

medium and a multiplicative factor corresponding to

the relative increase between bulk and confined pres-

sures at constant temperature. The second term on the

right hand side is much less intuitive, primarily because

it does not depend on the porous solid moduli or even

on the porosity. Carefully analyzing the confined fluid

behavior, one can interpret this term as the increase

of bulk pressure with temperature at constant confined

pressure and amount of fluid. This phenomenon arises

from a mismatch between the thermal expansion at con-

stant bulk pressure and at constant confined pressure

: δ−γ
γ

(
αuc − αdc

)
= 1

Vc
∂Vc
∂T

∣∣
Pb,φρc

− 1
Vc

∂Vc
∂T

∣∣
Pc,φρc

. This

contribution to thermal pressurization is intrinsic to the

confined fluid and holds irrespective of the poromechan-

ical properties of the solid or of the porosity.

How confinement impacts thermal pressurization is

therefore quite complex. A high confined density with

respect to the bulk tends to reduce the thermal pres-

surization. The effect of the other unusual factors (γ,

δ, αuc and αdc) is hard to anticipate unless typical val-

ues are considered. Since γ < δ and we typically ex-

pect αuc > αdc > 0 for clays, one can expect a positive

contribution of the second term of Equation (5), i.e.,

an increase of the thermal pressurization. The magni-

tude of the second contribution scales with the confined

modulus Kc, i.e., it is of similar magnitude as the first

contribution. Therefore, the effect of confinement can

be major. Further analysis requires a quantitative ap-

plication with realistic values of the various parameters,

which is the focus of section 4.

It is interesting to investigate the special case where

Gibbs-Duhem equation would apply to the confined

fluid (γ = 1, δ = 1, and (δ − γ)αd = 0). In that case,

the expression of thermal pressurization is dramatically

simplified and one gets an expression very close to that

of usual poromechanics:

∂Pb
∂T

∣∣∣∣
σ,φρ

=
ρb
ρc

KMφ

Ku
(αuc − αs) (6)

The expression is identical to that of usual porome-

chanics (Eq. 3) with a prefactor involving the ratio

between bulk and confined densities. As mentioned in

the introduction, existing literature on properties of ad-

sorbed water in hydrophilic solids suggests that, in the

range of temperature of interest, thermal expansion αuc
and density ρc are only little affected by confinement

whereas compressibility 1/Kc is significantly reduced.

Accordingly, following equation (6), the main impact

of confinement would be an increase of the undrained

bluk modulus Ku, that is a decrease of thermal pressur-

ization, which would be inconsistent with experimental

measurements. Therefore, considering Gibbs-Duhem equa-

tion valid or not seems of critical importance to explain

the undrained heating experiment.

The poromechanical formulation (4) considers that

all the fluid in the pores is confined. But many micro-

porous materials, including clay, also contain macro-

pores in which the fluid is bulk. Confined and bulk flu-

ids are in osmotic equilibrium and the fluid transfers

between the two porosities may be important in the

undrained heating experiment. To address this ques-

tion, we adapted the poromechanical formulation to

double porosity media. The constitutive equations of a

double porosity medium (micro- and macro-porosites)

in undrained conditions are:
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
dσ = K̃ ′

eff

u dε− M̃eff b̃eff

ρb
d (φρ)tot − K̃ ′

eff

u α̃′
eff

u dT

dµ = − M̃
eff b̃eff

ρb
dε+ M̃eff

ρ2b
d (φρ)tot +

M̃eff α̃′
eff
µ

ρb
dT

ds = K̃ ′
eff

u α̃′
eff

u dε− M̃eff α̃′
eff
µ

ρb
d (φρ)tot +

c̃′
eff
u

T dT

(7)

where

– b̃eff = bb + β̃ δρcρb bc is the effective Biot coefficient

(with β̃ = M̃d
(

γ
δ−γ

φc
δKc
− ρb

δρc
1
Nbc

)
and 1

M̃d
= 1

Ncc
+

1
δ−γ

φc
Kc

),

– 1
M̃eff

= 1
Ñeff

+ φ̃eff

Kb
is the effective undrained Biot

modulus (with 1
Ñeff

= 1
Nbb
− 1

M̃d

(
β̃δρc
ρb

)2
+φeffc

(
δγ
δ−γ

ρc
ρb

1
Kc
− 1

Kb

)
the effective Biot modulus,

φ̃eff = φb+φc
ρc
ρb

an effective porosity, φeffc = φc
ρc
ρb

),

– K̃ ′
eff

u = K̃eff+M̃eff
(
b̃eff

)2
is the effective undrained

bulk modulus (with K̃eff = K+ M̃db2c the effective

drained bulk modulus),

– K̃ ′
eff

u α̃′
eff

u = K̃eff α̃eff

+M̃eff b̃eff
(
α̃effρφ + δ

(
1− β̃

)
φeffc

(
αuc − αdc

))
is the

effective undrained thermal rigidity (with

K̃eff α̃eff = K̃effαs + M̃dbcφc
(
αdc − α

)
the effec-

tive drained thermal rigidity),

– α̃′
eff

µ = α̃effρφ + δ
(

1− β̃
)
φeffc

(
αuc − αdc

)
− sb

M̃eff

is the effective undrained thermo-chemical coupling

coefficient (with α̃effρφ = (αφb + φbαb)+β̃
δρc
ρb

(αφc + φcα
u
c )

the effective thermal expansion of the fluid-solid mix-

ture),

–
c̃′
eff
u

T is the effective undrained heat capacity (see

expression in [5]);

The double porosity poromechanics involves prop-

erties of the porous solid specific to each porosity: φb,

φc, bb, Nbb, αφb , bc, Ncc, and αφc are the porosities,

Biot coefficients and moduli, and thermal expansions

of the macro- and micro-pores, respectively; and Nbc
is the Biot modulus characterizing the mechanical cou-

pling between the two porosities. Combining the double

porosity poromechanics with the expression of the fluid

pressurization during undrained heating (1), we obtain:

∂Pb
∂T

∣∣∣∣
σ,(φρ)tot

=

K̃effM̃eff

K̃ ′
eff

u

(
φb (αb − α) +

(
β̃
δρc
ρb
− b̃effM̃d

K̃eff
bc

)
φc (αuc − α)

+

((
1− β̃

) δρc
ρb

+
b̃effM̃d

K̃eff
bc

)
φc
(
αuc − αdc

))

(8)

This expression of the thermal pressurization share

similarities with the case of the single porosity medium

(Eq. 5): there are two contributions for the mismatch

of thermal expansion between the fluid and the solid

(one per porosity) and a contribution due to the intrin-

sic pressurization of the confined fluid. However, the

different terms are now modulated by complex correc-

tion factors that capture the fluid transfers between the

porosities, the effect of which is hard to anticipate.

3 Estimation of confined water properties by

molecular simulations

The application of the extended poromechanics faces a

difficulty. While conventional macroscopic experiments

can assess the effective properties (bulk modulus, Biot

coefficient and modulus, thermal expansions and heat

capacity) and usual state equations provide the bulk

fluid properties, estimating the properties of the con-

fined fluid is very challenging. Existing experimental

techniques in the literature that claim measurements

of confined properties, generally measure an effective

property and resort to an inverse analysis based on

poromechanics or equivalent theories (see for instance

[31, 15, 32, 38]). True measurement at the scale of the

confined fluid require experiments with nanometric ac-

curacy such as the surface force apparatus [22], or atomic

force microscopy [30]. As an alternative, in this work,

we use molecular simulation techniques to estimate the

confined properties from the fundamental interactions

between atoms and molecules. Recent advances in molec-

ular simulation techniques and models offer realistic

descriptions of the nanometric scale even for complex

materials such as clays; which conveniently supplement

experiments at this scale. All thermo-mechanical prop-

erties (Kd
c , KV

c , KN
c , αdc , α

u
c , and cvc ) are second or-

der derivatives of appropriate thermodynamic poten-

tials and can be computed either by fluctuation for-

mula or by finite differences. For instance, the thermal

expansion can be obtained via the cross-correlation of

volume (V ) and enthalpy (H) in the isobaric-isothermal

ensemble [1] : α = 〈∆V∆H〉NPT /kT 2V , where ∆X =

X − 〈X〉. And, it can also be estimated by finite differ-

ences between two simulations at different temperatures

but same pressure : α =
(
∂ 〈V 〉 /∂T |N,P

)
/ 〈V 〉. In this

work, we use finite differences, which proves computa-

tionally more efficient (fluctuation formula were used

for cross-checking only).

To study the confined properties of water in clays,

we consider a realistic molecular simulation of Na-mont-

morillonite (Figure 2). In this simulation, water SPC/E
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Fig. 2 (top) Representations of the LJ fluid and water con-
fined in a slit pore and in Na-Montmorillonite, respectively.
(bottom) Thermal expansion isobars of various liquids as
function of temperature at 20% of the critical pressure. A
common scale is adopted by reducing thermal expansion and
temperature axis with respect to the critical temperature of
each liquid. We also include the cases of the water SPC/E
model and of the LJ fluid (the accurate EOS of [35] is used
for the LJ fluid). Data for the various liquids are from NIST
(https://webbook.nist.gov/).

[2] and sodium ions are confined between mineral layers

of montmorillonite. The ClayFF potential [11] is used to

model the interactions with the solid layer. The struc-

tural formula is Na6[Si62Al2][Mg4Al28]O160(OH)32.nH2O

(see [8] for the details about the atomic structure em-

ployed here). The total charge density of the layers is

-0.124 C.m2. Grand Canonical Monte Carlo and molec-

ular dynamics simulations are performed to obtain the

drained and undrained behavior, respectively (see [21]

and [20] for details about the simulations). Figure 3 il-

lustrates typical results for both drained and undrained

behaviors at different temperatures and number of wa-

ter molecules (undrained case only).

It is important to note that bulk water has a very

unusual behavior regarding thermo-mechanical couplings,

and one has to make sure that this unusual behavior is

well captured by the molecular model of water we use.

Water density is maximum at 4◦C, so its thermal ex-

pansion is negative below this temperature. Above 4◦C,

water thermal expansion is positive but significantly

smaller than that commonly observed for other liquids.

Figure 2 (bottom) compares the thermal expansion of

various liquids (non-polar, quadru-polar, di-polar) to

that of water as a function of temperature. A common

10 12 14 16 18

Basal spacing ( )

200

0

200

400

600

800

D
is

jo
in

in
g

 p
re

ss
u

re
 (

M
P

a
)

0W
domain

1W
domain

2W
domain

1W undrained
ρsurf=0.297, T=300K

ρsurf=0.313, T=300K

ρsurf=0.305, T=400K

2W undrained
ρsurf=0.506, T=300K

ρsurf=0.521, T=300K

ρsurf=0.513, T=400K

Drained
300K

500K

0.85 0.90 0.95 1.00 1.05 1.10 1.15

Density (g/cm3 )

0

50

100

150

200

250

300

350

400

P
re

ss
u

re
 (

M
P

a
)

T=300K

Undrained
1W (ρsurf=0.297)

1W (ρsurf=0.305)

1W (ρsurf=0.313)

2W (ρsurf=0.506)

2W (ρsurf=0.513)

2W (ρsurf=0.521)

bulk water

Fig. 3 Illustration of the drained and undrained behaviors
of the clay layer. (top) Disjoining pressure as function of the
basal spacing. The shaded domains correspond to the stable
basal spacings (decreasing branches of the disjoining pressure
isotherm), referred to as xW with x the number of water
layers in the micropore. The number of water molecules used
for the undrained simulations are chosen to be representative
of the 1W and 2W states. The dashed and dotted curves show
the effect of temperature and number of molecules (undrained
case) on the mechanics. (bottom) Undrained pressure-density
curves for the 1W and 2W states of water at different amount
of surface density ρsurf (amount of water per unit area, in
unit of mg/m2). Because of adsorption, pressure is no more
a function of density only, as in the case for bulk water. All
molecular simulations were performed following the method
described in [21].

scale is obtained by considering the values of thermal

expansion and temperature reduced with respect to the

critical temperature of each liquid. Each curve is an iso-

bar at a pressure corresponding to 20% of the critical

pressure. Interestingly, all liquids except water follow

a single master curve. Water deviates from this mas-

ter curve and exhibits anomalous thermal expansion

at temperatures below 0.6Tc ∼ 100◦C. The anomalous

behavior of water at low temperatures has long been

known and is attributed to the structuring nature of

the hydrogen bond network [19, 24]. We display in Fig-

ure 2 (bottom) the case of the SPC/E model of water,
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which follows well the thermal expansion of real water

and deviates from the other liquids at low temperatures.

SPC/E is not perfect since it over-estimates a little the

thermal expansion of real water, but this is accurate

enough to clearly discriminate between the case of con-

ventional liquids and that of water.

For the sake of comparison, we also study the thermo-

mechanical properties of a 2D Lennard-Jones (LJ) fluid

in a slit pore (Figure 2). A 12-6 LJ fluid (Uff = 4ε(
(σ/rff )

12 − (σ/rff )
6
)

) is confined in a slit pore made

of two straight walls interacting with the fluid through

a 9-3 Lennard-Jones potential (Ufs = ε
(

2
15 (σ/rfs)

9

− (σ/rfs)
3
)

). The LJ liquid is an interesting bench-

mark since its thermo-mechanical behavior is quite rep-

resentative of that of most liquids (Figure 2). Therefore,

confronting LJ and SPC/E should allow us to know

whether the anomalous thermal pressurization of inter-

stitial water in clay is a phenomenon common to other

confined fluid or specific to water.

In the confined volume of a planar nanometric pore,

the fluid density is not uniform, instead one observes

a layered structure. Disjoining pressure isotherms ob-

tained in the Grand Canonical ensemble exhibit oscil-

lations (Fig. 3), which means that some basal spacings

are mechanically unstable (increasing branches of the

isotherms), while others are stable (decreasing branches).

One refers to the stable branches as to ’xW’ where x

is the number of fluid layers, i.e., 0W when there is

no fluid, 1W when there is one layer etc.. The realis-

tic model of Na-montmorillonite exhibits 2 water layers

[21], whereas the idealized model of the 2D LJ fluid ex-

hibits 5 fluid layers or more [6]. Undrained properties

(KV
c , KN

c , and αuc ) are computed at controlled num-

ber of fluid molecules, but one must select appropri-

ate numbers of fluid molecules corresponding to stable

basal spacings. Since the behavior of a confined fluid

may well depend on the number of fluid layers, we con-

sidered 1W and 2W for the realistic Na-montmorillonite

and 1W, 3W and 5W for the idealistic LJ model. Thus,

the results reported in this paper for the confined fluid

refer to these ’xW’ states.

Another issue is to decide the thickness of the micro-

pore. In the molecular simulation, we impose the basal

spacing of the system, which includes the thickness of

both the micropore and the solid layer. The solid atoms

are considered rigid and one only simulates the intersti-

tial fluid molecules. Therefore, choosing the micropore

volume is equivalent to setting the thickness of the solid.

Our choice in this paper is to set the thickness of the

solid as the value of the basal spacing in the dry state

(0W) for which the disjoining pressure at 300K is 0, that

is 9.66Å (and 1.4σ for the LJ fluid in a slit pore). This

is a rather ’mechanical’ definition. Many alternatives

definitions are possible, for instance the basal spacing

at which water molecules start adsorbing in the micro-

pore (∼ 9.8 Å), or the distance between the centers

of the outer-most atoms of the solid plus their respec-

tive Lennard-Jones radius (9.58 Å). Anyway, all these

choices differ by ±0.2 Å. To show the impact of this

choice on our results, we provide error bars in the ther-

mal pressurization curves of section 4 that corresponds

to a ±0.2 Å uncertainty in the thickness of the solid.

Note that the choice of volume of the confined fluid has

an impact on the computation of the pressure since it is

involved in the virial formula [1], but the product of the

pressure by the volume is unambiguous. One can take

advantage of this observation to convert the results of

one choice of micropore volume Vc to another one V ′c . In

the limit of Pc � Kc, we have : K ′c = Vc
V ′c
Kc, γ

′ =
V ′c
Vc
γ,

δ′ =
V ′c
Vc
δ, α′uc = Vc

V ′c
αuc , α′dc = Vc

V ′c
αdc , c

′v
c = Vc

V ′c
cvc , and

ρ′c = Vc
V ′c
ρc, where the ′ refers to the properties corre-

sponding to the choice V ′c . Therefore, it is quite easy to

convert the results from one choice of micropore size to

another one. For the sake of clarity, we prefer displaying

results in term of basal spacing (Figs. 3 and 7), which

is the only unambiguous size, but confined properties

displayed in Figures 4 and 6 do assume a solid thickness

of 9.66Å.

The confined water properties estimated by molec-

ular simulations are provided in Figures 4, 6 and 7. In

Figure 4, we report the results of undrained thermal

expansion (αuc ) and undrained thermal rigidity (κc =

KV
c α

u
c ). In Figure 6, we report the results of undrained

rigidities with respect to volume (KV
c ) and number

of molecules (KN
c ). And in Figure 7, we report the

drained properties (density, disjoining pressure) from

which one can estimate the drained bulk modulus (Kd
c )

and drained thermal expansion (αdc). We do not report

any results of heat capacity since it is not involved in

the expression of fluid pressurization during undrained

heating (Eq. 8). Based on these results, we can derive

the confined water properties listed in Table 1.

Let us analyze first thermal expansion and rigidity

(Fig. 4). We display the properties as function of tem-

perature (T ) at various confined pressures (Pc). The

temperatures and pressures considered correspond to

the domain of liquid water (temperatures from 273.14K

to 647.3K, and pressures up to a few times the critical

pressure Pcr = 22.6 MPa). We also display the bulk wa-

ter properties as a reference (for the same temperatures

and pressures). For the sake of comparison, we provide

in Figure 5 the thermal expansion and rigidities of the

LJ fluid confined in a slit pore. Again, the temperatures

and pressures considered for the LJ fluid correspond to
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Fig. 4 Thermal expansion (top) and thermal rigidity (bot-
tom) isobars of water SPC/E bulk and confined in Na-
Montmorillonite.

the domain of LJ liquid (temperatures from 0.40ε/k to

0.46ε/k, and pressures up to a few times the critical

pressure Pcrσ
2/ε = 0.02). Doing so we can confront the

thermo-mechanical coupling moduli of water to that of

a more ’conventional’ fluid. According to these results,

thermal rigidity is higher for the confined fluids than for

the bulk fluids; whereas thermal expansion is smaller.

It should be noted, however, that the results of wa-

ter SPC/E and LJ fluids exhibit some significant dif-

ferences. The confined thermal rigidity is 3 to 4 times

larger than the bulk one for 1W water and 1.5 to 2 times

larger for 2W water. The relative difference is less pro-

nounced for the LJ fluid: the confined thermal rigidity

is almost equal to the bulk one at low temperatures and

does not exceed 2 times the bulk one at high temper-

atures. The confined thermal expansion is 3 to 4 times

smaller than the bulk one for the LJ fluid, whereas it

is almost equal or slightly smaller for water SPC/E.

For both fluids, the compressibility is much smaller for

the confined fluid than for the bulk fluid. Overall, the

confinement increases the compressibility similarly for

water SPC/E and LJ fluid, but the change in thermal

0.40 0.41 0.42 0.43 0.44

Temperature kT/ε

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
h

e
rm

a
l 

e
xp

a
n

si
o
n

 ε
α
/k

1W
Pσ2 /ε

0.02

0.04

0.06

3W
Pσ2 /ε

0.02

0.04

0.06

5W
Pσ2 /ε

0.02

0.04

0.06

bulk
Pσ2 /ε

0.02

0.04

0.06

0.40 0.41 0.42 0.43 0.44

Temperature kT/ε

0

2

4

6

8

10

12

T
h

e
rm

a
l 

ri
g

id
it

y 
σ

2
/k

1W
Pσ2 /ε

0.02

0.04

0.06

3W
Pσ2 /ε

0.02

0.04

0.06

5W
Pσ2 /ε

0.02

0.04

0.06

bulk
Pσ2 /ε

0.02

0.04

0.06
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The results are reduced with respect to the LJ parameters σ
and ε.

properties are somehow dissimilar, in particular at low

temperatures (below 400K) which are of most interest

for applications. Relative to their respective bulk, ther-

mal properties of confined water SPC/E are anoma-

lously higher than that of the confined LJ fluid. The

results of Figure 4 are consistent with the results re-

ported by [23] for low Ca/Si C-S-H and by [28] for hy-

dration water near model solid surfaces (see Fig. 14 for

the hydrophilic cases, i.e., low values of U0). Oleinikova

and Brovchenko [28] show that confined thermal expan-

sion correlates very well with density, which supports a

purely physical origin of the properties of confined wa-

ter. Overall, the confined undrained thermal expansion

αuc exhibits some dependence on temperature, but little

dependence on confined pressure. In Table 1, we adopt

fits for the temperature dependence, linear for 2W wa-

ter and polynomial for 1W water. The black lines in

Figure 4 (top) correspond to these fits.

Let us now focus on the undrained rigidities KV
c

and KN
c (Fig. 6). First, it is important to note that the

confined water rigidities clearly differ by almost a factor
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2 which supports the analysis that Gibbs-Duhem equa-

tion does not apply to confined water (following Gibbs-

Duhem equation, one would have KV
c = KN

c ). There-

fore, relaxing the assumption about Gibbs-Duhem equa-

tion seems necessary to rigorously capture the behavior

of water confined in clays. According to Figure 6, KV
c

and KN
c seem almost insensitive to confined pressure

Pc but little sensitive to temperature T in the ranges of

interest for this work (domain of liquid water). More-

over, the ratio δ = KV
c /K

N
c appears independent of

both temperature and pressure (but a little different

for 1W and 2W waters). Accordingly, in Table 1, we

adopt linear fits in temperature for the expression of

Kc and fixed values for δ. The black lines in Figure 6

(top) correspond to the linear fit.

Finally, let us focus on the drained properties (Fig.

7). Owing to the Grand Canonical steps, the drained

simulations are usually much less accurate than the

undrained simulations (see Fig. 3). So, only rough esti-

mates are achieved for the drained properties (Kd
c and

αdc). The drained properties are roughly estimated by
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Fig. 7 Drained properties of confined water in Na-
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density as function of the basal spacing. The shaded areas
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ing pressures between −100 MPa and +100 MPa. (bottom)
Disjoining pressure as function of the basal spacing. The lin-
ear fits of the 1W and 2W branches correspond to the values
of Kdc and αdc estimated. The curves at 400K and 500K are
shifted up of 200MPa and 400MPa for the sake of readability.

considering that γ =
KV
c −K

d
c

KN
c

and αdc have fixed value,

independent of temperature and pressure (but different

between 1W and 2W waters). The fits obtained corre-

spond to the dashed and dotted lines in Figure 7 (bot-

tom), and the corresponding values are listed in Table

1. It is worth noting that the drained rigidity Kd
c and

thermal expansion αdc exhibit non negligible values: Kd
c

is of same order of magnitude as KV
c and KN

c , and αdc
of same order of magnitude as αuc . Again, this observa-

tion confirms that Gibbs-Duhem equation is not valid

for the confined water (Gibbs-Duhem equation would

impose Kd
c = 0 and Kd

cα
d
c = 0). Regarding the con-

fined density ρc, we find it is almost equal to the bulk

density ρb in the range of interest for the 1W and 2W

domains (Fig. 7 (top)). So we adopt a value of 1 for the

ratio ρc/ρb.
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Property 1W water 2W water
Kc (GPa) 7.1 − 0.012 · (T − 300K) 1.95 − 0.0035 · (T − 300K)
δ 1.86 2.17
γ 1.02 0.87
αuc (10−5K−1) 6.1863 · 10−6 · T 3 − 0.0088373 · T 2 + 4.2189 · T − 619.60 0.15231 · T + 8.3333
αdc (10−5K−1) 36 5
ρc/ρb 1 1

Table 1 Values and expression of the confined properties of 1W and 2W water estimated from the molecular simulation
results. The temperature T is expressed in Kelvin in the expressions.

4 Application to the undrained heating

experiment

Now that the confined fluid properties are known, one

can apply poromechanics to the thermal pressurization

experiments of Monfared et al. [26]. These experiments

are performed on saturated samples of the Shaly facies

of Opalinus Clay (Mont Terri laboratory) in which ap-

proximately half of the porosity is made of micropores.

The mineral composition of Opalinus Clay is complex

with 65% of various types of clay, out of which only

smectites are swelling clays, i.e., require a poroelastic

description of the adsorbed interlayer water. With no

further details about the type of smectite, we use the

properties of confined water obtained for Na-Montmorillonite,

which is a necessary simplification with respect to the

real material. The considered Na-Montmorillonite is quite

typical (surface charge of -0.124 C/m2 with substitu-

tions randomly distributed both in the octahedral and

tetrahedral layers). To the best of our knowledge the set

of 6 thermo-mechanical moduli describing the drained

and undrained behavior of confined water has never

been estimated before. So there is no basis to confront

our results, and the sensibility to the type and proper-

ties of the clay is unknown so far and is left for future

works.

Hereafter, we successively consider the usual porome-

chanics (Eq. 3), the poromechanics extended to mi-

croporous media (Eq. 5), and the poromechanics ex-

tended to double porosity media (Eq. 8). In all cases,

one has to provide the poromechanical properties of

the porous solid (K, b etc...). For this purpose, Mon-

fared et al. [26] provide the values of the drained com-

pressibility (κd = ∂ε
∂σ

∣∣
Pfluid,T

= 1.85 · 10−6 kPa−1), of

the unjacketed compressibility (κs = − ∂ε
∂Pb

∣∣∣
σ=−Pb,T

=

2 · 10−8 kPa−1), of the solid thermal expansion (αs =

3 · 10−5 K−1), and of the porosity (φ = 0.18) half of

which are macropores and the other half micropores.

Additional information is needed to fully characterize

the porous solid in the double porosity case. Accord-

ingly, we will consider two usual assumptions in soil

mechanics: incompressibility of the solid ks → ∞, and

iso-deformation of the micro and macro porosities (i.e.,
bb
φb

= bc
φc

). Apart from those two assumptions, no other

assumption or fitting parameter is used in what follows.

All confined water properties needed are listed in Table

1, and bulk water properties were obtained from NIST

(https://webbook.nist.gov/).

Let us first apply usual poromechanics. The drained

compressibility can be identified as the inverse of the

bulk modulus : K = 0.54 GPa. For an incompressible

solid, b = 1 and 1
N = 0. The unjacketed compress-

ibility should verify κs = 1−b
K which leads to a Biot

coefficient of b = 1 − κs
κd

= 0.99 very close to the as-

sumption of incompressible solid. Note that the Biot

coefficient is known to vary significantly with the con-

fining stress [37] and is close to 1 here because the con-

fining stress in the experiments of Monfared et al. [26]

is relatively small (4.1 MPa). Integrating the thermal

pressurization factor of usual poromechanics (Eq. 3),

we obtain the pressurization curve displayed in Figure

8. This estimation is almost identical to that of Mon-

fared et al. [26] (Figure 9). The usual poromechanics

underestimates significantly the experimental pressur-

ization.

Let us turn to the poromechanics extended to mi-

croporous media. The drained compressibility can be

identified as the inverse of the effective bulk modu-

lus: Keff = 0.54 GPa, while the effective Biot co-

efficient is related to the unjacketed compressibility:

beff = 1 − κs
κd

= 0.99. Assuming incompressibility of

the solid, b = 1 and 1
N = 0 so that beff = γ ρcρb . Since

ρc
ρb
≈ 1 and γ = 1.02 and 0.87 for 1W water and 2W

water, respectively, one gets beff = γ = 1.02 (1W)

or 0.87 (2W). While the value for 1W water could be

consistent with the experiment, the value for 2W wa-

ter is not. This points to an inconsistency of the ex-

tended poromechanics. Any tentative parameterization

of the poromechanics seems to fail. And any attempt

to apply the thermal pressurization given by Equation

(5) leads to results inconsistent with experiments, even

worse than the estimate of usual poromechanics for the

1W water.

Let us consider finally the poromechanics extended

to double porosity media. Again the drained compress-
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ibility is the inverse of the effective Biot coefficient (K̃eff =

0.54 GPa) and the effective Biot coefficient is related

to the unjacketed compressibility (beff = 1 − κs
κd

=

0.989). Assuming incompressibility of the solid and iso-

deformation of the pores, bb = bc = 0.5 and Nbb =

Ncc = −Nbc. In contrast with the single porosity case,

one can recover the experimental effective Biot coeffi-

cient beff from the porous solid Biot coefficient (bb and

bc) by adjusting the value of the Biot moduli: Nbb =

Ncc = −Nbc = 1 GPa. Such values of the Biot moduli

are in a reasonable range. Therefore, parameterization

of the extended double porosity poromechanics can be

achieved consistently. Integrating the thermal pressur-

ization coefficient of Equation (8), we obtain the ther-

mal pressurization displayed in Figure 8 (top), where we

distinguish two cases: 1W water or 2W water in the mi-

cropores. It appears that the 2W water case provides an

estimate of thermal pressurization that compares well

with the experiment, whereas the 1W case underesti-

mate thermal pressurization even more than the usual

poromechanics. This suggests that the micropores of

the clay mostly contain 2W water, which is reasonable

since 2W water is the stable confined state at the con-

fining stress of the experiment (a few MPas), whereas

1W water is meta-stable [21]. The error bars in Figure

8 (top) quantify the uncertainty associated with the

choice of micropore volume. This uncertainty is quite

limited. Therefore, the use of the extended poromechan-

ics seems to successfully capture the experimental ther-

mal pressurization provided that the water in the mi-

cropores has properties similar to that of 2W water in

Na-Montmorillonite.

A more detailed picture is given in Figure 8 (bot-

tom), where we display the three different contributions

of Equation (8) to the total pressurization coefficient.

One can attribute the first contribution to the water in

the macropores, and the others to the water in the mi-

cropores, but this vision is somehow biased since there

are fluid transfers between the two porosity. It appears

that the excess pressurization of the water in clay is

mostly explained by the third contribution. This con-

tribution is the least intuitive. It arises from the mis-

match between the thermal expansion at constant bulk

pressure and at constant confined pressure (see the dis-

cussion in section 2). Conversely, the second term, anal-

ogous to the pressurization of usual poromechanics but

applied to the micropores, is almost negligible.

Opalinus Clay exhibits a quite strong anisotropy

with a Young’s modulus that can vary by a factor 3-4

depending on the loading direction [41]. Anisotropy is

not accounted for in the new poromechanics presented

in this paper. We discuss hereafter its importance in our

analysis of undrained thermal pressurization. Adopt-
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Fig. 8 (top) Application of poromechanics to the thermal
pressurization experiment of [26] and comparison with the
experimental results. The extended double porosity porome-
chanics is consistent with the experimental results consid-
ering the 2W water in the micropores. The usual porome-
chanics underestimates the thermal pressurization, and the
extended poromechanics considering the 1W water underes-
timates even more. The error bars stand for the uncertainty
associated with the choice of micropore volume (±0.2Å uncer-
tainty in solid clay layer thickness). (bottom) Comparison of
the three different contributions to the thermal pressurization
factor (Eq. 8), in the case with 2W water in the micropores
(case consistent with experiment). One can roughly view the
1st contribution as that of the macropores, and the 2nd and
3rd as that of the micropores. The 3rd contribution is the one
that mostly explains the excess thermal pressurization com-
pared to the usual poromechanics. This contribution is little
intuitive, it arises from the mismatch between the thermal
expansion at constant bulk pressure and at constant confined
pressure.

ing a tensor formulation, the poro-mechanical descrip-

tion of an anisotropic medium involves anisotropic elas-

tic tensors [42, 43]. In the general case, the thermo-

poro-elastic behavior is characterized by the forth order

drained compliance tensor C−1 instead of the drained

compressibility κd and shear modulus, by the second or-

der Biot coefficient tensor b, instead of the scalar Biot

coefficient, and by the second order thermal expansion

tensor α, instead of the scalar thermal expansion α:
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
dσ = K : dε− bdP − C : αdT

dφ = b : dε+ dP
N − αφdT

dss =
(
C : α

)
: dε− αφdP + c

T dT

(9)

Complete derivation of the new poromechanics in

an anisotropic framework is quite tedious and is left

for future work. Yet, in the particular problem of the

undrained thermal pressurization experiment, the ex-

pression of pressurization with anisotropy is easily de-

rived for the usual poromechanics and for the new porome-

chanics limited to single porosity media. In usual porome-

chanics, we have:

∂Pb
∂T

∣∣∣∣
σ,φρ

=
αφ + φαb − b : α

1/M + b : C−1 : b
(10)

Comparing this expression with the one for an isotropic

medium (Eq. 3), one readily see that pressurization is

sensitive to the most compliant direction in a strongly

anisotropic medium (the term 1/M is one order of mag-

nitude smaller than typical values of the weighted com-

pressibility b : C−1 : b). The drained compressibility

κd = 1/K = 1.85 · 10−6kPa−1 reported by Monfared et

al. [26] was actually calibrated from the Skempton co-

efficient B = − ∂Pb
∂σ

∣∣
φρb,T

measured by an undrained

isotropic compression test. Monfared et al. analyzed

the Skempton coefficient from the expression for an

isotropic medium:B = b/K
1/M+b2/K . But for an anisotropic

medium, B =
b:C−1:1

1/M+b:C−1:b . The Biot coefficient tensor

is close to identity (very small unjacketed compressibil-

ity), so the drained compressibility reported by Mon-
fared et al. actually quantifies the weighted compress-

ibility b : C−1 : b that appears in the expression of the

thermal pressurization for an anisotropic medium (Eq.

10). Accordingly, the estimation of thermal pressuriza-

tion from usual poromechanics in Figure 8, remains al-

most the same in an anisotropic framework.

In turn, for a single porosity adsorbing medium, we

have:

∂Pb
∂T

∣∣∣∣
σ,φρc

=
ρb
δρc

αφ + φαuc − b : α

1/Meff + b : C−1 : b

+
ρb
ρc

δ − γ
γ

Kc

(
αuc − αdc

)
(11)

We recover, an expression similar to the isotropic

case (Eq. 5), but the first term is modified to account

for the anisotropy of the medium. One can note that

the modification follows the same structure as in usual

poromechanics (Eq. 10), and the magnitude of the first

term is dominated by the most compliant direction in

the weighted compressibility b : C−1 : b. As before, the

calibration of the effective drained compressibility, is

actually based on the Skempton coefficient which takes

the form B = ρb
δρc

b:C−1:dσ

1/Meff+b:C−1:b
, so it captures the ef-

fect of anisotropy involved in the expression of thermal

pressurization. Therefore, our estimation of the first

term of thermal pressurization (Eq. 11) would remain

almost the same in an anisotropic framework. Inter-

estingly, the second term corresponding to ∂Pb
∂T

∣∣
Pc,φρc

depends on the fluid only and is not affected by the

anisotropy. As we have seen, this term is the one that

mostly explains the anomalously high pressurization

(Fig. 8). Although, we do not derive here the impact

of anisotropy for the double porosity medium, one can

anticipate similar effects, and the confrontation of Fig-

ure 8 would remain similar. In particular, the main con-

tribution to the excessive pressurization would remain

the third term of Eq. (8), i.e., the mismatch between

the thermal expansions at constant Pc and at constant

Pb.

5 Conclusion

Pore fluid pressurization, one of the major cause of soil

instability, is anomalously high in saturated clay sub-

mitted to undrained heating. In this work, we apply a

new formulation of thermo-poro-mechanics to explain

this anomaly. This formulation was derived recently [5]

to include the unusual effects of adsorption on confined

fluids properties, and in particular the fact that Gibbs-

Duhem equation is no more valid under adsorption. A
major consequence is that full characterization of con-

fined fluid thermo-mechanics requires 6 moduli instead

of 3 for bulk fluids (compressibility, thermal expansion,

heat capacity): one has to distinguish compressibility

with respect to volume and compressibility with re-

spect to number of molecules, and there are non negli-

gible drained compressibility and thermal rigidity (i.e.,

at fixed reservoir bulk pressure, the pore pressure can

still vary with the pore size and temperature). Apply-

ing this new theory requires estimating those moduli

and we do so for water confined in Na-Montmorillonite

by using molecular simulation. Molecular simulation

estimates confirm that Gibbs-Duhem equation is not

valid for water in clays, which supports the need for a

poromechanics adapted to this new paradigm. Our es-

timates of confined water undrained thermal expansion

are consistent with existing literature results for water

hydration on model hydrophilic surface. Comparing the

case of water to that of a model Lennard-Jones fluid in

a slit pore, it appears that water exhibits a quite spe-
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cific thermo-mechanical coupling at low temperatures.

The undrained thermal expansion of confined water ap-

pears almost equal to that of bulk water, whereas the

confined LJ fluid has a much lower thermal expansion

than the bulk LJ liquid.

From the new poromechanical formulation, we de-

rive the expression of fluid pressurization during undrained

heating. The pressurization in a microporous medium

involves a term analogous to that of usual poromechan-

ics, and another term which originates from the mis-

match between the thermal expansion of the fluid at

constant bulk pressure and the thermal expansion at

constant confined pressure. The magnitude of this sec-

ond term is hard to anticipate and appears to be domi-

nant in the case of water confined in clay. For practical

application to water in clays, all the confined properties

needed are listed in Table 1 (we distinguish 1W water

and 2W water). Applying the new poromechanics to

the pressurization experiments, we find that only the

double porosity poromechanics with 2W water in the

micropores provides estimates consistent with experi-

mental results. Considering 1W water underestimates

pressurization, as is the case with usual poromechan-

ics. This result suggests that water transfers between

micro- and macro-porosities are critical to explain the

undrained experiment. It also suggests clay micropores

contain 2W water only, which is reasonable since 2W

water is the stable confined state at the conditions of

the experiment. Detailed investigation shows that the

main reason for the anomalous pressurization is the less

intuitive contribution: the mismatch between confined

thermal expansion at constant bulk pressure and at con-

stant confined pressure.

To the best of our knowledge, this work is the first

that relates quantitatively the behavior of water con-

fined in nanometric clay layers, estimated by molecular

simulation, to the macroscopic behavior of a claystone,

which opens wide perspectives of applications to clay-

rich materials, but also potential transposition to other

adsorption-sensitive materials (cement-based materials,

microporous carbons, wood, bones etc.).
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