
HAL Id: hal-03223753
https://hal.science/hal-03223753

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud Menus, a Circular Adaptive Menu for Small
Screens

Jean Vanderdonckt, Sarah Bouzit, Gaëlle Calvary, Denis Chene

To cite this version:
Jean Vanderdonckt, Sarah Bouzit, Gaëlle Calvary, Denis Chene. Cloud Menus, a Circular Adap-
tive Menu for Small Screens. IUI’18: 23rd International Conference on Intelligent User Interfaces
Proceedings, Mar 2018, Tokyo, Japan. pp.317-328, �10.1145/3172944.3172975�. �hal-03223753�

https://hal.science/hal-03223753
https://hal.archives-ouvertes.fr


HAL Id: hal-03223753
https://hal.archives-ouvertes.fr/hal-03223753

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud Menus, a Circular Adaptive Menu for Small
Screens

Jean Vanderdonckt, Sarah Bouzit, Gaëlle Calvary, Denis Chene

To cite this version:
Jean Vanderdonckt, Sarah Bouzit, Gaëlle Calvary, Denis Chene. Cloud Menus, a Circular Adap-
tive Menu for Small Screens. IUI’18: 23rd International Conference on Intelligent User Interfaces
Proceedings, Mar 2018, Tokio, Japan. pp.317-328, �10.1145/3172944.3172975�. �hal-03223753�

https://hal.archives-ouvertes.fr/hal-03223753
https://hal.archives-ouvertes.fr


Cloud Menus, a Circular Adaptive Menu for Small Screens 
Jean Vanderdonckt1, Sara Bouzit2,3, Gaëlle Calvary3, Denis Chêne2 

1Université catholique de Louvain, 2Orange Labs, 3Université Grenoble Alpes 
jean.vanderdonckt@uclouvain.be, {sara.bouzit, gaelle calvary}@imag.fr, denis.chene@orange.com 

Figure 1. The Cloud Menus: a circular adaptive cloud contains predicted items that can be made (in)visible by pressing [+], [–]. 
ABSTRACT 
This paper presents Cloud Menus, a split adaptive menu for 
small screens where the predicted menu items are arranged 
in a circular tag cloud with a location consistent with their 
corresponding position in the static menu and a font size 
depending on their prediction level. This layout results from 
a 3-step design process: (i) defining an initial design space 
on Bertin’s 8 visual variables and 4 quality properties, (ii) 
identifying the most preferred layout based on agreement 
rate, and (iii) implementing it into Cloud Menus, a new 
widget for Android with circular layout. An empirical study 
suggests that cloud menus reduce item selection time and 
error rate when prediction is correct without penalizing it 
when prediction is incorrect, compared to two baselines: a 
non-adaptive static menu and an adaptive linear menu. 
From this study, design guidelines for cloud menus are 
elaborated. 

Author Keywords 
Adaptive menu, prediction window, split menu, tag cloud. 

ACM CLASSIFICATION KEYWORDS 
• Human-centered computing ~ Human computer
interaction (HCI).

INTRODUCTION 
Split Adaptive Interfaces [11] reproduce a limited part of 
the User Interface (UI) elements (e.g., a menu [30], a 

toolbar [15], icons [19,26], a help system [1]) that are 
predicted to be of immediate use to preserve stability [13]. 
Split adaptive menus typically present the end user with 
predicted menu items for improving feature findability [13], 
speeding up the item selection [9] without searching for 
them in deep and wide menus. Since selecting a menu item 
requires a navigation time and a visual search time that 
depend on the number of items displayed, small screens are 
particularly affected and the risk of not benefiting from the 
adaptivity advantages is real. UI adaptation remains 
essential to ensure the user experience and to introduce the 
right UI changes at the right time [20]. The quality of 
adaptation is proportional to the quality of prediction 
[14,32]: if the prediction is accurate enough, adaptation 
brings its earnings by accelerating and facilitating user 
interaction. Since the quality of prediction can never be 
guaranteed, the following questions are stated: what do we 
win when the prediction is accurate?, how to avoid 
penalizing interaction when prediction is wrong?, how to 
prevent user from errors induced by a wrong prediction? In 
order to address these challenges, this paper proposes Cloud 
Menus (Fig. 1), a split adaptive menu for small screens with 
a prediction window displayed as a word cloud and 
demonstrates that it accelerates interaction when prediction 
is correct without slowing it down when prediction is 
incorrect. Also important is to assess to what extent 
increasing the amount of predicted items impacts the 
interaction. 

The remainder of this paper is structured as follows: 
Section 2 reviews works related to adaptive menus for 
small screens. Section 3 discusses the 3-step design process 
that leads to defining and implementing Cloud Menus. 
Section 4 reports on a controlled study performed to test 
Cloud Menus (with adaptivity) against a static menu 
(without any adaptivity) and a linear menu (with adaptivity, 
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but without the cloud layout). Section 5 concludes the 
paper, by presenting some future avenues to this paper.  

RELATED WORK 
There is a rich background [2,3] of designing interaction 
techniques for menu selection, which is understood as one 
of the most frequently used interaction style in UIs. While a 
great deal of this work focuses on the interaction techniques 
themselves, prior work also investigates how a menu could 
be made adaptive depending on different data sources. 

Adaptive Prompting [19] predicts a selection of applications 
and related files based on an application model (which 
specifies relationships between elements) and a user model 
(which manually specifies the user’s experience level, etc.) 
to reduce navigation effort. How applications and files are 
presented is also subject to adaptivity. 

Frequency-based menus sort menu items by decreasing 
order of frequency, depending on the end user’s actions [2]. 
Split menus [30] separate a graphical menu into a topmost 
area promoting a small list of 2-3 predicted items and a 
static menu containing non-predicted items. Split menus are 
subject to instability [9,13]: end users oscillate between the 
two areas because they are unsure where to find the menu 
item they want. To preserve this stability, Split menus with 
replication leaves the adaptive part as stated before and the 
second part remains unaltered, thus enabling end users to 
always refer to the menu as they know it. Adaptive 
Activation-Area Menu (AAMU) [33] is an adaptive 
morphing menu containing an enlarged activation area for 
predicted items which dynamically resizes itself providing a 
broader steering path for menu navigation. Predicted items 
can be emphasized by highlighting [1], bolding [24], 
coloring or underlying [21], changing font size [33], 
moving them [23] to a comfort zone [25], by shortcut [7], 
and animation [10,26]. 

Ephemeral menus [10] is an adaptive temporal menu where 
the gradual onset was used in order to display non-predicted 
items. At opening the menu, user finds predicted items and 
after a delay of 500ms remaining items appear gradually. 
When the prediction accuracy is relatively high (79%), 
ephemeral adaptation significantly offers better 
performance and user satisfaction over static menus, and a 
performance benefit over a graphical adaptation technique. 
Obtaining high prediction accuracy of menu items is crucial 
to the success of adaptive menus. However, there still lacks 
an effective prediction method of menu items. In-Context 
Disappearing (ICD) are smartphone menus [5]: at opening 
the initial menu, the full list of items is superimposed with a 
window prompting predicted items. This latter contains 
three items and disappears gradually. Out-of-Context 
Disappearing (OCD) approach is the inverse: at opening, 
the prediction window is immediately displayed with the 
predicted items; after a delay of 500 msec [10], the 
complete menu is gradually displayed from the back, thus 
replacing the prediction window. 

The perceived efficiency of three split menus is measured 
[9]: a static menu with top four items remaining constant, 
an adaptable menu where top four items can be changed by 
the end user, and an adaptive menu where top four items in 
the split menu are predicted according to user’s recently 
and frequently used items. Static menus are found efficient 
compared to both adaptable and adaptive menus. However, 
overall participants tend to prefer adaptable menus. 

Split Adaptive Interfaces exhibit a certain amount of 
potential benefits at a certain cost [14,20]. The gain 
expected from promoting predicted items should be 
counter-balanced by the end user’s need to constantly adapt 
to the altered menu layout, especially for novice users who 
hesitate between areas. The gain becomes positive when 
adaptivity significantly reduces the menu selection time, 
such as in a hierarchical menu [13,34] or when limited 
screen resolution induces scrolling [32]. Other potential 
shortcomings are: adaptive menus do not work well with 
short menus [27] or when the end user alternates between 
an amount of items that is larger than those contained in the 
prediction window [13]. 

Bridle & McCreath [6] predict menu selection on a mobile 
phone by relying on machine learning to improve usability: 
it helps to reduce the number of key presses. While Xie et 
al. [35] predict menu items on a mobile phone based on a 
Markov Chain, Fukazawa et al. [12] prefer Support Vector 
Machine (SVM): the system ranks both frequently and 
rarely used functions based on user operation history. While 
accessibility of these menu items is improved, this system 
may cause significant performance loss [12]. Asthana et al. 
[2] study the adverse impact of adaptive voice menu on 
experienced users. They also propose strategies to lower the 
negative effect of adaptivity on familiar users. Gajos & 
Chauncey [15] demonstrate systematic individual 
differences in the utilization of the adaptivity, which 
correlate with the stable user traits of Need for Cognition 
and Extraversion. 

Stability can be further refined based on Bertin’s height 
visual variables [4] conveying an adaptation scheme [5]: 
position (e.g., change in the x, y, z location), size (e.g., 
change in length, area, or repetition), shape (e.g., change by 
shape), value (e.g., change from light to dark), orientation 
(e.g., change in alignment, angle), color (e.g., change in hue 
at a given value), texture (e.g., change in pattern), and 
motion (e.g., animated transition or visual effect). Four 
properties can be defined for comparing adaptive menu [5]: 

1. Spatial stability: the ability of an adaptive menu to 
preserve its spatial layout after adaptivity, thus keeping 
position and orientation constant. 

2. Physical stability: the ability of an adaptive menu to 
preserve its physical configuration after adaptivity, thus 
keeping size and shape constant. 

3. Format stability: the ability of an adaptive menu to 
preserve the format of its layout after adaptivity, thus 
keeping value, color, and texture constant. 



4. Temporal stability: the ability of an adaptive menu to 
preserve its layout over time while being adapted, thus 
keeping motion constant.	

For example, ephemeral adaptation [10] preserves spatial, 
physical, and format stability, but not temporal stability. 

In conclusion, several adaptive menus have been researched 
for pull-down menus displayed on desktop [34]. 
Transposing these techniques to small screens is not 
straightforward because all items cannot be displayed on a 
single screen [27] and because they require interaction 
techniques that small screens are not able to afford [18]. 
These adaptive menus are always presented at once, which 
is not the case on small screens: any predicted item located 
on a subsequent screen requires a cognitive effort to explore 
the whole set of items. 

There are not many adaptive menus tailored to small 
screens. Either menus are adaptive, but not tailored to small 
screens or menus are tailored for these devices, but pursue 
different goals, such as information display optimization 
[21], reducing number of taps [27], increasing efficiency 
[27]. The amount of predicted items in the aforementioned 
menus is usually limited to 2-3 items [10,14]. Increasing 
this amount has never been explored before and the 
presentation of the prediction window remains very similar 
to the initial menu. 

THE CLOUD MENU DESIGN PROCESS 
An exploratory session was organized by an Internet 
Service Provider with ten participants, two UI designers, 
one Human Factors expert and one experienced developer. 
From a focus group, five requirements were elicited for a 
new adaptive menu for smartphones: (R1) provide an 
adaptive menu that accelerates user interaction when item 
prediction is accurate without decelerating it when 
prediction is inaccurate, (R2) address constraints imposed 
by small screen devices, (R3) display more than 3 predicted 
items if possible (as opposed to other adaptive menus), (R4) 
maintain spatial stability, and (R5) rely on physical, format, 
and temporal coding. Then, a 3-step design process has 
been conducted in order to progressively define and 
investigate a design space. 

Step 1: Define a Design Space of Prediction Window 
The goal of this design space is to define how the prediction 
window could be laid out by theoretically exploring design 
alternatives. Bertin’s visual variables offer eight dimensions 
for choosing the layout of the presentation window, but 
have a varying ability to be selective (is a change enough to 
allow us to select it from a group) and/or ordered (are 
changes according to this variable perceived as ordered?) 
(Table 1). Fig.  2 sorts coding schemes by decreasing order 
of precision: in the last column for nominal values (we 
hereby assume that menu items are neither quantitatively 
sorted nor ordered), position is the most precise coding 
scheme, length and surface coming later, the other ones 
have not been retained. 

 Bertin’s visual variable [3] Select Order 
1 Position ! ! 
2 Size ! ! 
3 Shape 3 1 
4 Value ! ! 
5 Color 3 1 
6 Orientation ! 1 
7 Texture ! 1 
8 Motion 3 1 

Table 1. Level of support of Bertin’s visual variables expressed 
according to Harvey’s Balls. 

 
Figure 2. Coding schemes sorted by order of precision. 

The Cloud Layout for Prediction Window 
Addressing R5, while respecting R4, means that the 
prediction window should not necessarily be embedded in 
the initial menu, but could be presented in another way, 
such as by superimposition, but not far away. Therefore, the 
driving principle of the prediction window layout consists 
in displaying a modal word-cloud based [17] prediction 
window overlapping the full initial menu and enabling the 
user to control the prediction window on-demand. The 
general cloud layout was initially motivated by the 
following reasons. 

A tag cloud, or Wordle [8], is a visual representation of text 
data, typically used to depict keyword metadata (tags) on 
any textual document or collection of documents (e.g., a 
report, a web site, a set of papers, a digital library) [22]. 
Tags are usually single words whose importance is shown 
is depicted through one or many visual variables [4], 
typically font size or color. These coding schemes are 
useful for quickly perceiving the most prominent terms and 
for locating them to determine their relative prominence. 
Tag clouds are extensively researched and used in many 
areas [8,16,17,22,28,31], except for menu selection: for 
indexing (e.g., for faster term discriminativeness), for 
searching (e.g., semantic expansions for web search, 
personalized search), for generating a taxonomy (e.g., for 
generating a taxonomy of terms selected in a domain), for 
clustering and classification (e.g., classifying blog entries 
and general web objects), for social interest discovery (e.g., 
user profiling, end user’s topics of interest), and browsing 
(e.g., when terms are hyperlinked to items associated with 



the tag). Word clouds [17] emerge as a usable [28], 
straightforward and visually appealing [31] method for 
emphasizing important terms in a textual document or a 
collection of documents. They are used in various contexts 
as a means to provide an overview by drilling down text to 
those terms that appear with the highest frequency. The 
word cloud layout has an impact on its perceived usability 
[22,31]. 

Halvey & Keane [16] examine the time for selecting a 
country a list of all countries presented in 6 varying 
formats: alphabetical horizontal list (µ=2.88 sec), 
alphabetical vertical list (µ=2.89 sec), alphabetical cloud 
(µ=2.94 sec), horizontal list (µ=3.19 sec), vertical list 
(µ=3.24 sec), and normal cloud (µ=3.40 sec). The cloud is 
slower than both lists because items in the lists are ordered 
alphabetically (which is faster with westernized reading) as 
opposed to distance from the center (which is faster when 
scanning). When the font size of items in the cloud is 
larger, the cloud reaches to µ=2.74 sec. These results 
suggest that a cloud-based representation for a menu, where 
items are not necessarily sorted by alphabetical order, may 
be appropriate since it does not decrease the performance 
with respect to lists. The question of which cloud layout 
then arises for the prediction window. 
Findlater test 
In order to explore cloud representations based on Bertin’s 
visual variables, the menu considered by Findlater et al. 
[10] for their experiment on ephemeral adaptation was 
considered: the full menu contains 4 groups of 4 related 
items (i.e., England, France, Germany, Spain – Venus, 
Mercury, Jupiter, Saturn – Cabernet, Chardonnay, Merlot, 
Shiraz – Almond, Pecan, Pistachio, Walnut) and the 
prediction was defined as follows: Venus=80%, Spain, 
Shiraz=70%, Pecan, Cabernet, Pistachio=60%, all other 
items having the same normal probability to be selected. 
This configuration is in line with other research in this area 
[5,34] both in terms of prediction probabilities and in terms 
of prediction level [14]. We will refer to this list as the 
Findlater test.  
Initial prototypes for Cloud Menus 
Based on Findlater test, initial prototypes for Cloud Menu 
layouts were developed in Adobe Flash V27.0 for Bertin’s 
variables: size (1D vertical vs 1D horizontal vs 2D – Fig. 
3), shape (rectangle, circle, oval – Fig. 4), value 
(highlighting of current item, zooming in, zooming in with 
rotation in case of a vertical label – Fig. 5), color (Fig. 6a), 
font size (Fig. 6b), orientation by changing label angle 
(horizontal, vertical, angular – Fig. 7), texture by changing 
font family (regular, bold, italic, or combined – Fig. 6b), 
and motion by animation (without vs with animation of 
non-horizontal items – Fig. 8).  

              
Figure 3. 1D vertical, 1D horizontal, 2D layouts. 

   
Figure 4. Rectangle, circle, oval layouts. 

  

 
Figure 5. Layout with highlighting, zooming in, zooming in 

with rotation of vertical label. 

  
Figure 6. Layouts with colors (a), different fonts (b). 

 
Figure 7. Horizontal, vertical, bidirectional, angular layouts. 

   
Figure 8. Layouts with animation of non-horizontal items, 

without or with zoom of selected item, with adjustable speed. 

Step 2: Exploratory Study of Prediction Window 
Layouts 
Similarly to the procedure by Ponsard et al. [26], who 
prototyped various techniques for ephemeral adaptation of 
icons, we performed an exploratory user study to evaluate 
people’s reactions with respect to the various layouts 
generated (Fig. 3-8). We were interested in what people 



would think of the different adaptations conveyed by the 
different layouts of the prediction window and which they 
would prefer. 

Procedure of the Exploratory Study 
Each participant performed the task in a controlled 
environment. Prior to the task each participant was 
welcomed, had the process explained to them (including 
signing a consent form) and filled in a short questionnaire 
on their background. After the questionnaire was 
completed, the researcher demonstrated the initial 
prototypes for Cloud Menus. The participants were given 5 
min. to familiarize themselves with the software and ask 
any questions. If desired, the participant could finish this 
part early. The participants were then given 15 min. to use a 
small program where each referent can be tested. The 
instructions were to select each referent one after another 
and experiment the corresponding layout. During this 
experiencing time, the researcher sat next to the participant 
and observed them. The participant then rated each layout 
using a five point Likert scale on the layout effectiveness in 
preserving the meaning: one was strongly disagree through 
to five being strongly agree. Then they were asked to rank 
the layouts in order from most preferred to least preferred. 
After reviewing the referents, the participant was asked for 
any recommendations on which layout could be selected for 
conveying the prediction window. This then concluded the 
user study.  

Analysis 
After each participant, the questionnaire, ratings and 
ranking data was added into an MS Excel spreadsheet. The 
data was entered in an anonymous format so the 
participants could not be identified. 

 
Figure 9. Participants’ rating and ranking for each variable. 

Results and Discussion 
A total of thirty participants (µ=32.3 years, SD=6.2 y.) 
participated in this experiment. All participants were 
regular computer users and recruited in our organization 
through a mailing list. They have different backgrounds 
such as: accounting, finance, information systems, 
management, marketing, and human resources. They were 
all volunteers: they were not given any remuneration 
(financial or otherwise). Fig. 9 shows the correspondence 
between the distribution of layout appropriateness in terms 
of percentage (represented as a divergent horizontal stacked 
bar based on a Likert R package - 

http://jason.bryer.org/likert/) and the distribution of ranking 
(represented as vertical bars). The coding scheme is as 
follows: red=strongly disagree, orange=disagree, yellow= 
neutral, light green=agree, dark green= strongly agree). The 
yellow neutral part is divided into two equal parts in Fig. 
9.The preferred variables for layout appropriateness are 
respectively: shape (82% of the 30 participants), value 
(71%), size (66%), motion (61%), color (46%), orientation 
(40%), and texture (22%). Shape was also ranked first 
followed by motion. Value was ranked second the most 
frequently, followed by shape. Motion was ranked third the 
most frequently, followed by shape. With seventh rank 
most frequently assigned, texture was judged the least 
appropriate variable on which we can play for conveying 
adaptivity because of its questionable legibility. For these 
reasons, shape was selected as the variable to indicate 
adaptivity. 

In order to fulfill (R1)-(R5) requirements, a circular cloud 
layout was finally adopted, where font size and distance to 
the center represent the importance of a menu item, but 
where distance between the items does not represent their 
similarity (such as in document semantic tagging [17]) or 
adjacency in the initial menu (although this option could be 
further investigated). The rationale behind the choice is 
justified by the following findings and motivations: 

- Among all referents (Fig. 2-7), the most preferred word 
cloud was a 2D circular (for its distinctiveness with the 
rectangular are of the initial menu) shape with horizontal 
items (in order not to reduce item legibility), without any 
animation (because it is hard to control and lengthy [9]), 
without any color or font effect apart from font size. 

- Circular layouts have additionally shown to be most 
effective to spot high frequency terms in word clouds 
[22]: layouts generated by these algorithms are compact 
and clear, reduce unused white space and may feature 
arbitrary convex polygons as boundaries (which is not 
really usable for menu, though). The results of the user 
study and the technical evaluation enable designers to 
devise a combination of algorithm and parameters which 
produces satisfying word cloud layouts for many 
application scenarios [28]. 

- Users prefer a less extensive menu hierarchy on a small 
screen device and that item category classification and 
item labelling influence item selection performance [27]. 

- Small screens do not display more than 15 items 
simultaneously as opposed to dozens on desktop, thus 
providing an opportunity for applying this finding: 
provide a direct access to menu items that are the most 
predicted, since there is no room enough for displaying 
them all [27]. 

- For a small list with emphasized items, ocular saccades 
should be easier to perform than on linear list [6,21]. 

Step 3: Final Implemented Design of Cloud Menus 
The final design of cloud menus is developed as a widget in 
Java for Eclipse based on Android Software Development 
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Kit. The Cloud Menu consists of a linear list for the static 
menu superimposed by a prediction window materialized as 
a circular word cloud with three prediction levels (Fig. 1): 
(1) any item with high prediction (probability ≥ 80%) is 
located in the center of the circle highlighted with large font 
size; (2) any item with medium prediction (60% ≤ 
probability ≤ 80%) is presented in the periphery with a 
decreasing size font and a larger distance from the center 
depending on the probability (the lower the prediction, the 
more far and the smaller the item becomes) ; (3) any item 
with low prediction (probability ≤ 60%) is displayed only in 
the static menu. 
The Cloud Menu for Findlater test is depicted in Fig. 1: the 
France item with high prediction is presented in the center 
with the largest font size; Venus and Pecan with medium 
prediction are presented afterwards on a position indicating 
the original position of item in the static menu; Mercury, 
Walnut and Saturn with low prediction are located in the 
periphery with an increasing distance from the center and a 
decreasing size font. Note that the Pecan item is located on 
an imaginary line indicating an off-screen location. When 
prediction is correct, the user selects the item directly from 
the Cloud Menu. When prediction is incorrect, the user 
makes the cloud menu disappearing by pressing the  
button and selects the item from the static menu after 
scrolling down/up. 

CONTROLLED EXPERIMENT 
A controlled experiment was conducted based on two 
conditions: a Control condition (or baseline), which 
presents the Findlater test in a static menu without any 
adaptation and prediction and a Cloud Menu, which 
presents the Findlater test as a Cloud Menu with 6 items in 
the prediction window. In order to test the influence of the 
circular layout of the Cloud Menu, a third condition was 
developed: the Linear Menu, where both prediction window 
and full list of items are presented as superimposed linear 
lists (Figure 4), but without any cloud. In order to backward 
and forward prediction window, the two [–] and [+] 
pushbuttons are also added. 

 
Figure 10. Linear Menu: a linear list with 6 predicted items. 

Hypotheses. We made the following assumptions: 
Speed with high prediction 
H11=The Cloud Menu and the Linear Menu will be faster 

than Control condition. When prediction is correct, the user 
finds the target item among 6 predicted items in the Cloud 
Menu and in the Linear Menu more quickly than in Control 
condition where the target belongs to a list of 16 items. 
H21=The Cloud Menu will be faster than the Linear Menu. 
The circular layout of the 6 predicted items with different 
font sizes and positions is faster than a linear list without 
any visual distinction between predicted items, as said in 
[29]. 
H31=A target item located in the center of the Cloud Menu 
will be selected faster than when located in its periphery. 
Indeed, a target item located in the center is considered easy 
to find because it is emphasized with a large font size (thus 
inducing a larger activation area as in AAMU [33]), 
contrarily to a target item located in another part of the 
cloud menu. 
Speed with low prediction 
H41=The Cloud Menu and the Linear Menu will not be 
worse than Control condition. Cloud and Linear adaptive 
menus will not be worse than the static menu as they avoid 
penalizing interaction when prediction is incorrect. The  
button should enable the end user to escape from the Cloud 
Menu and Linear menu in case of an incorrect prediction. 
H51=The Cloud Menus will be faster than the Linear Menu. 
Exploration of predicted items will be easier in the Cloud 
Menu, where items are highlighted with different font sizes 
and positions, than in the Linear Menu. 
H61=In all conditions (Cloud Menu, Linear menu and 
Control condition), the target item will be selected faster 
when located on the first interaction screen than on the 
second. Accessing a target item on the first screen will be 
faster and easier than on the second screen requiring 
vertical scrolling. 
Error rate with high prediction 
H71=The error rate of the Cloud Menu is similar to the 
Linear Menu. When the target item is one of the 6 predicted 
items in Cloud and Linear Menu, the visual search time and 
selection time are reduced, which also reduces error rate.  
H81=When target item is located in the center of the cloud, 
errors will be less frequent than when target is in its 
periphery. User attention will be attracted to the center 
where an item is displayed with a larger font size compared 
to items in other parts of the cloud, thus facilitating the item 
selection. 

Error rate with low prediction 
H91=No significant difference between all conditions. When 
prediction is incorrect in both adaptive conditions (Cloud 
and Linear), the prediction window will not be used and 
will disappear with , thus generating the same error rate.  

Methodology 
There are three independent variables: (1) the MENU TYPE: 
Control condition, Cloud Menu, and Linear Menu, (2) the 
TARGET LOCATION: in the center, in its periphery, or 
outside, (3) the LEVEL OF PREDICTION: low, high. Two 
levels of prediction were decided to test the performance 



when prediction algorithm works well and bad, they were 
selected randomly. Each menu is divided into two screens 
of 8 items, all coming from Findlater test [10]. Predicted 
items appearing in the Cloud Menu and Linear Menu are 
controlled. The target item can be located either on the 
prediction window or on the static menu and its distribution 
is controlled.  The target item in Cloud condition was 
controlled randomly between three locations: in the center, 
in its periphery, or outside in case of incorrect prediction. 
Accurate prediction level is when prediction is correct and 
target item is inside the Cloud Menu without any 
restriction. Inaccurate prediction level is when prediction is 
incorrect and target item is outside the Cloud Menu. The 
same behavior occurs in the Linear Menu where the target 
item was also controlled randomly between two prediction 
accuracy levels. High prediction level is when prediction is 
correct and target is one of the six predicted items presented 
on the prediction window. Low prediction level is when 
prediction is wrong and target is outside the prediction 
window. For both high and low prediction levels, the target 
item always appears in the static menu.  

Task 
A between-subjects design was decided to avoid any 
carryover effects such as practice (learning effect) and 
fatigue: two independent groups of participants were asked 
to perform a sequence of item selections. Participants of the 
first group tested Cloud Menu and Control condition, while 
the second group tested Linear Menu and Control 
Condition. Participants were divided into two groups using 
matched-group design, through which the subjects were 
matched according to their age and then allocated into 
group. For each condition, first, a message appeared 
indicating the target item to select. Then a list of items 
appeared and the target item was displayed at the screen top 
as a reminder. In Cloud Menu, participants selected the 
target item from the Cloud of predicted items and/or from 
the static menu. In Linear Menu, participants selected the 
target item from the prediction window and/or full list of 
items. In Control condition, participants selected target 
items from the main list on the first or on the next screen. 
When the selected item matched the requested target item, a 
new message appeared indicating next target item until the 
test was complete. When the selected item did not match 
the requested target item, an error message prompted the 
participant to select the right target before moving to the 
next target. When the test was complete, a “thank you” 
message was displayed. 
Selections were performed by finger touch on the touchable 
surface of the smartphone, no stylus or pen were used. 
Generally, participants were holding the smartphone in their 
left hand and had to point with right hand (index finger). In 
each menu, order and position of items were controlled and 
changed randomly after ten selections in order to avoid 
learning effect. Selection sequence (target selection) was 
also randomly controlled. Target position on first screen or 
on second screen and prediction accuracy level were also 

controlled. Each participant had to execute 20 item 
selections in the Control condition, 20 item selections in the 
Cloud+High prediction condition and 20 item selections in 
the Cloud+ Low prediction condition, 20 item selections in 
the Linear +High prediction condition and 20 items 
selections in the Linear+Low prediction condition. 
Selections in the Cloud and Linear conditions were mixed 
in order to avoid any learning effect induced by a repetitive 
usage of a task. 
Quantitative and Qualitative Measures. The dependent 
variables measured were: 1) menu item selection time (in 
seconds), which was measured as the time taken from 
opening the menu until final selection of requested target, 
and 2) error rate (in percentage %). 
Apparatus. Android-based Google Nexus smartphones were 
used, with 2 Gb LPDDR3 RAM, 16 Gb of storage and a 
1920 x 1080 pixel screen resolution (423 ppi). 
Participants. Two independent groups of nineteen subjects 
each participated in this experiment. All participants were 
regular smartphone users and they were recruited in our 
organization through a mailing list. 
Procedure. Before starting the test, the principle of each 
condition (Cloud Menu, Linear Menu and Control) was 
explained to participants but prediction levels were not. 
Each participant trained with a pre-test composed of ten 
targets. A different item list was used in the pre-test than 
the one used in the test. Both groups selected 60 target 
items as follows:  
Group 1: 40 target items for Cloud Menu (20 with high 
prediction and 20 with low prediction) = 20 items when 
prediction is correct (10 located in the center of the Cloud 
Menu and 10 when target is in the periphery) + 20 items 
when prediction is wrong (items are all outside the Cloud 
Menu: 10 located on the first screen and 10 on the second 
screen). There were also 20 items for Control condition: 10 
items located on the first screen and 10 on the second 
screen. 
Group 2: 40 targets for Linear Menu = 20 items when 
prediction is correct and 20 items when prediction is wrong 
(target is outside the prediction window: 10 located on the 
first screen and 10 on the second screen). Similarly to group 
1, there were also 20 items for Control condition: 10 items 
located on the first screen and 10 on the second screen. 
In summary, the design was as follows:  
19  participants × 
2 groups × 
60 targets × 
= 2280 menu item selections in total. 

Gr
ou
p 

Menu Selection time (sec.) Error rate (%) 
µ σ W/Z µ σ W/

Z 
G1 
G2 

Control  
Control 

3.40 
3.04 

1.07 
1.07 

0.93 0.17 
0.33 

0.29 
0.62 

0.22 



G1 
G2 

Cloud (P+) 
Linear (P+) 

1.76 
4.12 

0.61 
3.08 

3.08 
*** 

0.95 
1.93 

1.20 
2.12 

1.47 

G1 
G1 

Cloud (P+) 
Control 

1.76 
3.40 

0.61 
1.07 

4.11 
*** 

0.95 
0.17 

1.20 
0.29 

3.04
** 

G1 
G2 

Cloud (P-) 
Linear (P-) 

5.60 
3.40 

1.65 
2.84 

3.08 
** 

0.74 
2.66 

1.74 
2.79 

1.47 

G1 
G1 

Cloud (P-) 
Control  

5.60 
3.40 

1.65 
1.07 

4.17 
*** 

0.74 
0.17 

1.74 
0.29 

1.22 

G2 
G2 

Linear (P+) 
Control 

4.12 
3.04 

3.08 
1.07 

2.04 
* 

1.20 
0.33 

2.11 
0.62 

2.54
* 

G2 
G2 

Linear (P-) 
Control 

3.40 
3.04 

2.84 
1.07 

0.20 2.66 
0.33 

2.79 
0.62 

3.54
** 

Table 2. Results: P+=high prediction, P–=low prediction – 
No significance= p>.05, *= p≤ .05, **= p≤ .01, ***=p≤ .001 

Results and Discussion 
Levene’s test was applied to verify homogeneity of 
variance between the two independent samples. Since this 
later was partially determined, non-parametric Mann-
Whitney Comparison test was used for analysis between 
independent samples (groups), and Wilcoxon Signed Ranks 
test was applied in the case of within-subjects conditions 
(Table 2). Data were submitted to a Bonferroni Type I 
correction before handling. 

Selection time 
Selection time for all conditions is reported in the third 
column of Table 2 and graphically depicted in Fig. 11 with 
a 95% confidence interval for difference between normal 
means (α=.05). First of all, according to row 1 in Table 2, 
there is no significant difference (Z=.93, p=.35) in Control 
condition between group G1 who tested the cloud menu 
(µ=3.40, σ=1.07) and group G2 (µ=3.04, σ=1.07), which 
allows us to properly compare these two independent 
groups. 

According to row 3, Cloud condition with high prediction 
(P+: µ=1.76, σ=0.61) is significantly faster (W(22)=4.11, 
p= .00004) than Control condition (µ=3.40, σ=1.07). 
Similarly, Cloud condition with high prediction (P+: 
µ=1.76, σ=0.61) is significantly faster (Z=3.08, p=.002) 
than Linear condition in both cases as indicated in row 2: 
when target is in the center of the Cloud (µ=1.19, σ=0.54) 
and when it is in the periphery (µ=2.35, σ=1.04). 
Interestingly, when target is located in the center of the 
Cloud, participants are also significantly faster 
(W(23)=3.71, p=.0002) than when it is located in the 
periphery. Usually, corner locations are faster to reach. 

Row 6 suggests that Control condition (µ=3.04, σ=1.07) is 
faster (W(14)=2.04, p=.05) than Linear condition when 
prediction is high (P+: µ=4.12, σ=3.08). In addition in row 
4, when prediction is low, users are significantly faster 
(Z=3.08, p=.002) in Linear condition (P–: µ=3.40, σ=2.84) 
than in Cloud condition (P–: µ=5.60, σ= 1.65). In row 5, 
we observe that users are also significantly faster 
(W(22)=4.17, p=.0003) in Control condition (µ=3.40, σ= 
1.07) than in Cloud condition with low prediction (P–: 
µ=5.60, σ=1.65). 

 
Figure 11. Selection time for all conditions (normal mean, α=.05). 

More detailed results further suggest that:  
1. Cloud with low prediction and target on first screen of 

the main list (P–: µ=4.98, σ=1.76) is significantly faster 
(W(22)=4.14, p=.00003) than Control with target on 
first screen (µ=2.42, σ=0.83) 

2. Cloud with low prediction and target on second screen 
of the main list (µ=6.24, σ=1.63) is significantly faster 
(W(22)=3.56, p=.0003) than Control with target on se-
cond screen (µ=4.40, σ=1.78). 

3. In Control condition, users are also significantly faster 
(W(22)=4.14, p=.00003) when the target is on the first 
screen (µ=2.42, σ=0.83) than when it is located on the 
second screen (µ=4.40, σ=1.78). 

However, row 7 reveals that there is no significant 
difference (W(14)=0.20, p=.84) between Control condition 
(µ=3.04, σ=1.07) and Linear condition when prediction is 
low (P–: µ=3.40, σ=2.84). More detailed results further 
suggest the following absences of significance: 

1. No significance (W(14)=0.91, p=.36) between Linear 
with low prediction and target on first screen of the 
main list (P–: µ=3.55, σ=3.42), Control with target on 
first screen (µ=2.11, σ=0.53). 

2. No significance (W(14)=1.14, p=.25) between Linear 
with low prediction and target on second screen of the 
main list (µ=3.25, σ=2.35) and Control with target on 
second screen (µ=3.97, σ=0.86). 

However, users belonging to the Control condition are 
significantly faster (W(14)=3.40, p=.0006) when the target 
is in the first screen (µ=2.11, σ=0.53) than when it is 
located on the second screen (µ=3.97, σ=0.86), which is of 
course normal since any navigation to the second screen 
will inevitably increase the selection time. Fig. 12 depicts 
the item selection time by participant in the two groups by 
condition. 

H11 is supported. When prediction is high, end users find 
the target item among the 6 predicted items in the Cloud 
Menu and the Linear Menu faster than in Control condition 
when the target belongs to a list of 16 items, which 
somewhat normal since item selection is operated with a 
smaller amount of time included in a smaller surface, which 
is in line with [30]. 
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Figure 12. Selection time by participant. 

H21 is supported. When prediction is high, users are faster 
in Cloud menu than in Linear condition. This result can be 
justified by the fact that circular form of the Cloud 
facilitates exploration of a number of predicted items 
assigned to 6, which is higher than the typical 3 items found 
in other Split Adaptive menus. The user attention is 
distributed to different sides of the Cloud in contrary to the 
Linear condition when the user has to browse all items one 
by one. Consequently, by transitivity, Cloud Menu is faster 
than Linear menu, which is in turn faster than Control 
condition, which is the most important conclusion that 
demonstrates the effectiveness and efficiency of Cloud 
Menus. 

H31 is supported. This is justified by the fact that user 
attention is often attracted by the item in the center of the 
Cloud Menu because it is consistently located and it is 
always emphasized by a larger font size compared to other 
predicted items in the Cloud, which is consistent with [22]. 
Therefore, the central item is always the most pre-eminent 
among all menu items and its position is very predictable, 
even it requires some scanning. Suggested conclusions are: 

1) Prediction step is crucial, it reduces navigation time and 
visual search time especially when menus are long. 

2) Increasing the amount of predicted items is not 
penalizing the interaction because it is still better than 
the non-adaptive menu provided that this amount is not 
prohibitive, which may require another study to 
determine the threshold beyond which the positive effect 
no longer occurs. 

3) The presentation of the prediction window as a circular 
word cloud may be an important factor making the 
Cloud Menu efficient. The results suggest that the Cloud 
Menu is better than the Linear Menu because of its 
impact on user perception [21] and usability of word 
clouds [22,32]. 

4) Linear menu is competitive to scan items (one eye 
fixation, one column), but becomes surpassed by a cloud 
menu (many eye fixations, multiple directions) when too 
many items increase the length of the split area.  

H41 and H51 are partially supported. Results showed that, 
overall when prediction is low, Control condition is faster 
than Cloud Menu and no significant difference is detected 

between the Linear and Control conditions. This result can 
be justified by the fact that being sure that the target is not 
one of the predicted items is easiest in the case of a linear 
list than in the Cloud. In this latter, the human perception is 
going in all directions and the user scans the Cloud several 
times in order not to miss any item. In Linear Menu, the 
user is often sure not to miss the target item since the whole 
menu is browsed sequentially. But as in the Cloud Menu, 
six predicted items are conveyed to the end user, thus 
implying that there is a higher probability to present the 
item of interest to the end user than when three predicted 
items are presented. 

H61 is supported. Users can have direct access to target 
when this latter is on first screen contrary to when it is on 
the second screen, in this case scrolling is required that can 
justify the fact that selection time is shorter on first screen 
than on second screen. 

Error Rate 
Error rate for all conditions is reported in the fourth large 
column of Table 2 and graphically depicted in Fig. 13 with 
a 95% confidence interval for difference between normal 
means (α=.05). Error rates are assessed as equivalent (Z= 
0.22, p=.82) in Control condition both in G1 (µ=0.17, σ= 
0.29) and G2 (µ=0.33, σ=0.62) as reported in row 1 of 
Table 2. Overall, there is no significant difference observed 
(Z=1.47, p=.14) in terms of errors between the Cloud 
condition (µ=0.95, σ=1.20) and Linear condition (µ=1.93, 
σ=2.12) as indicated in row 2. In Cloud Menu, when 
prediction is high and item target is located in the center of 
the Cloud (P+: µ=0.04, σ=0.21), errors are less frequent 
(W(22)=3.44, p=.0005) than when the target is located in 
the periphery (µ=1.87, σ=2.40). In row 3, we observe that 
errors are significantly less frequent (W(22)=3.04, p=.002) 
in Control condition (µ=0.17, σ= 0.29) than in Cloud Menu 
(µ=0.96, σ=1.20), which may be due to tally errors in the 
periphery of the Cloud. When prediction is low in Cloud 
Menu (P–: µ=0.74, σ=1.74), there is no significant 
difference (W(22)= 1.22, p=.22) with respect to the Control 
condition (µ=0.17, σ=0.29) as reported in row 5. Similarly, 
errors are less frequent (W(14)=2.54, p=.01) in Control 
condition (µ=0.33, σ=0.62) than in Linear condition 
(µ=1.20, σ=2.11) as reported in row 6 when prediction is 
high. When prediction is low in row 7, it is even more 
significant: errors are less frequent (W(14)=3.54; p=.007) in 
Control Condition than in Linear case with low prediction. 
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Figure 13. Error rate for all conditions. 

H71 is supported. When target is one of the 6 predicted 
items in Cloud and Linear Menu, the visual search time and 
selection time are reduced which reduce errors number.    

H81 is supported. In the periphery, some items can be close 
together, which suggests that a large number of tally errors 
can be generated. Contrarily to a target located in the 
center, locations, directions, and font size are factors 
minimizing tally errors. Items predicted inside the cloud 
can be laid out in a more optimized way by calculating the 
distance between items and the center, and distributing 
them, e.g., by considering their semantic relation. Further 
investigation is required to improve this aspect, by laying 
these items out depending on their position in the static 
menu. 

H91 is supported. In the case of low prediction, participants 
did not rely on the Cloud Menu and used the  button to 
make it disappear. The target is in the static menu, like in 
Control condition, which suggests that there is no 
difference between Cloud Menu and Control condition. 

Experiment overview 
The experiment conducted on the cloud menu corroborates 
several findings from Lohmann et al. [22]: 
• Item font size: items with a large font size attract more 

user attention than with a small font size (an effect 
influenced by other parameters, such as item length, 
item position, and item neighboring). According to this 
study, recognition for items with a larger font size was 
significantly higher than items with a smaller font size: 
83%, 73%, and 59% respectively for the three first font 
sizes. This also confirms the effect observed in Adaptive 
Activation-Area Menus [33], where a large selection 
area attracts more user attention than with a small area. 
AAMUs are spatially and physically instable, but 
preserve format and temporal stabilities. Conversely, 
Cloud Menus leave untouched the initial (static) menu. 

• Scanning: cloud menus have been proved as an efficient 
adaptive split menu for small screens because 
participants tend to scan menu items rather than reading 
them, which accelerates their processing time. 
Concentrating this scanning into a designated area 

fosters this focus as opposed to distribute predicted 
items or to move the split area into another location, 
which is feasible for desktop, but not for small screens. 

• Centering: menu items located in the middle of the 
cloud attract more user attention than tags near the 
borders, an effect influenced by radial layout like in pie 
menus. H31 and H81 are two supported hypotheses that 
confirm this finding. 

• Position: the upper left quadrant receives more user 
attention than the others, but we did not exploit this 
effect since menu items are positioned so that they can 
point to their original position in the static menu, even 
when they are off-screen. This facility is optional and 
we did not identify any significant difference between a 
location-dependent item positioning and a location-
independent one. 

DESIGN GUIDELINES FOR CLOUD MENUS 
A cloud menu represents a split adaptive menu for which 
the following design guidelines can be devised. 

G1. A cloud menu should be used for a substantive 
static menu. The main idea behind using a tag cloud in 
information retrieval is that the relevance of a document 
must be determined with respect to a set of documents 
before this document actually appears. Similarly, the main 
idea behind using a tag cloud as an adaptive split menu is 
that the probability of selecting a menu item among other 
items in that menu should appear before the menu is 
entirely browsed and displayed. It does not make sense to 
produce an adaptive split menu such as the cloud menu for 
an initial (static) menu containing only a few items, even on 
a small screen. In our experiment, the half of the menu is 
visible: 8 items among 16. 

G2. A cloud menu should not hold more than 6 items. So 
far, split adaptive menus have been mainly explored for 
large screens (e.g., laptop, desktop, large monitors, wall 
screens). Even under these conditions, 3 to 4 items were 
recommended [9,10] as the maximum threshold. The results 
of the experiment conducted suggest that this threshold 
could be upgraded up to 6, even on a small screens. 
Another study could conduct the same experiment on a 
large screen to determine to what extent the benefit is more 
important. 

G3. A cloud menu should not exceed 3 levels of 
prediction. Beyond this threshold, the end user is likely to 
be no longer able to make any difference between the three 
levels. This is somewhat consistent with the 3 levels of 
highlighting recommended in usability guidelines. Other 
coding schemes could augment this representation, but may 
also increase the cognitive load as opposed to reinforcing 
the same data. 

G4. A cloud menu should be located as close as possible 
to the static original menu. When a split adaptive menu is 
located too far away from its original menu, there is a risk 
of losing the semantic or physical relationship between the 
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static and the predicted parts. This is consistent with the 
recommendation from [29,30] to minimize visual 
displacement between the various regions. 

G5. The items of a cloud menu should be located as 
much as possible to point to their corresponding (static) 
items. When both are on the same display, they should be 
positioned on the same line (plain red arrow in Fig. 1). 
When a predicted item refers to an off-screen location, it 
should also be positioned to indicate this situation (dotted 
red arrow in Fig. 1). This guideline is applicable to any 
adaptive split menu, but is even more important for desktop 
applications. 

G6. A cloud menu on a small screen can be 
superimposed. While large screens can accommodate 
another (close) location for displaying the prediction 
window, a small screen is unable to satisfy the same 
constraint. Thus, a superposition avoids creating another 
parallel menu like in the traditional split menu, with the risk 
of oscillating between the two. It also preserves spatial, 
physical, and format stability (since the static menu is left 
untouched), but not temporal stability. 

G7. A cloud menu should optimize its circular layout. 
Since shape was elicited in the focus group as the first 
variable to manipulate for materializing a cloud, other 
parameters, like color, texture, animation should be left out. 
Instead, the circular layout could be optimized based on 
[29], with only one item per line and only one background 
and foreground color. We did not play with transparency 
like alpha blending. 

CONCLUSION AND FUTURE WORK 
This paper presented Cloud Menus, a new type of adaptive 
split menu in which predicted menu items are arranged in a 
circular word cloud superimposed on the static menu. Menu 
items adhere to a series of seven design guidelines that have 
been devised. Through a controlled study, the cloud menu 
has been shown as a promising interaction technique for 
accelerating interaction with menus on small screens (e.g., 
watches, mobile phones, smartphones): due to its 
adaptivity, it exhibits a faster and more reliable behavior 
than a static (non-adaptive) menu, whether the prediction is 
correct or not. The circular layout was demonstrated to be 
superior to the Linear Menu, in which the adaptivity is 
identical, but the prediction window is presented as a linear 
menu instead. 

Although tag clouds and word clouds (as used in this 
adaptive split menu) are becoming more popular and 
ubiquitous, especially after they have been offered as free 
widgets in many environments like jQuery, WordPress, 
Joomla!, and even Unity, we only know a little about 
usability of word clouds, apart from [22]. This paper 
contributes to a better understanding of their usability when 
applied as a cloud menu, but much remains to be done to 
examine its full potential. 3D clouds are also becoming 
popular and, yet, their usability is even less known. Their 

usability is likely to be largely affected by the visibility of 
the items which are subject to animation without any user 
control. In our preliminary experiment, motion came in the 
fourth position, but only for a 2D cloud menu. Studying a 
3D cloud menu is another thing: items are floating around, 
thus generating occlusion. 

In principle, the font size of a word in a word cloud is 
determined by its incidence. For smaller frequencies one 
can specify font sizes directly, from one to whatever the 
maximum font size. For larger values, a scaling should be 
made. Since the amount of predicted items is limited, it 
does not make sense to devote computational time for 
calculating the font size dynamically with respect to all 
levels of prediction. 

In future work, we will investigate the impact of the cloud 
layout on menu selection, namely based on alternate 
prototypes (Fig. 2) so as to better study the distance of an 
item to the center of the Cloud as a function of accuracy 
level of this item. Also studying and improving presentation 
of predicted items allows us to minimize the number of 
errors, namely by a systematic analysis of Bertin’s visual 
variables, either for one visual variable at a time or for a 
combination of them. Throughout this paper, we hope to 
open and encourage exploring other directions in split 
adaptive interface. We hope that both researchers and 
practitioners will benefit from this new form of split 
adaptive menu. 
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