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Abstract-This paper presents a design space for engineering 

adaptive user interfaces throughout the user interface develop­

ment life cycle in order to describe any adaptation technique, 

adaptable or adaptive, to compare two or more techniques, and to 

generate new, perhaps unprecedented, techniques. Grounded in 

the theory of psychological perception, this design space structures 

the adaptation life cycle into two regulation loops between the user 

and the system: a perception-decision-action (PDA) loop for both 

the system and the user, and a learning-prediction-adaptation 

(LPA) for supporting the adaptation, this last being particularly 

expressive for adaptivity. This PDA-LPA design space enables de­

fining properties for assessing the q uality of these loops between 

the system and the end-user. This design space of is instantiated on 

two advanced adaptive user interfaces: adaptive user interfaces 

based on machine learning and adaptive layouts. This design space 

provides new insights for considering adaptivity design options. 

Keywords- Adaptation of user interfaces, adaptive user in­

terfaces; design space exploration; quality properties; intelligent 

user interfaces. 

I. INTRODUCTION

User Interface adaptation consists in moditying the User In­
terface (UI) of an interactive system to satisty specific require­
ments. Adaptation falls into two categories depending on whom,
the system anc\/or the end-user, is involved in the adaptation pro­
cess [20,23]: adaptability refers to the end-user's ability to adapt
the UI [41] whereas adaptivity refers to the system's ability to
perform UT adaptation [14]. Mixed-initiative adaptation [7] oc­
curs when both the end-user and the system collaborate in the
adaptation process. UI adaptation has been extensively investi­
gated [20], researched [34], developed [28], and tested [38] with
the ultimate goal of optimizing the overall end-users' experience
by increasing end-users' performance anc\Ior preferences [11],
by reducing task completion time and error rate [5], by improv­
ing the subjective user's satisfaction, her learning curve [25].

The challenge is to suggest the right adaptation at the right
time at the right place for making it valuable to the end-user [23].
Otherwise, adaptation will be prone to several limitations that
could become a major impediment to the expected benefits, if
not thwart them [25]: risk of misfit (the end-user's needs are in­
correctly captured or interpreted), user cognitive disruption (the
end-user is disrupted by the adaptation), lack o{ prediction (the
end-user does not know when and how the UI will be adapted
by the system), lack of explanation (the end-user is not informed
the reasons that triggered adaptation), lack of user involvement
(the end-user does not have the opportunity to participate ac­
tively in the adaptation process), and riskfor privacy (the system

maintains personal information that the user wishes to keep pri­
vate). "The field of adaptive systems is infamous for its lack of
standards, or even commonly accepted approaches" [33]. Sur­
veys of UI adaptation have been published [6,14,18,28,34] as
attempts to synthesize adaptation concepts, methods, and tools.
However, most of them is technology driven, limited in scope,
or surpassed by recent technical progress, which makes them in­
appropriate for covering the most recent adaptation techniques
as weIl as for exploring alternatives in a systematic and struc­
tured manner.

Design spaces are useful conceptual tools for supporting sys­
tematic reasoning. A design space is a multi dimensional ensem­
ble where a dimension identifies a key issue and for each issue,
makes explicit the alternatives available. Design spaces have
been used extensively in Human-Computer Interaction (HCl),
from software architecture modelling for interactive systems
[24] to multimodal user interfaces [12], to device modelling
[10]. They have provided the HCI community with shared vo­
cabularies for describing and understanding multiple aspects of
interactive systems. On the other hand, "UI adaptation" still
lacks a design space that would serve as a reference framework
to reason about UI adaptation at the appropriate level of details.

Existing taxonomies and frameworl(s for reasoning about U 1 
adaption either are too high level to inform UI designers and de­
velopers in a useful and effective manner, or they ignore the role
of the end-user in the adaptation process, or even do not consider
the usability of the adaptation process. In turn, we propose a new
design space for UI adaptation that covers both the human and
the system as two symmetrical and interacting loops where each
loop is decomposed into 6 stages informed by cognitive psychol­
ogy: a Perception-Decision-Action (PDA) sequence enriched
with a Learning-Prediction-Adaptation (LPA) sequence. In ad­
dition, the quality of the interaction that takes place between the
human PDA-LPA cycle and that of the system cycle are charac­
terized with properties that refme the usability of the adaptation
process at multiple levels of granularity: at the loops level or at
the stage levels. As a result, designers and developers of UI ad­
aptation can reason at several levels of abstraction. Additionally,
the stages of the PDA-LPA loops provide the basis for architec­
tural decomposition.

The article is structured in the following way: Section 2 pro­
vides some background on design spaces and frameworks for
adaptation, Section 3 defines the PDA and LP A loops as weil as
a series of quality properties derived from them. Section 4 com­
pares two adaptive systems based on this design space. Section
5 concludes the paper by presenting some future avenues.



11. BACKGROUND ON USER INTERFACE ADAPTATION 

Pioneering work on VI adaptation started with Browne et al. 
[6]. These authors have used Moran's Command Language
Grammar (CLG) [10] that structures the specification of a VI
into distinct aspects, from tasks and abstract concepts to syntac­
tic and physical components. They conclude that CLG major
strength for VI adaptation is the Principle of Separation of Con­
cerns. Although this principle is enforced in CLG, it is not obvi­
ous how to easily propagate all specifications aspects into the
fmal code. In addition, Browne et al. observe that CLG has very
limited facilities for expressing VI presentation and behaviour,
thus raising the need for improving its expressiveness.

Dieterich et al. taxonomy [14] has long been considered as
a seminal reference for classifying different types of adaptation
configurations and techniques. Based on the analysis of more
than 200 articles covering UI adaptation, Dieterich et al. propose
a four stage classification: initiative (which entity involved in
the interaction process expresses the intention to perform adap­
tation), proposal (if a need for adaptation arises, what proposals
could be applied successfully given the current situation), deci­
sion (which adaptation proposal best fit the requirements), and
execution (the adaptation technique previously chosen is fmally
enacted). Given these four stages, the authors have c1assified
every system with adaptation capabilities according to the actors
involved at each stage. Fig. 1 presents an adaptation configura­
tion in which the system recognizes the need for adaptation, pro­
poses some alternatives, the end-user then selects the appropri­
ate alternative that is fmally executed by the system. Any other
combination of this distribution could be imagined.

Fig. l. An adaptation configuration in Dieterich' s  terms. 

McKinley's taxonomy [28] addresses software composi­
tional adaptation that exchanges algorithmic or structural parts
of the system with others to improve the system' s fit to its cur­
rent context of use, which is considered as the reference for ad­
aptation [9]. This kind of adaptation is based on the separation
of concerns between the functional behaviour of the system and
cross-cutting concerns, as weil as on computational reflection
that provides a vehic1e to query the different aspects of a system,
on component-based design practices that enable the develop­
ment of the different parts of a system separately, and on a mid­
dIeware that usually provides the compositional capabilities.

Fig. 2. Adaptation time according to McKinley' s  taxonomy [28]. 

The taxonomy is structured along three dimensions:
1. How to adapt: the process can be carried out by different en­

tities: a human (e.g., a developer, a system administrator), a
component loader, a run-time system, or a meta-object.

2. Where to adapt: it describes where, in the system, the adap­
tation code is inserted. The most common approach is to
place the code in the middleware, although extensible oper­
ating systems have also been used.

3. When to adapt: the adaptation time (Fig. 2) is static, respec­
tively dynamic, when it takes place at design, prototyping,
develop, compile, link, or load time, respectively at run time.
In addition, adaptation is hardwired (when UI adaptation is
embedded in the code of the interactive application, or in the
UI code), customizable (when UI adaptation enables some
pre-computed freedom), conjigurable (when the VI adapta­
tion technique can be configured before execution), tunable
(when VI adaptation can fine-tune the VI at run time without
modifying its code), or mutable (when UI adaptation sub­
sumes the run time code modification of the interactive ap­
plication, as in generative programming [36]).
Although this taxonomy is applicable to an entire interactive

application, the three dimensions (i.e. how, where, when) are
particularly constructive for a design space: 'how to adapt' cor­
responds roughly to the proposal stage of Dieterich' s taxonomy,
'where to adapt' is implicitly included in the execution stage of
Dieterich's taxonomy, whereas 'when to adapt' is not covered
by Dieterich's taxonomy. Therefore, McKinley's taxonomy
complements Dieterich's proposal, but contrarily to the ISATINE 
framework [27], they altogether do not cover the adaptation life
cyc1e in sufficient detail to reason about the design and imple­
mentation of VI adaptation techniques.

Fig. 3. The ISATINE framework for UI adaptation [27]. 

The ISATINE frameworl( (Fig. 3) [29] structures the adapta­
tion life cyc1e of a VI into the exact same stages as the seven
stages identified by Norman to model human mental steps when
performing a task with a system [32]. Inspired by Norman's gulf
of execution and gulf of evaluation, ISATINE inc1udes the gulf of
adaptation execution and the gulf of adaptation evaluation.



As shown on the left end side of Fig.3, the gulf of adaptation 
execution covers the stages that the adaptation process goes 
through to adapt. The gulf of adaptation evaluation, shown on 
the right end side of Fig. 3, includes the stages involved in the 
assessment of the outputs produced by the execution gulf. As in 
Nonnan 's mental model of action [32], the process starts by stat­
ing some particular adaptation goal which in turn triggers an in­
itiative for adaptation whose meaning has to be specified, then 
transfonned into a concrete plan before being applied. Once the 
adaptation has been completed, a transition takes place until in­
terpretation of the adaptation is reached, and evaluated with re­
spect to the initial goal. Feedback may be interpreted positively 
(i.e., the adaptation goal has been fulfilled) or negatively (i.e. the 
adaptation goal has not been achieved) [30]. In the latter case, a 
new adaptation loop is initiated. Any stage can be carried out by 
any combination of end-users, system, and other stakeholders. 

While more expressivity is gained, the ISATINE framework 
still misses important aspects: it details the stages of the adapta­
tion process only with respect to the end-user's viewpoint, it 
does not provide any insight from the system viewpoint. In par­
ticular, it does not separate the part related to the main interac­
tion from the adaptation itself; it does not express how adaptivity 
is achieved; and it does not support the expression of the quality 
of the adaptation process. Therefore, the 'when to adapt' is cov­
ered as weil as the 'where to adapt', but not 'how to adapt'. For 
the aforementioned reasons, we would like to come up with a 
design space for adaptation that could anchor techniques se­
lected for supporting 'how to adapt' when they are required. 

TTT. THE PDA-LPA DESIGN SPACE 

A. Requirementsjor a Design Spacejor Ul Adaptation 

Any design space for adaptive VIs, as any other design space 
or model, should serve three virtues [3]: 
1. A descriptive virtue: any adaptive VI should be described 

completely, consistently, and unequivocally. 
2. A comparative virtue: any set of adaptive VIs should be 

made comparable according to the criteria defined in the de­
sign space. This requirement supports sound comparative 
analyses of techniques as weIl as rigorous benchmarking. 
When two adaptive VIs are compared in the design space, 
their coverage can be highlighted, thus enabling an objective 
identification of their respective strengths and weaknesses, 
which is referred to as commensurability. 

3. An exploratory virtue: every dimension of the design space 
can be systematically explored in order to identify where ex­
isting techniques are located, where they are strong or weak, 
where new opportunities emerge, and where underexplored 
portions remain to be investigated, if not discovered yet. 
Such underexplored portions could be subject to a theoretical 
analysis to detennine their feasibility or a prototypical imple­
mentation to identify its potential benefits. 
Beyond these three virtues, a design space for VI adaptation 

should cover the co-evolution that occurs between the end-user 
and the system. As end-users adapt themselves while interacting 
with the system, the same applies to the system for anticipating 
end-users actions and for facilitating the interaction. Therefore, 
two loops must be considered: one for the main UI interaction 
and one for the adaptation of this VI. 

Fig. 4. The Pereeption-Deeision-Aetion (PDA) eycle in eognitive psyehology 
(a) and its applieation in HCI (b). 

Cognitive psychology [22,32] as weil as human decision the­
ory argue that perception, decision, and action are the key activ­
ities that humans use to make sense of, and to interact with the 
environment [9]. Any interactive task thus involves: perception 
when the end-user has to perceive the basic properties of the 
context of use, inkling the VI, decision when the end-user has to 
make a choice between competing options based on her own in­
terpretation, and action when a particular action should take 
place after a decision has been made. The end-user follows a se­
ries offerception-.Qecision-Action (PDA) cycles (Fig. 4a) un­
til the task is completed. While some researchers claim that these 
three types of actions are intertwined [15] and could be linked 
by bidirectional arrows indicating the non-consecutive interac­
tion [20], we prefer to keep the concision of the initial PDA cycle 
because it equally applies to the UI: the system has to perceive 
what the user is actually doing (through sensors, user-generated 
events), to decide what next actions will be undertaken (e.g., 
through a dialog controller), and to execute the required actions. 
Hence, the user-system interaction could be represented as a se­
quence of 2 PDA cycles (Fig. 4b). 

In addition to the interaction PDA cycle, we propose the 
1earning-frediction-Adaptation (LPA) cycle to convey the 
human-system co-evolution phenomenon mentioned above. The 
end-user gains experience from the previous PDA cycle and 
learns. This in turn facilitates the prediction of what to do next 
for adapting herself to the system. On the system side, the sys­
tem learns from the end-user's actions, creates and maintains 
this knowledge for predicting what to offer next to the end-user, 
and for applying the appropriate adaptation technique. Adapta­
tion cycles cease when either the user or the system decides to 
suspend the adaptation process. Otherwise, there would be a risk 
of infinite adaptation without any convergence towards a stable 
state. Vsually, the end-user takes this decision. 
B. Design Space Definition 

The design space for UI adaptation resulting from these require­
ments is illustrated in Fig. 5: the end-user's side, graphically 
depicted in blue, is made up of two cycles (one PDA cycle for 
the interaction and one LP A cycle for human adaptation) as weil 
as the system, graphically represented in green (one PDA cycle 
for controlling the system according to the business logic and 
one LPA cycle for system adaptation). 



Fig. 5. The PDA-LPA design space far ur adaptation. 

Fig. 6. Global quality properties. 

The resuIting PDA-LPA design space for UT adaptation 
therefore makes it explicit the activities from both sides (user 
and system) while differentiating the main interaction process 
from the adaptation process. When no system adaptation exists, 
the LPA-system sequence disappears. When no user adaptation 
is achieved, the LPA-user sequence disappears. An adaptable UI 
could be represented equally without the LPA-system sequence 
since the end-user is in charge of adapting the system. An adap­
tive VI includes the 4 sequences shown in Fig. 5. 

C. Quality Properties 
Any adaptation could be described in the terms of the PDA­

LP A design space as follows: which technique is promoted in 
the interactive system for supporting perception, decision, ac­
tion, learning, prediction, and adaptation when it occurs. This 
should respect the aforementioned descriptive virtue. In order to 
respect the comparative virtue, quality properties could be de­
fined on top of the design space, thus revisiting and enriching 
existing quality properties for interactive systems [21] and sim­
uItaneously introducing new abilities [41] for the adaptation. 
Quality properties in our design space fall into two categories: 
system (software) quality properties when the property could be 
defmed as an ability ensured by the system in a user-independent 
way, or user quality properties when the property could be de­
fined as an ability offered to the user, which is therefore user­
specific. A quality property is said to be shared when both the 
end-user and the system collaborate to ensure the property. Fig. 
6 depicts a first series of global quality properties (i.e., between 
user and system considered as a whole): 

Observability: refers to the system's ability to make perceiv­
able its state in a relevant way for the end-user. This sub­
sumes the interaction (system observability) and/or the adap­
tation (adaptation observability). Adaptation observability is 
key for the end-user to perceive what the system is doing to 
support adaptivity: in L.earning (to perceive what the system 

is currently learning or has learnt from the user, such as user 
events, actions), in frediction (to perceive that the system is 
able to predict an adaptation), and in !ldaptation itself (to 
ren der that an adaptation is taking place, such as with ani­
mated transition showing how a UI progressively evolves 
when subject to adaptation [13]). Observability is a general­
ization of immediate visibility since several techniques could 
ensure observability [21]: traceability (step-by-step perceiv­
ability) [31] or browsability (visibility by navigation on-de­
mand): what is not immediately perceivable could be made 
browsable on demand. Browsability refers to the system's 
ability for the user to explore the system state by the way of 
articulatory tasks (i.e., tasks that do not modifY the state of 
the functional core, such as scrolling, zooming in, zooming 
out, navigating). Some forms of observability are graphically 
depicted in Fig. 7: learning observability from the learning 
activity to the end-user, prediction observability from the 
prediction activity to the end-user, and adaptation observa­
bility for the final adaptation executed. Each activity could 
be subject to observability independently of the others: it is 
not because the adaptation is observable that its learning and 
its prediction should be also observable. On the opposite, 
these three activities are rarely subject to observability, apart 
from showing the results of the adaptation to the end-user. 

- Intelligibility: refers to the system's ability to communicate 
to the end-user how the interaction and/or the adaptation pro­
cesses are conducted in a meaningful and representative way 
[4]. As intelligibility subsumes observability [39] (before 
making the adaptation intelligible, it should be made observ­
able), it could be similarly decomposed into interaction in­
telligibility and adaptation intelligibility. lntelligibility is key 
for the end-user to understand the system and the adaptation 
engine, while they are running. For a context-aware system, 
intelligibility refers to the system's ability to present itself in 
a convenient manner, the way the context is perceived and 
its behaviour depending on significant changes over time 
[22]. lntelligibility could be ensured by different ways [4]: 
explainability (the adaptation is explained), continuity (the 
adaptation process is continuously rendered) [19], honesty 
[21], or transparency (which each adaptation is rendered uni­
vocally to the end-user to avoid the aforementioned limita­
tions of adaptivity) [8]. The end-user can understand all the 
better that she is able to observe the system thanks to observ­
ability. Honesty refers to the system's ability to achieve two 
aims: to make the real system state observable to the end­
user (which is challenging due to latency and lag [13]) and 
to make this state accurately [19] interpreted by the end-user. 



Fig. 8. Various forms of predietability. 

Predictability: refers to the user's ability to predict future 
system actions for supporting the interaction, the adaptation, 
or both based on past corresponding actions [19]. Regarding 
the adaptation predictability (see Fig. 8 for various forms of 
this property), the user should to some extent predict the be­
ha�iour of�he adaptivity algorithm based on past adaptivity 
actIOns, whlch may subsurne controllability: the end-user can 
predict all the better that she is under control of the system 
t�anks. to controllability. Accuracy of the prediction posi­
t�vely Impacts the performance and thus subjective satisfac­
tIon of the end-user when adaptivity is properly achieved 
[17,19], which heavily depends on the prediction method. 
Cont,:ollabil!ty: refers to the user's ability to control the sys­
tem I?teractlOn (interaction controllability), the system ad­
aptatIOn (adaptation controllability), or both depending on 
which cycles are concerned: the system PDA cycle, the sys­
tem LPA cyc1e, or both. Controllability could cover any in­
teractive Ul aspect in principle. When the end-user has no 
control, the interaction and/or the adaptation cyc1es are en­
tirely initiated and controlled by the system through self-con­
t�olling, self-r�lS.ula!ion, or self-adaptation [8,33]. A'dapta­
tlOn controllabIllty IS essential to enable the end-user to be 
acti,:ely involved in any adaptation activity: in 1earning (to 
speclfy to the system what is allowed to capture, interpret, 
and learn from the user for ensuring privacy), in Erediction 
(to co�trol the parameters used for predicting the adaptation, 
e.g., VIa machme learning), and in Adaptation (to assess ad­
��tation proposa�s, to accept a relevant adaptation -true pos­
ltlve�- .or reJect Iffelevant adaptations resulting from wrong 
predlctlons -false positives-). For instance, a prediction win­
�o:v could �isplay n:enu items predicted by the system adap­
tlvlty techmque WhlCh may result into a correct item selec­
tion (if t�e !tem �as desired by the end-user) or undisplaying 
the p�edlCtIOn wmdow and selecting in the initial menu (if 
them ltem does not belong to the prediction window) [5]. 

Fig. 9. End-user to System (E2S) loeal quality properties. 

We defmed a global guality property as a quality property 
between the end-user and the system taken as a whole: from/to 
PDA-LPA cycle from one entity to the other. By analogy, we 
define a local guality propertv as a quality property between one 
step of the PDA-LPA cycle from one entity and the correspond­
ing step in the other PDA-LPA cycle. 

�ig. 9 graphically depicts a series of local quality properties 
rangmg from the end-user to the system (E2S): 

Awareness: refers to the user's ability to perceive (hence, the 
perception activity is concerned) how the interaction the ad­
aptation, or both are occurring in the system. A �areness 
could be supported in several ways, such as context-aware­
ness [21] (what are the contextual conditions that are esti­
�ated significant enough to trigger a change of context), ac­
tIon awar��ess (what are the actions undertaken by the sys­
tem), declSlon awareness (how the system decides which ad­
ap�ation), and perception awareness (how the system per­
celve the context of use). Awareness is positively influenced 
by corresponding system properties, such as observability 
and honesty: the more the system is observable and honest in 
what is observed, the more the user is capable of being aware 
of the system state, information, and actions. 
Decidability: refers to the user's ability to decide (hence the 
decision activity is concerned) what to do (in the intera�tion 
cycle) and/or how to adapt herself (in the adaptation cycle). 
!n case of a system with internal control, there is no possibil­
lty for the user to decide anything; on the opposite side of the 
continuum, the user may decide everything in case of a full 
external locus of control. Between these two extremes 
mixed-in�tiative [8] prompts the user with several options o� 
what actlOns to undertake next, on which adaptation could 
take. place s� �hat the user n:ay decide while knowing the po­
tentIally posItIve and negatIve consequences of this decision. 
Triggerability: refers to the user's ability to trigger (hence, 
�he acti�n activity is concerned) the actions she wants (in the 
mteractlOn cycle) and/or the options needed for an appropri­
ate adaptation. In adaptability for instance, the user is given 
the opportunity to adapt some UI features (e.g., icons, menu 
shortcuts, toolbar contents and position) at any time. Some 
adaptation may be allowed or forbidden depending on the 
context of use or because the consequences will be beneficial 
�r fat�1 for t�e end-user. Deactivation of actions and adapta­
tIOns IS � tYPlcal example for revealing or hiding (un)trigger­
able actIOns. Smart menus displaying first basic menu items 
and then progressively more complex items as the end-user' � 
experience grows, is another form of triggerability. 

Fig. 10 .  System to End-user (S2E) loeal quality properties. 



Fig. 10 graphicaHy depicts a series of local quality properties 
ranging from the system to the end-user (S2E): 

Capacity: refers to the system's ability to execute (hence, the 
action activity is concerned) either domain actions (beIong­
ing to the business domain of activity) or adaptation actions 
or both [41]. The capacity for adaptation reveals the power 
of the adaptation techniques offered to the end-user in terms 
of applicability. The end-user may want to trigger some ad­
aptation (in the triggerability), but the system has no capacity 
for carrying out the required adaptation. This may represent 
a mismatch between the adaptation goals and the system ca­
pacity to achieve them. 

- Autonomy: refers to the system's ability to decide (hence, the 
decision activity is concerned) either domain actions or ad­
aptation actions or both. Autonomy may be governed by the 
locus of contro\: if adaptation actions are made available, the 
system may have the permission to decide which one to ap­
ply with or without the consent of the end-user. When the 
system is given the fuH autonomy, the locus of control is 
completely interna\. When the system has no autonomy, the 
locus of control is completely external. For instance, menu 
items in a pu li-down menu could be re-arranged by the end­
users (adaptable menu) or by the system (adaptive menu) or 
both (mixed-initiative menu) [17]. Agent technology is rec­
ognized for having autonomous agents that carry out tasks 
for the end-user alm ost automatically, without the direct in­
tervention of end-users or others, sometimes even without 
any observability and controllability. 
Perceptibility: refers to the system' s ability to perceive 
(hence, the perception activity is concerned) domains and/or 
adaptation actions achieved by the end-user. These actions 
could be interactive tasks in the course of the interactive sys­
tem itself or manual tasks that are outside the system, but yet 
perceivable (e.g., thanks to camera-based computer vision, 
situation and activity detection). 
Capacity, autonomy, and perceptibility are three local qual­

ity properties expressing system abilities. In order to refine these 
properties in terms of potential benefits for the end-user, further 
sub-properties could be also introduced: 
- Accuracy: refers to the degree to which perceptibility is 

achieved. When an adaptive system accurately perceives the 
user and probes her context of use (e.g., by detecting the plat­
form used in which location), it provides end-users with 
some comfort and trust and could reinforce the end-user's 
feeling that the system is performing accurate actions. For 
instance, predicting frequently used menu items on a smart­
phone should be accurate to be accepted by the user [5]. 
Adequacy: refers to the degree to which autonomy is 
achieved. When an adaptive system adequately decides an 
adaptation that is considered suitable for the end-user, it pro­
vides end-users with some subjective satisfaction [25]. 
Stability: refers to the degree to which capacity is achieved. 
When an adaptive system has to ensure a high degree of sta­
bility in the interface adaptation, it means that it should be 
capable of ensuring consistent adaptation actions that are 
subject to a smooth transition from the status before adapta­
tion to the status after adaptation. 

Fig. 12. Various properties of self-management. 

Some classical properties could be represented on top of the 
design space, such as various forms of feedback (Fig. 11) [30,35] 
and self-management properties (Fig. 12) [33]: 

Feedback: refers to any entity's ability to provide the other 
entity with any information in return to an action executed 
by the other entity, whether it is the user or the system [15]. 
When the end-user executes an action (in her PDA cycle), 
the system needs to perceive it (in its PDA cycle) and the 
user should be provided with some immediate feedback (e.g., 
an information message, a process running), which is cov­
ered by system feedback since the system is responsible. 
When the system executes an action (in its PDA cycle), the 
end-user should be notified as weH, which is covered by sys­
tem feedback by the end-user (e.g., by a progress bar, by ac­
knowledging a command, by accepting an adaptation pro­
posal). Whereas the feedback always occurs after an action 
has been carried out, preferably immediately after termina­
tion, the next property should occur even be fore any action 
could be undertaken or while an action is being formulated 
by the end-user. For instance, a pen-based ge sture could dis­
play some feedback indicating the recognition results before 
initiating the corresponding command. 
Feedforward: refers to any entity's ability to provide the 
other entity with any information before this last entity will 
execute any action [15]. User feedforward occurs when the 
system produces any action just before the end-user will do 
her task, thus helping her to decide whether this task is in­
deed appropriate. For instance, the system shows possible 
pen-based gestures while the user is producing them, thus 
providing feedback before the final gesture is produced. On 
the contrary, system feedforward occurs when the end-user 
produces any action just before the system will initiate a task. 
For instance, a wizard may be redirected by a user action 
while running, thus dispatching to another branch. 
Self-management in general refers to a set of system abilities 

to deal itself with various issues without requesting any extern al 
operation from the end-user or another entity [8,33]. These abil­
ities could be again structured along the cycles: 
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Table 1. Property mappings between end-user and system. 

Self-reconfiguration: refers to the system's ability to recon­
figure itself by undertaking appropriate actions. A newly dis­
covered service is added. Self-protection occurs when an 
adaptive VI is required to protect itself from attacks and end­
users who inadvertently make software changes and errors. 
Self-decision: refers to the system' s ability to decide itself to 
initiate any action. For instance, dynamic programming ex­
hibits the capability of the system to generate new rules 
which, when triggered offer new decision opportunities. 
Self-perception: refers to the system's ability to perceive its 
own functioning. For instance, fault-tolerant system may de­
tect this it is no longer properly working and re-initialize. 
Self-optimization: refers to the system's ability to leam itself 
from its own knowledge in order to optimize its functioning. 
An adaptive system must improve its Iearning and rules ap­
plied for adaptation for providing good predictions. 
Self-prediction: refers to the system's ability to predict itself 
when a self-adaptation may occur. For instance, a context­
aware UI could probe the context of use to deduce that an 
adaptation of its behaviour is likely to happen if the context 
of use is continuously and regularly accessed. 
Self-adaptation: refers to the system' s ability to adapt itself 
depending on new requirements, whether they are functional 
or non-functional requirements. 
The adaptivity relevance strongly depends on the perfor­

mance of the predictability. The challenge is to make the adap­
tation predictable to the end-user while maintain accuracy [19]. 
For this purpose, the system is required to be stable [18] in order 
to help users understanding the system and creating a mental 
model of the VI. In addition, the system should be transparent 
[23] by explaining the proposed prediction. Also, transparency 
is required about its leaming as weil as about the decision made 
and the chosen format of prediction presentation. Table 1 pro­
vides an overview of the quality properties arranged by origin 
(i.e., initiated by the end-user or the system) to destination (i.e., 
targeted to the end-user or the system). Self-management prop­
erties are merged in the bottom-right quadrant since they are 
valid for the whole system. Each self-* property always goes 
from the system to the corresponding step in the cycle, e.g., self­
perception to denote the system ability to perceive itself. Prop­
erties from and to the end-user are relevant to psychology and 
philosophy: they are merged in the top-Ieft quadrant since they 
are out of the scope of this paper. 

IV. COMPARING TWO ADAPTIVE USER INTERFACES 

This section will describe two adaptive Uls developed ac­
cording to the design space (descriptive virtue [3]) and compare 
them to each other (comparative virtue [3]). 
A. Adaptive Ul with Intelligent Widget Selection 

We developed FFU 1, an environment for form filling with an 
adaptive UI augmented with machine learning on how widgets 
are selected. The process is structured as folIows: the designer 
creates a form based on standard widgets and stores its defmition 
in a XML (UsiXML) file that is then interpreted at the c1ient 
side. At any time, the user could enter in an End-User Develop­
ment (EUD) mode where each form widget could be edited. De­
pending on the data type, the number of possible values, the 
number of domain values, and the data semantics, the system 
relies on adecision tree to select automatically the most appro­
priate widget for each form field, which the user may change. 
For example, in order to enter the electrical power of a train ex­
pressed in kW unit, a profiled edit box could be selected or a 
simple accumulator where possible values are progressively 
added to a list box for future usage (Fig. 13). The "Justify" but­
ton, when clicked, reaches the conclusion in the decision tree in 
order to understand which rule has been fired (Fig. 14). 

Fig. 13 .  Changing the widget selection for a form field. 

Fig. 14. Explanation of the result in a decision tree. 



Fig. 1 5 .  PDA cycles for FFUI without any adaption. 

Until now, FFUI does not perform any adaptation: widgets 
selected for each form data do not change over time. Fig. 15 rep­
resents this situation based on the design space: when the system 
is requested to select a widget according to meta-data (system 
perception), the decision tree is activated in order to perform the 
widget selection (system decision) and apply it (system action). 
The only thing that the end-user could do is to ask the system 
why a particular widget has been selected (user perception) and 
acknowledge it (user decision). Consequently, observability is 
limited to interaction and ensured through browsability since on­
demand selection is enabled (Fig. 13). Intelligibility is ensured 
through explainability (Fig. 14). We hope that predictability is 
reinforced by consistency since the system always selects the 
same widget in the same circumstances, thus enabling the end­
user to perform some inference. Unfortunately, controllability is 
non-existent since self-controlling is achieved: the system does 
not enable the end-user to change any selected widget. In order 
to better support these quality properties, FFUT has been aug­
mented with a Machine Learning (ML) technique enabling the 
system to learn which widget should be selected under which 
circumstances by letting three stakeholders to hear their voice: 
the end-user with her own reasons and preferences, the designer 
who is assumed to be a usability expert, and the developer who 
is responsible for irnplementing the selected widget. 

Fig. 1 6. The default scoring function. 

The ML algorithm is based on a scoring function determin­
ing the weight of each widget candidate. Tnitially, each widget 
candidate (e.g., a profiled edit box vs an accumulator in Fig. 13) 
is assigned to a defauIt score according to a scoring function 
which is defmed as (Fig. 16): 

Default Score (Widget)= P*SC+D*SU 

where SC is the score of change which defines the additional 
weight assigned to a widget after being selected by a 
user or a designer for a specified form. Such score al­
lows the promoting/demoting of widgets with regard to 
users and experts. 
SU is the score of unchanged which defines the interest 
accorded to the system choice in term of rewarding a 
well-behaved recommendation within a reinforcement­
learning paradigm. 
P denotes the number of times that the widget is se­
lected by the end-user without being displayed by de­
fault (WSelected � WDefault). 
D denotes the number of times that the widget selected 
by the end-user is the displayed one (WSelectedF WDefault). 

Various people may assign a different score to the same 
widget in the same circumstances, thus explaining why there is 
a need to consider the end-user's choice or preference, but also 
the designer's choice (which is assumed to be more experi­
enced), and also the administrator's choice (which is supposed 
to be the developer knowing which widget is available when). 
Other actors could play a similar role in this function, such as 
members of a crowd for crowd-based adaptation of Uls [31]. 

Fig. 1 7. The scoring algorithm configuration 



In order to integrate all these choices, a globai scoring func­
tion is defined for recommending any widget (Fig. 17) [29]: 

Score (Widget)= P*SC+D*SU+ T*SG + f(w,SA) 

where f(w,SA) determines whether the selected widget matches 
the designer recommendation and T is the total number 
of widget selections. 
SA is the designer's score assigned to the widget in this 
context based on usability engineering and guidelines, 
such as graceful degradation rules. 
SC is the global score based on previous options. 

The global scoring function is continuously computed while 
the end-user is interacting with the form. Of course, the scoring 
function can be tailored to another formula (Fig. 17) whether a 
most accurate schema could be determined and the recommen­
dation can be activated or deactivated. Each end-user action is 
recorded in a log file that is attached to any particular widget of 
any particular form, thus making it unique for each context. In 
FFUI, every user action (Au) is recorded in a log file (Ps) that 
automatically triggers the computation (As) of a new score. 
Since this function is always computed for every widget affected 
by the action, the system decision (Ds) is bypassed. The end-user 
may perceive the widgets candidates (Pu) by entering in FFUI 
design mode (like in Fig. 14) by pressing a control key, then de­
cide whether a new widget should be selected (Du). This decision 
in then translated into a new action (Au). 

B. Adaptive CUl layout 
We developed TAsk-BAsed .Q.esign Adaptive (TABADA), a 

software enabling end-users to carry out interactive tasks as ex­
plicitly defined in a task model with run-time adaptive layout 
based on machine learning. Our approach follows existing 
model-based work specitying the UI at a higher level of abstrac­
tion [9,37]. We consider task-oriented language (task tree) and 
an Abstract UI specification (AUI) in order to remain model­
based and to allow for a greater flexibility in generating Uls from 
abstract levels [9]. T ABADA is distinctive by the use of machine 
learning techniques for runtime adaptation and their deployment 
together within a model based approaches. TABADA exploits the 
user behaviour prediction to improve the arrangement of abstract 
interaction units at the abstract user interface level. Then all data 
collected by implicit feedback are used into a module called user 
behaviour predictor. This module uses a machine learning tech­
nique based on statistics in order to predict the next action(s) that 
will be accomplished by the user given the previous ones he 
fi1led. The prediction is implemented via a UserActionPrediction 

dass, and can be seen as an extension of the context of use where 
the data are processed to extract more useful data. This c1ass 
needs an instance of ActionM onitoringDB as "raw material" and 
also takes as parameter the Markov order. The process of user 
behaviour predictor is based on Markov chains as follows: 

Generating and monitoring sequences of actions based on 
various parameters. 

- Learning an n order Markov chain model (or all the order 
from one to n). 

- Predict the next most probable action of the user thanks to its 
history of immediate action. 
When TABADA is executed, a first by-default GUI layout is 

generated. All end-users actions are then recorded (e.g., filling 
in a field, selecting a new tab, making a choice) so as to feed the 
ML algorithm. Based on (un)used parts of the task model and on 
interaction traces, TABADA computes the most probable interac­
tion paths. At any time, the end-user can stop the system and ask 
for alternate adapted GUT layout that better suit her task. This 
new user action enters in a new cyde, thus triggering a new score 
computation (As), which reinforces the learning (Ls): the system 
learns that the end-user has preferred to rely on another widget 
(SC is updated) or not (SU is updated), which is reflected in a 
new score computation (Ps). The system then applies the adap­
tation (As) by saving the widget current state, by substituting the 
old widget by the new one [18], and by restoring the current state 
into the newly selected widget. A new loop is then initiated. 

In TABADA, every end-user action (e.g., using a particular 
widget, navigating between views, changing the value of a field) 
is recorded by a sequence monitor (Ps) which records all se­
quences on top on an internally-maintained task model, which is 
unfortunately invisible to the end-user (Fig. 17). TABADA does 
not decide to perform any adaptation (no Ds) and always auto­
matically generates a series of alternate layouts based on previ­
ously recorded sequences (As). These alternate layouts could be 
made observable on-demand by the end-user (Pu), among which 
the end-user may pick one layout or not (Du), and requests (Au) 
the system to switch to this alternate layout. This request is in 
turn recorded in the system (Ps), which refreshes the generation 
of sequences (As) and updates the Markov chain accordingly 
(Ls) that again identifies the most probable sequences (Ps). A 
new loop is generated and so on. Note that in this case, there is 
a minimal LPD for the end-user since she was conscious of the 
new layout selected based on previous task sequences, thus 
learning (Lu). This may help her to predict how a new layout 

 
Fig. 18. FFUI with adaptation based on machine learning. 

could be computed (Pu). 

 
Fig. 19. The Design Space for TABADA. 



C. Comparison o/!wo Adaptive User Interfaces 

Table 2 provides an overview of how both FFUI and TABADA 
are addressing the quality properties. For both FFUI and 
TABADA, observability is assessed as medium since system and 
adaptation observability are ensured by browsability: the end­
user does not immediately see that there is an adaptivity process 
ongoing, but could access to the adaptivity control panel by 
clicking on a control key in FFUI or on an icon in TABADA. 

Quality property FFUI TABADA 

Observability Cl Cl 
ca Intelligibility Cl • � 
0 Controllability � � 6 

Predictability 0 � 

ca 
Awareness � � 

u Decidability � • 0 
� Triggerability • • 

ca 
Capacity • • 

u Autonomy 0 0 0 
� Perceptibility � � 

ca 
Accuracy • • 

u Adequacy r1) r1) 0 
� Stability • • 

Self-reconfiguration 0 0 
v Self-decision 0 0 Oll 

g � Self-perception � � 

J: E Self-adaptation 0 0 

C) Self-prediction � � 
VJ 

0 0 Self-optimisation 
Table 2. Comparison of FFUI and T ABADA in terms of quality properties. 

Some users even do not notice the control key and the icon. 
Nothing else informs the end-user that some adaptivity is en­
sured by the system, thus suggesting that this properly should be 
largely improved. 

lntelligibility is assessed as superior in T ABADA than in FFUI 
because the alternate layouts are directly rendered, thus giving 
the end-user a real preview before adaptation, as opposed to only 
a widget candidate in FFUI that is not rendered in a potential 
new UI. Some explainability is possible in FFUI though. Con­
trollability is limited in FFUI because only the choices suggested 
by the system are proposed, thus keeping very limited control 
over these choices. In contrast, TABADA presents the six most 
probable layouts among which the user can choose and give ac­
cess to a large set of alternate layouts on demand, potentially all 
possible combinations. 

Predictability is limited in FFUI because the system does not 
deliver any information that would help the end-user to imagine 
which kind of widget would result trom the adaptivity process. 
T ABADA is slightly better because sequences of actions followed 
by the users are represented, thus giving some hint on how they 
are built. Similarly, predictability is certainly a property that de­
serves a better attention to improve the end-users' ability to trig­
ger adaptation. 

F or both systems, awareness is very limited for the same rea­
sons as in observability: the user cannot be really aware of the 
adaptivity process since there is no rendering of this process 
while running. 

Decidability is almost excellent for FFUI (not all choices 
could be made, only among the possible widget candidates) and 
excellent for TABADA since all possible layouts could be se­
lected, although this could induce a long navigation between the 
alternate layouts. 

Triggerability is assessed as maximal for both since each 
candidate, on ce selected, is immediately incorporated in the new 
UI, which explains why capacity is also assessed as maximum 
since both systems have the ability to build the new layout and 
to apply substitution. Autonomy is assessed as non-existent since 
only the end-user can make a decision on which widget or layout 
should be kept. Both systems have no initiative and no decision 
to trigger any adaptation. Perceptibility is assessed as very good 
since both systems are able to perceive what the user is doing by 
capturing and recording her actions into an internai log file. Ac­
curacy is assessed as excellent in both cases since the new 
adapted layout will be exactly the one built with the new adap­
tation decision. Adequacy cannot be estimated at this stage be­
cause it should require a user experiment to determine whether 
the adaptation proposals are adequate enough for the end-user. 
What could be captured however is the extent to which the sys­
tem proposes candidates that are accepted or rejected by the end­
user. Stability is always ensured because the same algorithm is 
always applied in both cases, although we could imagine that 
different algorithms for adaptation (e.g., based on different ma­
chine leaming algorithms) could be competing. 

Selj-management properties are alm ost not ensured since 
both systems apply adaptation only after an end-user decision. 
However, both systems are able to perceive their own state (selj­
perception) and are still able to make predictions at any time 
(selj-prediction) without waiting for the end-user, but without 
any ability to apply what has been predicted, hence selj-optimi­
sation is non-existent. 

In conclusion, several quality properties are affected by the 
constraints imposed by the system: only the user can make a de­
cision of what prediction could be applied. The system cannot 
take any decision, therefore preventing mixed-initiative. This 
generates a new suggestion for both systems: how and when to 
delegate adaptivity to the system and/or embark into a conver­
sation between the user and the system to decide which candi­
date is the most appropriate based on respective knowledges. 
D. How to Use the PDA-LPA Design Space 

In this section, we elaborate some guidelines on how to practi­
cally use the PDA-LPA design space for designing adaptation 
for interactive systems. 
Guideline 1. Balance the support ofthe 4 global properties. 
The most important PDA-LPA quality properties are the four 
global properties: observability, intelligibility, predictability, 
and controllability. lt is more important to design UI adaptation 
in order to cover a minimal support of the four properties sim­
ultaneously in a balanced way than focusing on one property 
only. If one or two properties are largely satisfied with little or 
no support for the other ones, the general LP A process will not 
deliver its full potential. The level of support between the fOUf 
properties should be minimal, but balanced. They could also 
imply some sequence; observability should be thought first, 
otherwise little or no intelligibility. Similarly, if it is not pre­
dictable, it will hardly become controllable. 



Guideline 2. lnvent a manipulable representation. In order 
to properly support the four global properties, a representation 
of the artefacts subject to adaptation should be invented so that 
it could be manipulated throughout the properties. This repre­
sentation should be preferably adequate for direct manipulation, 
but not necessarily: if the representation of the artefact subject 
to adaptation could be directly manipulated, which is usually 
more complex to implement, the end-user will see it (observa­
bility), understand it (intelligibility-provided that the corre­
sponding metaphor is straightforward), perhaps predict it (pre­
dictability), and control it (controllability). If no such represen­
tation exists, the end-user should develop a mental model of the 
adaptation process which will be very hard to complete. The 
fact that the representation is directly or indirectly manipulable 
counts less than its existence. Three types of representation may 
considered: external if the representation is the one seen by the 
end-user, internal if the representation that is managed by the 
software implemented by the developer, or conceptual if the 
representation is an abstraction of the artefact introduced by the 
designer to simplify the realm of the artefact. For instance, 
adaptive menus for smartphones [5] invoke a prediction win­
dow displaying the most likely to be selected items (Fig. 20). 

Fig. 20. The Prediction window far adaptive menus. 

Guideline 3. Maximise the controllability. End-user hate to 
lose control over any process, unless they prefer to delegate the 
responsibility of a task to a particular agent. Therefore, control­
lability is key [13]: as so on as the representation is invented, 
feedback on this representation should be envisioned so that the 
system could express its actions as weIl as the end-user. For in­
stance, the end-user could select any menu item from the pre­
diction window in Fig. 20 either in graphical or in tactile mode 
or close it graphically or by gesture. Not all actions should be 
however subject to control: it is important to identifY which ad­
aptation action should be subject to a corresponding user inter­
face action in order to reflect its contro\. Some experience 
shows that the more control is offered to end-users to see how 
adaptivity is achieved, the less they require it over time [13]: an 
animated transition for explaining an adaptivity could be played 
slowly the first time and quicker the next times. Or even no 
longer need after several animations have been operated. 

Guideline 4. Refine global properties by local properties af­
terwards. Considering the local quality properties as weIl as 
their sub-properties should come after supporting the global 
quality properties. For instance, ensuring observability counts 
more than knowing how to support it, by traceability or by 
browsability. For instance, in FFUI, observability is ensured 
first by browsability (Fig. 13), then by traceability (Fig. 14), 
with a direct positive impact on explainability. In the adaptive 
menus for smartphone (Fig. 20), observability is immediately 
ensured through direct observation: no browsability. The more 
observable an adaptation is, the more intelligible it becomes; 
the more intelligible an adaptation is, the more it supports pre­
dictability. The more predictable an adaptation is, the easier the 
controllability could be managed. 
Guideline 5. Explicitly cover the LPA cyde. Several tech­
niques for adaptation have been reported to cover the PDA cy­
cle [14], but no study exists today that produced an inventory 
of similar techniques for covering the LP A cycle where the 
learning is key. Consequently, the focus has been often empha­
sized on the adaptation (PDA) cycle, and less on the leaming 
(LPA) cycle. This last one should be explicitly covered, prefer­
ably with the same minimal level of support that has been used 
for the PDA cycle. For instance, in FFUI with machine leaming, 
the scoring function (Fig. 17) could be entirely redefined, thus 
offering a basis for maximal observability and controllability of 
the learning (LPA) cycle. In TABADA however, different lay­
outs could be produced, each along with its explanation, but the 
process to obtain them is not observable, therefore not control­
lable. The final choice remains controllable fortunately. 
Guideline 6. Prioritize local quality properties. Three sets of 
local quality properties have been introduced, that are usually 
considered by decreasing order of importance. This ordering 
may be different depending on the type of interactive applica­
tion, thus requiring a prioritization scheme. 

V. CONCLUSION 

In this paper, we presented a design space for user interface 
adaptation that departs from existing design spaces (e.g., [6,8,14, 
18,34]) in terms of quality properties defined trom a software 
viewpoint (often called "ilities " since most of them fmish with 
this suffix expressing some ability-based behaviour [41]) instead 
of a set of independent, not interconnected properties (e.g., sta­
bility, visibility). This design space is explicitly based on the 
Perception-Decision-Action (PDA) cycle coming from cogni­
tive psychology [32], which is itself augmented by a second cy­
cle Learning-Prediction-Action (LPA). This design space sup­
ports the three expected virtues [3]: descriptive, comparative, 
and generative. 
Future avenues of this work include: (i) the introduction of time 
to qualify the time constraints between the PDA-LPA steps and 
to determine, which is the most appropriate moment to ensure 
them, not always continuously; (ii) the conducting of a System­
atic Literature Review (SLR) on a series of papers like in [14], 
but on a recent base of references; and (iii) the refining of the 
Prediction step into three sub-steps according to Endsley' model 
of situational awareness [16] where situation awareness is de­
composed into perception, comprehension, and projection. 
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