Sarah Bouzit2
email: sarah.bouzit@imag.fr

Gaelle Calvary
email: gaeile.ealvary@imag.fr

Joelle Coutaz
email: joelle.eoutaz@imag.fr

Denis Cbene
email: denis.chene@orange.com

Erie Petit
email: eric.petit@orange.com

Jean Vanderdonekt
email: jean.vanderdonckt@uclouvain.be

The PDA-LPA Design Space for User Interface Adaptation

Keywords: Adaptation of user interfaces, adaptive user in terfaces, design space exploration, quality properties, intelligent user interfaces

This paper presents a design space for engineering adaptive user interfaces throughout the user interface develop ment life cycle in order to describe any adaptation technique, adaptable or adaptive, to compare two or more techniques, and to generate new, perhaps unprecedented, techniques. Grounded in the theory of psychological perception, this design space structures the adaptation life cycle into two regulation loops between the user and the system: a perception-decision-action (PDA) loop for both the system and the user, and a learning-prediction-adaptation (LPA) for supporting the adaptation, this last being particularly expressive for adaptivity. This PDA-LPA design space enables de fining properties for assessing the q uality of these loops between the system and the end-user. This design space of is instantiated on two advanced adaptive user interfaces: adaptive user interfaces based on machine learning and adaptive layouts. This design space provides new insights for considering adaptivity design options.

I. INTRODUCTION

User Interface adaptation consists in moditying the User In terface (UI) of an interactive system to satisty specific require ments. Adaptation falls into two categories depending on whom, the system anc\/or the end-user, is involved in the adaptation pro cess [START_REF] Motti | A Computational Framework for Context-aware Adaptation of User Interfaces[END_REF][START_REF] Jameson | Understanding and Dealing with Usability Side Effe cts of Intelligent Pracessing[END_REF]: adaptability refers to the end-user's ability to adapt the UI [41] whereas adaptivity refers to the system's ability to perform UT adaptation [START_REF] Dieterich | State ofthe art in adaptive user interfaces[END_REF]. Mixed-initiative adaptation [START_REF] Bunt | A Mixed-Initiative Appraach to Interface Personalization[END_REF] oc curs when both the end-user and the system collaborate in the adaptation process. UI adaptation has been extensively investi gated [START_REF] Motti | A Computational Framework for Context-aware Adaptation of User Interfaces[END_REF], researched [START_REF] Paramythis | Layered evaluation of interactive adaptive systems: fr amework and formative methods[END_REF], developed [START_REF] Mckinley | Composing Adaptive Software[END_REF], and tested [START_REF] Tsandilas | An empirical assessment of adaptation techniques[END_REF] with the ultimate goal of optimizing the overall end-users' experience by increasing end-users' performance anc\Ior preferences [START_REF] Cockburn | A Predictive Model of Menu Performance[END_REF], by reducing task completion time and error rate [START_REF] Bouzit | Step-by-Step and Shortcut Menus: A Comparison of two Adaptive Menus for Smartphones[END_REF], by improv ing the subjective user's satisfaction, her learning curve [START_REF] Lavie | Benefits and costs of adaptive user interfaces[END_REF].

The challenge is to suggest the right adaptation at the right time at the right place for making it valuable to the end-user [START_REF] Jameson | Understanding and Dealing with Usability Side Effe cts of Intelligent Pracessing[END_REF].

Otherwise, adaptation will be prone to several limitations that could become a major impediment to the expected benefits, if not thwart them [START_REF] Lavie | Benefits and costs of adaptive user interfaces[END_REF]: risk of misfit (the end-user's needs are in correctly captured or interpreted), user cognitive disruption (the end-user is disrupted by the adaptation), lack o{ prediction (the end-user does not know when and how the UI will be adapted by the system), lack of explanation (the end-user is not informed the reasons that triggered adaptation), lack of user involvement (the end-user does not have the opportunity to participate ac tively in the adaptation process), and riskfor privacy (the system maintains personal information that the user wishes to keep pri vate). "The field of adaptive systems is infamous for its lack of standards, or even commonly accepted approaches" [START_REF] Paramythis | Towards Self-Regulating Adaptive Systems[END_REF]. Sur veys of UI adaptation have been published [START_REF] Brawne | Adaptive user interfaces[END_REF][START_REF] Dieterich | State ofthe art in adaptive user interfaces[END_REF][START_REF] Gajos | Exploring the De sign Space for Adaptive Graphical User Interfaces[END_REF][START_REF] Mckinley | Composing Adaptive Software[END_REF][START_REF] Paramythis | Layered evaluation of interactive adaptive systems: fr amework and formative methods[END_REF] as attempts to synthesize adaptation concepts, methods, and tools. However, most of them is technology driven, limited in scope, or surpassed by recent technical progress, which makes them in appropriate for covering the most recent adaptation techniques as weIl as for exploring alternatives in a systematic and struc tured manner.

Design spaces are useful conceptual tools for supporting sys tematic reasoning. A design space is a multi dimensional ensem ble where a dimension identifies a key issue and for each issue, makes explicit the alternatives available. Design spaces have been used extensively in Human-Computer Interaction (HCl), from software architecture modelling for interactive systems [START_REF] Lane | Studying Software Architecture Through Design Spaces and Rules[END_REF] to multimodal user interfaces [12], to device modelling [START_REF] Card | The keystrake-Ievel model for user performance time with interactive systems[END_REF]. They have provided the HCI community with shared vo cabularies for describing and understanding multiple aspects of interactive systems. On the other hand, "UI adaptation" still lacks a design space that would serve as a reference framework to reason about UI adaptation at the appropriate level of details.

Existing taxonomies and frameworl(s for reasoning about U 1 adaption either are too high level to inform UI designers and de velopers in a useful and effective manner, or they ignore the role of the end-user in the adaptation process, or even do not consider the usability of the adaptation process. In turn, we propose a new design space for UI adaptation that covers both the human and the system as two symmetrical and interacting loops where each loop is decomposed into 6 stages informed by cognitive psychol ogy: a Perception-Decision-Action (PDA) sequence enriched with a Learning-Prediction-Adaptation (LPA) sequence. In ad dition, the quality of the interaction that takes place between the human PDA-LPA cycle and that of the system cycle are charac terized with properties that refme the usability of the adaptation process at multiple levels of granularity: at the loops level or at the stage levels. As a result, designers and developers of UI ad aptation can reason at several levels of abstraction. Additionally, the stages of the PDA-LPA loops provide the basis for architec tural decomposition.

The article is structured in the following way: Section 2 pro vides some background on design spaces and frameworks for adaptation, Section 3 defines the PDA and LP A loops as weil as a series of quality properties derived from them. Section 4 com pares two adaptive systems based on this design space. Section 5 concludes the paper by presenting some future avenues.

BACKGROUND ON USER INTERFACE ADAPTATION

Pioneering work on VI adaptation started with Browne et al. [START_REF] Brawne | Adaptive user interfaces[END_REF]. These authors have used Moran's Command Language Grammar (CLG) [START_REF] Card | The keystrake-Ievel model for user performance time with interactive systems[END_REF] that structures the specification of a VI into distinct aspects, from tasks and abstract concepts to syntac tic and physical components. They conclude that CLG major strength for VI adaptation is the Principle of Separation of Con cerns. Although this principle is enforced in CLG, it is not obvi ous how to easily propagate all specifications aspects into the fmal code. In addition, Browne et al. observe that CLG has very limited facilities for expressing VI presentation and behaviour, thus raising the need for improving its expressiveness.

Dieterich et al. taxonomy [START_REF] Dieterich | State ofthe art in adaptive user interfaces[END_REF] has long been considered as a seminal reference for classifying different types of adaptation configurations and techniques. Based on the analysis of more than 200 articles covering UI adaptation, Dieterich et al. propose a four stage classification: initiative (which entity involved in the interaction process expresses the intention to perform adap tation), proposal (if a need for adaptation arises, what proposals could be applied successfully given the current situation), deci sion (which adaptation proposal best fit the requirements), and execution (the adaptation technique previously chosen is fmally enacted). Given these four stages, the authors have c1assified every system with adaptation capabilities according to the actors involved at each stage. Fig. 1 presents an adaptation configura tion in which the system recognizes the need for adaptation, pro poses some alternatives, the end-user then selects the appropri ate alternative that is fmally executed by the system. Any other combination of this distribution could be imagined. McKinley's taxonomy [START_REF] Mckinley | Composing Adaptive Software[END_REF] addresses software composi tional adaptation that exchanges algorithmic or structural parts of the system with others to improve the system' s fit to its cur rent context of use, which is considered as the reference for ad aptation [START_REF] Calvary | A Unifying Reference Framework for Multi-Target User Interfaces[END_REF]. This kind of adaptation is based on the separation of concerns between the functional behaviour of the system and cross-cutting concerns, as weil as on computational reflection that provides a vehic1e to query the different aspects of a system, on component-based design practices that enable the develop ment of the different parts of a system separately, and on a mid dIeware that usually provides the compositional capabilities. The taxonomy is structured along three dimensions:

1. How to adapt: the process can be carried out by different en tities: a human (e.g., adeveloper, a system administrator), a component loader, a run-time system, or a meta-object. 2. Where to adapt: it describes where, in the system, the adap tation code is inserted. The most common approach is to place the code in the middleware, although extensible oper ating systems have also been used. 3. When to adapt: the adaptation time (Fig. 2) is static, respec tively dynamic, when it takes place at design, prototyping, develop, compile, link, or load time, respectively at run time.

In addition, adaptation is hardwired (when UI adaptation is embedded in the code of the interactive application, or in the UI code), customizable (when UI adaptation enables some pre-computed freedom), conjigurable (when the VI adapta tion technique can be configured before execution), tunable (when VI adaptation can fine-tune the VI at run time without modifying its code), or mutable (when UI adaptation sub sumes the run time code modification of the interactive ap plication, as in generative programming [START_REF] Schlee | Generative Pragramrning of Graphical User Interfaces[END_REF]).

Although this taxonomy is applicable to an entire interactive application, the three dimensions (i.e. how, where, when) are particularly constructive for a design space: 'how to adapt' cor responds roughly to the proposal stage of Dieterich' s taxonomy, 'where to adapt' is implicitly included in the execution stage of Dieterich's taxonomy, whereas 'when to adapt' is not covered by Dieterich's taxonomy. Therefore, McKinley's taxonomy complements Dieterich's proposal, but contrarily to the ISATINE framework [START_REF] Vanderdonckt | Towards an Extended Model of User Interface Adaptation: the ISATINE framework[END_REF], they altogether do not cover the adaptation life cyc1e in sufficient detail to reason about the design and imple mentation of VI adaptation techniques. The ISATINE frameworl((Fig. 3) [START_REF] Mezhoudi | WiSel: a mixed initiative approach for widget selection[END_REF] structures the adapta tion life cyc1e of a VI into the exact same stages as the seven stages identified by Norman to model human mental steps when performing a task with a system [START_REF] Da Norman | The design of everyday things[END_REF]. Inspired by Norman's gulf of execution and gulf of evaluation, ISATINE inc1udes the gulf of adaptation execution and the gulf of adaptation evaluation.

As shown on the left end side of Fig. 3, the gulf of adaptation execution covers the stages that the adaptation process goes through to adapt. The gulf of adaptation evaluation, shown on the right end side of Fig. 3, includes the stages involved in the assessment of the outputs produced by the execution gulf. As in Nonnan 's mental model of action [START_REF] Da Norman | The design of everyday things[END_REF], the process starts by stat ing some particular adaptation goal which in turn triggers an in itiative for adaptation whose meaning has to be specified, then transfonned into a concrete plan before being applied. Once the adaptation has been completed, a transition takes place until in terpretation of the adaptation is reached, and evaluated with re spect to the initial goal. Feedback may be interpreted positively (i.e., the adaptation goal has been fulfilled) or negatively (i.e. the adaptation goal has not been achieved) [START_REF] Mezhoudi | A User Feedback Ontology for Con text-aware Interaction[END_REF]. In the latter case, a new adaptation loop is initiated. Any stage can be carried out by any combination of end-users, system, and other stakeholders.

While more expressivity is gained, the ISATINE framework still misses important aspects: it details the stages of the adapta tion process only with respect to the end-user's viewpoint, it does not provide any insight from the system viewpoint. In par ticular, it does not separate the part related to the main interac tion from the adaptation itself; it does not express how adaptivity is achieved; and it does not support the expression of the quality of the adaptation process. Therefore, the 'when to adapt' is cov ered as weil as the 'where to adapt', but not 'how to adapt'. For the aforementioned reasons, we would like to come up with a design space for adaptation that could anchor techniques se lected for supporting 'how to adapt' when they are required.

TTT. THE PDA-LPA DESIGN SPACE

A. Requirementsjor a Design Spacejor Ul Adaptation

Any design space for adaptive VIs, as any other design space or model, should serve three virtues [START_REF] Beaudouin-Lafon | Designing interaction, not interfaces[END_REF]:

1. A descriptive virtue: any adaptive VI should be described completely, consistently, and unequivocally. 2. A comparative virtue: any set of adaptive VIs should be made comparable according to the criteria defined in the de sign space. This requirement supports sound comparative analyses of techniques as weIl as rigorous benchmarking.

When two adaptive VIs are compared in the design space, their coverage can be highlighted, thus enabling an objective identification of their respective strengths and weaknesses, which is referred to as commensurability. 3. An exploratory virtue: every dimension of the design space can be systematically explored in order to identify where ex isting techniques are located, where they are strong or weak, where new opportunities emerge, and where underexplored portions remain to be investigated, if not discovered yet. Such underexplored portions could be subject to a theoretical analysis to detennine their feasibility or a prototypical imple mentation to identify its potential benefits.

Beyond these three virtues, a design space for VI adaptation should cover the co-evolution that occurs between the end-user and the system. As end-users adapt themselves while interacting with the system, the same applies to the system for anticipating end-users actions and for facilitating the interaction. Therefore, two loops must be considered: one for the main UI interaction and one for the adaptation of this VI. Cognitive psychology [START_REF] Hartson | Cognitive, physical, sensory, and functional aflordances in interaction design[END_REF][START_REF] Da Norman | The design of everyday things[END_REF] as weil as human decision the ory argue that perception, decision, and action are the key activ ities that humans use to make sense of, and to interact with the environment [START_REF] Calvary | A Unifying Reference Framework for Multi-Target User Interfaces[END_REF]. Any interactive task thus involves: perception when the end-user has to perceive the basic properties of the context of use, inkling the VI, decision when the end-user has to make a choice between competing options based on her own in terpretation, and action when a particular action should take place after adecision has been made. The end-user follows a se ries offerception-.Qecision-Action (PDA) cycles (Fig. 4a) un til the task is completed. While some researchers claim that these three types of actions are intertwined [START_REF] Dj Ajadiningrat | But how, Donald, tell us how? : on the creation of meaning in interaction design through fe edforward and inherent fe edback[END_REF] and could be linked by bidirectional arrows indicating the non-consecutive interac tion [START_REF] Motti | A Computational Framework for Context-aware Adaptation of User Interfaces[END_REF], we prefer to keep the concision of the initial PDA cycle because it equally applies to the UI: the system has to perceive what the user is actually doing (through sensors, user-generated events), to decide what next actions will be undertaken (e.g., through a dialog controller), and to execute the required actions. Hence, the user-system interaction could be represented as a se quence of 2 PDA cycles (Fig. 4b).

In addition to the interaction PDA cycle, we propose the 1earning-frediction-Adaptation (LPA) cycle to convey the human-system co-evolution phenomenon mentioned above. The end-user gains experience from the previous PDA cycle and learns. This in turn facilitates the prediction of what to do next for adapting herself to the system. On the system side, the sys tem learns from the end-user's actions, creates and maintains this knowledge for predicting what to offer next to the end-user, and for applying the appropriate adaptation technique. Adapta tion cycles cease when either the user or the system decides to suspend the adaptation process. Otherwise, there would be a risk of infinite adaptation without any convergence towards a stable state. Vsually, the end-user takes this decision.

B. Design Space Definition

The design space for UI adaptation resulting from these require ments is illustrated in Fig. 5: the end-user's side, graphically depicted in blue, is made up of two cycles (one PDA cycle for the interaction and one LP A cycle for human adaptation) as weil as the system, graphically represented in green (one PDA cycle for controlling the system according to the business logic and one LPA cycle for system adaptation). The resuIting PDA-LPA design space for UT adaptation therefore makes it explicit the activities from both sides (user and system) while differentiating the main interaction process from the adaptation process. When no system adaptation exists, the LPA-system sequence disappears. When no user adaptation is achieved, the LPA-user sequence disappears. An adaptable UI could be represented equally without the LPA-system sequence since the end-user is in charge of adapting the system. An adap tive VI includes the 4 sequences shown in Fig. 5.

C. Quality Properties

Any adaptation could be described in the terms of the PDA LP A design space as follows: which technique is promoted in the interactive system for supporting perception, decision, ac tion, learning, prediction, and adaptation when it occurs. This should respect the aforementioned descriptive virtue. In order to respect the comparative virtue, quality properties could be de fined on top of the design space, thus revisiting and enriching existing quality properties for interactive systems [21] and sim uItaneously introducing new abilities [41] for the adaptation. Quality properties in our design space fall into two categories: system (software) quality properties when the property could be defmed as an ability ensured by the system in a user-independent way, or user quality properties when the property could be de fined as an ability offered to the user, which is therefore user specific. A quality property is said to be shared when both the end-user and the system collaborate to ensure the property. Fig. 6 depicts a first series of global quality properties (i.e., between user and system considered as a whole):

Observability: refers to the system's ability to make perceiv able its state in a relevant way for the end-user. This sub sumes the interaction (system observability) and/or the adap tation (adaptation observability). Adaptation observability is key for the end-user to perceive what the system is doing to support adaptivity: in L.earning (to perceive what the system is currently learning or has learnt from the user, such as user events, actions), in frediction (to perceive that the system is able to predict an adaptation), and in !ldaptation itself (to ren der that an adaptation is taking place, such as with ani mated transition showing how a UI progressively evolves when subject to adaptation [START_REF] Dessart | Showing user in terface adaptivity by animated transitions[END_REF]). Observability is a general ization of immediate visibility since several techniques could ensure observability [21]: traceability (step-by-step perceiv ability) [START_REF] Nebeling | CrawdAdapt: enabling crawdsourced web page adaptation for individual viewing conditions and preferences[END_REF] or browsability (visibility by navigation on-de mand): what is not immediately perceivable could be made browsable on demand. Browsability refers to the system's ability for the user to explore the system state by the way of articulatory tasks (i.e., tasks that do not modifY the state of the functional core, such as scrolling, zooming in, zooming out, navigating). Some forms of observability are graphically depicted in Fig. 7: learning observability from the learning activity to the end-user, prediction observability from the prediction activity to the end-user, and adaptation observa bility for the final adaptation executed. Each activity could be subject to observability independently of the others: it is not because the adaptation is observable that its learning and its prediction should be also observable. On the opposite, these three activities are rarely subject to observability, apart from showing the results of the adaptation to the end-user.

-Intelligibility: refers to the system's ability to communicate to the end-user how the interaction and/or the adaptation pro cesses are conducted in a meaningful and representative way [START_REF] Belloti | Intelligibility and Accountability: Human Considerations in Context-Aware Systems[END_REF]. As intelligibility subsumes observability [START_REF] Vermeulen | Improving intelligibility and control in UbiComp[END_REF] (before making the adaptation intelligible, it should be made observ able), it could be similarly decomposed into interaction in telligibility and adaptation intelligibility. lntelligibility is key for the end-user to understand the system and the adaptation engine, while they are running. For a context-aware system, intelligibility refers to the system's ability to present itself in a convenient manner, the way the context is perceived and its behaviour depending on significant changes over time [START_REF] Hartson | Cognitive, physical, sensory, and functional aflordances in interaction design[END_REF]. lntelligibility could be ensured by different ways [START_REF] Belloti | Intelligibility and Accountability: Human Considerations in Context-Aware Systems[END_REF]: explainability (the adaptation is explained), continuity (the adaptation process is continuously rendered) [START_REF] Gajos | Pre dictability and accuracy in adaptive interfaces[END_REF], honesty [21], or transparency (which each adaptation is rendered uni vocally to the end-user to avoid the aforementioned limita tions of adaptivity) [START_REF] Brun | A Design Space for Self-Adaptive Systems[END_REF]. The end-user can understand all the better that she is able to observe the system thanks to observ ability. Honesty refers to the system's ability to achieve two aims: to make the real system state observable to the end user (which is challenging due to latency and lag [START_REF] Dessart | Showing user in terface adaptivity by animated transitions[END_REF]) and to make this state accurately [START_REF] Gajos | Pre dictability and accuracy in adaptive interfaces[END_REF] interpreted by the end-user. Predictability: refers to the user's ability to predict future system actions for supporting the interaction, the adaptation, or both based on past corresponding actions [START_REF] Gajos | Pre dictability and accuracy in adaptive interfaces[END_REF]. Regarding the adaptation predictability (see Fig. 8 for various forms of this property), the user should to some extent predict the be ha � iour of � he adaptivity algorithm based on past adaptivity actIOns, whlch may subsurne controllability: the end-user can predict all the better that she is under control of the system t � anks . to controllability. Accuracy of the prediction posi t � vely Impacts the performance and thus subjective satisfac tIon of the end-user when adaptivity is properly achieved [START_REF] Findlater | A comparison of static, adaptive, and adaptable menus[END_REF][START_REF] Gajos | Pre dictability and accuracy in adaptive interfaces[END_REF], which heavily depends on the prediction method.

Cont ,: ollabil ! ty: refers to the user's ability to control the sys tem I? teractlOn (interaction controllability), the system ad aptatIOn (adaptation controllability), or both depending on which cycles are concerned: the system PDA cycle, the sys tem LPA cyc1e, or both. Controllability could cover any in teractive Ul aspect in principle. When the end-user has no control, the interaction and/or the adaptation cyc1es are en tirely initiated and controlled by the system through self-con t � olling, self-r� lS. ula ! ion, or self-adaptation [START_REF] Brun | A Design Space for Self-Adaptive Systems[END_REF][START_REF] Paramythis | Towards Self-Regulating Adaptive Systems[END_REF]. A' dapta tlOn controllabIllty IS essential to enable the end-user to be acti ,: ely involved in any adaptation activity: in 1earning (to speclfy to the system what is allowed to capture, interpret, and learn from the user for ensuring privacy), in Erediction (to co � trol the p arameters used for predicting the adaptation, e.g., VIa machme learning), and in Adaptation (to assess ad �� tation pro p osa � s, to accept a relevant adaptation -true pos ltlve � -. or reJect Iffelevant adaptations resulting from wrong predlctlons -false positives-). For instance, a prediction win �o :v could �isplay n: enu items predicted by the system adap tlvlty techmque WhlCh may result into a correct item selec tion (if t�e ! tem � as desired by the end-user) or undisplaying the p � edlCtIOn wmdow and selecting in the initial menu (if them ltem does not belong to the prediction window) [START_REF] Bouzit | Step-by-Step and Shortcut Menus: A Comparison of two Adaptive Menus for Smartphones[END_REF]. We defmed a global guality property as a quality property between the end-user and the system taken as a whole: from/to PDA-LPA cycle from one entity to the other. By analogy, we define a local guality propertv as a quality property between one step of the PDA-LPA cycle from one entity and the correspond ing step in the other PDA-LPA cycle. � ig. 9 graphically depicts a series of local quality properties rangmg from the end-user to the system (E2S):

Awareness: refers to the user's ability to perceive (hence, the perception activity is concerned) how the interaction the ad aptation, or both are occurring in the system. A �areness could be supported in several ways, such as context-aware ness [21] (what are the contextual conditions that are esti � ated significant enough to trigger a change of context), ac tIon awar �� ess (what are the actions undertaken by the sys tem), declSlon awareness (how the system decides which ad ap � ation), and perception awareness (how the system per celve the context of use). Awareness is positively influenced by corresponding system properties, such as observability and honesty: the more the system is observable and honest in what is observed, the more the user is capable of being aware of the system state, information, and actions. Decidability: refers to the user's ability to decide (hence the decision activity is concerned) what to do (in the intera�tion cycle) and/or how to adapt herself (in the adaptation cycle). ! n case of a system with internal control, there is no possibil lty for the user to decide anything; on the opposite side of the continuum, the user may decide everything in case of a full external locus of control. Between these two extremes mixed-in � tiative [8] prompts the user with several options o� what actlOns to undertake next, on which adaptation could take . place s � � hat the user n: ay decide while knowing the po tentIally posItIve and negatIve consequences of this decision. Triggerability: refers to the user's ability to trigger (hence, � he acti � n activity is concerned) the actions she wants (in the mteractlOn cycle) and/or the options needed for an appropri ate adaptation. In adaptability for instance, the user is given the opportunity to adapt some UI features (e.g., icons, menu shortcuts, toolbar contents and position) at any time. Some adaptation may be allowed or forbidden depending on the context of use or because the consequences will be beneficial � r fat � 1 for t�e end-user. Deactivation of actions and adapta tIOns IS � tYPlcal example for revealing or hiding (un)trigger able actIOns. Smart menus displaying first basic menu items and then progressively more complex items as the end-user' � experience grows, is another form of triggerability. Capacity: refers to the system's ability to execute (hence, the action activity is concerned) either domain actions (beIong ing to the business domain of activity) or adaptation actions or both [41]. The capacity for adaptation reveals the power of the adaptation techniques offered to the end-user in terms of applicability. The end-user may want to trigger some ad aptation (in the triggerability), but the system has no capacity for carry ing out the required adaptation. This may represent amismatch between the adaptation goals and the system ca pacity to achieve them.

-Autonomy: refers to the system's ability to decide (hence, the decision activity is concerned) either domain actions or ad aptation actions or both. Autonomy may be governed by the locus of contro\: if adaptation actions are made available, the system may have the permission to decide which one to ap ply with or without the consent of the end-user. When the system is given the fuH autonomy, the locus of control is completely interna\. When the system has no autonomy, the locus of control is completely external. For instance, menu items in a pu li-down menu could be re-arranged by the end users (adaptable menu) or by the system (adaptive menu) or both (mixed-initiative menu) [START_REF] Findlater | A comparison of static, adaptive, and adaptable menus[END_REF]. Agent technology is rec ognized for having autonomous agents that carry out tasks for the end-user alm ost automatically, without the direct in tervention of end-users or others, sometimes even without any observability and controllability.

Perceptibility: refers to the system' s ability to perceive (hence, the perception activity is concerned) domains and/or adaptation actions achieved by the end-user. These actions could be interactive tasks in the course of the interactive sys tem itself or manual tasks that are outside the system, but yet perceivable (e.g., thanks to camera-based computer vision, situation and activity detection).

Capacity, autonomy, and perceptibility are three local qual ity properties expressing system abilities. In order to refine these properties in terms of potential benefits for the end-user, further sub-properties could be also introduced:

-Accuracy: refers to the degree to which perceptibility is achieved. When an adaptive system accurately perceives the user and probes her context of use (e.g., by detecting the plat form used in which location), it provides end-users with some comfort and trust and could reinforce the end-user's feeling that the system is performing accurate actions. For instance, predicting frequently used menu items on a smart phone should be accurate to be accepted by the user [START_REF] Bouzit | Step-by-Step and Shortcut Menus: A Comparison of two Adaptive Menus for Smartphones[END_REF].

Adequacy: refers to the degree to which autonomy is achieved. When an adaptive system adequately decides an adaptation that is considered suitable for the end-user, it pro vides end-users with some subjective satisfaction [START_REF] Lavie | Benefits and costs of adaptive user interfaces[END_REF].

Stability: refers to the degree to which capacity is achieved. When an adaptive system has to ensure a high degree of sta bility in the interface adaptation, it means that it should be capable of ensuring consistent adaptation actions that are subject to a smooth transition from the status before adapta tion to the status after adaptation. Some classical properties could be represented on top of the design space, such as various forms of feedback (Fig. 11) [START_REF] Mezhoudi | A User Feedback Ontology for Con text-aware Interaction[END_REF][START_REF] Scapin | Ergonomic criteria for evaluating the er gonomic quality of interactive systems[END_REF] and self-management properties (Fig. 12) [START_REF] Paramythis | Towards Self-Regulating Adaptive Systems[END_REF]:

Feedback: refers to any entity's ability to provide the other entity with any information in return to an action executed by the other entity, whether it is the user or the system [START_REF] Dj Ajadiningrat | But how, Donald, tell us how? : on the creation of meaning in interaction design through fe edforward and inherent fe edback[END_REF]. When the end-user executes an action (in her PDA cycle), the system needs to perceive it (in its PDA cycle) and the user should be provided with some immediate feedback (e.g., an information message, a process running), which is cov ered by system feedback since the system is responsible.

When the system executes an action (in its PDA cycle), the end-user should be notified as weH, which is covered by sys tem feedback by the end-user (e.g., by a progress bar, by ac knowledging a command, by accepting an adaptation pro posal). Whereas the feedback always occurs after an action has been carried out, preferably immediately after termina tion, the next property should occur even be fore any action could be undertaken or while an action is being formulated by the end-user. For instance, a pen-based ge sture could dis play some feedback indicating the recognition results before initiating the corresponding command. Feedforward: refers to any entity's ability to provide the other entity with any information before this last entity will execute any action [START_REF] Dj Ajadiningrat | But how, Donald, tell us how? : on the creation of meaning in interaction design through fe edforward and inherent fe edback[END_REF]. User feedforward occurs when the system produces any action just before the end-user will do her task, thus helping her to decide whether this task is in deed appropriate. For instance, the system shows possible pen-based gestures while the user is producing them, thus providing feedback before the final gesture is produced. On the contrary, system feedforward occurs when the end-user produces any action just before the system will initiate a task.

For instance, a wizard may be redirected by a user action while running, thus dispatching to another branch.

Self-management in general refers to a set of system abilities to deal itself with various issues without requesting any extern al operation from the end-user or another entity [START_REF] Brun | A Design Space for Self-Adaptive Systems[END_REF][START_REF] Paramythis | Towards Self-Regulating Adaptive Systems[END_REF]. These abil ities could be again structured along the cycles:

Learning

Learning predictability and controllability Self-optimization E E ::t:

Predicting Predicting predictability and controllability Self-prediction

Q) Vl

Adaptation Adaptation predictability and controllability Self-adaptation Table 1. Property mappings between end-user and system.

Self-reconfiguration: refers to the system's ability to recon figure itself by undertaking appropriate actions. A newly dis covered service is added. Self-protection occurs when an adaptive VI is required to protect itself from attacks and end users who inadvertently make software changes and errors.

Self-decision: refers to the system' s ability to decide itself to initiate any action. For instance, dynamic programming ex hibits the capability of the system to generate new rules which, when triggered offer new decision opportunities.

Self-perception: refers to the system's ability to perceive its own functioning. For instance, fault-tolerant system may de tect this it is no longer properly working and re-initialize.

Self-optimization: refers to the system's ability to leam itself from its own knowledge in order to optimize its functioning.

An adaptive system must improve its Iearning and rules ap plied for adaptation for providing good predictions.

Self-prediction: refers to the system's ability to predict itself when a self-adaptation may occur. For instance, a context aware UI could probe the context of use to deduce that an adaptation of its behaviour is likely to happen if the context of use is continuously and regularly accessed.

Self-adaptation: refers to the system' s ability to adapt itself depending on new requirements, whether they are functional or non-functional requirements.

The adaptivity relevance strongly depends on the perfor mance of the predictability. The challenge is to make the adap tation predictable to the end-user while maintain accuracy [START_REF] Gajos | Pre dictability and accuracy in adaptive interfaces[END_REF]. For this purpose, the system is required to be stable [START_REF] Gajos | Exploring the De sign Space for Adaptive Graphical User Interfaces[END_REF] in order to help users understanding the system and creating am ental model of the VI. In addition, the system should be transparent [START_REF] Jameson | Understanding and Dealing with Usability Side Effe cts of Intelligent Pracessing[END_REF] by explaining the proposed prediction. Also, transparency is required about its leaming as weil as about the decision made and the chosen format of prediction presentation. Table 1 pro vides an overview of the quality properties arranged by origin (i.e., initiated by the end-user or the system) to destination (i.e., targeted to the end-user or the system). Self-management prop erties are merged in the bottom-right quadrant since they are valid for the whole system. Each self-* property always goes from the system to the corresponding step in the cycle, e.g., self perception to denote the system ability to perceive itself. Prop erties from and to the end-user are relevant to psychology and philosophy: they are merged in the top-Ieft quadrant since they are out of the scope of this paper.

IV. COMPARING TWO ADAPTIVE USER INTERFACES

This section will describe two adaptive Uls developed ac cording to the design space (descriptive virtue [START_REF] Beaudouin-Lafon | Designing interaction, not interfaces[END_REF]) and compare them to each other (comparative virtue [START_REF] Beaudouin-Lafon | Designing interaction, not interfaces[END_REF]).

A. Adaptive Ul with Intelligent Widget Selection

We developed FFU 1, an environment for form filling with an adaptive UI augmented with machine learning on how widgets are selected. The process is structured as folIows: the designer creates a form based on standard widgets and stores its defmition in a XML (UsiXML) file that is then interpreted at the c1ient side. At any time, the user could enter in an End-User Develop ment (EUD) mode where each form widget could be edited. De pending on the data type, the number of possible values, the number of domain values, and the data semantics, the system relies on adecision tree to select automatically the most appro priate widget for each form field, which the user may change. For example, in order to enter the electrical power of a train ex pressed in kW unit, a profiled edit box could be selected or a simple accumulator where possible values are progressively added to a list box for future usage (Fig. 13). The "Justify" but ton, when clicked, reaches the conclusion in the decision tree in order to understand which rule has been fired (Fig. 14). Until now, FFUI does not perform any adaptation: widgets selected for each form data do not change over time. Fig. 15 rep resents this situation based on the design space: when the system is requested to select a widget according to meta-data (system perception), the decision tree is activated in order to perform the widget selection (system decision) and apply it (system action). The only thing that the end-user could do is to ask the system why a particular widget has been selected (user perception) and acknowledge it (user decision). Consequently, observability is limited to interaction and ensured through browsability since on demand selection is enabled (Fig. 13). Intelligibility is ensured through explainability (Fig. 14). We hope that predictability is reinforced by consistency since the system always selects the same widget in the same circumstances, thus enabling the end user to perform some inference. Unfortunately, controllability is non-existent since self-controlling is achieved: the system does not enable the end-user to change any selected widget. In order to better support these quality properties, FFUT has been aug mented with a Machine Learning (ML) technique enabling the system to learn which widget should be selected under which circumstances by letting three stakeholders to hear their voice: the end-user with her own reasons and preferences, the designer who is assumed to be ausability expert, and the developer who is responsible for irnplementing the selected widget. The ML algorithm is based on a scoring function determin ing the weight of each widget candidate. Tnitially, each widget candidate (e.g., a profiled edit box vs an accumulator in Fig. 13) is assigned to a defauIt score according to a scoring function which is defmed as (Fig. 16):

Default Score (Widget)= P*SC+D*SU where SC is the score of change which defines the additional weight assigned to a widget after being selected by a user or a designer for a specified form. Such score al lows the promoting/demoting of widgets with regard to users and experts. SU is the score of unchanged which defines the interest accorded to the system choice in term of rewarding a well-behaved recommendation within a reinforcement learning paradigm.

P denotes the number of times that the widget is se lected by the end-user without being displayed by de fault (WSelected � WDefault).

D denotes the number of times that the widget selected by the end-user is the displayed one (WSelectedF WDefault).

Various people may assign a different score to the same widget in the same circumstances, thus explaining why there is a need to consider the end-user's choice or preference, but also the designer's choice (which is assumed to be more experi enced), and also the administrator's choice (which is supposed to be the developer knowing which widget is available when). Other actors could play a similar role in this function, such as members of a crowd for crowd-based adaptation of Uls [START_REF] Nebeling | CrawdAdapt: enabling crawdsourced web page adaptation for individual viewing conditions and preferences[END_REF]. In order to integrate all these choices, aglobai scoring func tion is defined for recommending any widget (Fig. 17 where f(w, SA) determines whether the selected widget matches the designer recommendation and T is the total number of widget selections. SA is the designer's score assigned to the widget in this context based on usability engineering and guidelines, such as graceful degradation rules. SC is the global score based on previous options.

The global scoring function is continuously computed while the end-user is interacting with the form. Of course, the scoring function can be tailored to another formula (Fig. 17) whether a most accurate schema could be determined and the recommen dation can be activated or deactivated. Each end-user action is recorded in a log file that is attached to any particular widget of any particular form, thus making it unique for each context. In FFUI, every user action (Au) is recorded in a log file (Ps) that automatically triggers the computation (As) of a new score. Since this function is always computed for every widget affected by the action, the system decision (Ds) is bypassed. The end-user may perceive the widgets candidates (Pu) by entering in FFUI design mode (like in Fig. 14) by pressing a control key, then de cide whether a new widget should be selected (Du). This decision in then translated into a new action (Au).

B. Adaptive CUl layout

We developed TAsk-BAsed .Q.esign Adaptive (TABADA), a software enabling end-users to carry out interactive tasks as ex plicitly defined in a task model with run-time adaptive layout based on machine learning. Our approach follows existing model-based work specitying the UI at a higher level of abstrac tion [START_REF] Calvary | A Unifying Reference Framework for Multi-Target User Interfaces[END_REF]37]. We consider task-oriented language (task tree) and an Abstract UI specification (AUI) in order to remain model based and to allow for a greater flexibility in generating Uls from abstract levels [START_REF] Calvary | A Unifying Reference Framework for Multi-Target User Interfaces[END_REF]. T ABADA is distinctive by the use of machine learning techniques for runtime adaptation and their deployment together within a model based approaches. TABADA exploits the user behaviour prediction to improve the arrangement of abstract interaction units at the abstract user interface level. Then all data collected by implicit feedback are used into a module called user behaviour predictor. This module uses a machine learning tech nique based on statistics in order to predict the next action(s) that will be accomplished by the user given the previous ones he fi1led. The prediction is implemented via a UserActionPrediction dass, and can be seen as an extension of the context of use where the data are processed to extract more useful data. This c1ass needs an instance of ActionM onitoring DB as "raw material" and also takes as parameter the Markov order. The process of user behaviour predictor is based on Markov chains as follows:

Generating and monitoring sequences of actions based on various parameters.

-Learning an n order Markov chain model (or all the order from one to n). -Predict the next most probable action of the user thanks to its history of immediate action.

When TABADA is executed, a first by-default GUI layout is generated. All end-users actions are then recorded (e.g., filling in a field, selecting a new tab, making a choice) so as to feed the ML algorithm. Based on (un)used parts of the task model and on interaction traces, TABADA computes the most probable interac tion paths. At any time, the end-user can stop the system and ask for alternate adapted GUT layout that better suit her task. This new user action enters in a new cyde, thus triggering a new score computation (As), which reinforces the learning (Ls): the system learns that the end-user has preferred to rely on another widget (SC is updated) or not (SU is updated), which is reflected in a new score computation (Ps). The system then applies the adap tation (As) by saving the widget current state, by substituting the old widget by the new one [START_REF] Gajos | Exploring the De sign Space for Adaptive Graphical User Interfaces[END_REF], and by restoring the current state into the newly selected widget. A new loop is then initiated.

In TABADA, every end-user action (e.g., using a particular widget, navigating between views, changing the value of a field) is recorded by a sequence monitor (Ps) which records all se quences on top on an internally-maintained task model, which is unfortunately invisible to the end-user (Fig. 17). TABADA does not decide to perform any adaptation (no Ds) and always auto matically generates a series of alternate layouts based on previ ously recorded sequences (As). These alternate layouts could be made observable on-demand by the end-user (Pu), among which the end-user may pick one layout or not (Du), and requests (Au) the system to switch to this alternate layout. This request is in turn recorded in the system (Ps), which refreshes the generation of sequences (As) and updates the Markov chain accordingly (Ls) that again identifies the most probable sequences (Ps). A new loop is generated and so on. Note that in this case, there is a minimal LPD for the end-user since she was conscious of the new layout selected based on previous task sequences, thus learning (Lu). This may help her to predict how a new layout 2 provides an overview of how both FFUI and TABADA are addressing the quality properties. For both FFUI and TABADA, observability is assessed as medium since system and adaptation observability are ensured by browsability: the end user does not immediately see that there is an adaptivity process ongoing, but could access to the adaptivity control panel by clicking on a control key in FFUI or on an icon in TABADA. J:

Quality property

E Self-adaptation 0 0 C) Self-prediction � � VJ 0 0
Self-optimisation Some users even do not notice the control key and the icon. Nothing else informs the end-user that some adaptivity is en sured by the system, thus suggesting that this properly should be largely improved.

lntelligibility is assessed as superior in T ABADA than in FFUI because the alternate layouts are directly rendered, thus giving the end-user areal preview before adaptation, as opposed to only a widget candidate in FFUI that is not rendered in a potential new UI. Some explainability is possible in FFUI though. Con trollability is limited in FFUI because only the choices suggested by the system are proposed, thus keeping very limited control over these choices. In contrast, TABADA presents the six most probable layouts among which the user can choose and give ac cess to a large set of alternate layouts on demand, potentially all possible combinations.

Predictability is limited in FFUI because the system does not deliver any information that would help the end-user to imagine which kind of widget would result trom the adaptivity process. T ABADA is slightly better because sequences of actions followed by the users are represented, thus giving some hint on how they are built. Similarly, predictability is certainly a property that de serves a better attention to improve the end-users' ability to trig ger adaptation.

F or both systems, awareness is very limited for the same rea sons as in observability: the user cannot be really aware of the adaptivity process since there is no rendering of this process while running.

Decidability is almost excellent for FFUI (not all choices could be made, only among the possible widget candidates) and excellent for TABADA since all possible layouts could be se lected, although this could induce a long navigation between the alternate layouts.

Triggerability is assessed as maximal for both since each candidate, on ce selected, is immediately incorporated in the new UI, which explains why capacity is also assessed as maximum since both systems have the ability to build the new layout and to apply substitution. Autonomy is assessed as non-existent since only the end-user can make a decision on which widget or layout should be kept. Both systems have no initiative and no decision to trigger any adaptation. Perceptibility is assessed as very good since both systems are able to perceive what the user is doing by capturing and recording her actions into an internai log file. Ac curacy is assessed as excellent in both cases since the new adapted layout will be exactly the one built with the new adap tation decision. Adequacy cannot be estimated at this stage be cause it should require a user experiment to determine whether the adaptation proposals are adequate enough for the end-user. What could be captured however is the extent to which the sys tem proposes candidates that are accepted or rejected by the end user. Stability is always ensured because the same algorithm is always applied in both cases, although we could imagine that different algorithms for adaptation (e.g., based on different ma chine leaming algorithms) could be competing.

Selj-management properties are alm ost not ensured since both systems apply adaptation only after an end-user decision. However, both systems are able to perceive their own state (selj perception) and are still able to make predictions at any time (selj-prediction) without waiting for the end-user, but without any ability to apply what has been predicted, hence selj-optimi sation is non-existent.

In conclusion, several quality properties are affected by the constraints imposed by the system: only the user can make a de cision of what prediction could be applied. The system cannot take any decision, therefore preventing mixed-initiative. This generates a new suggestion for both systems: how and when to delegate adaptivity to the system and/or embark into a conver sation between the user and the system to decide which candi date is the most appropriate based on respective knowledges.

D. How to Use the PDA-LPA Design Space

In this section, we elaborate some guidelines on how to practi cally use the PDA-LPA design space for designing adaptation for interactive systems. The most important PDA-LPA quality properties are the four global properties: observability, intelligibility, predictability, and controllability. lt is more important to design UI adaptation in order to cover a minimal support of the four properties sim ultaneously in a balanced way than focusing on one property only. If one or two properties are largely satisfied with little or no support for the other ones, the general LP A process will not deliver its full potential. The level of support between the fOUf properties should be minimal, but balanced. They could also imply some sequence; observability should be thought first, otherwise little or no intelligibility. Similarly, if it is not pre dictable, it will hardly become controllable.

Guideline 2. lnvent a manipulable representation. In order to properly support the four global properties, a representation of the artefacts subject to adaptation should be invented so that it could be manipulated throughout the properties. This repre sentation should be preferably adequate for direct manipulation, but not necessarily: if the representation of the artefact subject to adaptation could be directly manipulated, which is usually more complex to implement, the end-user will see it (observa bility), understand it (intelligibility-provided that the corre sponding metaphor is straightforward), perhaps predict it (pre dictability), and control it (controllability). If no such represen tation exists, the end-user should develop a mental model of the adaptation process which will be very hard to complete. The fact that the representation is directly or indirectly manipulable counts less than its existence. Three types of representation may considered: external if the representation is the one seen by the end-user, internal if the representation that is managed by the software implemented by the developer, or conceptual if the representation is an abstraction of the artefact introduced by the designer to simplify the realm of the artefact. For instance, adaptive menus for smartphones [START_REF] Bouzit | Step-by-Step and Shortcut Menus: A Comparison of two Adaptive Menus for Smartphones[END_REF] invoke a prediction win dow displaying the most likely to be selected items (Fig. 20). Guideline 3. Maximise the controllability. End-user hate to lose control over any process, unless they prefer to delegate the responsibility of a task to a particular agent. Therefore, control lability is key [START_REF] Dessart | Showing user in terface adaptivity by animated transitions[END_REF]: as so on as the representation is invented, feedback on this representation should be envisioned so that the system could express its actions as weIl as the end-user. For in stance, the end-user could select any menu item from the pre diction window in Fig. 20 either in graphical or in tactile mode or close it graphically or by gesture. Not all actions should be however subject to control: it is important to identifY which ad aptation action should be subject to a corresponding user inter face action in order to reflect its contro\. Some experience shows that the more control is offered to end-users to see how adaptivity is achieved, the less they require it over time [START_REF] Dessart | Showing user in terface adaptivity by animated transitions[END_REF]: an animated transition for explaining an adaptivity could be played slowly the first time and quicker the next times. Or even no longer need after several animations have been operated. Considering the local quality properties as weIl as their sub-properties should come after supporting the global quality properties. For instance, ensuring observability counts more than knowing how to support it, by traceability or by browsability. For instance, in FFUI, observability is ensured first by browsability (Fig. 13), then by traceability (Fig. 14), with a direct positive impact on explainability. In the adaptive menus for smartphone (Fig. 20), observability is immediately ensured through direct observation: no browsability. The more observable an adaptation is, the more intelligible it becomes; the more intelligible an adaptation is, the more it supports pre dictability. The more predictable an adaptation is, the easier the controllability could be managed.

Guideline 5. Explicitly cover the LPA cyde. Several tech niques for adaptation have been reported to cover the PDA cy cle [START_REF] Dieterich | State ofthe art in adaptive user interfaces[END_REF], but no study exists today that produced an inventory of similar techniques for covering the LP A cycle where the learning is key. Consequently, the focus has been often empha sized on the adaptation (PDA) cycle, and less on the leaming (LPA) cycle. This last one should be explicitly covered, prefer ably with the same minimal level of support that has been used for the PDA cycle. For instance, in FFUI with machine leaming, the scoring function (Fig. 17) could be entirely redefined, thus offering a basis for maximal observability and controllability of the learning (LPA) cycle. In TABADA however, different lay outs could be produced, each along with its explanation, but the process to obtain them is not observable, therefore not control lable. The final choice remains controllable fortunately. Guideline 6. Prioritize local quality properties. Three sets of local quality properties have been introduced, that are usually considered by decreasing order of importance. This ordering may be different depending on the type of interactive applica tion, thus requiring a prioritization scheme.

V. CONCLUSION

In this paper, we presented a design space for user interface adaptation that departs from existing design spaces (e.g., [START_REF] Brawne | Adaptive user interfaces[END_REF][START_REF] Brun | A Design Space for Self-Adaptive Systems[END_REF][START_REF] Dieterich | State ofthe art in adaptive user interfaces[END_REF][START_REF] Gajos | Exploring the De sign Space for Adaptive Graphical User Interfaces[END_REF][START_REF] Paramythis | Layered evaluation of interactive adaptive systems: fr amework and formative methods[END_REF]) in terms of quality properties defined trom a software viewpoint (often called "ilities " since most of them fmish with this suffix expressing some ability-based behaviour [41]) instead of a set of independent, not interconnected properties (e.g., sta bility, visibility). This design space is explicitly based on the Perception-Decision-Action (PDA) cycle coming from cogni tive psychology [START_REF] Da Norman | The design of everyday things[END_REF], which is itself augmented by a second cy cle Learning-Prediction-Action (LPA). This design space sup ports the three expected virtues [START_REF] Beaudouin-Lafon | Designing interaction, not interfaces[END_REF]: descriptive, comparative, and generative. Future avenues of this work include: (i) the introduction of time to qualify the time constraints between the PDA-LPA steps and to determine, which is the most appropriate moment to ensure them, not always continuously; (i i) the conducting of a System atic Literature Review (SLR) on a series of papers like in [START_REF] Dieterich | State ofthe art in adaptive user interfaces[END_REF], but on ar ecent base of references; and (i ii) the refining of the Prediction step into three sub-steps according to Endsley' model of situational awareness [START_REF] Endsley | Toward a Theory of Situation Awareness in Dynamic Systems[END_REF] where situation awareness is de composed into perception, comprehension, and projection.

Fig. l .

 l Fig. l. An adaptation configuration in Dieterich's terms.

Fig. 2 .

 2 Fig. 2. Adaptation time according to McKinley's taxonomy[START_REF] Mckinley | Composing Adaptive Software[END_REF].

Fig. 3 .

 3 Fig. 3. The ISATINE fr amework for UI adaptation [27].

Fig. 4 .

 4 Fig. 4. The Pereeption-Deeision-Aetion (PDA) eycle in eognitive psyehology (a) and its applieation in HCI (b).

Fig. 5 .

 5 Fig. 5. The PDA-LPA design space far ur adaptation.

Fig. 6 .

 6 Fig. 6. Global quality properties.

Fig. 8 .

 8 Fig. 8. Various fo rms of predietability.

Fig. 9 .

 9 Fig. 9. End-user to System (E2S) loeal quality properties.

Fig. 10 .

 10 Fig. 10. System to End-user (S2E) loeal quality properties.

Fig. 10

 10 Fig. 10 graphicaHy depicts a series of local quality properties ranging from the system to the end-user (S2E):

Fig. 12 .

 12 Fig. 12. Various properties of self-management.

 Dec. I Act. I Lea. I Pre. I Ada Per. Dec. Act. Lea. Pre. Ada.

Fig. 13 .

 13 Fig. 13. Changing the widget selection for a form field.

Fig. 14 .

 14 Fig. 14. Explanation ofthe result in adecision tree.

Fig. 15 .

 15 Fig. 15. PDA cycles for FFUI without any adaption.

Fig. 16 .

 16 Fig. 16. The default scoring fun ction.

Fig. 17

 17 Fig. 17. The scoring algorithm configuration

 Fig. 17. The scoring algorithm configuration

)[START_REF] Mezhoudi | WiSel: a mixed initiative approach for widget selection[END_REF]:Score (Widget)= P*SC+D*SU+ T*SG + f(w,SA)

Fig. 18 .

 18 Fig. 18. FFUI with adaptation based on machine learning.

Fig. 19 .

 19 Fig. 19. The Design Space for TABADA.

Guideline 1 .

 1 Balance the support ofthe 4 global properties.

Fig. 20 .

 20 Fig. 20. The Prediction window far adaptive menus.

Guideline 4 .

 4 Refine global properties by local properties af terwards.

Table 2 .

 2 Comparison of FFUI and T ABADA in terms of quality properties.