
HAL Id: hal-03223717
https://hal.science/hal-03223717

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The PDA-LPA Design Space for User Interface
Adaptation

Sarah Bouzit, Gaëlle Calvary, Joëlle Coutaz, Denis Chene, Eric Petit, Jean
Vanderdonckt

To cite this version:
Sarah Bouzit, Gaëlle Calvary, Joëlle Coutaz, Denis Chene, Eric Petit, et al.. The PDA-LPA De-
sign Space for User Interface Adaptation. Eleventh IEEE International Conference on Research
Challenges in Information Science (RCIS 2017), May 2017, Brighton, United Kingdom. pp.352-364,
�10.1109/RCIS.2017.7956559�. �hal-03223717�

https://hal.science/hal-03223717
https://hal.archives-ouvertes.fr

HAL Id: hal-03223717
https://hal.archives-ouvertes.fr/hal-03223717

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The PDA-LPA Design Space for User Interface
Adaptation

Sarah Bouzit, Gaëlle Calvary, Joëlle Coutaz, Denis Chene, Eric Petit, Jean
Vanderdonckt

To cite this version:
Sarah Bouzit, Gaëlle Calvary, Joëlle Coutaz, Denis Chene, Eric Petit, et al.. The PDA-LPA Design
Space for User Interface Adaptation. Proceedings of the eleventh IEEE International Conference
on Research Challenges in Information Science (RCIS 2017), May 2017, Brighton, United Kingdom.
pp.352-364, �10.1109/RCIS.2017.7956559�. �hal-03223717�

https://hal.archives-ouvertes.fr/hal-03223717
https://hal.archives-ouvertes.fr

The PDA-LPA Design Space for
User Interface Adaptation

Sarah Bouzit2, Gaelle Calvary, Joelle
Coutaz

Denis Cbene, Erie Petit,

20range Labs,

Jean Vanderdonekt

Universite eatholique de Louvain,
Louvain Sehool of Management,

8-1348 Louvain-Ia-Neuve (8elgium)
jean.vanderdonckt@uclouvain.be

Universite Grenoble Alpes, LIG
F-38000 Grenoble (Franee)
{sarah.bouzit, gaeIle.ealvary,

joelle.eoutaz}@imag.fr

28 ehemin du Vieux Cbene,
F-38240 Meylan (Franee),

{sarah.bouzit, denis.chene,
eric.petit}@orange.com

Abstract-This paper presents a design space for engineering

adaptive user interfaces throughout the user interface develop

ment life cycle in order to describe any adaptation technique,

adaptable or adaptive, to compare two or more techniques, and to

generate new, perhaps unprecedented, techniques. Grounded in

the theory of psychological perception, this design space structures

the adaptation life cycle into two regulation loops between the user

and the system: a perception-decision-action (PDA) loop for both

the system and the user, and a learning-prediction-adaptation

(LPA) for supporting the adaptation, this last being particularly

expressive for adaptivity. This PDA-LPA design space enables de

fining properties for assessing the q uality of these loops between

the system and the end-user. This design space of is instantiated on

two advanced adaptive user interfaces: adaptive user interfaces

based on machine learning and adaptive layouts. This design space

provides new insights for considering adaptivity design options.

Keywords- Adaptation of user interfaces, adaptive user in

terfaces; design space exploration; quality properties; intelligent

user interfaces.

I. INTRODUCTION

User Interface adaptation consists in moditying the User In
terface (UI) of an interactive system to satisty specific require
ments. Adaptation falls into two categories depending on whom,
the system anc\/or the end-user, is involved in the adaptation pro
cess [20,23]: adaptability refers to the end-user's ability to adapt
the UI [41] whereas adaptivity refers to the system's ability to
perform UT adaptation [14]. Mixed-initiative adaptation [7] oc
curs when both the end-user and the system collaborate in the
adaptation process. UI adaptation has been extensively investi
gated [20], researched [34], developed [28], and tested [38] with
the ultimate goal of optimizing the overall end-users' experience
by increasing end-users' performance anc\Ior preferences [11],
by reducing task completion time and error rate [5], by improv
ing the subjective user's satisfaction, her learning curve [25].

The challenge is to suggest the right adaptation at the right
time at the right place for making it valuable to the end-user [23].
Otherwise, adaptation will be prone to several limitations that
could become a major impediment to the expected benefits, if
not thwart them [25]: risk of misfit (the end-user's needs are in
correctly captured or interpreted), user cognitive disruption (the
end-user is disrupted by the adaptation), lack o{ prediction (the
end-user does not know when and how the UI will be adapted
by the system), lack of explanation (the end-user is not informed
the reasons that triggered adaptation), lack of user involvement
(the end-user does not have the opportunity to participate ac
tively in the adaptation process), and riskfor privacy (the system

maintains personal information that the user wishes to keep pri
vate). "The field of adaptive systems is infamous for its lack of
standards, or even commonly accepted approaches" [33]. Sur
veys of UI adaptation have been published [6,14,18,28,34] as
attempts to synthesize adaptation concepts, methods, and tools.
However, most of them is technology driven, limited in scope,
or surpassed by recent technical progress, which makes them in
appropriate for covering the most recent adaptation techniques
as weIl as for exploring alternatives in a systematic and struc
tured manner.

Design spaces are useful conceptual tools for supporting sys
tematic reasoning. A design space is a multi dimensional ensem
ble where a dimension identifies a key issue and for each issue,
makes explicit the alternatives available. Design spaces have
been used extensively in Human-Computer Interaction (HCl),
from software architecture modelling for interactive systems
[24] to multimodal user interfaces [12], to device modelling
[10]. They have provided the HCI community with shared vo
cabularies for describing and understanding multiple aspects of
interactive systems. On the other hand, "UI adaptation" still
lacks a design space that would serve as a reference framework
to reason about UI adaptation at the appropriate level of details.

Existing taxonomies and frameworl(s for reasoning about U 1
adaption either are too high level to inform UI designers and de
velopers in a useful and effective manner, or they ignore the role
of the end-user in the adaptation process, or even do not consider
the usability of the adaptation process. In turn, we propose a new
design space for UI adaptation that covers both the human and
the system as two symmetrical and interacting loops where each
loop is decomposed into 6 stages informed by cognitive psychol
ogy: a Perception-Decision-Action (PDA) sequence enriched
with a Learning-Prediction-Adaptation (LPA) sequence. In ad
dition, the quality of the interaction that takes place between the
human PDA-LPA cycle and that of the system cycle are charac
terized with properties that refme the usability of the adaptation
process at multiple levels of granularity: at the loops level or at
the stage levels. As a result, designers and developers of UI ad
aptation can reason at several levels of abstraction. Additionally,
the stages of the PDA-LPA loops provide the basis for architec
tural decomposition.

The article is structured in the following way: Section 2 pro
vides some background on design spaces and frameworks for
adaptation, Section 3 defines the PDA and LP A loops as weil as
a series of quality properties derived from them. Section 4 com
pares two adaptive systems based on this design space. Section
5 concludes the paper by presenting some future avenues.

11. BACKGROUND ON USER INTERFACE ADAPTATION

Pioneering work on VI adaptation started with Browne et al.
[6]. These authors have used Moran's Command Language
Grammar (CLG) [10] that structures the specification of a VI
into distinct aspects, from tasks and abstract concepts to syntac
tic and physical components. They conclude that CLG major
strength for VI adaptation is the Principle of Separation of Con
cerns. Although this principle is enforced in CLG, it is not obvi
ous how to easily propagate all specifications aspects into the
fmal code. In addition, Browne et al. observe that CLG has very
limited facilities for expressing VI presentation and behaviour,
thus raising the need for improving its expressiveness.

Dieterich et al. taxonomy [14] has long been considered as
a seminal reference for classifying different types of adaptation
configurations and techniques. Based on the analysis of more
than 200 articles covering UI adaptation, Dieterich et al. propose
a four stage classification: initiative (which entity involved in
the interaction process expresses the intention to perform adap
tation), proposal (if a need for adaptation arises, what proposals
could be applied successfully given the current situation), deci
sion (which adaptation proposal best fit the requirements), and
execution (the adaptation technique previously chosen is fmally
enacted). Given these four stages, the authors have c1assified
every system with adaptation capabilities according to the actors
involved at each stage. Fig. 1 presents an adaptation configura
tion in which the system recognizes the need for adaptation, pro
poses some alternatives, the end-user then selects the appropri
ate alternative that is fmally executed by the system. Any other
combination of this distribution could be imagined.

Fig. l. An adaptation configuration in Dieterich' s terms.

McKinley's taxonomy [28] addresses software composi
tional adaptation that exchanges algorithmic or structural parts
of the system with others to improve the system' s fit to its cur
rent context of use, which is considered as the reference for ad
aptation [9]. This kind of adaptation is based on the separation
of concerns between the functional behaviour of the system and
cross-cutting concerns, as weil as on computational reflection
that provides a vehic1e to query the different aspects of a system,
on component-based design practices that enable the develop
ment of the different parts of a system separately, and on a mid
dIeware that usually provides the compositional capabilities.

Fig. 2. Adaptation time according to McKinley' s taxonomy [28].

The taxonomy is structured along three dimensions:
1. How to adapt: the process can be carried out by different en

tities: a human (e.g., a developer, a system administrator), a
component loader, a run-time system, or a meta-object.

2. Where to adapt: it describes where, in the system, the adap
tation code is inserted. The most common approach is to
place the code in the middleware, although extensible oper
ating systems have also been used.

3. When to adapt: the adaptation time (Fig. 2) is static, respec
tively dynamic, when it takes place at design, prototyping,
develop, compile, link, or load time, respectively at run time.
In addition, adaptation is hardwired (when UI adaptation is
embedded in the code of the interactive application, or in the
UI code), customizable (when UI adaptation enables some
pre-computed freedom), conjigurable (when the VI adapta
tion technique can be configured before execution), tunable
(when VI adaptation can fine-tune the VI at run time without
modifying its code), or mutable (when UI adaptation sub
sumes the run time code modification of the interactive ap
plication, as in generative programming [36]).
Although this taxonomy is applicable to an entire interactive

application, the three dimensions (i.e. how, where, when) are
particularly constructive for a design space: 'how to adapt' cor
responds roughly to the proposal stage of Dieterich' s taxonomy,
'where to adapt' is implicitly included in the execution stage of
Dieterich's taxonomy, whereas 'when to adapt' is not covered
by Dieterich's taxonomy. Therefore, McKinley's taxonomy
complements Dieterich's proposal, but contrarily to the ISATINE
framework [27], they altogether do not cover the adaptation life
cyc1e in sufficient detail to reason about the design and imple
mentation of VI adaptation techniques.

Fig. 3. The ISATINE framework for UI adaptation [27].

The ISATINE frameworl((Fig. 3) [29] structures the adapta
tion life cyc1e of a VI into the exact same stages as the seven
stages identified by Norman to model human mental steps when
performing a task with a system [32]. Inspired by Norman's gulf
of execution and gulf of evaluation, ISATINE inc1udes the gulf of
adaptation execution and the gulf of adaptation evaluation.

As shown on the left end side of Fig.3, the gulf of adaptation
execution covers the stages that the adaptation process goes
through to adapt. The gulf of adaptation evaluation, shown on
the right end side of Fig. 3, includes the stages involved in the
assessment of the outputs produced by the execution gulf. As in
Nonnan 's mental model of action [32], the process starts by stat
ing some particular adaptation goal which in turn triggers an in
itiative for adaptation whose meaning has to be specified, then
transfonned into a concrete plan before being applied. Once the
adaptation has been completed, a transition takes place until in
terpretation of the adaptation is reached, and evaluated with re
spect to the initial goal. Feedback may be interpreted positively
(i.e., the adaptation goal has been fulfilled) or negatively (i.e. the
adaptation goal has not been achieved) [30]. In the latter case, a
new adaptation loop is initiated. Any stage can be carried out by
any combination of end-users, system, and other stakeholders.

While more expressivity is gained, the ISATINE framework
still misses important aspects: it details the stages of the adapta
tion process only with respect to the end-user's viewpoint, it
does not provide any insight from the system viewpoint. In par
ticular, it does not separate the part related to the main interac
tion from the adaptation itself; it does not express how adaptivity
is achieved; and it does not support the expression of the quality
of the adaptation process. Therefore, the 'when to adapt' is cov
ered as weil as the 'where to adapt', but not 'how to adapt'. For
the aforementioned reasons, we would like to come up with a
design space for adaptation that could anchor techniques se
lected for supporting 'how to adapt' when they are required.

TTT. THE PDA-LPA DESIGN SPACE

A. Requirementsjor a Design Spacejor Ul Adaptation

Any design space for adaptive VIs, as any other design space
or model, should serve three virtues [3]:
1. A descriptive virtue: any adaptive VI should be described

completely, consistently, and unequivocally.
2. A comparative virtue: any set of adaptive VIs should be

made comparable according to the criteria defined in the de
sign space. This requirement supports sound comparative
analyses of techniques as weIl as rigorous benchmarking.
When two adaptive VIs are compared in the design space,
their coverage can be highlighted, thus enabling an objective
identification of their respective strengths and weaknesses,
which is referred to as commensurability.

3. An exploratory virtue: every dimension of the design space
can be systematically explored in order to identify where ex
isting techniques are located, where they are strong or weak,
where new opportunities emerge, and where underexplored
portions remain to be investigated, if not discovered yet.
Such underexplored portions could be subject to a theoretical
analysis to detennine their feasibility or a prototypical imple
mentation to identify its potential benefits.
Beyond these three virtues, a design space for VI adaptation

should cover the co-evolution that occurs between the end-user
and the system. As end-users adapt themselves while interacting
with the system, the same applies to the system for anticipating
end-users actions and for facilitating the interaction. Therefore,
two loops must be considered: one for the main UI interaction
and one for the adaptation of this VI.

Fig. 4. The Pereeption-Deeision-Aetion (PDA) eycle in eognitive psyehology
(a) and its applieation in HCI (b).

Cognitive psychology [22,32] as weil as human decision the
ory argue that perception, decision, and action are the key activ
ities that humans use to make sense of, and to interact with the
environment [9]. Any interactive task thus involves: perception
when the end-user has to perceive the basic properties of the
context of use, inkling the VI, decision when the end-user has to
make a choice between competing options based on her own in
terpretation, and action when a particular action should take
place after a decision has been made. The end-user follows a se
ries offerception-.Qecision-Action (PDA) cycles (Fig. 4a) un
til the task is completed. While some researchers claim that these
three types of actions are intertwined [15] and could be linked
by bidirectional arrows indicating the non-consecutive interac
tion [20], we prefer to keep the concision of the initial PDA cycle
because it equally applies to the UI: the system has to perceive
what the user is actually doing (through sensors, user-generated
events), to decide what next actions will be undertaken (e.g.,
through a dialog controller), and to execute the required actions.
Hence, the user-system interaction could be represented as a se
quence of 2 PDA cycles (Fig. 4b).

In addition to the interaction PDA cycle, we propose the
1earning-frediction-Adaptation (LPA) cycle to convey the
human-system co-evolution phenomenon mentioned above. The
end-user gains experience from the previous PDA cycle and
learns. This in turn facilitates the prediction of what to do next
for adapting herself to the system. On the system side, the sys
tem learns from the end-user's actions, creates and maintains
this knowledge for predicting what to offer next to the end-user,
and for applying the appropriate adaptation technique. Adapta
tion cycles cease when either the user or the system decides to
suspend the adaptation process. Otherwise, there would be a risk
of infinite adaptation without any convergence towards a stable
state. Vsually, the end-user takes this decision.
B. Design Space Definition

The design space for UI adaptation resulting from these require
ments is illustrated in Fig. 5: the end-user's side, graphically
depicted in blue, is made up of two cycles (one PDA cycle for
the interaction and one LP A cycle for human adaptation) as weil
as the system, graphically represented in green (one PDA cycle
for controlling the system according to the business logic and
one LPA cycle for system adaptation).

Fig. 5. The PDA-LPA design space far ur adaptation.

Fig. 6. Global quality properties.

The resuIting PDA-LPA design space for UT adaptation
therefore makes it explicit the activities from both sides (user
and system) while differentiating the main interaction process
from the adaptation process. When no system adaptation exists,
the LPA-system sequence disappears. When no user adaptation
is achieved, the LPA-user sequence disappears. An adaptable UI
could be represented equally without the LPA-system sequence
since the end-user is in charge of adapting the system. An adap
tive VI includes the 4 sequences shown in Fig. 5.

C. Quality Properties
Any adaptation could be described in the terms of the PDA

LP A design space as follows: which technique is promoted in
the interactive system for supporting perception, decision, ac
tion, learning, prediction, and adaptation when it occurs. This
should respect the aforementioned descriptive virtue. In order to
respect the comparative virtue, quality properties could be de
fined on top of the design space, thus revisiting and enriching
existing quality properties for interactive systems [21] and sim
uItaneously introducing new abilities [41] for the adaptation.
Quality properties in our design space fall into two categories:
system (software) quality properties when the property could be
defmed as an ability ensured by the system in a user-independent
way, or user quality properties when the property could be de
fined as an ability offered to the user, which is therefore user
specific. A quality property is said to be shared when both the
end-user and the system collaborate to ensure the property. Fig.
6 depicts a first series of global quality properties (i.e., between
user and system considered as a whole):

Observability: refers to the system's ability to make perceiv
able its state in a relevant way for the end-user. This sub
sumes the interaction (system observability) and/or the adap
tation (adaptation observability). Adaptation observability is
key for the end-user to perceive what the system is doing to
support adaptivity: in L.earning (to perceive what the system

is currently learning or has learnt from the user, such as user
events, actions), in frediction (to perceive that the system is
able to predict an adaptation), and in !ldaptation itself (to
ren der that an adaptation is taking place, such as with ani
mated transition showing how a UI progressively evolves
when subject to adaptation [13]). Observability is a general
ization of immediate visibility since several techniques could
ensure observability [21]: traceability (step-by-step perceiv
ability) [31] or browsability (visibility by navigation on-de
mand): what is not immediately perceivable could be made
browsable on demand. Browsability refers to the system's
ability for the user to explore the system state by the way of
articulatory tasks (i.e., tasks that do not modifY the state of
the functional core, such as scrolling, zooming in, zooming
out, navigating). Some forms of observability are graphically
depicted in Fig. 7: learning observability from the learning
activity to the end-user, prediction observability from the
prediction activity to the end-user, and adaptation observa
bility for the final adaptation executed. Each activity could
be subject to observability independently of the others: it is
not because the adaptation is observable that its learning and
its prediction should be also observable. On the opposite,
these three activities are rarely subject to observability, apart
from showing the results of the adaptation to the end-user.

- Intelligibility: refers to the system's ability to communicate
to the end-user how the interaction and/or the adaptation pro
cesses are conducted in a meaningful and representative way
[4]. As intelligibility subsumes observability [39] (before
making the adaptation intelligible, it should be made observ
able), it could be similarly decomposed into interaction in
telligibility and adaptation intelligibility. lntelligibility is key
for the end-user to understand the system and the adaptation
engine, while they are running. For a context-aware system,
intelligibility refers to the system's ability to present itself in
a convenient manner, the way the context is perceived and
its behaviour depending on significant changes over time
[22]. lntelligibility could be ensured by different ways [4]:
explainability (the adaptation is explained), continuity (the
adaptation process is continuously rendered) [19], honesty
[21], or transparency (which each adaptation is rendered uni
vocally to the end-user to avoid the aforementioned limita
tions of adaptivity) [8]. The end-user can understand all the
better that she is able to observe the system thanks to observ
ability. Honesty refers to the system's ability to achieve two
aims: to make the real system state observable to the end
user (which is challenging due to latency and lag [13]) and
to make this state accurately [19] interpreted by the end-user.

Fig. 8. Various forms of predietability.

Predictability: refers to the user's ability to predict future
system actions for supporting the interaction, the adaptation,
or both based on past corresponding actions [19]. Regarding
the adaptation predictability (see Fig. 8 for various forms of
this property), the user should to some extent predict the be
ha�iour of�he adaptivity algorithm based on past adaptivity
actIOns, whlch may subsurne controllability: the end-user can
predict all the better that she is under control of the system
t�anks. to controllability. Accuracy of the prediction posi
t�vely Impacts the performance and thus subjective satisfac
tIon of the end-user when adaptivity is properly achieved
[17,19], which heavily depends on the prediction method.
Cont,:ollabil!ty: refers to the user's ability to control the sys
tem I?teractlOn (interaction controllability), the system ad
aptatIOn (adaptation controllability), or both depending on
which cycles are concerned: the system PDA cycle, the sys
tem LPA cyc1e, or both. Controllability could cover any in
teractive Ul aspect in principle. When the end-user has no
control, the interaction and/or the adaptation cyc1es are en
tirely initiated and controlled by the system through self-con
t�olling, self-r�lS.ula!ion, or self-adaptation [8,33]. A'dapta
tlOn controllabIllty IS essential to enable the end-user to be
acti,:ely involved in any adaptation activity: in 1earning (to
speclfy to the system what is allowed to capture, interpret,
and learn from the user for ensuring privacy), in Erediction
(to co�trol the parameters used for predicting the adaptation,
e.g., VIa machme learning), and in Adaptation (to assess ad
��tation proposa�s, to accept a relevant adaptation -true pos
ltlve�- .or reJect Iffelevant adaptations resulting from wrong
predlctlons -false positives-). For instance, a prediction win
�o:v could �isplay n:enu items predicted by the system adap
tlvlty techmque WhlCh may result into a correct item selec
tion (if t�e !tem �as desired by the end-user) or undisplaying
the p�edlCtIOn wmdow and selecting in the initial menu (if
them ltem does not belong to the prediction window) [5].

Fig. 9. End-user to System (E2S) loeal quality properties.

We defmed a global guality property as a quality property
between the end-user and the system taken as a whole: from/to
PDA-LPA cycle from one entity to the other. By analogy, we
define a local guality propertv as a quality property between one
step of the PDA-LPA cycle from one entity and the correspond
ing step in the other PDA-LPA cycle.

�ig. 9 graphically depicts a series of local quality properties
rangmg from the end-user to the system (E2S):

Awareness: refers to the user's ability to perceive (hence, the
perception activity is concerned) how the interaction the ad
aptation, or both are occurring in the system. A �areness
could be supported in several ways, such as context-aware
ness [21] (what are the contextual conditions that are esti
�ated significant enough to trigger a change of context), ac
tIon awar��ess (what are the actions undertaken by the sys
tem), declSlon awareness (how the system decides which ad
ap�ation), and perception awareness (how the system per
celve the context of use). Awareness is positively influenced
by corresponding system properties, such as observability
and honesty: the more the system is observable and honest in
what is observed, the more the user is capable of being aware
of the system state, information, and actions.
Decidability: refers to the user's ability to decide (hence the
decision activity is concerned) what to do (in the intera�tion
cycle) and/or how to adapt herself (in the adaptation cycle).
!n case of a system with internal control, there is no possibil
lty for the user to decide anything; on the opposite side of the
continuum, the user may decide everything in case of a full
external locus of control. Between these two extremes
mixed-in�tiative [8] prompts the user with several options o�
what actlOns to undertake next, on which adaptation could
take. place s� �hat the user n:ay decide while knowing the po
tentIally posItIve and negatIve consequences of this decision.
Triggerability: refers to the user's ability to trigger (hence,
�he acti�n activity is concerned) the actions she wants (in the
mteractlOn cycle) and/or the options needed for an appropri
ate adaptation. In adaptability for instance, the user is given
the opportunity to adapt some UI features (e.g., icons, menu
shortcuts, toolbar contents and position) at any time. Some
adaptation may be allowed or forbidden depending on the
context of use or because the consequences will be beneficial
�r fat�1 for t�e end-user. Deactivation of actions and adapta
tIOns IS � tYPlcal example for revealing or hiding (un)trigger
able actIOns. Smart menus displaying first basic menu items
and then progressively more complex items as the end-user' �
experience grows, is another form of triggerability.

Fig. 10 . System to End-user (S2E) loeal quality properties.

Fig. 10 graphicaHy depicts a series of local quality properties
ranging from the system to the end-user (S2E):

Capacity: refers to the system's ability to execute (hence, the
action activity is concerned) either domain actions (beIong
ing to the business domain of activity) or adaptation actions
or both [41]. The capacity for adaptation reveals the power
of the adaptation techniques offered to the end-user in terms
of applicability. The end-user may want to trigger some ad
aptation (in the triggerability), but the system has no capacity
for carrying out the required adaptation. This may represent
a mismatch between the adaptation goals and the system ca
pacity to achieve them.

- Autonomy: refers to the system's ability to decide (hence, the
decision activity is concerned) either domain actions or ad
aptation actions or both. Autonomy may be governed by the
locus of contro\: if adaptation actions are made available, the
system may have the permission to decide which one to ap
ply with or without the consent of the end-user. When the
system is given the fuH autonomy, the locus of control is
completely interna\. When the system has no autonomy, the
locus of control is completely external. For instance, menu
items in a pu li-down menu could be re-arranged by the end
users (adaptable menu) or by the system (adaptive menu) or
both (mixed-initiative menu) [17]. Agent technology is rec
ognized for having autonomous agents that carry out tasks
for the end-user alm ost automatically, without the direct in
tervention of end-users or others, sometimes even without
any observability and controllability.
Perceptibility: refers to the system' s ability to perceive
(hence, the perception activity is concerned) domains and/or
adaptation actions achieved by the end-user. These actions
could be interactive tasks in the course of the interactive sys
tem itself or manual tasks that are outside the system, but yet
perceivable (e.g., thanks to camera-based computer vision,
situation and activity detection).
Capacity, autonomy, and perceptibility are three local qual

ity properties expressing system abilities. In order to refine these
properties in terms of potential benefits for the end-user, further
sub-properties could be also introduced:
- Accuracy: refers to the degree to which perceptibility is

achieved. When an adaptive system accurately perceives the
user and probes her context of use (e.g., by detecting the plat
form used in which location), it provides end-users with
some comfort and trust and could reinforce the end-user's
feeling that the system is performing accurate actions. For
instance, predicting frequently used menu items on a smart
phone should be accurate to be accepted by the user [5].
Adequacy: refers to the degree to which autonomy is
achieved. When an adaptive system adequately decides an
adaptation that is considered suitable for the end-user, it pro
vides end-users with some subjective satisfaction [25].
Stability: refers to the degree to which capacity is achieved.
When an adaptive system has to ensure a high degree of sta
bility in the interface adaptation, it means that it should be
capable of ensuring consistent adaptation actions that are
subject to a smooth transition from the status before adapta
tion to the status after adaptation.

Fig. 12. Various properties of self-management.

Some classical properties could be represented on top of the
design space, such as various forms of feedback (Fig. 11) [30,35]
and self-management properties (Fig. 12) [33]:

Feedback: refers to any entity's ability to provide the other
entity with any information in return to an action executed
by the other entity, whether it is the user or the system [15].
When the end-user executes an action (in her PDA cycle),
the system needs to perceive it (in its PDA cycle) and the
user should be provided with some immediate feedback (e.g.,
an information message, a process running), which is cov
ered by system feedback since the system is responsible.
When the system executes an action (in its PDA cycle), the
end-user should be notified as weH, which is covered by sys
tem feedback by the end-user (e.g., by a progress bar, by ac
knowledging a command, by accepting an adaptation pro
posal). Whereas the feedback always occurs after an action
has been carried out, preferably immediately after termina
tion, the next property should occur even be fore any action
could be undertaken or while an action is being formulated
by the end-user. For instance, a pen-based ge sture could dis
play some feedback indicating the recognition results before
initiating the corresponding command.
Feedforward: refers to any entity's ability to provide the
other entity with any information before this last entity will
execute any action [15]. User feedforward occurs when the
system produces any action just before the end-user will do
her task, thus helping her to decide whether this task is in
deed appropriate. For instance, the system shows possible
pen-based gestures while the user is producing them, thus
providing feedback before the final gesture is produced. On
the contrary, system feedforward occurs when the end-user
produces any action just before the system will initiate a task.
For instance, a wizard may be redirected by a user action
while running, thus dispatching to another branch.
Self-management in general refers to a set of system abilities

to deal itself with various issues without requesting any extern al
operation from the end-user or another entity [8,33]. These abil
ities could be again structured along the cycles:

From: User System

To: Per. I Dec. I Act. I Lea. I Pre. I Ada Per. Dec. Act. Lea. Pre. Ada.

User Perception � .� .� .� = >-
>-

>- rn ::!:::!
:: >- ;gz- = >- .0 � > = ro :..= Decision > = ..c .� .0 �

C :..a
� .o

..c == ro;'::: QJ .-� .o rtI= � on � :� c::e �� c: :e � :[0 ..0= .0 = QJ on .0= o QJ Action �:Jf
Self-consciousness and behavior o .2! C.l:.= �= o .2! <:: 1:: .0 - ..dW <:: <:: o .2! o .2! <:: <:: 0 ,-

Learning 0 '-'.j:j ""0
c. <::

Predicting QJ rn

� z-QJ .-
Adaptation "-

e .�
,2 ""0 .!:2 c
u rn QJ 0

o 1::
<:: .-
0"0
'B � <i

on <::
<:: .-.- "0
<:: <:: � rn

�

0 '-.- "0 t <:: .- rn

� .�
"-

'';:::: ""0
'" <::
15.'"
.g: .�
«�

System Perception Perception predictability and controllability Self-perception
cL Decision Decision predictability and controllability Self-decision tlO
rn

Action Action predictability and controllability Self-reconfiguration c c rn Q)
Learning Learning predictability and controllability Self-optimization E E

::t:
Predicting Predicting predictability and controllability Self-prediction Q)

Vl
Adaptation Adaptation predictability and controllability Self-adaptation

Table 1. Property mappings between end-user and system.

Self-reconfiguration: refers to the system's ability to recon
figure itself by undertaking appropriate actions. A newly dis
covered service is added. Self-protection occurs when an
adaptive VI is required to protect itself from attacks and end
users who inadvertently make software changes and errors.
Self-decision: refers to the system' s ability to decide itself to
initiate any action. For instance, dynamic programming ex
hibits the capability of the system to generate new rules
which, when triggered offer new decision opportunities.
Self-perception: refers to the system's ability to perceive its
own functioning. For instance, fault-tolerant system may de
tect this it is no longer properly working and re-initialize.
Self-optimization: refers to the system's ability to leam itself
from its own knowledge in order to optimize its functioning.
An adaptive system must improve its Iearning and rules ap
plied for adaptation for providing good predictions.
Self-prediction: refers to the system's ability to predict itself
when a self-adaptation may occur. For instance, a context
aware UI could probe the context of use to deduce that an
adaptation of its behaviour is likely to happen if the context
of use is continuously and regularly accessed.
Self-adaptation: refers to the system' s ability to adapt itself
depending on new requirements, whether they are functional
or non-functional requirements.
The adaptivity relevance strongly depends on the perfor

mance of the predictability. The challenge is to make the adap
tation predictable to the end-user while maintain accuracy [19].
For this purpose, the system is required to be stable [18] in order
to help users understanding the system and creating a mental
model of the VI. In addition, the system should be transparent
[23] by explaining the proposed prediction. Also, transparency
is required about its leaming as weil as about the decision made
and the chosen format of prediction presentation. Table 1 pro
vides an overview of the quality properties arranged by origin
(i.e., initiated by the end-user or the system) to destination (i.e.,
targeted to the end-user or the system). Self-management prop
erties are merged in the bottom-right quadrant since they are
valid for the whole system. Each self-* property always goes
from the system to the corresponding step in the cycle, e.g., self
perception to denote the system ability to perceive itself. Prop
erties from and to the end-user are relevant to psychology and
philosophy: they are merged in the top-Ieft quadrant since they
are out of the scope of this paper.

IV. COMPARING TWO ADAPTIVE USER INTERFACES

This section will describe two adaptive Uls developed ac
cording to the design space (descriptive virtue [3]) and compare
them to each other (comparative virtue [3]).
A. Adaptive Ul with Intelligent Widget Selection

We developed FFU 1, an environment for form filling with an
adaptive UI augmented with machine learning on how widgets
are selected. The process is structured as folIows: the designer
creates a form based on standard widgets and stores its defmition
in a XML (UsiXML) file that is then interpreted at the c1ient
side. At any time, the user could enter in an End-User Develop
ment (EUD) mode where each form widget could be edited. De
pending on the data type, the number of possible values, the
number of domain values, and the data semantics, the system
relies on adecision tree to select automatically the most appro
priate widget for each form field, which the user may change.
For example, in order to enter the electrical power of a train ex
pressed in kW unit, a profiled edit box could be selected or a
simple accumulator where possible values are progressively
added to a list box for future usage (Fig. 13). The "Justify" but
ton, when clicked, reaches the conclusion in the decision tree in
order to understand which rule has been fired (Fig. 14).

Fig. 13 . Changing the widget selection for a form field.

Fig. 14. Explanation of the result in a decision tree.

Fig. 1 5 . PDA cycles for FFUI without any adaption.

Until now, FFUI does not perform any adaptation: widgets
selected for each form data do not change over time. Fig. 15 rep
resents this situation based on the design space: when the system
is requested to select a widget according to meta-data (system
perception), the decision tree is activated in order to perform the
widget selection (system decision) and apply it (system action).
The only thing that the end-user could do is to ask the system
why a particular widget has been selected (user perception) and
acknowledge it (user decision). Consequently, observability is
limited to interaction and ensured through browsability since on
demand selection is enabled (Fig. 13). Intelligibility is ensured
through explainability (Fig. 14). We hope that predictability is
reinforced by consistency since the system always selects the
same widget in the same circumstances, thus enabling the end
user to perform some inference. Unfortunately, controllability is
non-existent since self-controlling is achieved: the system does
not enable the end-user to change any selected widget. In order
to better support these quality properties, FFUT has been aug
mented with a Machine Learning (ML) technique enabling the
system to learn which widget should be selected under which
circumstances by letting three stakeholders to hear their voice:
the end-user with her own reasons and preferences, the designer
who is assumed to be a usability expert, and the developer who
is responsible for irnplementing the selected widget.

Fig. 1 6. The default scoring function.

The ML algorithm is based on a scoring function determin
ing the weight of each widget candidate. Tnitially, each widget
candidate (e.g., a profiled edit box vs an accumulator in Fig. 13)
is assigned to a defauIt score according to a scoring function
which is defmed as (Fig. 16):

Default Score (Widget)= P*SC+D*SU

where SC is the score of change which defines the additional
weight assigned to a widget after being selected by a
user or a designer for a specified form. Such score al
lows the promoting/demoting of widgets with regard to
users and experts.
SU is the score of unchanged which defines the interest
accorded to the system choice in term of rewarding a
well-behaved recommendation within a reinforcement
learning paradigm.
P denotes the number of times that the widget is se
lected by the end-user without being displayed by de
fault (WSelected � WDefault).
D denotes the number of times that the widget selected
by the end-user is the displayed one (WSelectedF WDefault).

Various people may assign a different score to the same
widget in the same circumstances, thus explaining why there is
a need to consider the end-user's choice or preference, but also
the designer's choice (which is assumed to be more experi
enced), and also the administrator's choice (which is supposed
to be the developer knowing which widget is available when).
Other actors could play a similar role in this function, such as
members of a crowd for crowd-based adaptation of Uls [31].

Fig. 1 7. The scoring algorithm configuration

In order to integrate all these choices, a globai scoring func
tion is defined for recommending any widget (Fig. 17) [29]:

Score (Widget)= P*SC+D*SU+ T*SG + f(w,SA)

where f(w,SA) determines whether the selected widget matches
the designer recommendation and T is the total number
of widget selections.
SA is the designer's score assigned to the widget in this
context based on usability engineering and guidelines,
such as graceful degradation rules.
SC is the global score based on previous options.

The global scoring function is continuously computed while
the end-user is interacting with the form. Of course, the scoring
function can be tailored to another formula (Fig. 17) whether a
most accurate schema could be determined and the recommen
dation can be activated or deactivated. Each end-user action is
recorded in a log file that is attached to any particular widget of
any particular form, thus making it unique for each context. In
FFUI, every user action (Au) is recorded in a log file (Ps) that
automatically triggers the computation (As) of a new score.
Since this function is always computed for every widget affected
by the action, the system decision (Ds) is bypassed. The end-user
may perceive the widgets candidates (Pu) by entering in FFUI
design mode (like in Fig. 14) by pressing a control key, then de
cide whether a new widget should be selected (Du). This decision
in then translated into a new action (Au).

B. Adaptive CUl layout
We developed TAsk-BAsed .Q.esign Adaptive (TABADA), a

software enabling end-users to carry out interactive tasks as ex
plicitly defined in a task model with run-time adaptive layout
based on machine learning. Our approach follows existing
model-based work specitying the UI at a higher level of abstrac
tion [9,37]. We consider task-oriented language (task tree) and
an Abstract UI specification (AUI) in order to remain model
based and to allow for a greater flexibility in generating Uls from
abstract levels [9]. T ABADA is distinctive by the use of machine
learning techniques for runtime adaptation and their deployment
together within a model based approaches. TABADA exploits the
user behaviour prediction to improve the arrangement of abstract
interaction units at the abstract user interface level. Then all data
collected by implicit feedback are used into a module called user
behaviour predictor. This module uses a machine learning tech
nique based on statistics in order to predict the next action(s) that
will be accomplished by the user given the previous ones he
fi1led. The prediction is implemented via a UserActionPrediction

dass, and can be seen as an extension of the context of use where
the data are processed to extract more useful data. This c1ass
needs an instance of ActionM onitoringDB as "raw material" and
also takes as parameter the Markov order. The process of user
behaviour predictor is based on Markov chains as follows:

Generating and monitoring sequences of actions based on
various parameters.

- Learning an n order Markov chain model (or all the order
from one to n).

- Predict the next most probable action of the user thanks to its
history of immediate action.
When TABADA is executed, a first by-default GUI layout is

generated. All end-users actions are then recorded (e.g., filling
in a field, selecting a new tab, making a choice) so as to feed the
ML algorithm. Based on (un)used parts of the task model and on
interaction traces, TABADA computes the most probable interac
tion paths. At any time, the end-user can stop the system and ask
for alternate adapted GUT layout that better suit her task. This
new user action enters in a new cyde, thus triggering a new score
computation (As), which reinforces the learning (Ls): the system
learns that the end-user has preferred to rely on another widget
(SC is updated) or not (SU is updated), which is reflected in a
new score computation (Ps). The system then applies the adap
tation (As) by saving the widget current state, by substituting the
old widget by the new one [18], and by restoring the current state
into the newly selected widget. A new loop is then initiated.

In TABADA, every end-user action (e.g., using a particular
widget, navigating between views, changing the value of a field)
is recorded by a sequence monitor (Ps) which records all se
quences on top on an internally-maintained task model, which is
unfortunately invisible to the end-user (Fig. 17). TABADA does
not decide to perform any adaptation (no Ds) and always auto
matically generates a series of alternate layouts based on previ
ously recorded sequences (As). These alternate layouts could be
made observable on-demand by the end-user (Pu), among which
the end-user may pick one layout or not (Du), and requests (Au)
the system to switch to this alternate layout. This request is in
turn recorded in the system (Ps), which refreshes the generation
of sequences (As) and updates the Markov chain accordingly
(Ls) that again identifies the most probable sequences (Ps). A
new loop is generated and so on. Note that in this case, there is
a minimal LPD for the end-user since she was conscious of the
new layout selected based on previous task sequences, thus
learning (Lu). This may help her to predict how a new layout

Fig. 18. FFUI with adaptation based on machine learning.

could be computed (Pu).

Fig. 19. The Design Space for TABADA.

C. Comparison o/!wo Adaptive User Interfaces

Table 2 provides an overview of how both FFUI and TABADA
are addressing the quality properties. For both FFUI and
TABADA, observability is assessed as medium since system and
adaptation observability are ensured by browsability: the end
user does not immediately see that there is an adaptivity process
ongoing, but could access to the adaptivity control panel by
clicking on a control key in FFUI or on an icon in TABADA.

Quality property FFUI TABADA

Observability Cl Cl
ca Intelligibility Cl • �
0 Controllability � � 6

Predictability 0 �

ca
Awareness � �

u Decidability � • 0
� Triggerability • •

ca
Capacity • •

u Autonomy 0 0 0
� Perceptibility � �

ca
Accuracy • •

u Adequacy r1) r1) 0
� Stability • •

Self-reconfiguration 0 0
v Self-decision 0 0 Oll

g � Self-perception � �

J: E Self-adaptation 0 0

C) Self-prediction � �
VJ

0 0 Self-optimisation
Table 2. Comparison of FFUI and T ABADA in terms of quality properties.

Some users even do not notice the control key and the icon.
Nothing else informs the end-user that some adaptivity is en
sured by the system, thus suggesting that this properly should be
largely improved.

lntelligibility is assessed as superior in T ABADA than in FFUI
because the alternate layouts are directly rendered, thus giving
the end-user a real preview before adaptation, as opposed to only
a widget candidate in FFUI that is not rendered in a potential
new UI. Some explainability is possible in FFUI though. Con
trollability is limited in FFUI because only the choices suggested
by the system are proposed, thus keeping very limited control
over these choices. In contrast, TABADA presents the six most
probable layouts among which the user can choose and give ac
cess to a large set of alternate layouts on demand, potentially all
possible combinations.

Predictability is limited in FFUI because the system does not
deliver any information that would help the end-user to imagine
which kind of widget would result trom the adaptivity process.
T ABADA is slightly better because sequences of actions followed
by the users are represented, thus giving some hint on how they
are built. Similarly, predictability is certainly a property that de
serves a better attention to improve the end-users' ability to trig
ger adaptation.

F or both systems, awareness is very limited for the same rea
sons as in observability: the user cannot be really aware of the
adaptivity process since there is no rendering of this process
while running.

Decidability is almost excellent for FFUI (not all choices
could be made, only among the possible widget candidates) and
excellent for TABADA since all possible layouts could be se
lected, although this could induce a long navigation between the
alternate layouts.

Triggerability is assessed as maximal for both since each
candidate, on ce selected, is immediately incorporated in the new
UI, which explains why capacity is also assessed as maximum
since both systems have the ability to build the new layout and
to apply substitution. Autonomy is assessed as non-existent since
only the end-user can make a decision on which widget or layout
should be kept. Both systems have no initiative and no decision
to trigger any adaptation. Perceptibility is assessed as very good
since both systems are able to perceive what the user is doing by
capturing and recording her actions into an internai log file. Ac
curacy is assessed as excellent in both cases since the new
adapted layout will be exactly the one built with the new adap
tation decision. Adequacy cannot be estimated at this stage be
cause it should require a user experiment to determine whether
the adaptation proposals are adequate enough for the end-user.
What could be captured however is the extent to which the sys
tem proposes candidates that are accepted or rejected by the end
user. Stability is always ensured because the same algorithm is
always applied in both cases, although we could imagine that
different algorithms for adaptation (e.g., based on different ma
chine leaming algorithms) could be competing.

Selj-management properties are alm ost not ensured since
both systems apply adaptation only after an end-user decision.
However, both systems are able to perceive their own state (selj
perception) and are still able to make predictions at any time
(selj-prediction) without waiting for the end-user, but without
any ability to apply what has been predicted, hence selj-optimi
sation is non-existent.

In conclusion, several quality properties are affected by the
constraints imposed by the system: only the user can make a de
cision of what prediction could be applied. The system cannot
take any decision, therefore preventing mixed-initiative. This
generates a new suggestion for both systems: how and when to
delegate adaptivity to the system and/or embark into a conver
sation between the user and the system to decide which candi
date is the most appropriate based on respective knowledges.
D. How to Use the PDA-LPA Design Space

In this section, we elaborate some guidelines on how to practi
cally use the PDA-LPA design space for designing adaptation
for interactive systems.
Guideline 1. Balance the support ofthe 4 global properties.
The most important PDA-LPA quality properties are the four
global properties: observability, intelligibility, predictability,
and controllability. lt is more important to design UI adaptation
in order to cover a minimal support of the four properties sim
ultaneously in a balanced way than focusing on one property
only. If one or two properties are largely satisfied with little or
no support for the other ones, the general LP A process will not
deliver its full potential. The level of support between the fOUf
properties should be minimal, but balanced. They could also
imply some sequence; observability should be thought first,
otherwise little or no intelligibility. Similarly, if it is not pre
dictable, it will hardly become controllable.

Guideline 2. lnvent a manipulable representation. In order
to properly support the four global properties, a representation
of the artefacts subject to adaptation should be invented so that
it could be manipulated throughout the properties. This repre
sentation should be preferably adequate for direct manipulation,
but not necessarily: if the representation of the artefact subject
to adaptation could be directly manipulated, which is usually
more complex to implement, the end-user will see it (observa
bility), understand it (intelligibility-provided that the corre
sponding metaphor is straightforward), perhaps predict it (pre
dictability), and control it (controllability). If no such represen
tation exists, the end-user should develop a mental model of the
adaptation process which will be very hard to complete. The
fact that the representation is directly or indirectly manipulable
counts less than its existence. Three types of representation may
considered: external if the representation is the one seen by the
end-user, internal if the representation that is managed by the
software implemented by the developer, or conceptual if the
representation is an abstraction of the artefact introduced by the
designer to simplify the realm of the artefact. For instance,
adaptive menus for smartphones [5] invoke a prediction win
dow displaying the most likely to be selected items (Fig. 20).

Fig. 20. The Prediction window far adaptive menus.

Guideline 3. Maximise the controllability. End-user hate to
lose control over any process, unless they prefer to delegate the
responsibility of a task to a particular agent. Therefore, control
lability is key [13]: as so on as the representation is invented,
feedback on this representation should be envisioned so that the
system could express its actions as weIl as the end-user. For in
stance, the end-user could select any menu item from the pre
diction window in Fig. 20 either in graphical or in tactile mode
or close it graphically or by gesture. Not all actions should be
however subject to control: it is important to identifY which ad
aptation action should be subject to a corresponding user inter
face action in order to reflect its contro\. Some experience
shows that the more control is offered to end-users to see how
adaptivity is achieved, the less they require it over time [13]: an
animated transition for explaining an adaptivity could be played
slowly the first time and quicker the next times. Or even no
longer need after several animations have been operated.

Guideline 4. Refine global properties by local properties af
terwards. Considering the local quality properties as weIl as
their sub-properties should come after supporting the global
quality properties. For instance, ensuring observability counts
more than knowing how to support it, by traceability or by
browsability. For instance, in FFUI, observability is ensured
first by browsability (Fig. 13), then by traceability (Fig. 14),
with a direct positive impact on explainability. In the adaptive
menus for smartphone (Fig. 20), observability is immediately
ensured through direct observation: no browsability. The more
observable an adaptation is, the more intelligible it becomes;
the more intelligible an adaptation is, the more it supports pre
dictability. The more predictable an adaptation is, the easier the
controllability could be managed.
Guideline 5. Explicitly cover the LPA cyde. Several tech
niques for adaptation have been reported to cover the PDA cy
cle [14], but no study exists today that produced an inventory
of similar techniques for covering the LP A cycle where the
learning is key. Consequently, the focus has been often empha
sized on the adaptation (PDA) cycle, and less on the leaming
(LPA) cycle. This last one should be explicitly covered, prefer
ably with the same minimal level of support that has been used
for the PDA cycle. For instance, in FFUI with machine leaming,
the scoring function (Fig. 17) could be entirely redefined, thus
offering a basis for maximal observability and controllability of
the learning (LPA) cycle. In TABADA however, different lay
outs could be produced, each along with its explanation, but the
process to obtain them is not observable, therefore not control
lable. The final choice remains controllable fortunately.
Guideline 6. Prioritize local quality properties. Three sets of
local quality properties have been introduced, that are usually
considered by decreasing order of importance. This ordering
may be different depending on the type of interactive applica
tion, thus requiring a prioritization scheme.

V. CONCLUSION

In this paper, we presented a design space for user interface
adaptation that departs from existing design spaces (e.g., [6,8,14,
18,34]) in terms of quality properties defined trom a software
viewpoint (often called "ilities " since most of them fmish with
this suffix expressing some ability-based behaviour [41]) instead
of a set of independent, not interconnected properties (e.g., sta
bility, visibility). This design space is explicitly based on the
Perception-Decision-Action (PDA) cycle coming from cogni
tive psychology [32], which is itself augmented by a second cy
cle Learning-Prediction-Action (LPA). This design space sup
ports the three expected virtues [3]: descriptive, comparative,
and generative.
Future avenues of this work include: (i) the introduction of time
to qualify the time constraints between the PDA-LPA steps and
to determine, which is the most appropriate moment to ensure
them, not always continuously; (ii) the conducting of a System
atic Literature Review (SLR) on a series of papers like in [14],
but on a recent base of references; and (iii) the refining of the
Prediction step into three sub-steps according to Endsley' model
of situational awareness [16] where situation awareness is de
composed into perception, comprehension, and projection.

REFERENCES

[1] S. Abrahao, E . Iborra, and 1 . Vanderdonckt, "Usability Evaluation ofUser
Interfaces Generated with a Model-Driven Architecture Tool," in Law, E. ,
Hvannberg, E., and Cockton, G. (eds.), "Maturing Usability: Quality in
Software, Interaction and Value" , Chapter I , HCI Series, Vol. 1 0,
London: Springer, pp. 3-32, 2008.

[2] 1. Arhippainen, T. Rantakokko, and R. Tähti, M. , "Navigation with an
Adaptive Mobile Map-Application: User Experiences of Gesture- and
Context-Sensitiveness," in Proc. of 2nd Int. Symposium on Ubiquitous
Computing Systems UCS '2005 (Tokyo, Nov. 8-9, 2004), Lecture Notes
in Computer Science, vol. 3598, Berlin: Springer, pp. 62-73 , 2004.

[3] M. Beaudouin-Lafon, "Designing interaction, not interfaces," in Prac. of
the ACM Working Conf. on Advanced Visual lnterfaces AVI '2004 (Gal
lipoli, May 25-28, 2004), New York: ACM Press, pp. 1 5-22, 2004.

[4] V. Belloti and K. Edwards, "Intelligibility and Accountability: Human
Considerations in Context-Aware Systems," Human-Computer Interac
tion, vol. 16 , no. 2, pp. 1 93-212, 200 1 .

[5] S. Bouzit, G. Calvary, D. Chene, and J. Vanderdonckt, "Step-by-Step and
Shortcut Menus: A Comparison of two Adaptive Menus for
Smartphones," in Proc. of 30tl' British Human Computer Interaction Con
ference BHCI'20 1 6 (Bournemouth, July 20 1 6), Electronic Workshops in
Computing, BISL, 2016 , http ://ewic.bcs.org/content/ConWebDoc/56904.

[6] D. Brawne, P. Totterdell, and M. Norman, "Adaptive user interfaces,"
London: Academic Press Ud. , 1 990.

[7] A. Bunt, C. Conati, and J. McGrenere, "A Mixed-Initiative Appraach to
Interface Personalization," AI Magazine, vol. 30, no. 4, pp. 58-64, 2009.

[8] Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M. Shaw, and M
Smit, "A Design Space for Self-Adaptive Systems," in Self-Adaptive
Systems, R. de Lemos et al. (Eds.), Lecture Notes in Computing Systems,
vol. 7475, Berlin: Springer, pp. 33-50, 20 13 .

[9] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and 1.
Vanderdonckt, "A Unifying Reference Framework for Multi-Target User
Interfaces", Int. with Comp., vol. 1 5 , no. 3, pp. 289-308, Nov. 2003.

[1 0] S.K. Card, T. Moran, and A. Newell, "The keystrake-Ievel model for user
performance time with interactive systems," Communications of the
ACM, vol. 23, no. 7, pp. 398-400, 1 980.

[1 1] A. Cockburn, e. Gutwin, and S. Greenbrerg, "A Predictive Model of
Menu Performance," in Prac. of ACM Int. Conf. on Human Aspects in
Computing Systems CHI '2007 (San Jose, April 30-May 3 , 2007), New
York: ACM Press, pp. 627-636, 2007.

[12] 1. Coutaz, L. Nigay, D. Salber, A. Blandford, 1. May, and R. , Young,
"Four easy pieces for assessing the usability of multimodal interaction:
the CARE praperties," in Prac. of IFIP TC 13 Int. Conf. on Human
Computer Interaction INTERACT'95 (LilIehammer, June 27-29, 1995),
London: Chapman & Hall, 1995, pp. 1 1 5-120.

[1 3] e. -E. Dessart, V. Genara Motti, and 1. Vanderdonckt, "Showing user in
terface adaptivity by animated transitions," in Prac. of ACM Conf. on En
gineering Interactive Computing Systems EICS '20 1 1 (Pisa, June 1 3 - 16,
20 1 1). New York: ACM Press, pp. 95-1 04, 20 1 1 .

[14] H. Dieterich, U. Malinowski, T. Kuhme, and M. Schneider-Hufschmidt,
"State of the art in adaptive user interfaces," in Adaptive User Interfaces
Principles and Practice, Schneider-Hufschmidt, M, Kuhme, T., Mali
nowski, U. (Eds.), Amsterdam: Elsevier Sci. Pub., pp. 1 3-48, 1 994.

[1 5] T. Djajadiningrat, K. Overbeeke, and S. Wensveen, "But how, Donald,
tell us how? : on the creation of meaning in interaction design through
feedforward and inherent feedback," in Prac. ofACM Conf. on Designing
Interactive Systems DIS '2002 (London, 2002), New York: ACM Press,
pp. 285-291 , 2002.

[1 6] M.R. Endsley, "Toward a Theory of Situation Awareness in Dynamic
Systems," Human Factors Journal, vol. 37, no. 1 , pp. 32-64, 1995.

[1 7] L. Findlater and 1. Mc Grenere, "A comparison of static, adaptive, and
adaptable menus," in Prac. of ACM Int. Conf. on Human factors in com
puting systems CHI '2004 (Vienna, April 24-29, 2004), New York: ACM
Press, pp. 89-96, 2004.

[1 8] K.z. Gajos, M. Czerwinski, D.S. Tan, and D.S. Weid, "Exploring the De
sign Space for Adaptive Graphical User Interfaces," in Prac. of the ACM
Working Conference on Advanced Visual Interfaces AVI '2006 (Venice,
May 23-26, 2006), New York: ACM Press, pp. 20 1-208, 2006.

[19] K.z. Gajos, K. , Everitt, D.S. Tan, M. Czerwinski, and D.S. WeId, "Pre
dictability and accuracy in adaptive interfaces," in Prac. of ACM Int.
Conf. on Human Aspects in Computing Systems CHI '2008 (Florence,
April 5 - 10, 2008), New York: ACM Press, pp. 1271-1274, 2008.

[20] V. Genaro Motti and J. Vanderdonckt, "A Computational Framework for
Context-aware Adaptation of User Interfaces," in Prac. of 71h Int. Conf.
on Research Challenges in Information Science RCIS'20 1 3 (Paris, 29-3 1
May 20 13), Piscataway: IEEE Press, pp. 1-12, 20 13 .

[2 1] Ch. Gram and G. Cockton (Eds), "Design Principles for Interactive Soft
ware," Chapman & Hall : London, 1996.

[22] R. Hartson, "Cognitive, physical, sensory, and functional aflordances in
interaction design," Behaviour & Information Technology, vol. 22, no. 5 ,
pp . 3 1 5-338, 2003.

[23] A. Jameson, "Understanding and Dealing with Usability Side Effects of
Intelligent Pracessing," AI Magazine, vol. 30, no. 4, 2009, pp. 23 -40.

[24] T.G. Lane, "Studying Software Architecture Through Design Spaces and
Rules," Technical Report CMU/SEI Report Number: CMU/SEI-90-TR-
0 1 8, Carnegie Mellon University, Software Engineering Institute, 1 990.

[25] T. Lavie and 1. Meyer, "Benefits and costs of adaptive user interfaces,"
International Journal of Human-Computer Studies, vol. 68, pp. 508-524.

[26] D.S. Lee and W.e. Yoon, "Quantitative results assessing design issues of
selection-supportive menus," International Journal of Industrial Ergo
nomics, vol. 33 , no. I, pp. 4 1-52, 2004.

[27] V. L6pez-Jaquera, 1. Vanderdonckt, F. Montera, and P. Gonzalez,
"Towards an Extended Model of User Interface Adaptation: the ISATINE
framework," in Prac. of IFIP WG2.7113 .4 1 01h Conf. on Engineering
Human Computer Interaction EIS '2007 (Salamanca, 22-24 March 2007),
1. Gulliksen, M.B. Harning, Ph. Palanque (Eds.), Lecture Notes in Comp.
Science, Vol. 4940, Berlin: Springer, pp. 374-392, 2008.

[28] P.K. McKinley, S.M Sadjadi, E.P. Kasten, and B.H. Cheng,"Composing
Adaptive Software," IEEE Computer, vol. 37, no. 7, pp. 56-64, 2004.

[29] N. Mezhoudi, I. Khaddam, and 1. Vanderdonckt, "WiSel: a mixed
initiative approach for widget selection," in Proc. ofthe 20 1 5 ACM Conf.
on research in adaptive and convergent systems RACS '20 15 (Prague, Oc
tober 9- 12, 20 1 5), New York: ACM Press, pp. 349-356, 20 15 .

[30] N . Mezhoudi and 1 . Vanderdonckt, "A User Feedback Ontology for Con
text-aware Interaction," Prac. ofthe 2nd IEEE World Symposium on Web
Applications and Networking WSWAN'20 1 5 (Sousse, March 2015 , 2 1 -
23), Piscataway: IEEE Computer Society Press, 2 0 1 5 , pp. 1-7.

[3 1] M Nebeling, M Speicher, and Me. Norrie, "CrawdAdapt: enabling
crawdsourced web page adaptation for individual viewing conditions and
preferences," in Proc. of ACM Symp. on Engineering Interactive
Computing Systems EICS'20 13 , New York: ACM Press, pp. 23-32.

[32] DA Norman, The design of everyday things. Doubleday, NY, 1 988.
[33] A. Paramythis, "Towards Self-Regulating Adaptive Systems," in Prac. of

the Annual Workshop of the SIG Adaptivity and User Modeling in
Interactive Systems of the German Informatics Society ABIS'2004,
Berlin: Springer, pp. 57-63 , 2007.

[34] A. Paramythis, S. Weibelzahl, and J. Masthoff, "Layered evaluation of
interactive adaptive systems : framework and formative methods", User
Modeling and User-Adapted Interaction, vol. 20, pp. 383-453, 20 1 0.

[35] D.L Scapin and J.M.C Bastien, "Ergonomic criteria for evaluating the er
gonomic quality of interactive systems," Behaviour & Information Tech
nology, vol. 16 , no. 4/5, pp. 220-23 1 , 1997.

[36] M. Schlee and 1. Vanderdonckt, "Generative Pragramrning of Graphical
User Interfaces," in Proc. of 7th Int. Working Conf. on Advanced Visual
Interfaces AVI '2004 (Gallipoli, May 25-28, 2004), New York: ACM
Press, pp. 403-406, 2004.

[37] 1. -S. Sottet, V. Ganneau, G. Calvary, J. Coutaz, A. Demeure, 1. -M. Favre,
and R. Demumieux, "Model-Driven Adaptation for Plastic User Inter
faces," in Prac. of IFIP TC 13 Int. Conf. on Human-Computer Interaction
INTERACT'2007, Berlin: Springer, pp. 397-4 1 0, 2007.

[38] T. Tsandilas and M.e. Schraefel, "An empirical assessment of adaptation
techniques," in Proc. of ACM Int. Conf. on Human Aspects in Computing
Systems CHI '2005 (Portland, April 2-7, 2005), Ext. Abstracts, New York:
ACM Press, pp. 2009-2012, 2005.

[39] J. Vermeulen, "Improving intelligibility and control in UbiComp," in
Prac. of the 121h ACM Int. Conf. on Ubiquitous Computing Ubi
Comp'20 1 0, New York: ACM Press, pp. 485-488, 2010.

[40] D. Weid, C. Anderson, P. Domingos, o. Etzioni, T. Lau, K. Gajos, and S.
Wolfman, "Automatically personalizing user interfaces," in Proc. of Pro
ceedings of the 1 8th international joint conference on Artificial intelli
gen ce IJCAI '2003 (Acapulco, August 9- 1 5, 2003), San Francisco :
Morgan Kaufmann, pp. 1 6 1 3-16 19, 2003.

[4 1] 1.0. Wobbrack, S.K. Kane, K.Z. Gajos, S. Harada, and 1. Fraehlich,
"Ability-based design: Concept, principles and examples," ACM Trans
actions on Accessible Computing, vol. 3, no. 3, pp. 1-27, April 20 1 1 .

