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We report theoretical, numerical, and experimental studies of cascaded phase matching in fiber

frequency combs and show how this mechanism is directly connected to the dynamics of supercontinuum

generation. In particular, linking cascaded four-wave mixing with direct higher-order nonlinear processes

allows us to derive a simple phase matching condition that governs nonlinear symmetry breaking in the

presence of higher-order dispersion. We discuss how this mechanism provides a physical interpretation of

soliton-induced Cherenkov radiation and associated spectral recoil in terms of phase-matched frequency

mixing pumped by bichromatic pump pairs in the soliton spectrum. Theoretical and numerical predictions

are confirmed via experiments using both quasicontinuous wave and picosecond pulse excitation.

DOI: 10.1103/PhysRevLett.109.223904 PACS numbers: 42.65.Sf, 42.65.Hw, 42.81.Dp

The generation of optical frequency combs exploiting the

Kerr nonlinearity has impacted multiple fields of physics,

and there is continued interest in understanding the under-

lying frequency conversion mechanisms [1,2]. Surprisingly,

however, there is no unified approach to describing comb

generation in all third-order media. While frequency comb

generation in microresonators has been described in terms

of discrete four-wave mixing (FWM) between a monochro-

matic pump and resonator modes sequentially excited in a

cascade [2,3], supercontinuum comb generation in wave-

guides is described exclusively in terms of the propagation

dynamics of a single input pulse with a continuous spectral

envelope [4]. But the spectrum of a pulse train from a

mode-locked laser consists of discrete frequency compo-

nents [5,6], and so the natural question that arises is, in the

context of frequency comb generation, how can we relate

the two physical pictures of discrete mode interactions of

FWM and the propagation dynamics of a spectrally con-

tinuous pulse? In this Letter, we present a theory of cas-

caded FWM that resolves this question.

We first note that a unique feature of cascaded wave

mixing is that sequential frequency generation mimics the

effect of a higher-order nonlinear susceptibility [7–9]. A

particular component in a cascade can thus be coherently

amplified if the medium’s chromatic dispersion allows the

corresponding higher-order process to be directly phase-

matched, even if all the elementary steps in the cascade are

completely mismatched [8]. Although this feature has been

known since the early days of nonlinear optics, applica-

tions have been mainly restricted to generating a small

number of harmonic components in bulk crystals or in

precisely controlled gas-phase systems [10–12].

Optical fibers of course provide a flexible platform for

controlling chromatic dispersion via waveguide engineer-

ing. In what follows, we present a general treatment of

cascaded FWM in fiber systems for a bichromatic pump,

analyzing how the frequency dependence of the fiber

group-velocity dispersion can yield phase-matched ampli-

fication of a high-order component on one side of the

pump. The resulting spectral asymmetry is related to the

intrinsic convective nature of fiber systems and the fact that

higher-order dispersion breaks the system time-reversal

symmetry [13,14]. This description provides important

new insights into the origin of soliton Cherenkov radiation,

a phenomenon that is fundamental to the generation of

supercontinuum frequency combs [15–17]. We also clarify

the energy flow mechanism in this process that has to date

remained unspecified, in both the description of Cherenkov

radiation and the associated soliton spectral recoil [18].

Our theoretical predictions are confirmed by numerical

simulations and experiments considering both continuous

wave and picosecond pulse excitation. The presented the-

ory of cascaded phase matching constitutes the first physi-

cal description of soliton Cherenkov radiation in terms of

the discrete wave mixing formalism of nonlinear optics,

and establishes a direct link between multiple FWM and

the dynamics of supercontinuum generation. A major con-

sequence of our work is therefore that it provides a unified

description of the two existing approaches used to describe

broadband frequency conversion. We anticipate that this

description will provide improved understanding to many

nonlinear phenomena such as the emergence of self-

organization [19], soliton frequency conversion [20,21],

or symmetry breaking in modulation instability [14]. In

addition to optics, the physics of cascaded phase matching

will universally apply to the countless systems modeled by

envelope equations exhibiting frequency-dependent group-

velocity dispersion, such as the extended Lugiato-Lefever,

Ginzburg-Landau or nonlinear Schrödinger equations

(NLSE).

Consider two distinct pumps at frequencies !�p and

!þp separated by � with a mean frequency !0 such that
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!�p ¼ !0 � �=2. Cascaded FWM induced by these

waves drives the sequential generation of a comb of dis-

crete sidebands separated by � [22–24]. The frequency of

the nth component (n ¼ 1; 2; 3; . . . ) is !�n ¼ !�p � n�,

where the subscripts þ and � indicate frequency up- or

down-shifting, respectively.

The sequential FWM cascade driving the polarization of

the nth component at!�n mimics the direct 2nþ 2 photon

process !�n ¼ ðnþ 1Þ!�p � n!�p induced by a �ð2nþ1Þ

susceptibility [9]. As a consequence, the nth component of

the cascade will undergo coherent amplification when the

direct higher-order process is phase matched, i.e., when

��nðzÞ ¼ ðnþ 1Þ��pðzÞ � n��pðzÞ; (1)

where ��p and ��n denote the pump and signal phases,

respectively. From Eq. (1) we can determine the corre-

sponding phase matching condition in terms of the pump

waves and fiber properties. Assuming that the pumps

experience only self-phase- and mutual cross-phase-

modulation, their phases evolve as ��pðzÞ ¼ ½�ð!�pÞ þ

�P�p þ 2�P�p�z, where�ð!Þ is the frequency-dependent

propagation constant, � the nonlinear coefficient, and P�p

the pump powers. The nonlinear phase shift experienced by

the sidebands arises dominantly from pump cross-phase-

modulation such that ��nðzÞ ¼ ½�ð!�nÞ þ 2�Pþp þ

2�P�p�z. Combining these conditions with Eq. (1) yields

a general phase matching condition for the amplification of

a particular higher-order component at !�n:

�ð!�nÞ ¼ �n½�ð!�pÞ � �ð!�pÞ� þ �ð!�pÞ

þ n�½P�p � P�p� � �P�p: (2)

Under typical experimental conditions, the nonlinear

terms in Eq. (2) can be neglected, and phase matching at

!�n is determined only by the linear mismatch ��� ¼

ðnþ 1Þ�ð!�pÞ � n�ð!�pÞ � �ð!�nÞ. Expanding �ð!Þ

about !0 to third order yields that ��� ¼ 0 is fulfilled

for frequency separations �� > 0:

�� ¼ �
3�2

�3ðnþ 1=2Þ
; (3)

where �2 and �3 denote, respectively, the second- and

third-order dispersion coefficients at !0. For conventional

fibers �3 > 0, and the phase-matched frequency is

given by

!�n ¼ !0 � 3
j�2j

�3

: (4)

At this stage we note that (i) phase-matched amplification

requires both pump waves to experience the same sign of

�2, (ii) the phase-matched frequency !�n always lies in

the opposite dispersion regime to that of the pumps,

(iii) amplification at !þn (up-shifted from the pump) or

!�n (down-shifted from the pump) corresponds to pumps

lying in the anomalous or normal dispersion regime,

respectively.

The theory above is confirmed by using an extended

NLSE to simulate the propagation of a bichromatic field in

80 m of dispersion-shifted fiber (DSF) with zero-dispersion

wavelength (ZDW) �ZDW ¼ 1553:8 nm, nonlinearity

� ¼ 2:5 W�1 km�1 and �3 ¼ 1:6� 10�4 ps3=m at the

ZDW. For completeness, fourth-order dispersion �4 ¼
�7:0� 10�7 ps4=m is also included but has negligible

influence. These parameters correspond to our experiments

below, and we remark that, because we expand the propa-

gation constant at the ZDW, we have �2 ¼ 0. Of course,
for an arbitrary frequency �2ð!Þ ¼ �3ð!�!ZDWÞ þ
�4=2ð!�!ZDWÞ

2, with !ZDW ¼ 2�c=�ZDW the zero-

dispersion frequency.

Figures 1(a) and 1(b) illustrate the cascaded phase-

matched amplification of the (n ¼ �2) sideband associated

with an equivalent�ð5Þ nonlinearity for pumps in the anoma-

lous [Fig. 1(a)] and normal dispersion regime [Fig. 1(b)].

In 1(a) the central frequency is!0=2� ¼ 188:5 THz (�0 ¼
1590:5 nm) and �=2� ¼ 5:4 THz (��� 46 nm); in 1(b)

!0=2� ¼ 196:6 THz (�0 ¼ 1524:9 nm) and �=2� ¼
4:3 THz (��� 33 nm). We see how the spectrum becomes

asymmetric due to the amplification of the phase-matched

component on the opposite side of the ZDW to the pumps,

with 15 dB enhancement relative to other generated compo-

nents. This is at first sight counterintuitive because the

strength of cascaded processes is expected to diminish

with order, yet it is precisely this result that highlights the

significance of cascaded phase matching in yielding ampli-

fication of a higher-order component.

To gainmore insight into the dynamics, Figs. 1(c) and 1(d)

plot the evolution of the sidebands !1 and !2 and pump

waves as indicated for anomalous dispersion pumping.

Figure 1(c) shows how the amplitude of the nonphase-

matched !1 sideband remains small and oscillates at
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FIG. 1. Simulation results showing asymmetric output spectra

for pumping in (a) anomalous and (b) normal dispersion regimes.

(c), (d) Sideband and pump power evolution, respectively, for

anomalous dispersion pumping. Pþp ¼ P�p ¼ 20 W. Labels A

and N indicate regions of anomalous and normal dispersion,

respectively, and the dashed vertical line marks the zero-

dispersion frequency.
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the coherence length Lcoh ¼ 2�=�1 � 3:1 m. Here, �1 ¼

2�þp ���p ��1 is the elementary mismatch associated

with the direct generation of the n ¼ 1 sideband. On the

other hand, despite the nonzero elementary phase mis-

match, �2 ¼ �þp þ�1 ���p ��2 ��2 m�1, the cas-

caded process at !2 is phase-matched according to Eq. (2)

and thus we see sideband amplification. This process still

exhibits low amplitude modulation at Lcoh since the non-

linear polarization driving the phase-matched sideband is

proportional to the instantaneous amplitude of the inter-

mediate field at !1. We also find that the oscillatory

behavior is reproduced in the small-signal evolution

obtained from the analytical integration of the correspond-

ing FWM coupled-mode equations in the undepleted pump

approximation [dashed line in Fig. 1(c)], in excellent

agreement with the numerical simulations.

Figure 1(d) shows how the cascade also leads to asym-

metry in the powers of the two pump waves, amplifying

(attenuating) the pump at !�p (!þp) spectrally further

(closer) from the phase-matched sideband. This change in

pump powers highlights the equivalence with the direct

fifth-order process !2 ¼ 3!þp � 2!�p, where annihila-

tion of three !þp photons must be associated with the

creation of a sideband photon at!2 and two pump photons

at !�p.

These results identify phase-matched cascaded FWM as

the mechanism behind symmetry breaking in the NLSE

with higher-order dispersion. We further illustrate the gen-

erality of the physics in Fig. 2 which shows results using

the same fiber parameters as above but considering a

denser frequency comb with reduced pump detuning �
so that phase matching occurs at higher-order [see

Eq. (3)]. The pump waves are in the anomalous dispersion

regime with Eq. (2) satisfied for the n ¼ 15 sideband,

and indeed we see amplification at !15. We also observe

here how the developed pump spectral asymmetry in-

duces a temporal drift of the modulated field as shown in

Fig. 2(b), which establishes an important link between the

cascade-induced symmetry breaking and the convective

nature of perturbed NLSE systems [13].

The results in Fig. 2(a) raise the connection with fre-

quency conversion induced by pulses from mode-locked

lasers where a spectral envelope modulates discrete modes

at the cavity repetition frequency. In fact, we recall that

Fig. 2(a) shows frequency conversion about the fiber ZDW

with anomalous dispersion pumps, and we remark that the

phase-matched frequency !þn from Eq. (4) is (neglecting

the nonlinear contribution) exactly that of the Cherenkov

field radiated by a soliton centered at the mean frequency

!0 in the presence of third-order dispersion [15,16]. These

results lead to the natural interpretation that Cherenkov

radiation emitted by solitonlike pulses perturbed by higher-

order dispersion arises from the cascaded FWM interaction

between all the high and low spectral components of

the soliton which—in pairs about the central frequency

!0—contribute to pump the phase-matched process.

[Note that the phase-matched frequency from Eq. (4) is

independent of �, depending only on !0.]

To confirm this interpretation, Fig. 2(c) shows the propa-

gation of a single pulse whose parameters match a single

cycle of the modulated input field in Figs. 2(a) and 2(b).

This pulse corresponds to a low-order soliton (N ¼ 1:87)
whose continuous spectrum after propagation closely fol-

lows the envelope of the discrete comb case. Most signifi-

cantly, the position and amplitude of the Cherenkov wave

shed by the soliton yield an excellent fit to the phase-

matched sideband of the discrete frequency comb.

The interpretation of soliton Cherenkov radiation in terms

of phase-matched cascaded FWM also provides a clear

interpretation of soliton spectral recoil [18]. Specifically,

we see how the pump wave asymmetry remarked upon in

Fig. 1(d) will shift the center of mass of the continuous

soliton spectrum in the direction opposite to the frequency

of the generated radiation. To our knowledge, this is the first

interpretation where a physical explanation of both the gen-

eration of Cherenkov radiation and soliton spectral recoil has

been provided in terms of discretewavemixing involving the

individual spectral components of a propagating soliton

pulse.

We have confirmed our theoretical and numerical results

experimentally for cases of discrete two-pump and pulsed

excitation. In the first experiments, we use two frequency-

tunable external cavity lasers modulated with a 2.5% duty

cycle to form 5 ns flattop quasi-continuous-wave (cw)

fields which are amplified and injected into a 54 m long

DSF with parameters as above. Figures 3(a) and 3(b) plot

spectra at the DSF output for phase-matched amplification
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FIG. 2 (color online). Simulation showing amplification at !15

in (a) frequency and (b) time domains. To establish the link with

soliton-induced Cherenkov radiation, (c) compares the discrete

comb spectrum with that of a soliton pulse corresponding to one

cycle of the initial modulation. (d) Time-domain evolution. The

mean pump frequency is !0=2� ¼ 188:5 THz and the pump

detuning is �=2� ¼ 0:87 THz.
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of the n ¼ 2 and n ¼ �2 sidebands which show enhance-

ment of 15 dB compared to the intermediate first-order

sidebands. Measurements demonstrating amplification of

higher orders are shown for the n ¼ 6 and n ¼ �4 side-

bands in Figs. 3(c) and 3(d), respectively. Parameters are

given in Table I. Our experimental methodology was based

on maximizing spectral asymmetry and the growth of a

particular sideband order n by adjusting pump powers and

external cavity laser frequency separation. In this way, we

determine a particular experimental detuning �e for a

given n, and Table I also compares this experimental

detuning with the expected value �t obtained from

Eq. (2). Agreement is excellent, with differences attributed

to pump depletion and uncertainty in fiber dispersion.

Our interpretation of Cherenkov radiation in terms of

cascaded FWM has been confirmed by a second series of

experiments using a commercial (Alnair Labs, MLLD-

100) 10 GHz repetition rate hybridly mode-locked laser

diode. We first tuned the laser central frequency to

190.4 THz (1574.6 nm, anomalous dispersion regime)

and show the results in Fig. 3(c). At this central frequency,

a discrete bichromatic pump pair would yield phase-

matched amplification of the n ¼ 6 sideband (see Table I).

The spectrum of the picosecond pulses after propagation is

shown as the dashed line in Fig. 3(c), superimposed on the

results for the discrete cw experiments. There is a small

difference between the pulse duration used in the experi-

ments (680 fs) and the duration of a single cycle of the cw

modulation (420 fs), but, nonetheless, there is remarkable

agreement between the position and form of the Cherenkov

radiation emitted by the subpicosecond pulses and the

spectral envelope of the discrete FWM comb in the vicinity

of the phase-matched higher-order sideband. (Note that the

individual modes of the laser pulses are not resolved in the

experimental spectrum.) This is a clear confirmation of our

physical interpretation of Cherenkov radiation emitted by

solitons in terms of phase-matched cascaded FWM.

Our experiments also allow us to study spectral defor-

mation of pulses injected in the normal dispersion regime,

and results are shown in Fig. 3(d). Relative to the extensive

studies of anomalous dispersion regime soliton dynamics,

this area of research has been given relatively little atten-

tion. Our results, however, show that the same process of

phase-matched cascaded energy transfer across the ZDW

also occurs when pumping in the normal dispersion

regime. Here, the 10 GHz laser was tuned to a central

frequency of 194.6 THz (1540.6 nm, normal dispersion

regime, pulse duration 920 fs) corresponding to a mean

frequency where a discrete bichromatic pump pair yields

phase-matched amplification of the n ¼ �4 sidebands as

shown in Fig. 3(d). The figure superimposes the pulse

spectrum after propagation (dashed line) on the cw experi-

mental case, and we see clear asymmetric deformation and a

spectral peak in the anomalous dispersion regime in excellent

agreement with the phase-matched frequency !�4 corre-

sponding to discrete bichromatic pumping. Again, we can

see how cascaded FWM provides a physical interpretation

for the unexplained appearance of spectral peaks for normal

dispersion pumping near the fiber ZDW [25,26].

In conclusion, we have reported the first theoretical,

numerical, and experimental study of cascaded phase

matching in optical fibers. We have demonstrated that

(i) cascaded FWM can mimic a directly phase-matched

higher-order process that results in spectral asymmetry

through the amplification of one particular comb sideband

and (ii) that this process provides a physical interpretation

of soliton Cherenkov radiation in terms of phase-matched

mixing processes pumped by bichromatic pump pairs in

the soliton spectrum. Describing nonlinear pulse propaga-

tion and soliton perturbations in terms of discrete wave

mixing links for the first time the physics of supercontin-

uum with the multimode frequency conversion mechanism

of cascaded FWM. This description is expected to provide

insights into a plethora of optical systems, including Kerr

combs generated in ring resonators. Finally, because

symmetry breaking is an inherent characteristic of many
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FIG. 3. Experimental results showing the phase-matched

amplification of the (a) n ¼ 2, (b) n ¼ �2, (c) n ¼ 6, and

(d) n ¼ �4 sideband. Solid vertical line indicates the zero-

dispersion frequency, and the dashed curves in (c) and

(d) show the output spectra for picosecond excitation. Insets in

(c) and (d) show the input spectra of the picosecond source (axis

labels are the same as in the main figure).

TABLE I. Experimental parameters and theoretical detunings.

Sideband

order n Pþp W P�p W !0=2� THz �e=2� THz �t=2� THz

2 18 4.2 189.9 3.6 3.6

�2 2 41 194.9 2.6 2.9

6 20 9 190.4 1.2 1.1

�4 11 40 194.6 1.2 1.5
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nonlinear phenomena, we anticipate that the cascaded

mechanism reported here will also be manifested in a

wide range of other systems such as plasma physics,

Bose-Einstein condensates, and hydrodynamics [27,28].
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