
HAL Id: hal-03223636
https://hal.science/hal-03223636v1

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Object-oriented design to automate a high order
non-linear solver based on asymptotic numerical method
Arnaud Lejeune, Fabien Béchet, Hakim Boudaoud, Norman Mathieu, Michel

Potier-Ferry

To cite this version:
Arnaud Lejeune, Fabien Béchet, Hakim Boudaoud, Norman Mathieu, Michel Potier-Ferry. Object-
oriented design to automate a high order non-linear solver based on asymptotic numerical method. Ad-
vances in Engineering Software, 2012, 48, pp.70-88. �10.1016/j.advengsoft.2012.02.012�. �hal-03223636�

https://hal.science/hal-03223636v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Object-oriented design to automate a high order non-linear solver based on 

asymptotic numerical method

Arnaud Lejeune a,⇑, Fabien Béchet b, Hakim Boudaoud c, Norman Mathieu d, Michel Potier-Ferry d

a Institut Femto-ST, UMR 6174, Département Méc’Appli, 24 rue de l’épitaphe, 25000 Besançon, France
b TEMPO, EA 4542 Université de Valenciennes et du Hainaut Cambrésis, 59313 Valenciennes, France

c Equipe de Recherche sur les Processus Innovatifs, Ecole Nationale Supérieure en Génie des Systèmes Industriels, 8, rue Bastien Lepage, BP 90647, 54010 Nancy, France d LEM3, 
Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, UMR 7239, Ile du Saulcy, 57045 Metz, France

The Manitoo library is devoted to the resolution of analytical non-linear problems using a high order

method called asymptotic numerical method. We describe here the Object Oriented design of this library

and especially the choices made to obtain a quite generic and flexible numerical solver.

Through classical examples, we present a comparison with some existing tools implemented in Matlab

and Fortran 77.

1. Introduction

For about twenty years, many works on the resolution of non-
linear problems using Asymptotic Numerical Method (ANM) have
been proposed [1] and applied to a wide range of problems in fluid
and solid mechanics. For instance, various applications concerning
the design of marine structures [2], non-linear vibrations [3], sheet
metal forming [4], biomechanics [5] or multi-scale instabilities [6]
have been implemented in many research informatics tools using
Fortran 77, Fortran 90 [7,8], Matlab [9,3] and also in an industrial
code [10]. Within ANM, a solution branch is computed using series
expansion. The step length of this branch is then defined a posteri-
ori and it yields naturally automatic path following techniques.
This automation of the non-linear computation is very important
in many cases and especially for the numerical computation of
physical problems involving instabilities [11–16]. The robustness
of the algorithm is assessed for instance in [2], where thousand
thin shell computations have been performed in order to predict
thin shell buckling with random imperfections. In Computational
Fluid Dynamics, the discretized problem often involves millions
of degrees of freedom so parallel implementations are needed.

The robustness and efficiency of ANM have been established to
solve such large scale problems [17].

ANM needs high order derivatives that can be obtained by
recurrence formulae. These recurrence formulae computation is
easy for algebraically simple equations, as Navier–Stokes equa-
tions, but it becomes more intricate for many other physical prob-
lems [18]. A first answer to this question is the MANLAB software
[9] which permits to solve generic problems with few unknowns,
providing the problem written in a quadratic form. Another ap-
proach, called DIAMANT and based on Automatic Differentiation
(AD) by operator overloading, has been recently proposed [19,20]
and applied to small size academic problems in the Matlab and
Fortran contexts [21,22]. Due to Object Oriented limitation of these
languages [23], it seems then difficult to obtain a really generic,
reusable and efficient ANM library. Moreover, as for most of infor-
matics libraries, and based on a 15 years old experience, we know
that the ANM library mainly requires maintainability, a wide
extensibility and portability. Indeed, as mechanical models based
on finite elements (or other approximation methods) often need
a large number of degrees of freedom, we have to consider the
use of parallel computing.

Since the 90’s, Object Oriented Programming has been com-
monly used to design complex scientific applications. Asmentioned
in the context of finite element method by [24], object oriented
programming permits to develop numerical tools with portability
on different computer architectures such as clusters, which was
not possible with the prior sequential Fortran codes. Moreover,
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inheritance and polymorphism are important characteristics to ob-
tain a quite generic solver. One could argue for the loss of perfor-
mance due to the overhead of oriented object implementation.
Such a loss is not so obvious and Veldhuizhen demonstrates that
C++ could surperform Fortran [25,26].

Despite of the propagation of object oriented and C++ program-
ming in the field of numerical simulation of engineering problems,
the ANM community has not developed an up-to-date numerical
tool.

Considering all these remarks, we have been developing a new
C++ library, called MANITOO which is devoted to the resolution of

non-linear problems with ANM, since 2008. The main goal of this
tool is to reduce development costs without losing computational
performance compared to the former library developed in Fortran
77. Herewe propose to deal with the object oriented design ofMan-
itoo which has never been published and is about to be mature.

In the second part, we make a description of the ANM and pres-
ent the corresponding algorithms while the third part is devoted to
the Object Oriented design of the library. The fourth part shows
some applications and comparisons with existing tools. We con-
clude with some remarks on future developments.

2. General structure

ANM consists in solving an analytical non-linear problem with a
path-following (or continuation) method associated with a high
order perturbation technique. First, unknowns are expanded in
Taylor series with respect to a scalar path parameter. Then the
non-linear problem, as a problem depending on unknowns, is also
expanded in Taylor series leading to a system of linear equations at
each order. Expressing high order equations with respect to Taylor
coefficients requires a hard programming work. Coupling ANM
with AD (namely the DIAMANT approach) allows to automate
the computation of Taylor series terms in a peculiar direction using
well-known recurrence formulae.

As in [27] and to obtain a generic library, the model describing
the non-linear problem is distinguished from the analysis.
Moreover, we split the analysis in ANM solver and linear solver.

Fig. 1. Analysis and model separation.

Fig. 2. Some packages and classes of the MANITOO Library.
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We focus here on the design of the ANM solver therefore few indi-
cations about model and linear solvers integration will be given.

2.1. Asymptotic numerical method

2.1.1. General overview

First works concerning Asymptotic Numerical Method (ANM)
referred it as the computation of a solution branch of a non-linear
analytical problem [1]. It has been extended by [28] into a contin-
uation method resulting in an assembly of successive solution
branches. We are using the term of ANM as an alias of path follow-

ing technique via an asymptotic numerical method based on power

series expansion in the sense of [28].
Here is a brief overview of an ANM version summarized from

[29]. More interested users may refer to this book.
Let us consider a quite generic quasi-static problem expressed

as:

Find ðu; kÞ in U � R such as

Rðu; kÞ ¼ 0 ð1Þ

Fig. 3. ANM class diagram.

Fig. 4. A class for Taylor series variables.
Fig. 5. Continuation sequence diagram.

Fig. 6. Base class for branch solution computation.
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with U a convex domain of finite dimension and R a non-linear ana-
lytical function.

Damil et al. [1] used a high order perturbation technique to
solve this kind of problem by looking for solutions (u, k) as a func-
tion of a parameter denoted by t close to a given solution (u0, k0):

uðtÞ � u0 ¼
X

n

i¼1

tiui; kðtÞ � k0 ¼
X

n

i¼1

tiki:

This can easily be related to the power series expansion and Taylor
series terms of u and k expressed as functions of the parameter t:

RðuðtÞ; kðtÞÞ ¼ R0 þ tR1 þ t2R2 þ . . . tnRn

with

R0 ¼ Rðu0; k0Þ ¼ 0

R1 ¼ R;uu1 þ R;kk1

R2 ¼ R;uu2 þ R;kk2 þ R;uuu1:u1 þ R;kkk
2
1 þ R;ukk1u1

..

.

Rn ¼ R;uun þ R;kkn þ Rnl
n ðu0; u1; . . . ;un�1; k0; k1; . . . ; kn�1Þ

where R;u ¼ @R
@u
ðu0; k0Þ, R;k ¼ @R

@k
ðu0; k0Þ, R;uu ¼ @2R

@u2
ðu0; k0Þ, R;uk ¼

@2R
@u@k

ðu0; k0Þ, R;kk ¼ @2R
@k2

ðu0; k0Þ.
Hence the computation of a solution branch is equivalent to the

computation of the expansion coefficients. The latter are obviously
related to the high order derivatives of the analytical function R.
Every derivative Rk can be split in a linear part depending on the
unknowns (uk, kk) and a non-linear part depending on the previ-
ously computed terms. To compute a solution branch up to a given
order n, one has to solve the following successive linear problems:

LuTðu0; k0Þu1 þ LkTðu0; k0Þk1 ¼ 0

LuTðu0; k0Þu2 þ LkTðu0; k0Þk2 ¼ �Rnl
2 ðu0;u1; k0; k1Þ

..

.

LuTðu0; k0Þun þ LkTðu0; k0Þkn ¼ �Rnl
n ðu0;u1; . . . ; un�1; k0; k1; . . . ; kn�1Þ

with LuT ¼ @R
@u

the tangent operator with respect to u; LkT ¼ @R
@k

the
tangent operator with respect to k and Rnl

n the non-linear part of Rn.

Fig. 7. Computing Taylor series terms up to an order n.

Fig. 8. Simplified Padé class.
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As this set of equations is subdertermined, a path-parameter
equation is added and can be expressed in a quite generic form:

t ¼< uðtÞ � u0; u1>u þ aarcðkðtÞ � k0; k1Þ ð2Þ

where h�, �iu is a bilinear form defined in U and aarc is a positive coef-
ficient. Many other parameters are possible, see for instance [30]. A
complete discussion on this point can be found in [31].

Usually, the classical dot product is applied and aarc equals 1. A
change in the bilinear form and the weight leads to a different path
drive.

Fig. 9. Modified continuation sequence diagram with Pade add-in.

Fig. 10. BratuProblem class.

Fig. 11. BratuMatrix class.
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The derivatives of the path parameter Eq. (2) are given by:

hu1;u1iu þ aarck
2
1 ¼ 1

hu2;u1iu þ aarck2k1 ¼ 0

..

.

hun;u1iu þ aarcknk1 ¼ 0

Once the series terms are obtained, on evaluates the interval,
namely the validity domain, in which the series converge. Hence
the length of the solution branch is known and the end point of this
branch is the start point of the next branch.

The Algorithm 1 summarizes the resolution of the non-linear
analytical problem 1 with ANM and continuation.

Algorithm 1. Global ANM algorithm

1: Initialize u0 and k0
2: for iStep = 1 to NbStep do

3: Compute linear operators LuT and LkT
4: Solve LuTðu0; k0Þû1 ¼ �LkTðu0; k0Þ
5: Compute k1 ¼ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aarcþ<û1 ;û1>u

p

6: Compute u1 ¼ k1û1

7: for i = 2 to n do

8: Compute high order term Rnl
i

9: Solve LuTðu0; k0Þûi ¼ �Rnl
i

10: Compute ki ¼ �k21 < ûi; û1>u

11: ui ¼ ûi þ kiû1

12: end for

13: Using terms (ui)i=1,. . .,n and (ki)i=1,. . .,n compute the
validity domain upper bound tmax

14: uend ¼
Pn

i¼0uit
i
max and kend ¼

Pn
i¼0kit

i
max

15: u0 = uend and k0 = kend
16: end for

2.1.2. Advanced feature: Padé approximants

Padé approximants have been introduced in the context of ANM
by [32]. Their efficiency has been shwon in terms of extending the
validity domain and consequently on reducing the number of
branch computation steps [33,29].

Let (Uk)k=0,. . .,n and (kk)k=0,. . .,n be series obtained by solving an
analytical non-linear problem using ANM. From these series, a
validity domain can be a posteriori computed. Using Padé approx-
imants allows to increase the length of the solution branch by
building up an orthonormal basis via the Gram–Schmidt proce-
dure. Starting from solutions given in the form:

UðtÞ ¼ U0 þ
X

n

i¼1

tiUi ð3Þ

kðtÞ ¼ k0 þ
X

n

i¼1

tiki; ð4Þ

one can obtain a new representation by rational fraction of the solu-
tion path:

UpadeðtÞ ¼ U0 þ
X

n

i¼1

ti
Dn�iðtÞ
DnðtÞ

Ui ð6Þ

kpadeðtÞ ¼ k0 þ
X

n

i¼1

ti
Dn�iðtÞ
DnðtÞ

ki ð7Þ

where the expression of Di(t) is given in [33,29].
Accounting for Padé approximants results in adding an external

plug after a series computation. The increase of computation time
due to this plug is, in most of cases, much smaller than the benefit
due to the increase of the length of the solution branch. The global
Algorithm 1 is then replaced by Algorithm 2.

Fig. 12. Bratu solution at the point x = 0.5.

Table 1

Total and linear solver computation time for sparse matrix.

DoF number Matlab Manitoo manual Manitoo AD

Total L. solver Total L. solver Total L. solver

5e3 1.58 0.42 0.26 0.05 0.67 0.05

7.5e3 2.39 0.56 0.41 0.16 1.15 0.11

1e4 2.68 0.73 0.50 0.09 1.61 0.12

5e4 10.95 2.53 3.00 0.748 8.22 0.793

1e5 23.98 5.09 6.44 1.64 16.46 1.73

2e5 41.68 9.31 12.51 3.36 33.56 3.54

2.5e5 51.04 11.10 16.18 4.52 41.54 4.57

5e5 94.94 21.72 33.13 9.10 85.46 9.91

1e6 198.82 45.60 64.24 18.41

Fig. 13. Applied force (in N) versus vertical displacement (in mm) at the point of

external force application.
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Algorithm 2. Global ANM algorithm with Padé approximants

1: Initialize u0 and k0
2: for iStep = 1 to NbStep do

3: Compute linear operators LuT and LkT
4: Solve LuTðu0; k0Þû1 ¼ �LkTðu0; k0Þ
5: Compute k1 ¼ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aarcþ<û1 ;û1>u

p

6: Compute u1 ¼ k1û1

7: for i = 2 to n do

8: Compute high order term Rnl
i

9: Solve LuTðu0; k0Þûi ¼ �Rnl
i

10: Compute ki ¼ �k21 < ûi; û1>u

11: ui ¼ ûi þ kiû1

12: end for

13: Using terms (ui)i=1,. . .,n and (ki)i=1,. . .,n compute the
validity domain upper bound tmax

14: Compute rational factors (Di)i=1,. . .,n and associated Padé

coefficients VPade
i

15: Compute the Padé validity domain tPademax

16: uend ¼
Pn

i¼0uit
Pade
max

i
VPade
i and kend ¼

Pn
i¼0kit

Pade
max

i
VPade
i

17: u0 = uend and k0 = kend
18: end for

2.2. Global architecture

A previous work on Object Oriented implementation of a path-
following method devoted to structural mechanics has already
been proposed [34]. Our new library, called MANITOO, applies to
a wider kind of analytical non-linear problems. Moreover we at-
tempt to define a more generic implementation of ANM which is
also a path-following method.

The MANITOO library needs to consider the overall ANM pro-
cess: Taylor terms, validity domain computation and continuation
technique.

From the previous section, it seems obvious to split the ANM in
several components:

� Path-following process
� Branch solution building
� Linear system solving
� Non-linear problem definition
� Derivatives computation (optional).

Only the first two parts are really specific to the ANM. The way
of computing high order derivatives, defining the model and solv-
ing linear systems should not influence the ANM process for a gi-
ven kind of non-linear problems. Then a generic ANM algorithm
can be defined by Algorithms 3 and 4.

The path-following flow consists in computing successive solu-
tion branches up to a given number of steps or an optional loop-
breaking condition (Algorithm 3) while the solution branch is built
by Algorithm 4.

Algorithm 3. ANM algorithm: basic continuation process

1: Initialize u0 and k0
2: for iStep = 0 to NbStep do

3: u0 = uend and k0 = kend
4: Compute high order terms (uk)k=1,. . .,n and (kk)k=1,. . .,n
5: Compute the validity domain upper bound tmax

6: uend ¼Pn
i¼0uit

i
max and kend ¼Pn

i¼0kit
i
max

7: end for

Algorithm 4. ANM algorithm: computation of the high order
terms (uk)k=1,. . .,n and (kk)k=1,. . .,n

1: Initialize u0 and k0

2: Compute linear operators LuT and LkT
3: Solve order 1: u1 and k1
4: for k = 2 to NbOrder do

5: Compute right hand side Rnl
k

6: Solve LuT ûk ¼ �Rnl
k

7: Compute kk and uk
8: end for

So we distinguish the analysis (ANM specific features) from the
model (non-linear problem expression), the way of differentiation
(derivatives terms) and the linear solver. This leads to four pack-
ages related as in Fig. 1.

2.3. Finite Element Method

In the context of solid mechanics, the Finite Element Method
(FEM) is one of the most popular numerical method to approxi-
mate the solution of partial differential equations. This method is
here used to model an approximation of the non-linear problem.

It is quite impossible to establish an exhaustive list of all exist-
ing Object Oriented (OO) libraries dealing with Finite Element
Methods (FEMs) or other discretization methods. A bibliography
has been realized until 2003 in [24] and shows the amount of
works of FEM and OO.

Thus, behind the term of ‘‘Finite Element library’’, one could
find several kind of libraries. Some of them are related to the
mesh building and entity organization (AOMD [35], libmesh
[36]), some of them are just related to the implementation of
the computational method (OOfem [37], getfem++ [38]), others
provide an upper interface and pseudo-language so that the user
only has to define his problem on a strong or variational form
(freefem++ [39], Fenics [40]), etc.

The library catalog of Object Oriented Finite Element is really
wide so we hoped to find a convenient one for our applications.
However, in the context of continuum mechanics, we want to
deal with linear and quadratic 2D and 3D elements. This first
requirement reduces the number of potential candidates. A sec-
ond requirement is to use a really specific shell element from
Büchter et al. works [41] which gives good results for very thin
shells. With this second requirement, at our knowledge, the po-
tential candidate space is a null one. Thus we decided to develop
an Object Oriented Finite Element Model with basic features like
iso-parametric interpolation, numerical integration, element to
global assembly, etc. Our model may not offer the same level
of advanced functionality as in [37,42–44] and, consequently,
will not be detailed in this paper. The 2D and 3D models are
quite similar (it just results in changing a template argument
in most cases) while dealing with the cited shell elements needs
the introduction of new internal variables, condensation tech-
nique and tensor algebra. This results to a specific class consid-
ering models based on shell elements.

2.4. Linear solver

Solving a non-linear problem results in solving successive lin-
ear systems with the same tangent matrix and changing the right
hand side. Wrappers to the following solvers have been
implemented:
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� JAMA [45]
� SuperLU [46]
� PetsC [47–49]
� Mumps [50,51].

As the tangent matrix does not change during the successive
system resolutions, we use features of these solvers to optimize
the computation cost of the linear system resolution (please refer
to user manuals of these libraries to get more details).

Tnt library is used for all our validation tests with small degrees
of freedom and a dense linear matrix.

Three kinds of sparse matrices storage are defined to use Super-
LU, PetsC, and Mumps.

2.5. Automatic Differentiation (AD)

As noted in the ANM overview, solving a problem with this
method results in computing high order derivatives in a peculiar
direction. A good way to automate the ANM solver is to use auto-
matic differentiation as a pocket calculator. In this sense, an
approach, named DIAMANT, coupling AD and ANM has been pro-
posed in [19] and applied to academic problems [20]. Then right-
hand side terms and tangent matrix occurring in ANM are obtained
by application of AD technique. It was already an improvement
avoiding the manual calculation of terms which could be a quite
difficult task.

Following the definition of [52], AD can be viewed as the way to
generate a code which computes the derivative of a function itself
given by a code. A natural approach is to use the forward mode by
applying operator overloading. This is notably well-suited with C++
language [53]. This language enables to overload classical opera-
tors in a simple way [54]. Notice that AD by operator overloading
has already been implemented for a long time in other classical
languages [55].

Interested readers may refer to [56] for a review of AD tech-
niques. But in most cases, works are concerned with low order
derivatives (first or second order). We are here concerned with
high order derivatives in direct mode as in [57] except that we only
need to compute the derivatives in a peculiar direction (i.e. the
Taylor series terms of a given variable or function).

From an informatics point of view, forward differentiation by
operator overloading is realized using template facilities of C++
language. First, the function to be differentiated is implemented
and tested in the continuous domain, after that the template
parameter is changed into the high order derivative one. Conse-
quently, one single implementation allows the computation of
residuals and derivatives. A specific procedure is applied in the
case of local implicit functions because of the different nature
between the continuous function (implicit) and the derivative
function (explicit).

The AD feature is also applied to the computation of the linear
tangent matrix, noted LuT in Section 2.1.1 arising from the first order
differentiation of the non-linear problem.

3. Object oriented implementation

A non-exhaustive overview of the implemented classes, re-
stricted to this paper focus and organized by packages, is given
in Fig. 2.

In this section, we describe some of the techniques used in the
library. The objective is to split the overall process into small size
objects to obtain the higher flexibility and genericity.

As explained in Section 2.1.1, we want to apply an iterative
process to the computation of algebraic functions. One

important point is the way of considering mathematical/
mechanical functions in our library. As mentioned in [58], func-
tion objects (also called functors) allow better optimization than
function pointers in terms of computation time. However these
functors have to be small enough to be inlined. They should
also not be virtual. Functors are intensively used in this work
to implement small functions. Moreover, to keep a reasonable
computation time cost, we use meta-programming and limit
the use of virtual functions.

Note that the library is implemented in french, so names of
components, classes, operators have been translated for this
paper.

Note also that all the UML diagrams have been built with Bouml
freeware (http://bouml.free.fr).

3.1. Global class diagram

An ANM solver is a way of computing output data, usually
named results, from input data given by a Model following a fixed
algorithm. From the package view in Fig. 1, we focus on the ANM
package. This package is made-off three main classes.

� The path-following class
� The branch solution class
� The path equation class.

An overall class diagram is illustrated in Fig. 3.
Referring to the class diagram in Fig. 3, user-defined class

T_ProblemNL describes the non-linear problem and the computa-
tion of its high order derivatives (Taylor series coefficients). It is de-
fined as a functor.

Using a templated class, here called T_LinearSystem, allows us to
apply any solver of a set of linear equations.

Moreover, it seems obvious that we need to store any Taylor
series terms and optionally to define devoted algebra rules to these
data. Hence we defined a new data type.

3.2. Data Types

This subsection is concerned with data types of the Taylor Series
variables (i.e. derivatives data type). As indicated in Section 2.5,
automatic differentiation in forward mode could be done by over-
loading classical operators. So we would design new data type con-
taining Taylor series coefficients and the corresponding arithmetic
operators (and usual mathematics functions). An illustration of
automatic differentiation by operator overloading is given in
Section 3.6.

Moreover, solving non-linear problems in the field of contin-
uummechanics leads to using scalar variables and some containers
related to linear algebra as vector or matrix. Here the term ‘‘vector’’
is related to the linear algebra term and not the STL term.

We make an intensive use of template ability offered by the C++
language so that a change in the scalar data type and in the con-
tainer type could be done with only a few change in the library.
To do so, we define a traits policy [59] containing:

� Scalar data type
� Vector data type
� Dense local matrix data type for computation with matrix of
small size

� Linear tangent matrix data type which is usually a sparse one.

that could be implemented as:
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Note that the type of the large matrices depends on the external
linear solver. Some of them require Compressed Sparse Rowmatrix
while others need Compressed Sparse Column, skyline or full
storage. Moreover, we use our own implementation of vector and
matrix container. Replacing by more efficient containers would
be considered in future improvement of the library.

A prior feature of the differentiate data type is to contain all the
terms of the series expansion. It has been chosen to define a data
using static array. As a computation needs many calls to construc-
tors/destructors, it is obvious that using dynamic allocator would
lead to a loss of performance. The size of the array is defined using
a macro variable. Taylor expansions are computed up to a given or-
der less than the maximal array size.

Moreover, algebra could be added to the data class with Opera-
tor Overloading technique; this corresponds to an automatic differ-
entiation in forward mode. Three classes of high order derivatives
are available. Performances and features of these are described in
[20]. As an illustration, a brief view of the class DType1 correspond-
ing to the first version of DIAMANT approach is given in Fig. 4.

Note that due to the size of the manipulated data, we avoid at
most to make a copy of scalars, vectors and matrices. Only one tan-
gent matrix is created.

3.3. Path-following

As mentioned before, continuation consists in computing the
validity domain of the series expansion, building the end point of
the branch, then using this point to start the computation of a
new branch.

Moreover, the matrix computation object, the linear solver ob-
ject and optionally the residual computation object are created at
the initial step of continuation process.

The sequence Fig. 5 outlines the process of continuation.

3.4. Branch computation

Branch computation consists in finding terms of the Taylor
series expansion (i.e. high order derivatives terms). Knowing the
initial solution (U0, k0), Taylor series terms up to an order n are
obtained.

As for continuation, this class is perhaps the most generic.
However it needs some specifications depending on the kind of

non-linear problem. Then a virtual base class has been designed
(Fig. 6). In term of computation time, this should not be dramatic.
Indeed, on non-academic simulations with a large number of
degrees of freedom, access to the virtual table, also called vtable,
is really less time-consuming than solving each right hand side
term at each order and linear tangent assembly.

The sequence diagram related to the computation of the series
terms is given in Fig. 7. Applied class would be expressed in the
next section dealing with examples.

3.5. Padé class

As highlighted in Section 2.1.2, Padé approximants could be de-
signed as a computational class. A simplified version of this class is
described in Fig. 8. Members named Orthonormalization, SerieSum
and Solution_Pade are private ones used to compute the validity
domain and coefficients related to Padé method.

The sequence Fig. 9 illustrates the easiness of including a poste-
riori computation of Padé approximants and the extended validity
domain.

3.6. Formulations

Formulations describe the non-linear problem. It computes
function results with data and parameters given in the model.

A formulation has to be defined as a functor class even if some
of them are not so small. Then formulations classes need at least
parenthesis () operator. However, we want to compute the func-
tion and its derivatives up to a given order. There are at least
two ways of implementing the function operator. The first corre-
sponds to the classical hand-written developments. Each algebraic
operation is developed by hand and, sometimes, smart and really
specific optimizations could be investigated before the computer
implementation.

The second way is to apply operator overloading based on the
fact that a function is a compound of elementary and well-known
operators. This leads to compute high order terms of a given
function using AD technique in implements only once adequate
formulae. This ‘‘pocket calculator’’ ability allows us to obtain more
genericity in our library. The user should only implement compu-
tation function and then, with just referring to the appropriate
data-type, one could compute residual value or differentiate terms.

9



The designed ANM library is free from the way of computing
high order terms so that each user could choose his own prefer-
ence. One has just to define a formulation as a functor with a good
data type. However, independently of the computational way of
high order derivatives, it is strongly recommended to enable

different kinds of data treated by the formulation. Hence, with
changing the data type, one could compute high order derivatives
or evaluate the residual of a given solution. As an illustration, the
function f(x, y) = x � y could be naively implemented with the fol-
lowing templated ScalarProduct class:

It is quite easy to compute the function value in the continuous
domain with automatic differentiation or with the hand-coded
expansion:

10



and its derivatives:

Switching between scalar and derivative computation amounts
to changing the variable type. With AD, recurrence formulae are
implemented in the T_Diff class with operator overloading ability.
It seems obvious that a hand-coded version leads to separate oper-
ations on derivatives from data so that any formulations need to
rewrite associated recurrence formulae.

Coupling the automatic computation of formulation with our
quite generic version of ANM allows us to claim that we obtain a
quite generic and automatic version of a non-linear solver based
on an asymptotic numerical method. We briefly discuss the perfor-
mances and illustrate the implementation of a new formulation in
the incoming application part.

4. Applications

In this section, we propose to solve two kinds of problems with
our library. Each problem has different mathematical features and
illustrates flexibility, reusability and genericity of MANITOO.

Computations have been performed under a 64 bit Windows 7
operating system on a Lenovo x200 Tablet. The processor is an Intel

Core2 Duo L9400 @ 1.86 GHz and 2.9 Go of RAM are available.

4.1. Academic example: Bratu problem

4.1.1. Problem formulation and discretization

This example was solved in the ANM context by [29]. It was the
first problem solved with the here-concernedMANITOO object-ori-
ented library. The initial formulation of the problem is given by:

Find (u, k) defined on C = [0, 1] such as

Rðu; kÞ ¼ u;xx þ keu ¼ 0

uð0Þ ¼ uð1Þ ¼ 0

�

or in its equivalent form Find (u, v, k) defined on C = [0,1] such as

Rðu;v ; kÞ ¼
u;xx þ kv ¼ 0

dv � vdu ¼ 0

uð0Þ ¼ uð1Þ ¼ 0

8

>

<

>

:

The second formulation of the Bratu problem has been introduced
to simplify the expansion made by hand. Hence in [29], a new kind
of generic problems has been designed with a main equation and a
local one expressed in a differential form. Using AD enables to work
with the first formulation without any introduction of new variable

or specific smart expansion. In the following part, we will deal with
the second formulation, as the first is less complicated.

Concerning the discretization and numerical approximation of
second order derivative in the spatial domain, the finite difference
method is used to compute approximate the solution (uh, vh, kh).
The domain C is discretized with a constant step size h.

ANM is applied on this discretized problem given by:

Rðuh; vh; khÞ ¼

v0 � eu0

�2u0þu1
h2

þ khv0

v1 � eu1

u0�2u1þu2
h2

þ khv1

v2 � eu2

u1�2u2þu3
h2

þ khv2

..

.

vn�2 � eun�2

un�3�2un�2þun�1

h2
þ khvn�2

vn�1 � eun�1

un�2�2un�1þun

h2
þ khvn�1

vn � eun

un�1�2un
h2

þ khvn
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Computing the tangent matrix respect to uh is obvious:

LuTðuh;vh; khÞ ¼

� 2
h2
þ khv0

1
h2

0 . . . 0

1
h2

. .
. . .

.

0 . .
. . .

.
1

h2
. .
. ..

.

1
h2

� 2
h2
þ khv i

1
h2

..

. . .
.

1
h2

. .
. . .

.
0

. .
. . .

.
1
h2

0 . . . 0 1

h2
� 2
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þ khvn
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4.1.2. ANM

The unknowns are sought in the form:

uðtÞ ¼ u0 þ
X

n

i¼1

tiui

vðtÞ ¼ v0 þ
X

n

i¼1

tiv i

kðtÞ ¼ k0 þ
X

n

i¼1

tiki

and the path-parameter is defined as:

t ¼< uðtÞ � u0; u1 > þðkðtÞ � k0Þk1

This problem could then be solved using Algorithm 5. At each order,
the right hand side comes from the contribution of non-linearities,
and then, in this problem, to the computation of the product kv.
Note that the variable v is not really an unknown but an internal
variable (also called condensation variable). This variable is used
for continuation at each branch computation. The algorithm could
be improved for a hand-written differentiation (refer to Section
2.2 of [29]) but here is not the purpose.

Algorithm 5. ANM algorithm with condensation variable

1: Initialize u0;v0 ¼ eu0 and k0
2: for iStep = 1 to NbStep do

3: Compute linear operators LuTðv0; k0Þ and LkTðv0Þ
4: Solve LuTðv0; k0Þû1 ¼ �LkTðv0Þ
5: Compute k1 ¼ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aarcþhû1 ;û1iu
p

6: Compute u1 ¼ k1û1

7: Compute v1 = v0u1
8: for i = 2 to n do

9: Compute high order term Rnl
i

10: Solve LuTðv0; k0Þûi ¼ �Rnl
i

11: Compute ki ¼ �k21hûi; û1iu

12: ui ¼ ûi þ kiû1

13: Compute v i ¼ v0ui þ
Pi�1

l¼1
lþ1
i ulþ1v i�1�l

14: end for

15: Using terms (ui)i=1,. . .,n and (ki)i=1,. . .,n compute the
validity domain upper bound tmax

16: uend ¼Pn
i¼0uit

i
max;vend ¼Pn

i¼0v it
i
max and

kend ¼Pn
i¼0kit

i
max

17: u0 = uend,v0 = vend and k0 = kend
18: end for

4.1.3. Implementation

To implement the Bratu problem, we do not have to worry
about condensation technique.

ANM is compound by a continuation class, a branch solution
class, a linear solver class, the specific BratuProblem and BratuMa-

trix classes devoted to the computation of the function R(u, k),
the high order derivatives and the tangent matrix with respect to
the u variable. In this case AD is not used to compute the linear
matrix.

The continuation, branch solution and linear solver classes are
generic ones available in the library. As noticed from subSection
4.1.1, the Bratu problem is of the form R(U, k) with non-linearities
in (U, k). Hence we use the BranchSolution_U_Lambda class. For this
example we decide to use the SuperLU linear solver. The corre-
sponding sparse matrix storage is defined to build the tangent
matrix.

In the following, we give an implementation example of Bratu-
Problem and BratuMatrix classes described in the diagram Figs. 10
and 11. BratuProblem class is an implementation of the discretized
problem (9) while BratuMatrix is an implementation of the tangent
matrix computation (10) (without condensation technique).
Results are obtained with a call to the operators parenthesis
returning a reference on a T_Vector in case of equilibrium compu-
tation (BratuProblem):
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As T_Scalar and T_Vector are template parameters of the class
BratuProblem, on can choose to.

� Compute the constant value by using for example the type dou-

ble for T_Scalar and Vecteurhdoublei for T_Vector

� Compute the differentiate terms (or Taylor series terms) by
using for example the type DType1 for T_Scalar and Vec-

teurhDType1i for T_Vector.

In case of matrix computation (BratuMatrix), the result is a ref-
erence to a T_Matrix:

where the template parameters T_Vector, T_Matrix can be defined
to choose the vector container type (for example Vectorhdoublei)
and the type of linear matrix. Latter has to be coherent with the lin-
ear system solver called from ANM.

13



The main file could be described in the following listing:

The automatic differentiation of the Bratu problem is done by
declaring the BratuProblem class with the appropriate data
type BratuProblemhtypename T_Types::T_Diff, typename

T_ Types::T_VectorDiffi with T_Types::T_Diff a derivative (i.e.
Taylor series) data type and T_Types::T_VectorDiff a vector of this
last.
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Note that an object of the class BratuProblemhdouble, Vectorh
doubleii allows to compute the residual for a given solution
through its parenthesis operator.

4.1.4. Results

To test the efficiency of MANITOO, we compare our implemen-
tation with a Matlab code. This code corresponds to a hand-written
asymptotic numerical method. As the operations involved in the
Bratu problem are few and quite simple, it is expected that the
Matlab code is optimized in term of runtime performance.
Moreover we use this example to evaluate the performance of
automatic differentiation compared to hand-written ANM.

The classical solution curve at the middle of the domain is given
in Fig. 12. Each point on the curve illustrates the end of a solution
branch and the beginning of the next one.

Obviously, the finite difference method applied to Bratu prob-
lem leads to a really sparse matrix. In this case, we use the superLU
solver with sparse matrix to solve linear systems in the Manitoo li-
brary while the sparse keyword is used in Matlab.

Table 1 describes computation time (in s). The total and lin-
ear–solver cpu-time of Matlab, hand-written ANM and ANM
with automatic differentiation are reported. Total time is the
time spent to solve the problem while linear–solver time is
the time spent to solve for each branch at each solver the linear
systems K Uk = Fk.

We observe that the Matlab computation time seems to be
greater than the computation time needed by AD or classical
ANM. As the matrix is really sparse, we observe that AD time is
more than twice of the hand-written code. Due to the use of con-
densation technique in the Matlab code, it could be viewed similar
to the second version of DIAMANT [20] (i.e. there is no recomputa-
tion of the previous order) while we are here using the first version
of automatic differentiation: for a given order we recompute all
terms of the series up to this order. This kind of AD avoids us to
store all intermediate variables. Moreover we do not need specific
AD techniques such as check-pointing or sequence recording. This
leads to a better flexibility and genericity of the algorithm. Note
also that as observed on this case, memory management is a crit-
ical point for engineering problems.

4.2. Geometrically non-linear mechanical problem

4.2.1. Formulation

Let us consider an elastic deformable body. We look for the dis-
placement field, denoted by u, of this body subjected to an external
force.

Usually, the Green–Lagrange strain tensor c is defined by

cðuÞ ¼ 1

2
ðThðuÞ þ hðuÞ þ ThðuÞhðuÞÞ ð11Þ

where h(u) =rxu is the displacement gradient tensor. In elasticity
framework, the second Piola–Kirchhoff stress tensor, denoted S, is
related to the Green–Lagrange strain tensor by the fourth order
elastic tensor L:

SðCðuÞÞ ¼ L : CðuÞ ð12Þ

The problem to solve is expressed as:
Find (u, k) such as

Z t

X

SðCðuÞÞ : DCðuÞdX� kPeðDuÞ ¼ 0 ð13Þ

In this example, non-linearity only lies in the expression of the
strain field.

The problem (13) is discretized using the finite element method
with 2D, 3D or shell elements. A Gauss quadrature approximation
is used to integrate the non-linear form over the discretized do-

main. Hence the stress tensor is a local variable evaluated at each
integration point (or Gauss point).

4.2.2. ANM

The unknown are sought in the form:

uðtÞ ¼ u0 þ
X

n

i¼1

tiui

kðtÞ ¼ k0 þ
X

n

i¼1

tiki

and the path-parameter is defined as:

t ¼ huðtÞ � u0; u1i þ ðkðtÞ � k0Þk1:

One has also to differentiate the intermediate variables:

hk ¼ rxuk ð14Þ

Ck ¼
1

2
ðThk þ hkÞ þ

X

k

i¼0

Thihk�i

 !

ð15Þ

Sk ¼ L : Ck ð16Þ
and the global formulation:
Z

X

TSk : ðDCÞ0 þ TS0 : ðDCÞkdXþ
Z

X

X

k�1

i¼1

TSi : ðDCÞk�idX ¼ kkPeðDuÞ

ð17Þ
using

DCðuÞ ¼ 1

2
ðThðDuÞ þ hðDuÞ þ ThðDuÞhðuÞ þ ThðuÞhðDuÞÞ

implying

ðDCÞk ¼
1

2
ðThðDuÞhk þ ThkhðDuÞÞ:

This problem could then be solved using Algorithm 1. At each
order, the right hand side comes from the contribution of geomet-
ric non-linearities. According to the Bratu example, one could con-
dense intermediate variables, such as the stress tensor. This leads
to the convenient quadratic formulation [29]. In Manitoo, we recall
that we work with any kind of formulation.

4.2.3. Design of the formulation class

As for the Bratu example, ANM is compound by a continuation
class, a branch solution class, a linear solver class and classes defin-
ing non-linear problem and matrix computation.

In thisexample, theproblem(13)couldbewrittenasR(U) � kF = 0.
Hencewedonot need to compute the tangent term LTk related to the k
variable. This term is here always equals to � F. Then we are here
using theBranchSolution class accounting for this specificity. The con-
tinuation process does not change from the Bratu problem.

The non-linear formulation consists in computing an approxi-
mation of R(U) over a discretized domain. As the process of finite
element computation is always the same, we design a generic
function that iterates on all the elements of a mesh, apply on each
one the computation of a given function, and assembles the ele-
ment results to the global result. This function is called by a class
named GlobalEquilibriumFE. It computes a function overall a finite
element domain through the parenthesis operator.

Then we have to implement a class, called for example
FML::InternalWorkElt, computing the numerical approximation of
the internal work on an element. Concerning the computation of
tangent matrix, even if it could be easily obtained and computed
by hand, as explained in [29], we use the automated computation
of this matrix. This allows us to change for example the constitu-
tive law in the formulation without any change in the implemen-
tation of tangent matrix computation. As for the computation of
non-linear formulation, computation of tangent matrix is quite
generic. On each element a local tangent matrix is computed and
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assembled into the global matrix. The local matrix is computed
with successive evaluations of the first derivative of element equi-
librium equation on the canonical basis directions.

We give hereafter a simplified example of the element internal
work computation class in a 2D case. This is a non-generic imple-
mentation of this kind of class and it is not the one used for the
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following results subsection. However the purpose is here to illus-
trate the relative programming effort to implement a new formu-
lation at an element level.

4.2.4. Results

MANITOO is used to solve an academic buckling example
dealing with the snap-through of a thin curved roof as in [12].
We consider that the behavior of the deformable body is linear
and elastic. Shell elements are used to discretize the roof as
in [12].

The mesh used, calledmesh22 � 22, is made up of 484 elements,
1541 nodes and 9246 degrees of freedom.

On Fig. 13 we compared the results obtained with MANITOO,
Abaqus and Eve (a Fortran77 implementation of the ANM). On the
Manitoo and Eve curves, points indicate the end of a branch and
the beginning of the next one. Consequently, each point corre-
sponds to the computation of a tangentmatrix and its factorization.

On the Abaqus curves, each point corresponds to an increment
computation and consequently to a linear system solution. In this
case, each point is linked to the next one by a straight line. Accu-
racy of Abaqus results depends on the size of the increments and
then to the number of matrix inversions. From Fig. 13, we see that
when we need 13 matrix computation and factorization with the
ANM, Abaqus needs about 75 matrix inversions to obtain a quite
accurate curve.

However, the comparison of these two softwares is not really
appropriate because MANITOO has a specific goal: ANM was de-
signed to build analytical solutions that would be post-processed.

As MANITOO has been designed and developed to replace the
Eve code, we compare the computation time. Simulation with
Eve requires 2254 s while Manitoo only needs 1957 s.

We observe a saving of about 13%. Comparing results on this
academic mechanical case does not lead to a global conclusion.
However, this comparison ensures us that at least on this basic
case, object oriented C++ implementation coupled with automatic
differentiation overperforms the available Fortran77 implementa-
tion of ANM.We have obtained a faster solver with more genericity
and flexibility than the Eve version.

5. Concluding remarks

This paper deals with the object oriented design of MANITOO

which is an automatic non-linear solver based on asymptotic
numerical method. We try to build a quite generic and flexible li-
brary by using some concepts such as functors, traits and classical
Object Oriented paradigms.

Due to the nature of the mechanical problems, design of MAN-
ITOO integrates a wrapper to numerous linear solvers. Moreover
we have quickly designed our own finite element library due to
the lack in the opensource community of a library accouting for
our specific shell elements.

As illustrations we have applied our library to solve two differ-
ent kinds of academic problems. On the one hand, we note the
quality of the obtained solution from the solver which is a neces-
sary condition to go on with this library. On the other hand, by
comparing our library with Eve, a Fortran77 implementation of
ANM, on a simple mechanical problem, we note that MANITOO al-
lows to decrease the computation time. For our application, the ob-
ject oriented design and C++ implementation is not slower than the
Fortran77 one.

As a final result, we achieve to design, at our knowledge, the
first generic non-linear solver based on Asymptotic Numerical
Method with performance at least equivalent to the Fortran imple-
mentation existing in the ANM community.

Of course more works have to be realized to obtain a more com-
plete library. Firstly, coupling MANITOO with an automated Finite

Element tool such as the Fenics project [60] could result in a really
generic finite element solver and could be of great interest for the
ANM community. Secondly, a deeper analysis of the used design
patterns as in [27] could result in improving the Oriented Object
structure and adding more flexibility related to the Model design.
Thirdly, improving internal algorithms and data structures, with-
out changing the interface for the final user, would lead to decreas-
ing the computation time and improving the memory
management. And finally, allowing parallel or multi-threads fea-
ture would enable us to solve cases close to industrial problems.
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