

Prof. Daniel HISSEL

FEMTO-ST Energy Department, FCLAB, University of Franche-Comte,

daniel.hissel@univ-fcomte.fr

Dr. Walter LHOMME, Prof. Alain BOUSCAYROL

L2EP, University of Lille 1,

walter.lhomme@univ-lille1.fr, alain.bouscayrol@univ-lille1.fr

1. EMR basic elements

- General principles
- Source, accumulation and conversion elements
- Coupling elements

2. EMR of a whole system

- Action and tuning path
- Association rules
- Example

3. Conclusion

« EMR basic elements »

Energy is the integrative of power

$$Energie(t) = \int_{0}^{t} Power(\tau).d\tau$$

A system can store energy : in this case power1(t) \neq power2(t)

Energy cannot vary instantaneously !

In fact, as :
$$Power(t) = \frac{d}{dt} Energy(t)$$

we would obtain $Power(t) \rightarrow \infty$

➔ Physically impossible

- State variable (2/3) -

Energy varies thus « slowly », according to the charge and the discharge of the energy storage devices

Examples :

- filling the tank of a car
- energy storage in the capacitors
- energy storage in flywheels
- thermal energy storage in a heater
- compressed air storage

- ...

Variable linked to the stored energy

Example :

- energy stored in a capacitor (value C) :

→ variable linked to energy = voltage V
→ the voltage V of a capacitor cannot vary instantaneously

variable linked to the energy = angular speed Ω
 angular speed Ω of a flywheel cannot vary instantaneously
 angular speed directly represents the energetic state of the flywheel system

State variable = Energy linked variable

Energy storage element versus energy conversion element:

Different in view of control – state variable control
 The state of a energy storage element can not change instantaneously

- Energetic sources -

EMR'12, Madrid, June 2012

13

terminal elements which represent the environment of the studied system

generator and/or receptor of energy

 $p_1 = \underline{x}_1 \cdot \underline{y}$ $p_2 = \underline{x}_2 \cdot \underline{y}$

 \underline{y} = output, delayed from input changes

$$\begin{cases} u_{conv} = m \quad V_{DC} \\ i_{conv} = m \quad i_{load} \end{cases}$$

m: modulation function of the converter $\langle m \rangle = D = duty cycle$

- Coupling elements: examples -

EMR'12, Madrid, June 2012

26

Field winding DC machine

 $\begin{cases} T_{dcm} = k \ i_{exc} \ i_{arm} \\ e_{dcm} = k \ i_{exc} \ \Omega \end{cases}$

Mechanical differential

$${T_{ldif}} = {T_{rdif}} = rac{{T_{gear}}}{2}$$
 ${\Omega_{diff}} = rac{{\Omega_{lwh} + \Omega_{rwl}}}{2}$

« EMR of a whole system »

- Example of an electromechanical conversion system -

EMR'12, Madrid, June 2012

29

(could be negative for bidirectional system)

(e.g. velocity control in acceleration AND regenerative braking)

direct connection if: Out(S1) = In (S2)In(S1) = Out(S2)

S1 and S2 any sub-systems

1 equivalent function for 2 elements / systemic

- Merging rule: example -

35

DC machine and smoothing inductor

permutation possible if same global behavior: strictly the same effects (y_1 and x_3) from the same causes (x_1 , y_3 and z)

- Permutation rule: example -

EMR'12, Madrid, June 2012

37

Shaft + gearbox

- Lift example: EMR -

EMR'12, Madrid, June 2012

40

- Lift example: tuning path -

EMR'12, Madrid, June 2012

41

« Conclusion »

- EMR and systemic -

EMR'12, Madrid, June 2012

43

Priority to the function by keeping the physical causality (systemic) EMR describes energetic functions

EMR respects natural integral causality

I/O are independent of power flows

Tuning paths:

- defined by the technical requirements
- independent of the power flow direction

« **BIOGRAPHIES AND REFERENCES** »

- Authors -

EMR'12, Madrid, June 2012 Prof. Daniel HISSEL University of Franche-Comte, FEMTO-ST, FCLAB, MEGEVH, French network on HEV's France Director, FCLAB CNRS Research Federation Head, Hybrid & Fuel Cell Systems Research Team, FEMTO-ST PhD in Electrical Engineering at University of Toulouse (1998) Research topics: Modeling, control, diagnosis of hybrid and fuel cell systems

Dr. Walter LHOMME

French network on HEV's L2EP, University Lille1, MEGEVH, France PhD on Hybrid Electric Vehicles at University Lille1, 2007 Engineer at AVL (UK) (2007-2008) Associate Prof. at Univ. Lille1 (2008) Research topics: EMR, EVs and HEVs

Prof. Alain BOUSCAYROL lille 1 University of Lille 1, L2EP, MEGEVH, France PhD in Electrical Engineering at University of Toulouse (1995) Research topics: EMR, EVs and HEVs

45

MEGEVH

FCLAB

MEGEVH

MEGEVH French network on HE

Université Lille1

Université

femto-st

- References -

EMR'12, Madrid, June 2012 **46**

A. Bouscayrol, & al. "Multimachine Multiconverter System: application for electromechanical drives", *European Physics Journal - Applied Physics*, vol. 10, no. 2, May 2000, pp. 131-147 (common paper GREEN Nancy, L2EP Lille and LEEI Toulouse, according to the SMM project of the GDR-SDSE).

A. Bouscayrol, "Formalism of modelling and control of multimachine multiconverter electromechanical systems" (Texte in French), HDR report, University Lille1, Sciences & technologies, December 2003

A. Bouscayrol, M. Pietrzak-David, P. Delarue, R. Peña-Eguiluz, P. E. Vidal, X. Kestelyn, "Weighted control of traction drives with parallel-connected AC machines", IEEE Transactions on Industrial Electronics, December 2006, vol. 53, no. 6, p. 1799-1806 (common paper of L2EP Lille and LEEI Toulouse).

Boulon, L., Hissel, D., Bouscayrol, A., Pape, O., Péra, M.C., "Simulation model of a military HEV with a highly redundant architecture", IEEE Transactions on Vehicular Technology, vol. 59, n°6, pp. 2654-2663, 2010.

P. Delarue, A. Bouscayrol, A. Tounzi, X. Guillaud, G. Lancigu, "Modelling, control and simulation of an overall wind energy conversion system", Renewable Energy, July 2003, vol. 28, no. 8, p. 1159-1324 (common paper L2EP Lille and Jeumont SA).

Boulon, L., Hissel, D., Bouscayrol, A., Péra, M.C., "From Modeling to Control of a PEM Fuel Cell Using Energetic Macroscopic Representation", IEEE Transactions on Industrial Electronics, vol. 57, n°6, pp. 1882-1891, 2010.

W. Lhomme, "Energy management of hybrid electric vehicles based on energetic macroscopic representation", PhD Dissertation, University of Lille (text in French), November 2007 (common work of L2EP Lille and LTE-INRETS according to MEGEVH network).