
HAL Id: hal-03223573
https://hal.science/hal-03223573v1

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalizing and Verifying Compatibility and
Consistency of SysML Blocks

Oscar Carrillo Rozo, Samir Chouali, Hassan Mountassir

To cite this version:
Oscar Carrillo Rozo, Samir Chouali, Hassan Mountassir. Formalizing and Verifying Compatibility
and Consistency of SysML Blocks. ACM SIGSOFT Software Engineering Notes, 2012, 37-4, pp.8.
�hal-03223573�

https://hal.science/hal-03223573v1
https://hal.archives-ouvertes.fr

Formalizing and Verifying Compatibility and Consistency of SysML Blocks

Oscar Carrillo
Femto-ST Institute

University of Franche-Comté
Besançon, France

e-mail: oscar.carrillo@femto-st.fr

Samir Chouali
Femto-ST Institute

University of Franche-Comté
Besançon, France

e-mail: samir.chouali@femto-st.fr

Hassan Mountassir
Femto-ST Institute

University of Franche-Comté
Besançon, France

e-mail:hmountas@femto-st.fr

May 16, 2012

Abstract

The objective of this paper is to define an approach to for-
malize and verify the SysML blocks in a refinement pro-
cess. From a Block Definition Diagram which specifies sys-
tem architecture, it is a matter of decomposing it into sev-
eral sub-blocks, then of verifying their compatibility. The
structural architecture of an abstract block is given by the
Internal Block Diagram (IBD) which defines the communica-
tion links between sub-blocks. The compatibility verification
between sub-blocks is only made on linked sub-blocks. The
behaviour of each sub-block is described by an interface au-
tomaton which specifies the invocations exchanged with its
environment. The verification between blocks is translated
into consistency verification between the blocks and compat-
ibility verification between their interface automata. Incom-
patibilities can be inconsistent at architecture level and at
communication level if there are illegal states. Once the ver-
ification is established between the sub-blocks, the abstract
block can be then substituted by the sub-blocks which com-
pose it.

1 Introduction

The systems become increasingly complex and their imple-
mentation asks more rigorous conception approaches. To
develop reliable systems, several software engineering ap-
proaches have been proposed and particularly top-down ap-
proach which allows to build a system, step by step from
height abstract specifications. This approach has been used
to design component-based systems constituted by commu-
nicating entities. This approach allows effectively to enhance
development process reliability and reduce costs.

For this article we decide to use SysML [Obj10], which
is a graphical modelling language, very widely used in the
component-based system development. It offers a standard
for modelling, specifying and documenting systems. The im-
provements, brought by SysML, allowed to increase its pop-
ularity for industrial and academic environment. A SysML
specification of a system is described by structural diagrams

and behaviour diagrams. The architecture refinement of a
system is an important concept in SysML and it is based on
the development of a process from an abstract level towards
more detailed levels which can end in an implementation.
In our case it is a question of replacing an abstract block
in a specification by a composition of blocks preserving its
structural properties and its behavioural properties. Struc-
tural diagrams of SysML describe the system in static mode
and behavioural diagrams describe the dynamic operation of
the system. The blocks are modelled by two diagrams, the
block definition diagram, which defines the architecture of
the blocks and their performed operations, and the internal
block diagram used to define the ports of each block and
transactions exchanged between them through their ports.

During the refinement process, these two diagrams can be
checked to decide whether the proposed architecture satisfies
or it is inappropriate to the requirements diagram.

In this paper, we focus on the decomposition of a SysML
block into several blocks whose ports are described by in-
terface automata. These interface automata can be derived
from behavioural diagrams as proposed in [CH11]. We also
exploit requirement diagrams to specify the properties that
must be satisfied during the interaction between compo-
nents(blocks). The interface automata formalism was intro-
duced by L. Alfaro and T.-A. Henzinger [dAH01] and allows
to describe a temporal order of required and offered opera-
tions calls. One problem may be the existence of anomalies in
the interaction between blocks that can lead to illegal states.
These states mean that one of the two blocks is requesting a
service from the other and that service is not offered.

This compatibility is verified in two ways: consistency in
system architecture level and behaviour compatibility at in-
ternal block level of the SysML block. Indeed, two interface
automata A1 and A2 associated with two internal blocks B1

andB2 are compatible if there is an environment that prevent
them from reaching illegal states during their interaction.

This paper aims to formalize the decomposition process by
focusing on verification of architectural and behavioural as-
pects of SysML blocks. It is organized as follows. In Section
2 we present the preliminaries about SysML specifications

1

and the interface automata model. In Section 3, we describe
our approach which allows to associate interface automata
to SysML blocks and give the conditions to be verified be-
tween the sub-blocks of a SysML block. In Section 4, we
give an example to illustrate our approach. In Section 5 we
present some related works, and finally the conclusion, and
perspectives are presented in Section 6.

2 Preliminaries

2.1 The SysML Language

SysML (Systems Modelling Language) [Obj10] is a mod-
elling language dedicated to system engineering applications.
It was designed as a response to the Request for Propos-
als (RFP) made in March 2003 by the Object Management
Group (OMG) [omg] for using UML in Systems Engineering
[Obj03], it was proposed by the OMG and the International
Council on Systems Engineering (INCOSE) and was adopted
as standard in May 2006. SysML is a UML 2.0 profile [Obj05]
that reuses a subset of its diagrams and adds new features to
better fit the needs of systems engineering so that it allows
the specification, analysis, design, verification and validation
of a wide range of complex systems. These systems may
include software, hardware, data, processes, people and fa-
cilities.

SysML includes 9 diagrams and according to [sys] they can
be defined as follows:
Activity Diagram: describes the system behaviour as control
and data flow.
Block definition Diagram: describes the architectural struc-
ture of the system as components with their properties, op-
erations and relationships.
Internal block Diagram: describes the internal structures of
the components, adding parts and connectors.
Package Diagram: describes how a model is organized into
packages, views and perspectives.
Parametric Diagram: describes the parametric constraints
between the structural elements.
Requirements Diagram: describes the system requirements
and their relationships with other elements.
Sequence Diagram: describes the system behaviour as inter-
actions between system components.
State machine Diagram: describes the system behaviour as
states that a component has in response to events.
Use Case Diagram: describes the system functions and ac-
tors in the process of using them.

2.2 Interface Automata

Interface automata were introduced by Alfaro and Hen-
zinger [dAH01] to model interfaces in an approach to
components. These automata are derived from In-
put/Output automata [LT87] where it is not necessary to
have activable input actions in all states. Each component
is described by a single interface automaton. The set of
actions is decomposed into three groups: input actions,

output actions and internal actions. Input actions allow to
model the methods to be called in a component, in which
case they are the offered services in a component. They can
also model a message reception in a communication channel.
These actions are labelled by the character ”?”. The output
actions model the method calls from another component.
Therefore, they represent services required by a compo-
nent. They can also model the transmission of messages
in a communication channel. These actions are labelled
by the character ”!”. Internal actions are operations that
can be activated locally and are labelled by the character ”;”.

Definition 1 (Interface Automata). One interface au-
tomaton A is represented by the tuple 〈 SA, IA, ΣI

A, ΣO
A,

ΣH
A , δA 〉 such as:

• SA is a finite set of states;

• IA ⊆ SA is a subset of initial states;

• ΣI
A,Σ

O
A and ΣH

A , respectively denote the sets of input,
output and internal actions. The set of actions of A is
denoted by ΣA;

• δA ⊆ SA × ΣA × SA is the set of transitions between
states.

The set of input, output and internal actions of an interface
automaton are noted (ΣA= ΣI

A ∪ ΣO
A ∪ ΣH

A). We define by
ΣI

A(s), ΣO
A(s), ΣH

A (s), respectively the set of input, output
and internal activable actions at the state s. ΣA(s) represents
the set of activable actions at the state s.

The verification of the assembly of two components
(blocks) is obtained by verifying the compatibility of their
interface automata. In order to verify the assembly of two
components B1 and B2, one verifies if there is an environ-
ment for which it is possible to assemble correctly B1 and B2.
This results in the composition of their interface automata
and its verification if it is not empty.

Two interface automata A1 and A2 are composables if
ΣI

A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2

= ΣH
A2
∩ ΣA1

= ∅.
We define by Shared(A1,A2) = (ΣI

A1
∩ ΣO

A2
) ∪ (ΣI

A2
∩ ΣO

A1
)

is the set of actions shared between A1 and A2.

Definition 2 (Synchronized Product). Let A1 and A2

two composable interface automata. The synchronized prod-
uct A1 ⊗A2 of A1 and A2 is defined by:

• SA1⊗A2
= SA1

× SA2
and IA1⊗A2

= IA1
× IA2

;

• ΣI
A1⊗A2

= (ΣI
A1
∪ ΣI

A2
) \ Shared(A1, A2);

• ΣO
A1⊗A2

= (ΣO
A1
∪ ΣO

A2
) \ Shared(A1, A2);

• ΣH
A1⊗A2

= ΣH
A1
∪ ΣH

A2
∪ Shared(A1, A2);

• ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2

if

– a 6∈ Shared(A1, A2) ∧ (s1, a, s
′
1) ∈ δA1

∧ s2 = s′2

– a 6∈ Shared(A1, A2) ∧ (s2, a, s
′
2) ∈ δA2 ∧ s1 = s′1

2

– a ∈ Shared(A1, A2)∧(s1, a, s
′
1) ∈ δA1

∧(s2, a, s
′
2) ∈

δA2
.

Two interface automata may be incompatible due to the
existence of illegal states in their synchronized product.
Illegal states are states from which a shared output action
from an automaton can not be synchronized with the same
enabled action as input on the other component.

Definition 3 (Illegal States). Let two composable in-
terface automata A1 and A2, the set of illegal states
Illegal(A1, A2) ⊆ SA1 × SA2 is defined by {(s1, s2) ∈ SA1 ×
SA2 | ∃a ∈ Shared(A1, A2). such that the condition C is
satisfied}

C =

 a ∈ ΣO
A1

(s1) ∧ a 6∈ ΣI
A2

(s2)
∨

a ∈ ΣO
A2

(s2) ∧ a 6∈ ΣI
A1

(s1)

The interface automata approach is considered an optimistic
approach, because the reachability of states in Illegal
(A1, A2) does not guarantee the incompatibility of A1 and
A2. Indeed, in this approach one verifies the existence of
an environment that provides appropriate actions to the
product A1 ⊗ A2 to avoid illegal states. The states in
which the environment can avoid the reachability of illegal
states are called compatible states, and are defined by the
set Comp (A1, A2). This set is calculated in A1 ⊗ A2 by
eliminating illegal states, unreachable states and the states
that lead to illegal states through internal actions or output
actions.

Definition 4 (Composition). The composition A1 ‖ A2

of two automata A1 and A2 is defined by
(i) SA1‖A2

= Comp(A1,A2),
(ii) IA1‖A2

= IA1⊗A2
∩ Comp(A1,A2) and

(iii) δA1‖A2
= δA1⊗A2

∩ (Comp(A1,A2)
× ΣA1‖A2

× Comp(A1,A2))

3 Proposed Approach

In this section we will introduce the steps of our approach:
first we present a general explanation of the verification pro-
cess, then we describe the phases of the consistency and com-
patibility verification between blocks and finally we propose
an algorithm to follow in order to do this verification.

3.1 Approach Overview

Our approach aims to propose a method to formalize and
verify SysML blocks in a process of refinement. We show the
general process of our approach in Figure 1. From a Block
Definition Diagram (BDD), we decompose it into several sub-
blocks and then we perform verifications, under some condi-
tions, to the system architecture and its behaviour. For each
block we describe its internal block diagram to show the in-
teractions between sub-blocks that compose it. In order to

Figure 1: Proposed approach for verifying consistency and
compatibility in SysML blocks

verify the consistency between a block and its sub-blocks, we
verify the conditions of consistency and compatibility during
their interactions. To achieve this verification, we associate
an interface automaton to each sub-block by using its be-
haviour specified by sequence diagram and by exploiting the
approach proposed in [CH11]. We exploit also the require-
ments diagram in order to identify requirements that should
be satisfied by the compatibility verification between sub-
blocks. These requirements identify the properties of inter-
operability that must hold in the component based system in
order to ensure a reliable interaction between components.
This allows us to define a relationship (that we call also trace-
ability) between requirements level and formal verification
level. We can verify the compatibility and the composability
by means of a checking tool like Ticc [ADADS+06].

3.2 Consistency Verification between
Blocks

The consistency conditions between blocks allow us to de-
termine if the inputs of the abstract block are taken by the
sub-blocks which compose it. Similarly it is verified whether
or not the outputs of the abstract block are provided by the
outputs of the sub-blocks. Composability ensures that the
blocks in question do not share the same inputs and the same
outputs. These conditions result in the following:

We consider two interface automata A1 and A2 associated
to the sub-blocks B1 and B2 (figure 1), ΣI

B as the input
actions and ΣO

B as the output actions of the abstract block.

• Condition 1 (Composability):

3

This condition ensures to compose A1 and A2 and to
apply the interface automata theory to verify their com-
patibility
ΣI

A1
∩ΣI

A2
= ΣO

A1
∩ΣO

A2
= ΣH

A1
∩ΣA2 = ΣH

A2
∩ΣA1 = ∅.

• Condition 2 (At least the same inputs):
This condition ensures that the sub-blocks B1 and B2

offer at least the same services (inputs) as the bloc B
ΣI

B ⊆ ΣI
A1
∪ ΣI

A2
\ Shared(A1, A2)

• Condition 3(At most the same outputs):
The sub-blocks B1 and B2 require at most the same
services (outputs) as the abstract block B
ΣO

A1
∪ ΣO

A2
\ Shared(A1, A2) ⊆ ΣO

B

These conditions allow us to apply the approach of inter-
face automata in order to verify then the compatibility of
the blocks.

3.3 Compatibility Verification between
blocks

The compatibility verification between two blocks B1 and
B2 is obtained by verifying the compatibility between their
interface automata A1 et A2. To verify the compatibility
between two blocks B1 and B2, this approach verifies if there
is an environment where it is possible to correctly assemble
B1 and B2. Thus, we assume the existence of an environment
that accepts all output actions of the synchronized product
automaton of A1 and A2, and does not trigger any input
action of A1 ⊗A2.

Condition 4 (Compatibility): Two interface automata
A1 and A2 are compatible if and only if their composition
A1 ‖ A2 has at least one reachable state.

The composition A1 ‖ A2 is calculated according to defini-
tion 4 and by applying the algorithm described in [dAH01].

3.4 Verification Algorithm of the Con-
sistency and Compatibility between
Blocks

The Algorithm 1 shows the pseudo-code to implement our
approach, first we verify the consistency between the blocks
and if they are consistent we continue to verify their com-
patibility.

The complexity of this algorithm is in time linear on the
size of the interface automata and is given by O(|A1 ×A2|).
In fact, the complexity of the compatibility verification is
O(|A1×A2|) [dAH01] and we can easily verify that the com-
plexity of the verification of conditions 1,2 and 3 do not in-
crease this complexity.

4 Case Study

To illustrate our approach, we apply the decomposition to a
SysML model that specifies the implementation of a security
system in a car. Figure 2 shows the requirements diagram

Algorithm 1: Verification of the consistency and the
compatibility between blocks

Data: two sub-blocks B1 and B2 with associated
interface automata A1 and A2

Result: compatibility between B1 and B2?

Consistency verification:

1. Verify the condition 1 (composability)

2. Verify the condition 2 (at least the same inputs)

3. Verify the condition 3(at most the same outputs)

if one of the conditions is not verified then
B1 and B2 are inconsistents;

else
Compatibility verification:

1. Compute the product A1 ⊗A2

2. Compute the product
A1 ‖ A2 = A1 ⊗A2 − Illegal(A1, A2) and remove
the unreachable states

3. Verify the condition 4

if condition 4 is verified then
B1 and B2 are compatible

else
B1 and B2 are incompatible

end

end

associated to the security requirements; in one side the pre-
vention requirements composed by several control elements
like the tire pressure checking, the oil level checking of the
braking system, the locking state of safety belts by presence
of passengers and the prevention of speed excess; and on the
other side the reaction requirements to be implemented if the
car has an accident such as locking seat belts and airbags in-
flating. We also have in the reaction side, one requirement to
validate the interoperability between an acceleration sensor
and a control point that we are going to verify following our
interface automata approach.

The block definition diagram associated with this study is
shown in Figure 3, it refers to the reaction requirement and is
represented by an abstract block named Control system that
eventually we propose to decompose in four different sub-
blocks : Acceleration sensor, Control point, Airbag system
and Seatbelt lock. As said before, we will verify this proposed
decomposition by following our approach through interface
automata, at that point we also need to model the internal
composition of the abstract block by specifying its internal
block definition diagram that we present in Figure 4.

Figure 4 shows the connections between two of the blocks
that decompose the abstract block, the input of the abstract
block will be taken by the block Acceleration sensor and
its outputs will be provided by the block Control point ; the

4

Figure 2: Requirements diagram of the security in a car

Figure 3: Block definition diagram of the security in a car

5

Figure 4: Internal block diagram of the security in a car

Figure 5: Interface automaton A1 associated to the acceler-
ation sensor

Figure 6: Interface automaton A2 associated to the Control
point

interaction between the two sub-blocks will be given through
the connector acceleration.

From the internal block definition diagram shown in Fig-
ure 4 and the definition of the requirements in Figure 2 we
associate the interface automata A1 and A2 shown in Figures
5 and 6, the actions of these automata are deduced from the
requirements diagram and it is not automatic, in this exam-
ple we show only the automata composition for a controller
that will activate the seat belts lock and the airbag.

We verify the conditions of our approach on the block
Control system and the sub-blocks Acceleration sensor and
Control point.

Figure 7: Product A1 ‖ A2 between the automata Accelera-
tion sensor and Control point

4.1 Consistency Verification

To verify the consistency of the associated automata, we first
check their composability as exposed in condition 1 looking
at the inputs, outputs and internal actions of each sub-block
as follows:
ΣI

A1
= {speed}, ΣO

A1
= {acceleration}, ΣH

A1
= ∅

ΣI
A2

= {acceleration}, ΣO
A2

= {lock, airbag}, ΣH
A2

=
{accelerationcontrol, ok}
Shared(A1, A2) = {acceleration}
and we do not find inputs or outputs that are present simul-
taneously in both automata, ie. ΣI

A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
=

ΣH
A1
∩ ΣH

A2
= ∅; then we check the condition 2 and we find

that the input ΣI
B = {speed} of the abstract block Control

system is present in the automaton Acceleration sensor, ie.
ΣI

B ⊆ ΣI
A1
∪ΣI

A2
\ Shared(A1, A2); and finally for the condi-

tion 3 we check that the outputs ΣO
B = {lock, airbag} of the

abstract block are the same outputs required associated to
the sub-blocks present in the interface automaton associated

6

to the block Control point, ie. ΣO
A1
∪ΣO

A2
\ Shared(A1, A2) ⊆

ΣO
B . We can therefore conclude that they are consistent.

4.2 Compatibility Verification

To verify the compatibility of the interface automata associ-
ated to the two blocks, we compute the synchronous product
A1 ⊗ A2 and we eliminate unreachable states to obtain the
product A1 ‖ A2 as indicated by condition 4 of our approach,
this synchronous product is given in Figure 7. The calcu-
lated automaton contains no illegal states and therefore they
are compatible. We deduce that the two blocks Acceleration
sensor and Control point are consistent and compatible and
that the block Control system can be decomposed into the
sub-blocks Acceleration sensor and Control point. Therefore
we conclude that the Interoperability requirement R1.2.1.1
present in the figure 2 is satisfied.

5 Related Works

In the field of components, several approaches have been
proposed including those of Szyperski in [Szy99], Medvidovic
in 2000 [MT00]. Most models consider the components with
their behaviour, connectors and services that are provided or
required. The assembly operation of components may occur
at different levels of abstraction, from the design of software
architectures DSA to the implementation in platforms such
as CORBA or .NET. The crucial question that arises to the
developer is whether the proposed assembly is valid or not.

In our case, we are interested in SysML blocks specified
by their interfaces and their behaviours modelled using au-
tomata. We can cite as examples the model of Allen 1997
[AG97] where the protocols are associated with component
connectors. Attie in 2006 [ALPC06] combines protocols to
interfaces connecting two components. Others, like Becker
in 2004 [SSR04] propose a framework for comparing models
with three levels of interoperability using the signatures, the
protocols associated to the components and quality of ser-
vice. The protocols of Giannakopoulou et al. 1999 [MKG99]
are based on works on automata and competition using the
formalism of transition systems, including the analysis of
reachability. The composition operation is essential to define
the assembly and verify the safety and liveliness properties.

The approach of Moizan et al. 2003 [MRR03] aims to pro-
vide UML components with the specification of their proto-
cols. The behaviour description language is based on hier-
archical automata inspired by StateCharts. It can support
mechanisms for composition and refinement of behaviours.
Properties are specified in temporal logic.

In Ardourel in 2005 [AAA05], the authors define a model
Kmelia of abstract components with services, who do not
take into account the data during the interaction. The be-
haviours are described by automata associated to services.
This environment uses the MEC model checker tool to ver-
ify compatibility of components.

Other works deal with the inclusion of real-time con-
straints as in Etienne et Bouzefrane in 2006 [EB06]. It aims
to determine the characteristics of components and to define
some criteria to verify compatibility of their specifications
during the assembly phase using the tool Kronos.

Our approach allows to analyse the consistency, compos-
ability and compatibility between blocks. It combines semi-
formal models based on SysML and formal models based on
interface automata for correct assembly between blocks.

6 Conclusion and Perspectives

We have shown in this article how to verify the compatibility
between SysML blocks. This compatibility can be guaran-
teed in two ways: behavioural and architectural consistency.
Behavioural compatibility uses the model of interface au-
tomata proposed by L. de Alfaro and T.-A. Henzinger. It is
based on the detection of illegal states during the interaction
between blocks. It also allows us to show how to refine an
abstract SysML block into several sub-blocks. This approach
defines also a traceability between requirement diagram and
the compatibility verification step. Indeed, we show that the
verification step allows to verify whether the system require-
ments are satisfied or not.

We plan to continue this work in two directions. The first
is to define a new SySML profile in order to associate formal
properties to the system requirements, and to consider theme
in the interface automata approach. So, we plan to define
a formal specification for these properties close to interface
automata model, in order to integrate easily these properties
in the verification step. The second line of research is to au-
tomate this approach using the platform TopCased to make
it operational. Our goal is to generate specifications that
will be used by the tool TICC [tic, ADADS+06] to verify
compatibility between SysML blocks by using an optimistic
approach. The diagnosis obtained will be used to detect any
anomalies and to assist the designer to correct specifications
for compatible blocks. When the blocks are shown incom-
patible, we plan to used our published works in [CMM12] to
generate blocks adapters to make compatible the incompat-
ible blocks.

References

[AAA05] Pascal André, Gilles Ardourel, and Christian
Attiogbé. Behavioural Verification of Ser-
vice Composition. In ICSOC Workshop on
Engineering Service Compositions, WESC’05,
pages 77–84, Amsterdam, The Netherlands,
2005. IBM Research Report RC23821.

[ADADS+06] B. Adler, L. De Alfaro, L. Da Silva, M. Faella,
A. Legay, V. Raman, and P. Roy. Ticc: A
tool for interface compatibility and composi-
tion. In Computer Aided Verification, pages
59–62. Springer, 2006.

7

[AG97] Robert Allen and David Garlan. A formal ba-
sis for architectural connection. ACM Trans-
actions on Software Engineering and Method-
ology, 6(3):213–249, July 1997.

[ALPC06] Paul Attie, David H. Lorenz, Aleksandra Port-
nova, and Hana Chockler. Behavioral com-
patibility without state explosion: Design
and verification of a component-based eleva-
tor control system. In I. Gorton et al., edi-
tor, Proceedings of the 9th International Sym-
posium on Component-Based Software Engi-
neering, number 4063 in LNCS, pages 33–46.
Springer Verlag, 2006.

[CH11] Samir Chouali and Ahmed Hammad. Formal
verification of components assembly based on
sysml and interface automata. ISSE, 7(4):265–
274, 2011.

[CMM12] Samir Chouali, Sebti Mouelhi, and Hassan
Mountassir. Adaptation sémantique des pro-
tocoles des composants par les automates
d’interface. TSI - Technique et Science In-
formatiques, 31(*):***–***, 2012. Papier ac-
cepté. À parâıtre.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. In-
terface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Soft-
ware Engineering (FSE), ACM, pages 109–
120. Press, 2001.

[EB06] J.-P. Etienne and S. Bouzefrane. Vers
une approche par composants pour la
modélisation d’applications temps réel. In
(MOSIM’06) 6ème Conférence Francophone
de Modélisation et Simulation, pages 1–10,
Rabat, 2006. Lavoisier.

[LT87] N. Lynch and M. Tuttle. Hierarcical correct-
ness proofs for distributed algorithms. In the
proceeding of the 6th ACM Symp. Principles of
Distributed Computing, pages 137–151, 1987.

[MKG99] Jeff Magee, Jeff Kramer, and Dimitra Gian-
nakopoulou. Behaviour analysis of software
architectures. In WICSA1: Proceedings of
the TC2 First Working IFIP Conference on
Software Architecture (WICSA1), pages 35–
50, Deventer, The Netherlands, The Nether-
lands, 1999. Kluwer, B.V.

[MRR03] S. Moisan, A. Ressouche, and J. Rigault. Be-
havioral substitutability in component frame-
works: A formal approach, 2003.

[MT00] Nenad Medvidovic and Richard N. Taylor. A
classification and comparison framework for
software architecture description languages.
Software Engineering, 26(1):70–93, 2000.

[Obj03] The Object Mangagement Group (OMG).
UML for Systems Engineering. Request for
Proposal, 2003.

[Obj05] Object Management Group. The OMG Uni-
fied Modeling Language Specification, UML
2.0, 2005.

[Obj10] The Object Mangagement Group (OMG).
OMG Systems Modeling Language (OMG
SysML) Specification Version 1.2, 2010.
http://www.omg.org/spec/SysML/1.2/.

[omg] http://www.omg.org.

[SSR04] Becker Steffen, Overhage Sven, and Reuss-
ner Ralf. Classifying software component in-
teroperability errors to support component
adaption. In Crnkovic Ivica, Stafford Judith,
Schmidt Heinz, and Wallnau Kurt, editors,
Component Based Software Engineering, 7th
International Symposium, CBSE 2004, Ed-
inburgh, UK, May 24-25, 2004, Proceedings,
pages 68–83. Springer, 2004.

[sys] SysML FAQ - what is the rela-
tionship between SysML and UML?
http://www.sysmlforum.com/faq/relation-
between-SysML-UML.html.

[Szy99] C. Szyperski. Component Software. ACM
Press, Addison-Wesley, 1999.

[tic] http://dvlab.cse.ucsc.edu/Ticc.

8

