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Abstract
In vertebrates, offspring survival often decreases with increasing maternal age. 
While many studies have reported a decline in fitness-related traits of offspring with 
increasing maternal age, the study of senescence in maternal effect through age-
specific changes in offspring physiological condition is still at its infancy. We assessed 
the influence of maternal age and body mass on offspring physiological condition 
in two populations of roe deer (Capreolus capreolus) subjected to markedly differ-
ent environmental conditions. We measured seven markers to index body condition 
and characterize the immune profile in 86 fawns which became recently independ-
ent of their known-aged mothers. We did not find striking effects of maternal age 
on offspring physiological condition measured at 8 months of age. This absence of 
evidence for senescence in maternal effects is likely due to the strong viability selec-
tion observed in the very first months of life in this species. Offspring physiologi-
cal condition was, on the other hand, positively influenced by maternal body mass. 
Between-population differences in environmental conditions experienced by fawns 
also influenced their average body condition and immune phenotype. Fawns fac-
ing food limitation displayed lower values in some markers of body condition (body 
mass and haemoglobin levels) than those living in good quality habitat. They also 
allocated preferentially to humoral immunity, contrary to those living in good condi-
tions, which allocated more to cellular response. These results shed a new light on 
the eco-physiological pathways mediating the relationship between mother's mass 
and offspring condition.
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1  | INTRODUC TION

With increasing age, most vertebrates show a decline in reproduc-
tive traits, which is ultimately responsible for a decrease in repro-
ductive success (Lemaître & Gaillard, 2017; Nussey et al., 2013). In 
females, this age-related decline in reproductive success, known as 
reproductive senescence, is particularly visible through a decline 
in the birth rate, clutch/litter size or survival of offspring born to 
old mothers. Empirical evidence from wild populations shows that 
senescent females are less efficient at raising offspring (i.e. less 
offspring weaned or offspring with low viability, e.g. in American 
red squirrels, Tamiasciurus hudsonicus, in Descamps et  al.,  2008; 
in meerkats, Suricata suricatta, in Sharp & Clutton-Brock,  2010; in 
bottlenose dolphins, Tursiops aduncus, Karniski et al., 2018; Ivimey-
Cook & Moorad,  2020 for a review—but see also Ivimey-Cook & 
Moorad, 2020 for some exceptions, e.g. collared flycatcher, Ficedula 
albicollis). A delayed date of birth/laying or a lower body mass of 
offspring with increasing mother age often accounts for the ob-
served decrease in offspring survival born to old females (Lemaître 
& Gaillard, 2017).

The proximate causes of reproductive senescence are still poorly 
understood, but a physiological deterioration of the female's repro-
ductive system over time leading to changes in age-specific maternal 
effects may be involved (maternal effect senescence), independently 
of any age-specific changes in fertility (Karniski et al., 2018; Lemaître 
& Gaillard, 2017; Moorad & Nussey, 2016). Maternal effects com-
prise a wide range of phenotypic influences of the mother on off-
spring phenotype, which are not related to maternal and offspring's 
own genotype (Bernardo, 1996; Wolf & Wade, 2009). They can be 
direct—through post-natal maternal care—such as feeding or licking/
grooming behaviour (Cameron, Fish & Meaney,  2008; Cameron, 
Shahrokh, et  al.,  2008; Gouldsborough et  al.,  1998; Mousseau & 
Fox, 1998), but also indirect. In the latter case, mothers can influ-
ence the immune development of their offspring during the pre- and 
post-natal stages, in particular through the transmission of antibod-
ies providing direct protection during ontogenesis of the offspring's 
immune system (Grindstaff et al., 2003). Generally, maternal traits 
influence offspring size and growth (e.g. influence of maternal body 
mass in collared lemming, Dicrostonyx groenlandicus, Boonstra & 
Hochachka, 1997 or in Harbour seal, Phoca vitulina, Ellis et al., 2000), 
and thereby offspring survival. These maternal effects on offspring 
traits are expected to be particularly strong in mammals compared to 
other taxa because of both the extended period of maternal care and 
the close association between mother and offspring during gestation 
and lactation (Reinhold, 2002). However, these maternal effects may 
be prone to senescence and thus decline with increasing mother age. 
For instance, diminished ability to forage (Catry et al., 2006) or to 
store body reserves in old females leads to decrease the amount of 
resources transferred to offspring (Lecomte et al., 2010), especially 
during the offspring rearing period, when energy and nutrient de-
mands peak (Clutton-Brock et al., 1989; Sadleir, 1984). Age-related 
decline in resource acquisition is likely to affect both the quality 
and the quantity of milk produced by old females and could explain 

why old females often produce lighter offspring (e.g. in northern fur 
seals, Callorhinus ursinus, Boltnev & York,  2001). Milk mostly con-
tains water, lipids, proteins, sugars and minerals such as calcium 
(Oftedal, 1984), and its composition varies with maternal body mass 
and condition in many species (reviewed in Skibiel & Hood, 2015). 
The variation in milk composition, especially of fat and protein con-
tent, influences mass, growth rate (Mellish et al., 1999) and survival 
(Skibiel & Hood, 2015) of offspring in mammals.

Age-related changes of the immune profile in females (e.g. 
Palacios et  al.,  2007; Ujvari & Madsen,  2011) may be another 
mechanism by which maternal effects vary during ageing. Mother-
to-offspring transmission of immunity is a major determinant of im-
mune capacities in young vertebrates (Grindstaff et al., 2003). This 
transmission includes the transfer of IgG (or IgY in birds) immuno-
globulins, but also has persistent effects on the offspring immune 
response that may far outreach the presence of maternally derived 
antibodies (Lemke et  al.,  2003; Reid et  al.,  2006). The ability to 
transmit immune competence should also depend on females' own 
immune status and history of antigen stimulation, which are both 
changing with age. A decline in the transmission of immune defences 
with increasing maternal age could thus not only influence the devel-
opment of immunity in offspring but also their survival prospects, as 
recently documented in Soay sheep, Ovis aries (Sparks et al., 2020).

Although several studies reported a decline in offspring condi-
tion with increasing maternal age—through fitness-related traits such 
as offspring body mass (Descamps et al., 2008; Nussey et al., 2006; 
Sharp & Clutton-Brock,  2010), the effect of maternal age on off-
spring physiological condition (set of physiological traits describing 
the health status of the individuals at a finer scale) has remained 
poorly investigated (but see Froy et al., 2017; Saino et al., 2002). A 
study on the blue-footed booby (Sula nebouxii) has provided exper-
imental evidence of a decreased quality of eggs produced by older 
mothers, coupled with a decline in offspring rearing capacities, 
growth (e.g. ulna length, β = −0.20 [−0.39: −0.02] and T-lymphocyte 
response (second chick, β  =  −0.16 [−0.31; −0.02]) (Beamonte-
Barrientos et al., 2010). To the best of our knowledge, such studies 
are lacking in wild mammals, and the effect of increasing maternal 
age at conception on physiological traits such as immunity remains 
to be explored. Here, we assessed the effect of maternal age and 
body mass on offspring physiological condition in a wild mammal, 
the roe deer (Capreolus capreolus). In this weakly polygynous ungu-
late, females show senescence in many traits including body mass 
(Douhard et al., 2017), haematological traits related to body condi-
tion (Jégo, Lemaître, et al., 2014) and immune competence (Cheynel 
et  al.,  2017), all traits that are supposed to be linked to offspring 
condition. We analysed seven markers to measure both physiologi-
cal body condition and immunity in 86 roe deer fawns which became 
recently independent of their known-age mothers. In particular, we 
measured circulating concentrations of albumin, fructosamine and 
haemoglobin as physiological markers of individual condition (Gilot-
Fromont et al., 2012; Jégo, Lemaître, et al., 2014). To assess immune 
functions, we measured neutrophil and lymphocyte counts, and 
gamma-globulin and haptoglobin levels, as markers of cellular and 
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humoral effectors of both innate and adaptive components (Gilot-
Fromont et al., 2012). Based on our current knowledge, we expected 
lower levels of physiological markers in fawns born to older females 
compared to prime-aged ones. In addition, as adult body mass is a 
reliable proxy of individual performance in female roe deer (Plard 
et al., 2015), we also expected that the deleterious effect of mother 
age on offspring condition should be more pronounced for fawns 
born to the lightest females since these latter likely have lower ca-
pacities to transfer resources to their offspring.

2  | MATERIAL S AND METHODS

2.1 | Ethics

All applicable institutional and/or national guidelines for the care 
and use of animals were followed. The protocol of capture and blood 
sampling of roe deer under the authority of the Office Français de la 
Biodiversité (OFB) was approved by the Director of Food, Agriculture 
and Forest (Prefectoral order 2009-14 from Paris). All procedures 
were approved by the Ethical Committee of Lyon 1 University (pro-
ject DR2014-09, June 5, 2014).

2.2 | Study population

Roe deer data were collected in two populations living in enclosed 
forests, at Trois Fontaines located in north-eastern France (1,360 ha, 
48°43′N, 4°55′E) and at Chizé located in western France (2,614 ha, 
46°50N, 0°25′W). The Trois Fontaines forest offers habitats of high 
quality to roe deer, due to rich soils and a continental climate char-
acterized by cold winters and warm rainy summers. In contrast, the 
Chizé forest offers a relatively poor habitat to roe deer because of 
the low productivity of the soils and a temperate oceanic climate 
with Mediterranean influences characterized by frequent summer 
droughts (Pettorelli et  al.,  2006). The contrasting environmental 
conditions encountered by roe deer in the studied populations are 
associated with marked differences in adult body mass (Gaillard 
et  al.,  2013), offspring survival (Gaillard et  al.,  1997) and immune 
profile (Cheynel et al., 2017). Roe deer populations were monitored 
as part of a long-term Capture–Mark–Recapture program. As roe 
deer females give birth in spring, systematic searches for newborn 
fawns were conducted between April and June. Upon capture, 
fawns were individually marked (but no blood samples were col-
lected at this stage), and the filiation with the mother was assessed 
from either field observations or from a pedigree built in these pop-
ulations and encompassing roe deer born from 1996 onwards (see 
Quéméré et al., 2018 for further details). Roe deer captures are also 
organized every winter between December and March (see Gaillard 
et al., 1993 for details on capture sessions). At the time of capture, 
roe deer offspring are approximately 8-months of age. Lactation can 
last until September or October (Sempéré et al., 1988), but offspring 
orphaned in early August are able to survive (D. Delorme, pers. 

comm.). Roe deer offspring captured in winter were thus fully inde-
pendent from their mother. During captures, sex and body mass (to 
the nearest 50g) were recorded and a basic clinical examination was 
performed. We also collected blood samples from the jugular vein 
(up to 20 ml for a 20 kg roe deer). Whole blood was EDTA-preserved 
for cell count, and serum was extracted for other measures. Samples 
were received at the laboratory within 48 hr after sampling and ana-
lysed within 4 hr.

2.3 | Characterization of body 
condition and immunity

We assessed body condition of fawns through four haematologi-
cal traits that reflect energetic and protein reserves. Albumin is the 
most abundant plasma protein, and its measure reflects the level 
of protein resources, independently of the immune status (Sams 
et al., 1998; Stockham & Scott, 2008). It is thus considered as a rel-
evant indicator of physiological status in ruminant species (Milner 
et  al.,  2003; Pérez et  al.,  2006) and strongly correlates to other 
indices of body condition in roe deer (Gilot-Fromont et  al.,  2012). 
Albumin was separated from other proteins and quantified by refrac-
tometry followed by electrophoresis, using an automatic agarose gel 
(HYDRASYS; Sebia) and expressed as mg/ml of serum. Fructosamine 
levels represent glycated proteins and indicate glycaemia during 
the 2–3  weeks preceding sampling. This marker gives information 
on the level of carbohydrate reserves (Stockham & Scott,  2008). 
Fructosamine concentration was measured using Thermo scien-
tific reagents and ABX Pentrafructosamine reagents on a Konelab 
30i automaton (Fisher Thermo Scientific) and expressed as µmol/L 
of serum. Total blood haemoglobin concentration (in g/dl) reflects 
blood oxygen-carrying capacity. As high haemoglobin concentration 
improves overall aerobic capacity (Minias, 2015), it is considered as 
a robust indicator of physiological condition and nutritional status 
of individuals (Minias,  2015). In roe deer, haemoglobin concentra-
tion was related to body mass and other body condition metrics (e.g. 
albumin concentration, Gilot-Fromont et  al.,  2012). Haemoglobin 
concentrations were issued from a complete blood count performed 
using an ABC Vet automaton (Horiba Medical) and measured follow-
ing cyan methaemoglobin conversion at 550 nm, the most commonly 
used method in mammals (Stockham & Scott, 2008).

We assessed the immune phenotype of fawns by counting neu-
trophils and lymphocytes and by measuring gamma-globulin and 
haptoglobin levels (see also Cheynel et al., 2017). Neutrophils and 
lymphocytes represent between 70%–80% and 20%–30% of the 
total white blood cells, respectively. Neutrophil count is repre-
sentative of the cellular innate immunity. As lymphocytes include 
both T and B cells, with B cells being particularly involved in the 
production of antibodies, we used them to represent the cellu-
lar adaptive immunity. We determined neutrophil and lymphocyte 
composition based on the identification of the first hundred white 
blood cells in Wright-Giemsa-stained blood smears (Gilot-Fromont 
et al., 2012; Houwen, 2001). With this proportion of neutrophils and 
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lymphocytes (in %) and the total white blood cell count measured 
by impedance technology, we calculated the concentration of neu-
trophils and lymphocytes (103 cells/ml). Gamma-globulins represent 
the majority of circulating antibodies and reflect the humoral adap-
tive immunity. Gamma-globulins (mg/ml) were separated from other 
proteins and quantified by refractometry, followed by electropho-
resis, using an automatic agarose gel (HYDRASYS; Sebia). Finally, 
we measured the specific level of haptoglobin, a protein belonging 
to the alpha2-globulin fraction synthesized in case of chronic in-
fection or inflammation, representing humoral innate immunity. 
Haptoglobin analyses were performed on a Konelab 30i automaton 
(Fisher Thermo Scientific) using phase Haptoglobin assay (Tridelta 
Development LTD) chromogenic kit. A correlation matrix among all 
the physiological traits measured in this study (Table S1, Supporting 
Information) showed that the haematological and immunological 
traits considered here are not strongly correlated between each 
other's and thus provide independent information.

2.4 | Statistical analysis

We performed statistical analyses on 86 fawns born between 
2009 and 2017 and sampled at 8 months of age. All fawns were 
born to identified mothers of known-aged. The age of mothers at 
parturition ranged between 3 and 12  years, which encompasses 
the entire reproductive life of most roe deer females (Gaillard 
et al., 1992). The detailed distribution of individuals by sex, study 
site and maternal age is given in Appendix S2. Representations of 
each offspring trait as a function of maternal age are provided in 
Appendix S3.

2.5 | Linear mixed models

We tested the effect of maternal age on body condition (body 
mass and haematological traits) and immunological traits of off-
spring using linear mixed-effect models (LMMs). Each offspring 
trait was analysed as a response variable. For each offspring trait, 
we first built a base model to investigate the effect of all possible 
confounding factors (maternal body mass entered as a covariate, 
offspring sex entered as a fixed-factor, offspring body mass en-
tered as a covariate and population entered as a fixed-factor, and 
maternal age at last measurement to account for selective disap-
pearance, see below). Maternal body mass was the mean adult 
body mass of females between 4 and 10 years of age and was en-
tered in the models as a two-class factor: ‘heavy’ (i.e. mother with 
a higher body mass than the median mass of its corresponding 
population, threshold at 23.8 kg at Trois Fontaines and 20.7 kg 
at Chizé) and ‘light’ (i.e. mother with a body mass lower than the 
median mass of its corresponding population). A two-class fac-
tor was chosen to facilitate the interpretation of the interaction 
between maternal body mass and maternal age (entered as a con-
tinuous variable, see below). Offspring body mass was adjusted 

to the median date of capture (i.e. January 27th). This adjustment 
is required because fawns grow throughout their first winter 
(Hewison et  al.,  2002). The average daily mass gain throughout 
the winter was 12 ± 0.005 (SE) g/day at Chizé and 24 ± 0.008 g/
day at Trois Fontaines (linear regression with date of capture as 
the sole covariate; no sex differences was detected; see Douhard 
et al., 2017 for further details). The birth cohort was included as 
a random effect to control for the marked differences in environ-
mental conditions faced by roe deer during early life (Douhard 
et al., 2014), which could ultimately influence physiological traits. 
Individual identity of the mother was also included as a random 
effect to account for confounding effects of pseudo-replication 
(sensu Hurlbert 1984). To control for the possible effect of selec-
tive disappearance of mothers (Van de Pol & Verhulst, 2006), we 
included the maternal age at last observation as a covariate in all 
our models (since longevity was unknown for most of the females 
analysed here). Indeed, a possible positive association between 
female's longevity and physiological condition in their offspring 
could further mask senescence (see Nussey et al., 2008).

Then, in a second step, we tested the effect of maternal age 
by adding different age functions to the base models selected for 
each trait. Four different types of age functions were tested: lin-
ear, quadratic, two classes (‘prime-aged’, i.e. females aged between 
3 and 7 years and ‘old’, i.e. females aged 8 years or more, Gaillard 
et al., 1993) and linear with a threshold. For threshold models, the 
threshold was determined by maximum likelihood estimation among 
values ranging between 3 and 11 years of age (see Ulm & Cox, 1989). 
Depending of the variables retained in the basal model, two-way in-
teractions between maternal age and maternal body mass, offspring 
sex and population were also included.

For the two steps described above, we used a model selec-
tion procedure based on the Akaike Information Criterion (AIC, 
Burnham & Anderson,  2002). We retained the model with the 
lowest AIC, and when the difference of AICs between compet-
ing models was less than 2, we retained the model with least pa-
rameters to satisfy parsimony rules (Burnham & Anderson, 2002; 
see Appendix  S4 for the comparison of the most competitive 
models and Appendix  S5 for the AIC values of all the models 
tested). Finally, the goodness of fit of the selected models was 
assessed through calculating conditional (i.e. total variance ex-
plained by the best supported model) and marginal (i.e. variance 
explained by fixed effects alone) R2 formulations (Nakagawa & 
Schielzeth, 2013).

2.6 | Effect sizes

We calculated the effect size of maternal age on each offspring physi-
ological trait even when it was not included in the selected model. 
Effect sizes were calculated as partial correlation coefficients, which 
measure the standardized effect of maternal age on an offspring trait, 
while controlling for the potential effects of other traits. To obtain 
the different effect sizes, for each physiological trait we first fitted 
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the mixed-effect model including maternal age (linear), maternal age 
at last observation and body mass as fixed factors, and cohort and 
maternal identity as a random effect on the intercept (i.e. additive 

model). We then used the equation provided by Nakagawa and Cuthill 
(2007, p. 82) for mixed-effect models to calculate effect size. We cal-
culated confidence intervals of effect sizes following Nakagawa and 

TA B L E  1   Parameter estimates of the selected linear mixed-effect model for body condition (i.e. body mass and haematological traits) and 
immune traits in offspring (roe deer fawns at 8 months of age)

Best model selected Estimate ± SE t-value p R2m R2c

Body condition

Body mass Population

Intercept 14.89 ± 0.83 17.80 *** 0.39 0.61

Population (Chizé) −3.57 ± 0.54 −6.58 ***

Maternal age at last observation 0.14 ± 0.09 1.53 –

Albumin Offspring body mass

Intercept 23.51 ± 3.05 7.72 *** 0.09 0.86

Offspring body mass 0.65 ± 0.15 4.38 ***

Maternal age at last observation 0.28 ± 0.15 1.85 –

Fructosamine Maternal body mass + Offspring body 
mass

Intercept 168.43 ± 20.98 8.03 *** 0.18 0.59

Maternal body mass (heavy) 14.41 ± 5.87 2.46 *

Offspring body mass 5.51 ± 1.16 4.77 ***

Maternal age at last observation −1.54 ± 1.28 −1.20 –

Haemoglobin Population

Intercept 17.45 ± 0.56 30.90 *** 0.33 0.44

Population (Chizé) −2.24 ± 0.37 −6.06 ***

Maternal age at last observation 0.01 ± 0.06 0.08 –

Immune traits

Neutrophil count Maternal body mass + Population

Intercept 5.46 ± 0.70 7.77 *** 0.16 0.49

Maternal body mass (heavy) 0.91 ± 0.41 2.22 *

Population (Chizé) −1.37 ± 0.46 −2.98 **

Maternal age at last observation −0.03 ± 0.08 −0.39 –

Lymphocyte count Offspring body mass + Population

Intercept 5.65 ± 1.12 5.06 *** 0.14 0.51

Offspring body mass −0.15 ± 0.07 −2.28 *

Population (Chizé) −1.40 ± 0.43 −3.29 **

Maternal age at last observation −0.03 ± 0.06 −0.60 –

Gamma-globulin Maternal age × Population

Intercept 13.89 ± 0.81 17.12 *** 0.44 0.59

Population (Chizé) 6.72 ± 0.91 7.37 ***

Maternal age (linear) −0.01 ± 0.21 −0.07 –

Maternal age × population (Chizé) −1.22 ± 0.43 −2.85 **

Maternal age at last observation 0.08 ± 0.19 0.41 –

Haptoglobin Null

Intercept −0.90 ± 0.15 −5.89 *** 0.00 0.56

Maternal age at last observation −0.004 ± 0.01 −0.38 –

Note: Estimates are reported (±one standard error (SE)). Statistical significance is represented by *p < .05, **p < .01 and ***p < .001. R2m and R2c 
correspond to the marginal and conditional variance of the model, respectively (see text for further detail).
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Cuthill (2007)'s recommendations. We calculated effect sizes on the 
whole data set and in the two populations separately to compare the 
direction of the effect between populations. All analyses were carried 

out in R version 3.2.3 (R Core Development Team, 2015) and using the 
function lmer from package lme4 (Bates et al., 2015).

3  | RESULTS

We did not find striking effects of maternal age on markers of body 
condition or immune traits in roe deer offspring, neither in the com-
bined data set (see best models selected in Table 1 and effect sizes 
in Figure 1) nor within each of the two populations (see Figure 1). We 
only found a negative effect of maternal age on the offspring level of 
gamma-globulins at Chizé (see parameter estimates in Table 1, effect 
size in Figure 1 and the model prediction in Figure 2). Maternal age 
at last observation, added in our analyses to control for the possible 
selective disappearance of poor-quality mothers, did not show de-
tectable effects on offspring traits (see effects reported in Table 1). 
Finally, we found a positive association between maternal body mass 
and two traits of offspring condition. Fawns born to heavier mothers 
had higher fructosamine (+9%, Figure 3a and Table 1) and neutro-
phil levels (+15%, Figure 3b and Table 1) than those born to lighter 
mothers.

We also found marked differences in the offspring physio-
logical traits between the two populations. Thus, two markers of 
body condition and three markers of immunity of fawns strongly 
differed between the two populations. Fawns at Chizé were lighter 
(−24%, Table 1), had lower levels of haemoglobin (−13%, Table 1), 
neutrophil (−25%, Table 1) and lymphocyte counts (−25%, Table 1), 
and much higher levels of gamma-globulins (+48%, Table 1) than 
those at Trois Fontaines. Finally, albumin and fructosamine levels 
were positively associated with offspring body mass, contrary to 

F I G U R E  1   Effect size of maternal age on offspring body condition and immunological traits, with Trois Fontaines and Chizé combined 
and separated. Effect sizes are reported together with associated 95%-confidence interval. Blue colour represents a negative effect size and 
red colour a positive effect sizes

F I G U R E  2   Predicted effect of maternal age on offspring 
gamma-globulin levels in two populations of roe deer (Trois 
Fontaines and Chizé). Plots are based on predicted effects from the 
selected model (see Table 1). The lines represent model predictions 
and the shaded areas the 95% CIs. The points correspond to the 
average value per age, and the bars correspond to ± Standard Error
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lymphocyte count, which was negatively associated with offspring 
body mass (Table 1).

4  | DISCUSSION

Our results provide a thorough assessment of the effect of both ma-
ternal age and body mass on the physiology of recently emancipated 
offspring. We found that in roe deer, maternal body mass but not 
maternal age influences offspring physiological condition and immu-
nity. We also highlight that environmental conditions experienced by 
roe deer fawns throughout their first months of life, likely through 
resource quality, play a key role in their physiology.

Although maternal age is an important determinant of early sur-
vival across multiple animal taxa (see Ivimey-Cook & Moorad, 2020 
for a recent review), which suggests that fawns born to old mothers 
suffer from lower body condition and impaired health and physio-
logical performance, we did not detect here an effect of maternal 
age on offspring body mass and only a limited influence on immune 
profile. Only gamma-globulin concentration appeared to be down-
regulated in fawns born to old mothers from Chizé, in accordance 
to what was reported in some published case studies (e.g. reduced 
T-lymphocyte response in chicks born to old mothers, Beamonte-
Barrientos et al., 2010). In our study, this lack of effect of maternal 
age on offspring condition does not seem to be due to selective dis-
appearance of poor-quality mothers with increasing age (Hayward 
et al., 2013; Nussey et al., 2011). However, a detrimental effect of 
maternal age on offspring condition cannot be excluded and might 
have occurred earlier in life. As juvenile survival between birth and 
8 months of age is the critical stage of roe deer population (Gaillard 
et al. 2013), a strong viability selection (sensu Fisher, 1930) in off-
spring might account the lack of effect of maternal age in the present 
analysis. In roe deer, viability selection is particularly pronounced in 
early life, before weaning (Garratt et al., 2015). If fawns born from 

old females show poor physiological condition, they might die in the 
first weeks of their life (i.e. well before their first winter). Thus, the 8-
month old fawns captured in our study may only include individuals 
of quite high body condition. Quantification of physiological mark-
ers in newborn fawns would thus be necessary to assess maternal 
age influences offspring condition and immunity during the neona-
tal stage. Finally, we also cannot exclude the fact that the statistical 
power remains limited in our study due to the size of the data set 
(N = 86 mother-fawn pairs).

On the other hand, the physiological condition of roe deer fawns 
is mainly influenced by both maternal body mass and environmental 
conditions. For many years, studies have reported a positive influ-
ence of maternal body size on offspring size and development in ver-
tebrates (see Ronget et al., 2018 for a review). More specifically in 
roe deer, maternal body mass is positively associated with reproduc-
tive success (Gaillard, Festa-Bianchet, Delorme, et al., 2000; Gaillard, 
Festa-Bianchet, Yoccoz, et al., 2000) and with both offspring birth 
mass and early survival (Plard et  al.,  2015). The positive influence 
of maternal body mass on offspring body condition was revealed 
here at the physiological level. A positive association occurred be-
tween maternal body mass and offspring fructosamine levels. This 
reflects higher levels of carbohydrate reserves of fawns born to 
heavy mothers and suggests thereby a potential for higher physio-
logical performance of these fawns. In addition, maternal body mass 
was positively associated with an offspring cellular immune trait (i.e. 
neutrophil count), but not associated with offspring humoral traits 
(i.e. gamma-globulin and haptoglobin). Neutrophils represent the 
majority of white blood cells and constitute an important part of 
the innate cellular immune response. The immune function is known 
to be energy demanding and strongly dependent of the quality and 
quantity of nutritional resources. The cellular part of the immune 
function entails particularly high costs of production compared to 
the humoral component (Klasing, 2004). This positive effect of ma-
ternal body mass on the offspring condition, particularly on the most 

F I G U R E  3   Effect of maternal body 
mass (‘heavy’ vs. ‘light’ mothers, a 
threshold at 23.8 kg at Trois Fontaines 
and 20.7 kg at Chizé) on (a) offspring 
fructosamine levels and (b) neutrophil 
count
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energy-demanding traits such as neutrophils, may be the result of a 
higher allocation of maternal resources to offspring. Such effect may 
involve a higher milk production and/or an increased protein content 
in milk of heavy mothers (Landete-Castillejos et al., 2003). High ma-
ternal milk production enhances offspring mass gain and immunity 
(Landete-Castillejos et al., 2002, 2003). Therefore, even if 8 months 
old roe deer are not yet fully emancipated, the quantity and quality 
of milk provided by their mother likely has long-lasting effects on 
their physiological condition. Finally, as body mass of roe deer fe-
males is influenced by the quality of their own early-life environmen-
tal conditions (Quéméré et al., 2018), a long-term effect of early-life 
environmental conditions on the quality of maternal effects and on 
the physiology of the offspring could take place.

Finally, we found that environmental conditions influenced physio-
logical traits, especially the immune phenotype, of roe deer fawns. Two 
markers of fawn body condition (body mass and haemoglobin) and two 
cellular immune traits (neutrophil and lymphocyte counts) were lower 
at Chizé where roe deer experience poor living conditions compared to 
their conspecifics at Trois Fontaines. Fawns at Chizé also showed higher 
allocation to humoral immunity (i.e. higher levels of gamma-globulins), 
which is less costly to maintain and use (compared to nonspecific im-
munity, Klasing, 2004), than fawns at Trois Fontaines. These results are 
expected because roe deer at Chizé experience habitats of overall low 
productivity due to poor soils and frequent summer droughts (Pettorelli 
et al., 2006) and have thereby access to fewer/less quality resources 
to allocate to the different physiological functions including immunity. 
Previous studies have shown that fawn survival, female fecundity, adult 
body mass (Gaillard et al., 2013), age-specific telomere length (Wilbourn 
et al., 2017) and many markers of adult immune performance (Cheynel 
et al., 2017) are consistently lower at Chizé than at Trois Fontaines. A 
large proportion of females at Chizé experience nutrient limitation and 
consequently display low body mass (Gaillard et al., 2013). Nutrient lim-
itation should affect their milk production and quality, as milk is very 
dependent on both diet quality (Sutton,  1989) and food availability 
(Landete-Castillejos et al., 2003; Oldham & Friggens, 1989). In addition, 
the lactation period in roe deer takes place during summer, which is 
often particularly dry in the Chizé forest (Pettorelli et al., 2006). Thus, 
the ability of mothers to transfer resources to their offspring during 
their first months of life would be limited at Chizé, explaining the level of 
cellular immunity of fawns being lower at Chizé than at Trois Fontaines. 
Variation in annual environmental conditions is also likely to exacerbate 
the nutrient limitation at Chizé (Quéméré et al., 2018). Finally, at Chizé, 
roe deer face high parasite burden (e.g. Trichuris sp. Cheynel et al., 2017) 
that may both impair their body condition (Jégo, Ferté, et al., 2014) and 
trigger specific immunity, contributing to the high level of antibodies. 
However, it is important to bear in mind that this interpretation relies 
on the comparison of only two populations and could thus be refined by 
information collected in additional populations.

Overall, our study reveals that increased maternal age does not 
lead to impaired physiological condition of weaned roe deer fawns at 
the onset of the winter, but that maternal body mass does influence 
positively offspring physiological performance. Our findings thus 
shed a new light on the physiological factors that link mother's mass 
and offspring performance.
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