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Dependence Testing via Extremes for Regularly
Varying Models

Malcolm Egan

Abstract—In heavy-tailed data, such as data drawn from
regularly varying models, extreme values can occur relatively
often. As a consequence, in the context of hypothesis testing,
extreme values can provide valuable information in identifying
dependence between two data sets. In this paper, the error
exponent of a dependence test is studied when only processed
data recording whether or not the value of the data exceeds
a given value is available. An asymptotic approximation of
the error exponent is obtained, establishing a link with the
upper tail dependence, which is a key quantity in extreme
value theory. While the upper tail dependence has been well
characterized for elliptically distributed models, much less is
known in the non-elliptical setting. To this end, a family of non-
elliptical distributions with regularly varying tails arising from
shot noise is studied, and an analytical expression for the upper
tail dependence derived.

I. INTRODUCTION

Testing for dependence between two data sets is a fun-
damental problem in statistical inference [1], [2], arising in
biology to study evidence of associations between different
molecular species (see e.g., [3]) and also in channel coding
[4]. The simplest class of dependence testing problems arises
in the form of a binary hypothesis test [5], which aims to
distinguish between independent data and data drawn from a
given joint distribution.

One variation on this basic setting is when the data is
processed as follows. Suppose that the data is the sequence
of independent and identically distributed pairs {(Xk, Yk)}nk=1

on R2 and that the processed data is defined by Uk = 1{Xk>ν}
and Vk = 1{Yk>ν} for a given threshold ν > 0. That is,
Uk, Vk are binary variables that take the value one if the data
Xk, Yk, respectively, are greater than the threshold ν and zero
otherwise. In this case, dependence can only be detected from
extreme values of the data, which typically reduces required
compression rates in the context of decentralized tests [6].

A dependence test can then be defined for the processed
data. By the Chernoff-Stein lemma, the corresponding error
exponent is given in terms of the Kullback-Leibler divergence
between the joint and product distributions of the processed
data [7], when each sample is independent. A simple observa-
tion is that if ν is very large, the error exponent will be close to
zero. Nevertheless, the rate at which the error exponent tends
to zero is sensitive to the tail behavior of the data (Xk, Yk). In
particular, it is natural to expect that when (Xk, Yk) are heavy
tailed, the error exponent will be larger than for lighter tailed
distributions for a fixed threshold ν.
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In this paper, we study the behavior of the error exponent for
this dependence test based only on extreme values of the data
{(Xk, Yk)}; i.e., as the threshold ν → ∞. This perspective
differs from existing work, which does not typically consider
the impact of data pre-processing due to, for example, com-
munication constraints (e.g., [1], [2]). We focus on the case
that the data has regularly varying tails [8], which, roughly
speaking, means that the probability density function of the
data decays polynomially. Our first observation is that the rate
the error exponent tends to zero depends on the upper tail
dependence of the data, which characterizes the probability
Yk is large conditioned on the event that Xk is also large.
While the upper tail dependence plays a key role in extreme
value theory [9], it appears to have not previously arisen in the
evaluation of an information measure. As a byproduct, we also
obtain a new characterization of the upper tail dependence in
terms of a Kullback-Leibler divergence.

The upper tail dependence has a well-known charac-
terization for elliptical distributions with regularly varying
marginals. As such, our characterization of the error exponent
in the dependence test based on extremes can be readily
evaluated for this family of distributions. However, there are
far fewer characterizations for the upper tail dependence for
non-elliptical distributions. To this end, we study a family of
non-elliptical distributions with regularly varying marginals
induced by shot noise, which is closely related to interference
statistics in wireless communications [10]. For this family,
we derive a new analytical expression for the upper tail
dependence.

A. Notation

Vectors are denoted by bold lowercase letters and random
vectors by bold uppercase letters, respectively (e.g., x, X).
We denote the distribution of a random vector X by PX.
The cumulative distribution function of random variable X
is denoted by FX(·), and the complementary cumulative
distribution function by FX(·) = 1−FX(·). Let X and Y be
continuous random vectors on Rd with distributions PX and
PY, respectively. The density of X is denoted by pX (w.r.t the
Lebesgue measure) and the density of Y (w.r.t the Lebesgue
measure) by pY, when they exist. If X,Y are two random
vectors equal in distribution, then we write X

d
= Y. The

Kullback-Leibler divergence between two distributions PX and
PY on Rd is then defined by

D(PX||PY) =

∫
Rd
pX(x) log

pX(x)

pY(x)
dx. (1)



Let f : R → R and g : R → R. We use the Landau
notation where f(x) = o(g(x)) if limx→∞

f(x)
g(x) = 0. For two

functions f, g : R → R, we write f(x) ∼ g(x), x → ∞ if
f(x) = g(x) + o(g(x)), x→∞.

II. PROBLEM FORMULATION

Consider a sequence of continuous n independent and
identically distributed random vectors {(Xk, Yk)}nk=1 on R2

and let H0,H1 be the hypotheses that the Xk and Yk are
independent and dependent with joint density pXY , respec-
tively. Suppose that X and Y have the same distribution. In
order to test for dependence, by the Neyman-Pearson lemma,
the optimal test for a given type I error probability α has the
form

n∏
k=1

pXY (Xk, Yk)

pX(Xk)pY (Yk)

H1

R
H0

τα, (2)

where τα is chosen to satisfy the type I error constraint.
Let ν > 0. Another test can then be constructed using the

processed data

Uk = 1{Xk>ν}, Vk = 1{Yk>ν}, k = 1, . . . , n. (3)

Let A ⊂ {0, 1}n be a decision region for H1. For a fixed
0 < ε < 1

2 and type I error probability αn < ε, the minimal
type II error is given by

βεn = min
A⊂{0,1}n
αn<ε

βn. (4)

The Chernoff-Stein lemma [7, Theorem 11.8.3] then yields an
error exponent

lim
n→∞

1

n
log βεn = −D(PUV ||PUPV ). (5)

The problem that we consider in the remainder of this paper
is to characterize D(PUV ||PUPV ) with a focus on the case
where X and Y have regularly varying distributions. Recall
that in the univariate case, a random variable Z has a regularly
varying distribution with index −a ∈ R and slowly varying
function L if

P(|Z| ≥ x) ∼ L(x)x−a, x→∞, (6)

where, for all t > 0, L : R→ R satisfies

lim
x→∞

L(tx)

L(x)
= 1. (7)

III. AN ASYMPTOTIC CHARACTERIZATION OF
D(PUV ||PUPV )

In this section, we derive a closed-form asymptotic charac-
terization of D(PUV ||PUPV ) for large ν. First, recall that

D(PUV ||PUPV )

=

1∑
m=0

1∑
k=0

P(U = k, V = m) log
P(V = m|U = k)

P(V = m)
. (8)

A quantity that will play a central role in our analysis is the
upper tail dependence of (X,Y ), which is given by (see e.g.,
[11])

λ = lim
ν→∞

P(Y > ν|X > ν)

= lim
ν→∞

P(V = 1|U = 1). (9)

The upper tail dependence can also be expressed in terms of
the copula function associated with (X,Y ). Recall that for a
continuous random vector (Z1, Z2), the joint distribution can
be written as

Pr(Z1 ≤ z1, Z2 ≤ z2) = C(F1(z1), F2(z2)), (10)

where C : R2 → R is a copula function, and F1, F2 are
the marginal distributions of Z1, Z2, respectively. By Sklar’s
theorem [11], for each distribution Pr(Z1 ≤ z1, Z2 ≤ z2),
there exists a unique copula function C(·). We then have the
representation of the upper tail dependence given by [11]

λ = lim
u→1−

1− 2u+ C(u, u)

1− u
. (11)

As such, the upper tail dependence does not depend on the
marginal distributions F1, F2 and captures the dependence
structure of (Z1, Z2).

The upper tail dependence is known for several families of
multivariate distributions (including those that are not regularly
varying) [12]. For example,

(i) Multivariate Gaussian distributions (non-regularly vary-
ing): λ = 0.

(ii) Distributions with a known copula function: λ given in
(11).

(iii) Elliptical distributions with regularly varying marginals:

λ =

∫ 1√
2

0
ua√
1−u2

du∫ 1

0
ua√
1−u2

du
, (12)

where −a is the index of regular variation.
Recall that a random vector (Z1, Z2) is said to have an
elliptical distribution if its characteristic function has the form

ΨZ1,Z2(θ) = ϕ(θTRθ), θ ∈ R2 (13)

for some positive definite matrix R ∈ R2×2 and function ϕ :
R → C such that ΨZ1,Z2 is a valid characteristic function.
Important examples of elliptical distributions with regularly
varying tails are the multivariate t-distribution and the sub-
Gaussian α-stable distribution.

For large ν in (3), D(PUV ||PUPV ) admits a concise asymp-
totic approximation in terms of the upper tail dependence.

Proposition 1. Suppose that PY , PX are regularly varying
with index −a and slowly varying function L. If λ > 0, then

D(PUV ||PUPV ) ∼ λL(ν)ν−a log νa, ν →∞. (14)



Proof. Substitute (6) and (9) in (8) to obtain

D(PUV ||PUPV )

∼ λL(ν)ν−a log

(
λνa

L(ν)

)
+ (1− λ)L(ν)ν−a log(1− λ)

+ (1− λ)L(ν)ν−a(1− L(ν)ν−a) log

(
1− λ

1− L(ν)ν−a

)
+ (1− (1− λ)L(ν)ν−a)(1− L(ν)ν−a)

· log

(
1− (1− λ)L(ν)ν−a

1− L(ν)ν−a

)
, ν →∞ (15)

then take the dominant term.

Observe that the asymptotic expression for D(PUV ||PUPV )
in Proposition 1 depends explicitly on the upper tail depen-
dence λ. While the result is straightforward to prove, this is
the only example that we are aware of where the upper tail
dependence naturally arises in the evaluation of an information
theoretic measure. This is despite the importance of the upper
tail dependence in characterizing the dependence structure of
heavy-tailed random vectors [9].

Note that a refined approximation of D(PUV ||PUPV ) is
given by (15). We also point out that when (Xk, Yk) is a
Gaussian random vector, a similar expansion can be developed
in terms of the corresponding exponentially decaying tail
behavior. However, the dominant term is not the same as
in Proposition 1 since the upper tail dependence is zero for
multivariate Gaussian random vectors.

To illustrate the behavior of the asymptotic approximation,
consider the scenario where (X,Y ) is an isotropic sub-
Gaussian α-stable random vector (α < 2). Recall that a
random vector Z in Rd is symmetric α-stable if for every
A,B > 0 there exists a C > 0 such that

AZ(1) +BZ(2) d
= CZ, (16)

where Z(1),Z(2) are independent copies of Z. Symmetric α-
stable random vectors can be represented via their character-
istic function, given by [13, Theorem 2.4.3]

E[eiθ·Z] = exp

(
−
∫
Sd−1

∣∣∣∣∣
d∑
k=1

θksk

∣∣∣∣∣
α

Γ(ds)

)
, θ ∈ Rd,

(17)

where Γ is the unique symmetric spectral measure on the
surface of the d-dimensional unit sphere Sd−1 and 0 < α < 2.
A bivariate isotropic sub-Gaussian α-stable random vector Z
corresponds to the case where the spectral measure is uniform
and hence admits a characteristic function of the form

E[eiθ·Z] = exp (−σα|θ1 + θ2|α) , θ1, θ2 ∈ R. (18)

In the special case that α = 2, an isotropic sub-Gaussian α-
stable random vector is an isotropic Gaussian random vector
and, as such, has independent components. For 0 < α < 2,
isotropic sub-Gaussian random vectors have spherical con-
tours; however, the components are dependent. Moreover, for
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Fig. 1: D(PUV ||PUPV ) for varying values of ν in a bivariate
isotropic sub-Gaussian α-stable model with α = 1.5 and σ =
1.

0 < α < 2, the marginal distributions of an isotropic sub-
Gaussian α-stable random vector are regularly varying with
index −α and slowly varying function [13]

L(x) =
Cασ

α

2
, α 6= 1, x ∈ R, (19)

where

Cα =

{ 1−α
Γ(2−α) cos(πα/2) , α 6= 1

2/π, α = 1.
(20)

In Fig. 1, D(PUV ||PUPV ) is estimated for varying choices
of ν > 0 when each (Xk, Yk) are drawn from a bivari-
ate isotropic sub-Gaussian α-stable random distribution com-
pared with α = 1.5 and σ = 1. The estimated value of
D(PUV ||PUPV ) is compared with the asymptotic approxi-
mations in Prop. 1 and (15). As expected, for sufficiently
large ν, both approximations are in good agreement with the
estimated value of D(PUV ||PUPV ). For smaller values of ν,
the approximation in (15) remains accurate, suggesting that it
provides a useful characterization of the error exponent.

As an immediate corollary of Prop. 1, we also have the
following characterization of the upper tail dependence.

Corollary 1. Suppose that PY , PX are regularly varying with
index −a. Then,

λ = lim
ν→∞

D(PUV ||PUPV )

aFX(ν) log ν
. (21)

The observation in Corollary 1 provides an information
theoretic characterization of the upper tail dependence. Indeed,
Corollary 1 suggests that the upper tail dependence can be
interpreted as an appropriately scaled distance between the
distributions PUV and PUPV .



IV. TAIL DEPENDENCE IN A SHOT NOISE MODEL

For elliptical distributions with regularly varying marginals,
the upper tail dependence admits the characterization in (12).
However, unless a copula function is specified, there exists no
general characterization for the upper tail dependence of non-
elliptical distributions with regularly varying marginals. In this
section, we study the upper tail dependence for such a family
of distributions arising from a shot noise model.

Consider the random variables,

Xi =

∞∑
j=0

Zijr
−β
ij , i = 1, 2, . . . , (22)

where 1
2 < β < ∞, all weights Zij are independent with

common distribution FZ satisfying E[|Zij |
1
β ] < ∞, and

{rij}∞j=1, i = 1, 2 are dependent homogeneous Poisson
point processes, which are constructed as follows. Let Φ be
a homogeneous Poisson point process with intensity ξ and
let p be the success probabilities. The process {rij}∞j=1 is
then obtained by independently thinning Φ with probability p.
As such, {rij}∞j=1, i = 1, 2 are both homogeneous Poisson
point processes with intensity pξ, respectively. It is also clear
that the processes are in general dependent as the points
{rij}∞j=1, i = 1, 2 are drawn from the common process Φ.

The model in (22) is closely related to an interference model
arising in wireless communications [10]. More generally, each
random variable Xi can be viewed as the long-term behavior
of a power-law shot noise process, which has a wide range of
applications in physics, biology and finance (see e.g., [14]).

To see that (X1, X2) is in general non-elliptical with
regularly varying marginals, we have the following theorem,
which can be proved using the argument in [10].

Theorem 1. Suppose that Zij ∼ N (0, σ2) in (22). Then,
the random vector (X1, X2) is symmetric 1/β-stable with
characteristic function

Ψ(θ)

= exp
(
i(γ

1/β
1 |θ2

1 + θ2
2|1/(2β) + γ

1/β
2 (|θ1|1/β + |θ2|1/β)

)
,

(23)

where

γ1 = σ
(
ξp2C−1

1/βE[|Z0|1/β ]
)β

γ2 = σ
(
ξp(1− p)C−1

1/βE[|Z0|1/β ]
)β

(24)

with Z0 standard normal and C1/β as defined in (20).

Indeed, as α-stable distributions are regularly varying and
elliptical distributions admit a characteristic function in the
form given in (13), it follows immediately from Theorem 1
that the distribution of (X1, X2) is non-elliptical in general.

The upper tail dependence of (X1, X2) defined in (22) is
then given in Theorem 2. Note that the upper tail dependence
of the symmetric α-stable random vector considered in Theo-
rem 1 also follows as a special case.
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Fig. 2: Upper tail dependence λ for varying values of p with
β = 0.7 and choices of FZ for the weights {Zij}.

Theorem 2. The upper tail dependence of (X1, X2) defined
in (22) is given by

λ = p

∫ ∞
0

FZ

( 2

E[|Z11|
1
β ]r

)−β2

dr. (25)

Proof. See Appendix A.

Observe from Theorem 2 that the upper tail dependence
of (X1, X2) is parameterized by p, which is due to the fact
that p determines the probability that X1, X2 share a common
element of Φ. Moreover, by Theorem 1, (X1, X2) is in general
non-elliptical, which means that only limited cases (such as
when Zij is Gaussian with p = 1) are covered by (12).

To gain insight into the behavior of (25), Fig. 2 plots the
upper tail dependence for varying p when each Zij are t-
distributed with a degree of freedom of 4 or standard normal.
Observe that the estimated upper tail dependence is in good
agreement with (25). Moreover, for non-Gaussian weights,
even for p = 1, the joint distribution of (X1, X2) is not in
general elliptical due to the fact that the upper tail dependence
differs.

V. CONCLUSIONS

A question arising in dependence testing is the importance
of extreme values. For light tailed distributions, such as Gaus-
sian models, extreme values carry little information. On the
other hand, for heavy-tailed distributions, including the family
of regularly varying distributions, there is significantly more
information. In this paper, we studied the error exponent—
given by the Kullback-Leibler divergence between the joint
and product distributions—for a dependence test based only
on data indicating whether or not observations exceed a given
value ν. We have established that for large ν the Kullback
Leibler divergence is well approximated via an expression



depending on the upper tail dependence. The upper tail depen-
dence has been well characterized for elliptical distirbutions,
but not in general for non-elliptical distributions. To investigate
the upper tail dependence in this non-elliptical setting, we
derived an expression for a shot noise model, which provided
insight into the impact of non-ellipticity on the upper tail
dependence.

APPENDIX A
PROOF OF THEOREM 2

We will require the following lemmas.

Lemma 1. Let Γ
− 1
α

1 W1 be the first term in the series

S =

∞∑
i=1

Γ
− 1
α

i Wi, (26)

where 0 < α < 2, {Γi}∞i=1 is a homogeneous Poisson point
process with intensity ξ, and {Wi} is a sequence of i.i.d.
random variables satisfying E[|Wi|α] < ∞. Suppose that
X ∼ Sα(σ, 0, 0), a symmetric α-stable random variable with
scale parameter σ, where

σ = (ξC−1
α E[|Wi|α])1/α, (27)

Then, X d
= S and

lim
x→∞

xαPr(X > x) = lim
x→∞

xαPr(Γ
− 1
α

1 W1 > x). (28)

Proof. Follows directly from [13, Page 26].

Lemma 2. Let {rij} and {Zij} be defined as in (22). Then,

Pr

 ∞∑
j=1

r−β1j Z1j > x,

∞∑
j=1

r−β2j Z2j > x


∼ Pr

(
r−β11 Z11 > x, r−β21 Z21 > x

)
, x→∞. (29)

Proof. To see that this holds, let Vi = r−βi1 Wi1, i = 1, 2 and
Si =

∑∞
j=2 r

−β
ij Zij , i = 1, 2. Observe that for all s1, s2 ∈ R,

Pr(V1 + s1 > x, V2 + s2 > x) (30)

is monotonically decreasing in x. Moreover,

sup
x∈R

{∫
R2

Pr(V1 + s1 > x, V2 + s2 > x)fS1S2(s1, s2)ds1ds2

}
<∞. (31)

As such, Lebesgue’s monotone convergence theorem can be
applied to swap the limit and integral in

lim
x→∞

∫
R2

Pr(V1 > x− s1, V2 > x− s2)

Pr(X2 > x)
fS1S2

(s1, s2)ds1ds2,

(32)

which, after using Lemma 1 in the denominator, yields the
required result.

By Lemma 2, to obtain the upper tail dependence it is
sufficient to evaluate

λ = lim
u→1

Pr
(
r−β11 Z11 > F−1(u), r−β21 Z21 > F−1(u)

)
Pr(X2 > F−1(u))

,

(33)

where F is the common distribution function of X1 and X2. To
this end, we require the probability that r11 = r21 conditioned
on the event that r11 is the k-th point in Φ; namely,

Pr(r11 = r21|k) = (1− p)k−1p. (34)

Similarly, the probability that r11 is the k-th point in Φ is
given by

Pr(k) = (1− p)k−1p. (35)

Let fr11(r11|k) denote the probability density of r11 con-
ditioned on the event it is the k-th point in Φ. Under this
conditioning, r11 is Gamma distributed and

fr11(r11|k) =
1

(k − 1)!
ξkrk−1

11 e−ξr11 . (36)

We then have

Pr
(
r−β11 Z11 > F−1(u), r−β21 Z21 > F−1(u)

)
Pr(X2 > F−1(u))

∼ 1

Pr(X2 > F−1(u))

∞∑
k=1

((1− p)k−1p)2

·
∫ ∞

0

dr11
1

(k − 1)!
ξkrk−1

11 e−ξr11

· Pr(r−β11 Z11 > F−1(u), r−β11 Z21 > F−1(u)|r11 = r21, r11, k),

(37)

as u→ 1. This follows from the fact that the term arising from
conditioning on the event {r11 6= r21} has a negligible contri-
bution as u → 1 since r−β11 Z11 and r−β21 Z21 are independent
in this case.

As Z11, Z21 are independent, we have

Pr(r−β11 Z11 > F−1(u), r−β11 Z21 > F−1(u)|r11 = r21, r11, k)

= FZ

(
F−1(u)

r−β11

)2

, (38)

since Z11 and Z21 have a common distribution FZ .
From Lemma 1 and (20), we have

F−1
i (u) ∼

(
2(1− u)

ξpE[|Zi1|
1
β ]

)−β
. (39)

After applying the change of variables r = r11(1 − u)−1 in
(37), we then have,

lim
u→1

Pr
(
r−β11 Z11 > F−1(u), r−β21 Z21 > F−1(u)

)
Pr(X2 > F−1(u))

= p2ξ

∫ ∞
0

FZ

( 2

ξpE[|Z11|
1
β ]r

)−β2

dr, (40)

from which the result readily follows.
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