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Abstract 

236 words (max 250 words) 

The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are 

activated by distinct mechanisms leading to a common downstream signaling. Their 

downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. 

We challenged this concept, by mapping the differential phosphoproteome evolution in 

response to PI3K inhibitors with different isoform selectivity patterns in pancreatic cancer, a 

disease currently without effective therapy. In this cancer, the PI3K signal was shown to 

control cell proliferation. We compared the effects of LY294002 that inhibit with equal 

potency all class I isoenzymes and downstream mTOR with the action of inhibitors with 

higher isoform-selectivity towards PI3Kα, PI3Kβ or PI3Kγ (namely A66, TGX-221 and AS-

252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to 

identify common and specific signals activated by PI3K inhibitors supported by the biological 

data. AS-252424 was the most effective treatment and induced apoptotic pathway activation 

as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-

252424 treatment induced re-activation of Akt, therefore decreasing the treatment outcome 

on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt 

reactivation and led to synergistic action in cell lines and patient organoids. The combination 

of clinically approved -selective BYL-719 with γ-selective IPI-549 was more efficient than 

single molecule treatment on xenograft growth. Mapping unique adaptive signaling 

responses to isoform-selective PI3K inhibition will help to design better combinative 

treatments that prevent the induction of selective compensatory signals. 
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 (4981 words) MAX 5000 

Introduction  

In pathophysiological signaling, biochemical and biomechanical cues are integrated 

and regulated at long-term. Similarly, it is expected that inhibition of signaling pathways by 

targeted therapies towards one signal transduction enzyme also induces an adaptation of the 

entire signaling network. 

Class I PI3Ks are crucial signal transduction enzymes. After acute stimulation, PI3K 

phosphorylates the lipid second messenger phosphatidylinositol 4,5-biphosphate into PI-

3,4,5-triphosphate (PIP3) at the plasma membrane, further activating the protein kinases Akt 

and mTOR, and regulating major cell biology events such as cell proliferation, cell survival 

and protein synthesis. PI3K is one of the most altered pathways in cancers, and presents 4 

different isoforms encoded by 4 different genes (1, 2). Due to the regulation of fundamental 

cellular processes by PI3K/Akt/mTOR, this signaling axis is an excellent therapeutic target in 

cancer which is underscored by the number of molecules tested currently in clinical trials (3). 

While class I PI3K isoform specificity is well described and accepted in physiology (for 

review: (1), examples: (4–7)), potential benefits of isoform-selective targeting in solid cancer 

were recently shown in breast cancers driven by oncogenic PI3Kα (8) but are still not yet 

approved in other genetic context promoting PI3K signaling (3). Besides, there are other 

effectors downstream PI3Ks than Akt/mTOR (9, 10). Such other downstream signaling 

routes are possibly contributing to the isoform-specific in vivo role of mammalian PI3Ks. 

Although acquired cross-activation mechanisms between PI3K isoforms upon their unique 

and selective pharmacological or genetic inhibition in the context of specific mutational 

landscapes (e.g. oncogenic PIK3CA, mutant PTEN) has been described (11–13), a specific 

large scale cell signal adaptation to such treatment is unknown, in particular, in the context of 

non-mutated PI3Ks and/or Kras mutation. This genetic context is found in pancreatic ductal 

adenocarcinoma (PDAC). It is also unclear whether differing inhibition of each PI3K due to 

distinct PI3K inhibitor selectivity or due to different isoform expression could favor selective 
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feedback mechanisms; the latter could be an unprecedented explanation of the therapeutic 

failure of PI3K inhibitors in unselected solid tumours. 

New strategies are needed for the cure of pancreatic cancer (PDAC) patients, due to 

dramatic lethality rate of this disease. PI3K signaling as assessed by Akt phosphorylation or 

by PI3K/Akt/mTOR gene signature is increased and associated with poor prognosis (14, 15). 

This increase in PI3K signaling is mostly due to Kras mutation engaging PI3Kα and possibly 

PI3Kγ (16–19). PI3K signaling downstream Kras is amplified by other signaling cues (20) and 

such amplification of Kras-PI3K coupling is critically involved in PDAC poor prognosis (21). 

Targeting PI3K is expected to have a clinical action in these patients (clinical trials pending 

as reviewed in (22) and (23)). However, prior knowledge of cancer cell adaptation to the 

inhibition of upstream class I PI3K signaling would be necessary to develop efficient anti-

PI3K therapeutic strategy in pancreatic disease (22). The purpose of the study is to compare 

the pancreatic cancer cell phosphoproteome in response to inhibitors with different selectivity 

and off-targets profiles, as an exploratory experiment to find first evidence of isoform-

selective pathways and adaptive responses. 

Therefore, we analyzed adaptive signals involved in response to inhibitors with 

distinct PI3K-isoform selectivity in a human pancreatic cell line using a stable isotope labeling 

with amino acids in cell culture (SILAC)-based quantitative phosphoproteomics approach in a 

comprehensive way. By enrichment of the phosphoproteome followed by data mining, we 

demonstrate that, despite a common core pathway regulated by all inhibitors, the different 

PI3K inhibitors instruct specific, non-redundant signaling pathways linked to PI3K signaling. 

These data might help to better design therapeutic strategies in this dismal disease, including 

combination therapies against multiple isoforms of PI3K. 

 

Material and Methods 

Reagents  

Reagents were purchased as follows: for in vitro assays, pan-PI3K and isoform-selective 

PI3K inhibitors from Axon Medchem; Gemcitabine was a kind gift of hospital (IUCT-O, 
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France); MTT was from Euromedex (4022). All PI3K inhibitors were resuspended in DMSO, 

corresponding at the vehicle condition. All products were resuspended according to the 

supplier's instructions. 

 

Cell lines and tissue samples 

Human pancreatic cell lines (Capan-1, BxPC-3, PANC-1, MIA PaCa-2) came from American 

Type Culture Collection (ATCC), human acute myeloid leukemia cell line (MOLM4) and 

murine pancreatic cancer cell lines (DT4994, DT6585, DT6606, DT8442, DT8661, R221, 

R259) were made in house or a kind gift from Dieter Saur (Klinikum rechts der Isar der TU 

München, Germany); for validation of genotype (16). Absence of mycoplasma contamination 

was verified periodically by PCR and maintained in culture for a maximum of 15 passages 

after thawing. Capan-1, PANC-1 and MIA PaCa-2 cells were authenticated (STR method, 

Eurofins). Pancreatic cancer patient-derived organoids were either derived from surgical 

resection (B25) or endoscopic fine needle aspiration (B34) at Klinikum rechts der Isar der TU 

München, Germany. Patients were enrolled and consented in writing according to the 

institutional review board (IRB) approval project-number 207/15 of the Technical University 

Munich. The studies were conducted in accordance with the Declaration of Helsinki. PDOs 

were characterized using whole exome sequencing and RNAseq as described previously 

(47). Human normal and adenocarcinoma pancreatic samples (>30% tumoral cells) were 

selected at IUCT-O clinic, and collected according French and European legislation (CRB 

Biobank, France with following ethical authorization numbers BB-0033-00014, DC-2008-463, 

AC-2013-1955). KPC and KPC; p110γ-/- mice were obtained and their genotype verified as 

described in (27).  

 

In vitro culture of pancreatic cell lines and cell assays 

Human pancreatic cancer cell lines Capan-1 and BxPC-3 were cultured in RMPI 1640 

medium. PANC-1, MIA PaCa-2 and all murine pancreatic cancer cells were cultured in 

Dulbecco’s Modified Eagle’s Medium with 4.5g of glucose (D6429, Sigma). All media were 
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supplemented with 10% fetal bovine serum (Eurobio), 1% glutamine (G7513, Sigma) and 1% 

antibiotics (penicillin/streptomycin, P0781, Sigma). Patient’s organoids cell lines were 

cultured in special medium (Reichert composition,(47)). Specific methods to analyze cell 

proliferation/survival, mRNA and protein expression levels are described in Supplementary 

Material &Methods. 

 

SILAC phosphoproteome and Bioinformatics analysis 

Light amino acid-labelled and heavy amino acid-labelled Capan-1 cells (respectively called 

thereafter “light” and “heavy” cells) were cultured as described in Supplementary Material 

&Methods.  For each biological replicate, light lysates were mixed with the same heavy 

lysates at a 1:1 ratio for a total amount of 6 mg. Protein samples were reduced with 100 mM 

DTT (Sigma, D9163) for 35 min at 57°C and then handled according to the FASP (Filter 

Aided Sample Preparation) digestion protocol (48) using Amicon Ultra-15 Centrifugal Filter 

device (10kDa cut-off, MILLIPORE, UFC901096). Protocol for the enrichment with TiO2 

beads is based on Larsen et al., (49) and Jensen et al. (49). SILAC samples (TiO2 enriched 

peptides) were resuspended with 2% acetonitrile, 0.05% TFA and analyzed by nano-LC-

MS/MS using an UltiMate 3000 system (Dionex) coupled to LTQ-Orbitrap Velos mass 

spectrometers (Thermo Fisher Scientific, Bremen, Germany). All 40 mass spectrometry 

proteomic files have been deposited to ProteomeXchange Consortium with the dataset 

identifier as listed in Supplementary Table 1. For peptide identification, raw data files were 

processed in Proteome Discover 1.4.1.14 (Thermo Scientific) and searched against 

SwissProt human fasta database of Mascot (2014-06, sprot_20140428.fasta, 542782 

sequences, high and medium confidence, Q-value = 0.5-0.1). Peptides were further filtered 

using Mascot significance threshold S/N = 1.5 and a FDR <0.01 based on q-Value 

(Percolator). Phospho-site localization probabilities were calculated with phosphoRS 3.1 

(maximum PTMs per peptide 10, maximum position isoforms 200). Phosphopeptides filtered 

with Proteome Discoverer 1.4.1.14 (see criteria in Supplementary Material &Methods) 

were isolated from peptides. Only the ratios which were changed above and below the 
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thresholds were processed for further analysis as described in Supplementary Material 

&Methods. 

 

In vivo experiment 

All animal procedures were conducted in compliance with the Ethics Committee pursuant to 

European legislation translated into French Law as Décret 2013-118 dated 1st of February 

2013 (APAFIS 3601-2015121622062840).  

Capan-1 cells were tested for their absence of mycoplasma infection prior amplification and 

injection. 3x106 exponentially growing Capan-1 cells were subcutaneously in Nude/balbc 

Mice (Charles River, 9 weeks old, females). After 1 week implantation, we gavaged the mice 

5 day a week with vehicle (0.5% methyl cellulose with 0.2% Tween-80) or with BYL-

719/Alpelisib (25 mg/kg) (MedChemExpress) (50), IPI-549 (7.5 mg/kg) (Biorbyt) (51) alone or 

in combination. Toxicity parameters were assessed longitudinally with follow-up of mice 

weight, glycemia, blood cell counts (using Yumizen H500 hematology analyzer (HORIBA)). 

The drug dosage with treatment 5 day a week lasted for 3 weeks, time at which the vehicle 

group had to be euthanized for ethical reasons. Tumor volume was measured with a caliper 

and calculated using the formula V= (4/3) x π x (Length/2)2 x (width/2). 

 

Statistics 

Statistically significant differences were performed with GraphPad Prism using the T-tests 

(paired test): * P < 0.05, ** P < 0.01, *** P < 0.001. Non-significant (ns) if P > 0.05. For in vivo 

experiments, Mann-Whitney test was used: ** p < 0.01, p value is indicated for nearly 

significant values. 

 

Results 

PI3K inhibitors induce different adaptive phospho-proteome responses 

In pancreatic cancer, PI3K signaling is associated with a poor prognosis (14, 15). The 

analysis of 11 pancreatic cancer samples compared to normal adjacent tissue showed 
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increase Akt expression and a significant increase of S473 and T308 Akt phosphorylation by 

western blot (WB) (9 out of 11 patients) (Figure 1A, Supplementary Figure 1A). However, 

the observed increase of Akt phosphorylation was not always associated with a significant 

increase in the phosphorylation levels of canonical downstream targets, such as pPRAS40 or 

pS6K (Figure 1A, right), emphasizing the heterogeneity of signaling targets downstream 

PI3Ks in a clinical setting.  

The human pancreatic cancer cell line Capan-1 represents common genetic 

alterations found in PDAC including KRAS, TP53 and SMAD4 mutations (24), expresses all 

four PI3K isoforms (16, 25) and displays a proliferation rate similar to other human pancreatic 

cell lines (as verified in Supplementary Figure 1B). Amongst the four PI3K isoforms 

responsible for the production of PIP3 and Akt activation, we and others have identified 

PI3Kα and PI3Kγ to be involved in pancreatic carcinogenesis (16, 17, 26–28). Besides 

oncogenic Kras-driven activation of PI3K (20), stimulation by fetal bovine serum (FBS) 

induces the activation of receptor tyrosine kinases (RTKs) and G protein-coupled receptors 

(GPCRs) that increases pAkt level (7). Short-term (10min) FBS stimulation induced a 

significant activation of class I PI3Ks as assessed by the phosphorylation of Akt and a known 

downstream effector, PRAS40 (Figure 1B). We used a pan-PI3K/mTOR-targeting inhibitor 

that inhibits all PI3K isoforms at equal potency [LY-294002 from here on named pan-inh]. 

Pan-inh completely abolished pAkt and pPRAS40 (Figure 1B). Isoform-selective drugs 

targeting either PI3Kα (A66 [5µM], α-inh (29)), PI3Kβ (TGX-221 [0.5µM], β-inh (7, 30–32)) 

and PI3Kγ (AS-252424 [5µM], γ-inh (33)), but not of PI3Kδ inhibitor (IC-87114 [5µM], δ-inh), 

inhibited pS473Akt as well as pPRAS40 levels significantly after 10min of FBS-stimulation 

(Figure 1B). PI3K inhibitors are still effective to inhibit pAkt when diluted in cell medium 24h 

prior to treatment in vitro demonstrating the stability of the compounds at long-term 

(Supplementary Figure 1C).  

To explore the possibility of isoform-selective downstream pathways, we devised an 

exploratory strategy to identify adaptive response to PI3K inhibitors with varying selectivity 
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and off-targets effects in a comprehensive fashion by defining phospho-site regulated 

signaling pathways in Capan-1 cell line (Figure 1C). To quantify subtle differences between 

these conditions targeting the same enzymatic activity, we chose a SILAC-based quantitative 

approach combined to a phospho-peptide enrichment by TiO2 allowing a robust S/T/Y 

phosphorylation quantification of thousands of proteins. We devised a super-SILAC 

approach (34, 35), in which we compared all the unlabeled treatment conditions to vehicle 

control, with the use of SILAC-labeled cells as a spike-in standard for accurate quantification 

of unlabeled samples (Figure 1C, Supplementary Table 1). Incorporation of heavy isotopes 

was verified by mass spectrometry after 6 passages (Supplementary Figures 2A, 2B); and 

the metabolic labelling did not change the proliferation and morphological properties of 

Capan-1 cell line (Supplementary Figures 2C, 2D). All validating steps are detailed in 

Supplemental Material & Methods and Supplementary Figures 2. In all conditions 

combined, 3600 heavy/light phospho-peptides were detected and quantified (Figure 1C). 

Amongst these, 83% serine-sites (S), 16% threonine-sites (T), 1% tyrosine-sites (Y) were 

phosphorylated (Supplementary Figure 2F). These percentages were unchanged upon 

PI3K inhibition (Supplementary Figure 2G). Short-term (10min)- and long-term (24h)-serum 

stimulation induced modifications (increased and decreased) of 557 phospho-peptides (28%) 

and 619 phospho-peptides (32%), respectively (Supplementary Figures 2H, 2I).  

Overall, levels of a known PI3K target PRAS40 were changed in similar manner albeit 

with a slightly lower dynamic range when quantified by MS-based proteomics analysis 

compared to western blot results (Supplementary Figures 2J vs. Figure 1B).  

We next identified phospho-peptides with significant altered levels in each condition in 

an unbiased fashion. PI3K inhibitors induced more phosphorylation level changes after 24h 

of treatment than after 10min. Interestingly, γ-inh led to the most significant changes in 

numbers of significantly modified phosphopeptides compared to FBS as soon as 10min of 

treatment, and global equivalent phosphoprotein level changes at 24h compared to α-inh 

(Figure 1D). These strong phosphoprotein modulations by γ-inh and α-inh after 24h of 
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treatment suggest signaling engagement of these two PI3K isoforms in PDAC cells, in 

addition to their involvement in pancreatic carcinogenesis (16, 17, 26–28). 

The number of significantly increased p-peptides in γ-inh condition (and to slighter 

extent of pan-inh) was higher at short time compared to α-inh but decreased at 24h, possibly 

suggesting an early induction of feedback control with these two PI3K inhibitors. Reversely, 

α-inh treatment led to increased p-peptides at 24h. β-inh treatment led to a balanced 

increase/decrease of p-peptides at both times (Figure 1D). Early upregulated signaling is 

expected to reduce the efficiency of PI3Kγ inhibitors. 

 

Global pathway analysis of phosphoproteome upon PI3K inhibition shows selective 

changes associated with different isoform-specificity 

We next analyzed dynamic changes in the phosphoproteome upon PI3K isoform-specific 

inhibition over time (10min vs. 24h treatment) using global pathway analysis 1- to identify 

selectivity in regulating biological functions by each inhibitor, and 2- visualize entire signal 

network rewiring upon PI3K inhibition pressure.  

A principal component analysis (PCA) of the phosphoproteome at 10min demonstrated 

that serum-stimulation alone, α-inh and β-inh conditions clustered together while pan-inh and 

γ-inh conditions separated from the cluster (Figure 2A, left). After 24h of treatment, 

however, all inhibitor treatments separated from the FBS condition, highlighting the time 

necessary to induce significant PI3K inhibitor-selective changes in signaling networks upon 

PI3K inhibition, particularly for PI3K isoform-specific inhibition (Figure 2A, right). 

Surprisingly, inhibition with LY (pan-inh) clustered closely together with the β-inh, while γ- 

and α-inh conditions led to distinct phosphopeptide modifications, in line with the known 

selective roles of these isoforms in PDAC (17, 25, 26). 

Next, we identified inhibitor-selectivity in regulated phosphoproteomes at both time points 

using hierarchical clustering (Supplemental Material and Methods, Supplementary Table 

1, 2, 3). By overlapping phosphopeptides with altered levels in each condition, we were able 
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to identify shared (core) phosphopeptides, inhibitor-selective phosphopeptides indicated as 

either A66-selective (α-inh -select), TGX-221-selective (β-inh -select) or AS252424 -selective 

(γ-inh select), as well as pan/mTOR-selective (pan-inh-select) phosphopeptides (Figures 

2B, 2C, Supplementary Figure 3). The finding that there is a common “core” of 

phosphopeptides regulated by all PI3K inhibitors was underscored by STRING analyses of 

inhibitor-selective and common phosphopeptides (Supplementary Figures 3A, 3B, 

Supplementary Table 1, 2, 3). This core network presented a strong connectivity at 10min 

of treatment.  

Our data also demonstrate that each inhibitor induced distinct changes of the 

phosphorylation-regulated proteome already at 10min of treatment (Figure 2A, 2B), despite 

having similar effects on the phosphorylation of Akt and PRAS40 (Figure 1B). Inhibitor-

selective as well as core phosphopeptides showed distinct pathway enrichments 

(Reactome), cellular components and molecular functions (Gene Ontology) at the 10min and 

24h time points (Figure 2C-D, Supplementary Figure 3). At 10min, common core 

downstream signaling includes 115 phosphoproteins implicated in mRNA splicing, chromatin 

regulation, TGFβ signaling as well as gene transcription and transcript processing pathways 

(ZE Pvalue ≤0.05), such as EIF3G, EIF2S2, EIF4G1 (Figures 2C-D, Supplementary Table 

2). Interestingly, at 24h, γ-inh-selective phosphopeptides were enriched in similar functions 

and cellular components as those changed by all PI3Ks/mTOR (core and pan-inh select), 

with targets presenting a strong protein-protein interactivity; those included CTNND1, JUP, 

SRRM2 proteins (Figure 2C-D, Supplementary Figures 3F-J, Supplementary Table 2). 

Apart from the core pathways, α-inh-selective and β-inh-selective phosphopeptides were 

enriched in different pathways at both time points. Specifically, α-inh modulated 

phosphopeptides regulating Rho GTPases signaling, RTK and cytokine signaling (including 

RACGAP1, IRS2, STAT3), whereas β-inh regulated phosphopeptides directing mitotic 

control including targets such as RB1 (Figure 2C-D, Supplementary 3D, E,G-J, 

Supplementary Table 2).  
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To estimate on-target and off-target effects of inhibitors, we used STRING connectivity 

analysis and showed that inhibitor selective targets were associated and connected with 

PI3K isoforms, except for TGX-221 treatment at 24h (Supplementary Figures 3E, 

Supplementary Table 1, 2, 3). The proteins involved were either off-targets of TGX-221 (β-

inh) or were unknown targets of PI3Kβ. These data show that PI3K inhibition with AS252424 

(γ-inh) regulates similar processes to pan-inh and, at the same time, controls additional core 

networks exceeding the effect of pan-inh on signal network as shown by the number of non-

selective and selective phosphopeptides modified by γ-inh treatment (Figure 2B).  

These findings suggest that inhibiting strongly PI3Kγ might be the most effective 

therapeutic strategy in this cell line to inhibit the core PI3K signaling in order to target 

essential growth and survival pathways in pancreatic cancer.  

 

Pancreatic cancer cells present increased levels of p110γ expression in patients 

We next analyzed the expression levels of PI3K catalytic subunits that constitute the four 

class I isoforms (α, β, γ and δ) in tumor cell-enriched human pancreatic cancer samples 

compared to normal adjacent pancreas by Western Blot. We observed that p110β levels 

were increased only in 5 patients, while p110α, p110γ and p110δ protein levels were 

significantly increased (in all but one patient) (Figure 3A). To further verify these findings in a 

pure population of cancer cells, we analyzed PI3K isoforms protein and mRNA levels in 

human (n=4) and murine (n=7) cell lines (derived from genetically modified mouse models of 

PDAC) (Figure 3B-E). The myeloid cell line, MOLM-14, which is known to express p110γ in 

high abundancy served as positive control.  

In contrast to tumor cell-enriched human pancreatic cancer samples, p110γ was only 

found detected in one out of four human pancreatic cancer cell lines and in two out of seven 

murine pancreatic cancer cell lines by Western Blot (Figure 3B, 3C). Similarly, on a 

transcript level, two out of four human PDAC cell lines and three out of seven murine PDAC 

cell lines showed increase in p110γ mRNA expression by RT-qPCR (Figure 3D, 3E). This 

data indicates that p110γ is overexpressed in patient-derived tumor cell-enriched PDAC 
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samples and to a lesser extent in PDAC cells in vitro, suggesting a stronger role for p110γ in 

vivo and in patients, compared to cell culture conditions. 

 

Pancreatic cancer cells are sensitive to PI3Kγ inhibition in vitro and in vivo  

We next confirmed that genetic inactivation of PI3Kγ using a full knock-out approach 

almost completely abolished cancer formation from precancer lesions (PanIN) in a mutated 

KRAS and p53 background (Figure 4A). Similarly, despite the low expression levels of 

p110γ in vitro, decreased expression of p110γ using a shRNA specific for p110γ reduced the 

clonogenicity of Capan-1 cell line (Figure 4B). Of note, we did observe decreased PI3Kα 

expression upon p110γ knockdown by shRNA in one pool of cells, but that led to similar 

effects that the other shp110γ pool of cells.  

We tested isoform-selective inhibitors on a panel of Human pancreatic cancer cells lines. 

γ-inh significantly decreased pAkt at 10min in the four cell lines (Figure 4C, Supplementary 

Figure 4A). These experiments aimed to validate the pathway analysis on inhibitor-selective 

phosphoproteome, by comparing with experimental cellular outputs. 

β-inh led to increased cell numbers in Capan-1 cells only (Figure 4D). BxPC-3 cells (non-

mutated KRAS cell line) was sensitive to all tested inhibitors (Figure 4D). Cell numbers of all 

human pancreatic cancer cell lines were significantly decreased in time upon γ-inh or pan-inh 

as compared to vehicle, regardless p110γ mRNA level of expression, while α-inh was most 

efficient in BxPC-3 and Panc-1 cell lines (Figure 4D). γ-inh was almost as effective or more 

effective (Capan-1) that pan-inh. This was confirmed with BrdU incorporation assay, cell 

cycle analysis and cleaved caspase-3 analysis (Supplementary Figure 4B-D). Interestingly, 

only γ-inh treatment induced significant increase of DEVDase activity (Supplementary 

Figure 4D), confirming the selective enrichment of the “Apoptotic cleavage of cellular 

proteins” signaling pathway by γ-inh (Figure 2C right).  

 

Long-term inhibition of PI3Kγ allows compensation between PI3K isoforms in 

pancreatic cancer 
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We next analyzed the activation of PI3K canonical pathway at 24h. In Capan-1 cells, 24h 

inhibition with pan-inh or γ-inh led to a re-activation of p-Akt (Figure 5A). α-inh treatment did 

not show such upregulation of pAkt, in the four tested cell lines (Figure 5A). The combination 

of α-inh and γ-inh prevented this reactivation at 24h compared to γ-inh treatment. The re-

activation of pAkt upon γ-inh or pan-inh treatment was observed in 3 and 2 out of 4 cell lines, 

respectively (Figure 5A, Supplementary Figure 4A). 

Interestingly, if we were able to identify selectively changed phosphopeptides in all 

conditions tested, pan-inh or γ-inh conditions also led to the identification of higher numbers 

of selective phosphoproteins (Figure 2B), that are known to be inter-regulated 

(Supplementary Figure 3B, 3C, 3F), and leading similar pathway enrichments (Figure 2C). 

This could also correspond to the induction of negative feedback loops. Indeed, Kinase 

Enrichment Analysis (KEA) showed that pan-inh and γ-inh treatment induced the 

phosphorylation of peptides that corresponds to RPS6KB2 (S6K2, mTORC1 downstream 

effector) kinase motif (p<0.05) and to MAPK9 with lower statistical power (Supplementary 

Figure 5). These bioinformatic data are line with the observed re-induction of pAkt upon pan-

inh or γ-inh treatments (Figure 5A).  

Analysis of phosphopeptides regulated selectively by PI3Kα inhibitor at 24h in Figure 2C 

and in Supplementary Figure 3D showed that PI3Kα regulated additional functions and 

cellular components compared to panPI3K/mTOR or PI3Kγ-selective phosphopeptides. We 

thus tested the combination of α-inh and γ-inh on cell survival and showed that this 

combination led to a higher efficiency than each inhibitor alone or than PI3K/mTOR inhibitor 

in three out of four cell lines (Supplementary Figure 6). The only cell line (MIA Paca-2) 

where the combination was not more effective on cell survival was the one where we did not 

detect a feedback loop on pAkt upon PI3K inhibition. Combination of γ-inh with other isoform 

PI3Kβ or PI3Kδ inhibitors appeared to be less synergistic (Supplementary Figure 6). This 

corroborates the phosphoproteomic analysis that identifies feedback mechanisms on S6K 

upon PI3Kγ inhibition. 
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We next asked the question if the phosphopeptides selectively regulated at long-term by 

either PI3Kα or PI3Kγ inhibitors correlate with the effect of each PI3K inhibitor. The changes 

in ratios of pGIGYF2 (T382) correlated with PI3K action on pancreatic cell 

survival/proliferation (Supplementary Figure 7A, WO2019101871-A1). Interestingly, 

changes of phosphorylation levels of known targets of PI3K as assessed by WB 

(Supplementary Figure 4A) did not correlate with the cellular action in the four pancreatic 

cancer cell lines (Supplementary Figure 7B).  

 

The combination of PI3Kα and PI3Kγ selective inhibitors is synergistic in PDAC 

patients. 

Finally, we aimed to test this synergy in a clinically relevant setting, in two pancreatic 

cancer patient-derived organoids (PDOs) (B25 and B34) that displayed representative 

genetic alterations and p110s expression (Figure 5B, 5C). Here, we observed that the 

equimolar combination of PI3Kα-inh and PI3Kγ-inh led to an increased sensitivity to PI3K 

inhibition as assessed with the metabolism measurements of organoids (Figures 5D, 5E).  In 

cell lines and PDOs tested, combined treatment had additive (2/6) or synergistic effect (4/6 

including the two PDOs) at high concentration (5µM) (Figure 5F, Supplementary Figure 

8A). At lower concentration (500nM), combination was antagonistic for the cell lines except 

for the non-mutant KRAS cell line BxPC-3 and the PDO B34.  

For the in vivo proof-of-concept, we used alone or in combination two isoform-selective 

inhibitors that are approved for cancer treatment (8) tested in PDAC (36) or in phase II of 

clinical trial (https://clinicaltrials.gov/ct2/show/NCT03961698), respectively the α-selective 

inhibitor BYL-719/Alpelisib (25 mg/kg) and the γ-selective inhibitor IPI-549 (7.5 mg/kg).  We 

confirmed with these inhibitors (Supplementary Figure 8B, 8C) the results obtained with 

A66 and AS-252424 in Capan-1 as shown in Figure 4 C, 4D and Figure 5A. The 

combination of therapeutic agents that inhibits potently PI3K and PI3Kγ was well tolerated 
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and statistically more efficient that the treatment of each inhibitor alone (Figure 5G, 

Supplementary Figure 8D). 

Overall, we observed a good correlation between the global phosphorylation-regulated 

pathway analysis and measured cellular and tumoral effects upon PI3K inhibitor-selective 

pressure, providing the first evidence of isoform-selective downstream pathways. These data 

also suggest that complete inhibition of PI3K with strong efficiency on PI3Kα and PI3Kγ is 

the most effective strategy for pancreatic cancer patients (WO2019073031-A1). This specific 

combination suppresses PI3K/Akt pathway in long-term manner, decreases efficiently cell 

survival and prevents tumor cell adaptation to PI3K signal blockage. 

 

Discussion 

Whether critical signal nodes can be circumvented is a fundamental question in tumoral 

biology and therapy resistance. Using a phosphoproteomics screen, we demonstrate that 

each PI3K inhibitor with distinct isoform selectivity displays differential effects on the 

phosphoproteome of pancreatic cancer cells. Reciprocal class I PI3K signaling is the 

exclusive product of inhibition-imposed pressure. Accordingly, a selective and strong 

inhibition of PI3K isoforms is able to induce selective pathway rewiring which could facilitate 

selective resistance (Figure 2D).  

Preclinical data in pancreatic cancer have indicated for a long time that PI3K could be a 

suitable target in PDAC patients (initial study using Wortmannin in xenografts of Human 

pancreatic cancer cell lines (37)). There is now an urgent need to prevent feedback loops 

involved in pancreatic cancer progression upon pan-PI3K treatment. One strategy consists of 

identifying tumors which are more likely to respond. Indeed, it was recently shown that 

p27kip1, encoding a cyclin-dependent kinase inhibitor, facilitated NVP-BEZ235 (PI3K/mTOR 

inhibitor) sensitivity in a gene dose dependent fashion and knockdown of p27kip1 decreased 

NVP-BEZ235 response in murine PDAC cell lines (38).  

In pancreatic cancer cells, dual PI3K-mTOR inhibition induces rapid over-activation of 

MAPK pathway (39) whereas the treatment with PI3K and MAPK inhibitors were more 
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efficient in preclinical models when used in combination than alone (39–41). Our kinase 

prediction data at 24h seem to indicate that both pan-PI3K and PI3Kγ-selective inhibition 

appear to activate MAPK9, possibly activating c-Jun pathway. Interestingly, these data are in 

line with our previous work where PI3K-driven NF-κB activation negatively controls JNK 

activation (42). In a future work, those combinative strategies could be tested with PI3K 

isoform inhibitors.  

We propose that, further to MAPK signaling (39–41), adaptive response to PI3K inhibition 

also unleash compensatory inter-isoform selective signaling that is dependent on the 

isoform-selectivity of the inhibitor; this could be circumvented by well-balanced isoforms 

specific PI3K inhibitors. Given our results obtained in vitro with the first generation of isoform-

selective PI3K inhibitors, we are convinced that the clinically approved Alpelisib/BYL-719 (8) 

combined with IPI-549 (27) that we tested in a xenograft model should be further evaluated 

in more complex preclinical models (e.g. KPC mice) as well as in PDAC clinical studies. 

Us and others have mostly described: either 1- immediate compensations/redundancy 

between isoforms that are activated through similar mechanisms (e.g. PI3Kα and PI3Kδ 

downstream RTK (43); or PI3Kγ and PI3Kβ downstream GPCR (7)), or 2- delayed (in 1-2 

week time) compensation/redundancy between the two ubiquitously expressed PI3K, PI3Kα 

and PI3Kβ, via genetic induction of their selective of mode activation (e.g. overexpression of 

RTK, mutation of PTEN) (11, 12, 44). We identify here a possible novel mode of resistance, 

which is based on rapid rewiring network. Next study will need to confirm that it is isoform-

selective and not inhibitor-selective as well as dissect the possible mechanisms of signal 

rewiring. 

Given the fact that PI3Kγ and PI3Kβ isoforms are both downstream of GPCRs (7), we 

were surprised to observe that the inactivation of these two isoforms did not lead  to similar 

phosphoproteomic profiles, nor to similar alteration of cellular functions. One explanation of 

the poor effect of TGX-221 on these cells despite the observed reduced p-Akt levels could be 

the concomitant increased number of significantly increased p-peptides.  
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Of note, based on our results, isoform cross-compensation (in a context of non-mutated 

PI3K or of no loss of PTEN and of KRAS-mutant or not) appears to involve PI3Kα and the 

lowly expressed PI3Kγ. Because low level of expression of p110s could be difficult to detect, 

our data show the importance of determining the level of activation of each class I PI3K 

possibly with isoform selective gene signatures representative of their activity (45). It is also 

surprising that despite PI3Kγ having low levels of expression, its selective inhibition in serum-

deprived condition was effective in all tested cell lines as others reported (26, 46). 

Importantly, the level of an identified PI3Kγ-selective phosphopeptide (phopho-GIGYG2 

T382) was correlated with PI3K sensitivity. We hence propose that the level of 

phosphorylation of this selective target could be tested as a predictive marker of sensitivity, 

attesting the induction of selective compensation and efficiency of combinatory treatment 

with PI3Kα and PI3Kγ inhibitors. 

Specific engagement of either PI3Kα or PI3Kγ downstream different types of Kras 

mutations was recently described (18, 19). It is also interesting to note that the synergistic 

effect of the tested combination was found in the mutated Kras cell lines, and that the PDO 

with increased frequence of Kras allele mutations (B34) displayed an increased combination 

index. These intriguing data prompt the better delineation of PI3Kα and PI3Kγ possible 

cooperation in various Kras-mutant contexts.  

So far, only multi-combinatorial therapies displayed positive clinical outcome for PDAC 

patients (22). Isoform-specific drugs are expected to induce fewer secondary effects (3) and 

could thus be included in these multi-drug combinatorial therapies. As we show that selective 

inhibitors at high doses induce selective feedback and resistance mechanism -, these can be 

counteracted with the increasing arsenal of PI3K isoform-selective agents that are available 

for clinical use, in particular with Alpelisib/BYL-719 and IPI-549 (8, 27). In sum, results shown 

here highlight that defining pharmacological profiles that are well-balanced towards each 

class I PI3K isoforms is key to therapeutic success. 
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Figure 1: Level of PI3K/Akt pathway activation in pancreatic cancer and strategy for 

the identification of core redundant PI3K-regulated signaling networks versus 

isoform-selective signaling networks. (A) Frozen samples of normal adjacent pancreas 

(NA, n=11 patients) and pancreatic cancer (PDAC, n=13 patients) samples were lysed. 

Phospho-effector abundance of PI3K/Akt/mTOR pathway was assessed by western blot 

using indicated antibodies, in samples comprising >30% of epithelial cells; quantification was 

performed only when the normal adjacent tissue was available (n=11 patients). Hierarchical 

clustering is shown using log (fold-change PDAC vs. normal adjacent). (B) Capan-1 

pancreatic cancer cells were pre-treated with pan-PI3K, isoform-selective inhibitors (same 

conditions) or their accordingly diluted vehicle (DMSO) during 1h, then stimulated or not for 

10min with 2% FBS. After 10min cells were lysed and phospho-effector abundance of 

PI3K/Akt/mTOR pathway was assessed by western blot using indicated antibodies and 

quantified (n≥4 independent biological replicates). Total Akt and Actin is used as a loading 

control. (C, D) Scheme of SILAC strategy to identify common or pan-PI3K and isoform-

selective phosphorylation-regulated signaling pathways. Light amino acid-labelled and heavy 

amino acid-labelled Capan-1 cells were pre-treated respectively with 10µM LY-294002 (pan-

inh), 5µM A66 (PI3Kα inhibitor named α-inh), 500nM TGX-221 (PI3Kβ inhibitor named β-inh), 

5µM AS-252424 (PI3Kγ inhibitor named γ-inh) or their accordingly diluted vehicle (DMSO) 

during 1h, then stimulated or not for 10min or 24h with 2% dialysed FBS. After 10min and 

24h of FBS stimulation, heavy cells and light cells were lysed. For each biological replicate, 

light and heavy lysates were mixed at a 1:1 ratio, subjected to tryptic digestion and 

enrichment or not in phosphopeptides with TiO2 beads. Peptides were processed by mass 

spectrometry (Velos LTQ Orbitrap). Four biological replicates were sampled for each time 

point; light condition varies in the biological replicate while heavy vehicle condition is a 

technical replicate that is added in each run. Significantly increased/decreased phospho-

peptides ratios (fold change = 2) for each condition are represented in D. 
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Figure 2: Class I PI3K isoforms regulate distinct signaling pathways in pancreatic 

cancer cells. (A) Global variation of phosphoproteome under FBS stimulation with or without 

PI3K inhibitor treatment in Capan-1 at 10min and 24h. Principal component analysis (PCA) 

analysis is shown. n=4 independent biological replicates. (B) Representation of targets 

specifically modified by pan-PI3K, PI3Kα, PI3Kβ and PI3Kγ inhibition. Dashed lines explain 

how core phosphopeptides are defined. A Venn diagram of modified phosphopeptides in at 

least one condition at each time point is shown. n=4 independent biological replicates. (C) 

Enrichments of biological pathways found in the list of core, pan-, isoform-selective 

phosphoproteins at 10min and 24h were performed with AutoCompare software (pvalue ≤ 

0.01). n=4 independent biological replicates. (D) Schematic representation of bioinformatics 

analysis. 

 

Figure 3: PI3Kγ is overexpressed albeit at low levels in pancreatic cancer tumor cells. 

(A) Frozen samples of normal adjacent pancreas (NA, n=11 patients) and pancreatic cancer 

(PDAC, n=13 patients) samples were lysed. PI3K isoforms proteins pattern of expression 

was assessed by western blot using indicated antibodies, in samples comprising >30% of 

epithelial cells, and quantified when the adjacent tissue was available. Loading control data 

depicted is reused from the previous Figure 1A. Hierarchical clustering is shown using log 

(fold-change PDAC vs. normal adjacent). (B-C) Human and murine pancreatic cells were 

lysed. PI3K isoform mRNA and protein pattern of expression was evaluated by RT-qPCR 

and WB. Mean ± SEM is shown, WB: n=3 human n=1 murine, qPCR: n=3 human, n=2 

murine, independent biological replicates. 

 

Figure 4: PI3Kγ-selective inhibitor sensitivity on the survival of pancreatic cancer 

cells. (A) Incidence of cancer in KPC (n=8 mice) versus KPC;p110γ-/- mice (n=7 mice). 

Representative pictures are shown. Scale=50µm (B) Validation of efficient down-regulation 

protein expression of p110γ targeting by genetic inhibition (shRNA) of Capan-1 cells. 

Number of colonies in soft agar assay of established cell lines (n=4 independent biological 

D
ow

nloaded from
 http://aacrjournals.org/m

ct/article-pdf/doi/10.1158/1535-7163.M
C

T-20-0981/3398095/1535-7163_m
ct-20-0981v1.pdf by IN

SER
M

 user on 22 January 2025



Cintas et al. 

28 
 

replicates; mean of 4 replicates ± SEM is shown). (C,D) Human pancreatic cancer cells 

activation of PI3K and survival were evaluated by western blot(10min) and MTT after 24h, 

48h, 72h, day 6 with or without PI3K inhibitors or vehicle without 2% of FBS (n≥3 

independent biological replicates; OD mean ± SEM is shown). For Capan-1 cells, data 

depicted is reused from the previous Figure 1B. 

 

Figure 5: Combination of PI3Kγ and PI3Kα inhibitors lead to synergistic effect on cell 

survival in pancreatic ductal adenocarcinoma patients. (A) 24h of PI3K/Akt/mTOR 

signalling pathway activation with 2% FBS (n>3) and pan-PI3K inhibitor (n>3), PI3Kγ-inhibitor 

(n>3), PI3Kα-inhibitor (n>3) or dual inhibition PI3Kγ/PI3Kα (n=2) by western blot using 

indicated antibodies in Capan-1, BxPC-3, Panc-1 and MIA PaCa-2 cells. (B) Genetic 

landscape of PDAC organoids (n=2 patients). MAF=Minor Allele Frequency. (C) Level of 

expression of PI3K-related genes (Illumina) (n=2 patients). (D) Sensitivity to PI3K inhibition, 

as indicated, on morphological and number of two human pancreatic cancer primary cultures 

cultured in organoid condition, named B25 and B34, after 5 days of treatment. 

Representative pictures are shown. Scale bars=50µm (n=3 independent biological 

replicates). Black triangle= normal organoids; orange triangle=severely altered organoids. (E) 

Dose-response of two human pancreatic primary organoids viability were evaluated by 

CellGlo Titer assay after 5 days in complete medium with or without PI3K inhibitors, as 

indicated (n=3 independent biological replicates; mean ± SEM is shown). (F) Evaluation of 

synergistic action on survival of 7 human pancreatic cancer cells cultured in 2D (Capan-1, 

BxPC-3, Panc-1 and MIA PaCa-2) and 3D (B25 and B34) was performed determined using 

CompuSyn software based on the quantitative analysis of dose–effect relationships on 

multiple drugs. Combinational index (CI) values were calculated to evaluate synergy. CI < 1 

indicates synergistic effects, 0.8 ≥ CI ≤ 1.2 indicates an additive effect, and CI > 1 represents 

an antagonistic effect (n≥3 independent biological replicates; mean ± SEM was used). (G) 

Xenografted 7-day Capan-1 tumors were treated with vehicle, BYL-719 (25 mg/kg), IPI-549 

(7.5 mg/kg) or a combination of both treatments. n=8 mice per group, experiment performed 
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in two separate lots. Tumor volume evolution measured with caliper is represented and 

corresponds to the percentage evolution of tumor growth from the first day of treatment.  

Mean ± SEM is shown. **, p<0.01.  
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