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Radioisotopes have been used in earth and environmental sciences for over 150 years 
and provide unique tools to study environmental processes in great detail from a 
cellular level through to an oceanic basin scale. These nuclear techniques have been 
employed to understand coastal and marine ecosystems via laboratory and field studies 
in terms of how aquatic organisms respond to environmental stressors, including 
temperature, pH, nutrients, metals, organic anthropogenic contaminants, and biological 
toxins. Global marine issues, such as ocean warming, deoxygenation, plastic pollution, 
ocean acidification, increased duration, and intensity of toxic harmful algal blooms 
(HABs), and coastal contamination are all impacting marine environments, thereby 
imposing various environmental and economic risks. Being able to reliably assess the 
condition of coastal and marine ecosystems, and how they may respond to future 
disturbances, can provide vital information for society in the sustainable management 
of their marine environments. This paper summarizes the historical use of radiotracers 

in these systems, describes how existing techniques of radioecological tracing can 
be developed for specific current environmental issues and provides information on 
emerging issues that would benefit from current and new radiotracer methods. Current 
challenges with using radioecological tracers and opportunities are highlighted, as well 
as opportunities to maximize the application of these methods to greatly increase the 
ability of environmental managers to conduct evidence-based management of coastal 
and marine ecosystems.

Keywords: radionuclides, radiotracers, radioecology, ecosystem condition, marine, coastal

INTRODUCTION
Many of today’s environmental challenges that threaten the health and viability of coastal and 
marine ecosystems are caused or heightened by a plethora of anthropogenic stressors that are 
exacerbated by a changing climate and ocean (Dwight et al., 2005). Global marine issues, such 
as ocean warming, deoxygenation, plastic pollution, ocean acidification, increased duration and
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intensity of toxic harmful algal blooms (HABs), and coastal 
contamination are all impacting marine environments, thereby 
imposing various environmental and economic risks (Turley 
and Gattuso, 2012; Speers et al., 2016; Yagi, 2016; Beaumont 
et al., 2019). Being able to reliably assess the condition of coastal 
and marine ecosystems, and how they may respond to future 
disturbances, can provide vital information for society in the 
sustainable management of their marine environments.

The use of a suite of radioactive isotopic tracers (radiotracers) 
both in controlled laboratory experiments (reviews by Fisher 
and Reinfelder, 1995; Fowler et al., 2004; Stewart et al., 2008; 
Metian et al., 2019a) and in field settings (Swarzenski and Porcelli, 
2003; Fry, 2006; Baskaran, 2011; Fowler, 2011; Harmelin-Vivien 
et al., 2012) has been invaluable to advance our understanding 
of marine and coastal ecosystems. These experiments (lab 
and field) have enabled efficient analyses of the uptake and 
retention of diverse contaminants in aquatic organisms. The 

analysis of radioisotopes is rapid, relatively inexpensive, and 
enables experimentation with trace concentrations of elements, 
well below concentrations typical for most elements in natural 
waters. Consequently, this methodology has been useful to 
determine a contaminant's bioavailability (proportion of the 

total contaminant exposure that is available for uptake into 
biota), bioaccumulation (uptake of a contaminant into an 
organism from water and diet), bioconcentration (contaminant 
concentration in an organism relative to that in the ambient 
water), and, mostly for organic contaminants or organometallic 
compounds, biomagnification (in which the contaminant's 

concentration in the tissues of a predator exceed that in the 
tissues of its prey).

Nuclear techniques have opened up new perspectives on 

the pathways and rates of uptake (e.g., bioaccumulation) and 
biomagnification processes of radioactive and non-radioactive 
contaminants. Similarly, these techniques have been used 
for rapidly identifying and quantifying biochemical toxins in 
seafood, for assessing the impacts of sustained ocean acidification 
on diverse calcifying organisms, and for evaluating metabolic 
processes under increasing ocean temperature. Similarly, isotopes 
have allowed the reconstruction of the geochemical evolution 
of Earth have resulted in the temporal reconstruction of key 

environmental processes and rates.
The goal of this paper is to identify advantages that 

are conferred by using radioisotopes to address existing and 
emerging environmental processes in marine ecosystems. The 
paper is organized into four parts: (1) an introduction that 
reviews the historical use and success stories of radiotracers 
in coastal and marine science; (2) a section summarizing the 
development of existing techniques using radiotracers; (3) a 
section that identifies new tools and techniques that often are 
multidisciplinary, covering existing coastal and marine issues that 
would benefit from the use of radiotracers to assess ecosystem 
condition; and (4) a section describing the challenges and 
opportunities in this field going forward. The innovative use of 
radioisotopes in coastal and marine radioecology can help United 
Nations (UN) Member States work toward and achieve their 
respective UN Sustainable Development Goal (SDG) targets. 

The UN has further proclaimed 2021-2030 as the Decade of

Ocean Science for Sustainable Development1 to promote global 
coordination and support for ocean science and the coastal 
communities that depend on a healthy and sustainable ocean. 
Radiotracers can be used in experimental and field applications 
to provide unique information and perspectives on how, for 
example, subtle changes to ocean chemistry over time may 
influence essential biological systems with far-reaching impacts.

HISTORICAL USE OF RADIOTRACERS
The exploration and use of radioisotopes in environmental 
science has advanced our understanding of natural processes. 
From developing a chronology of Earth’s differentiation and 
planetary evolution using Pb isotope systematics (Patterson et al., 
1955) to using products of legacy nuclear weapons testing 
to derive sedimentary age models, the utility of radioisotopes 
has evolved continuously over the last 60 years as analytical 
methods have been established and vastly improved. Indeed, 
the Suess effect, using radiocarbon (14C) dendrochronology, 

became the cornerstone for supporting anthropogenic global 
warming and helped determine CO2 exchange rates between 
the atmosphere and oceans (Revelle and Suess, 1957), and was 
further developed into more contemporary (and not dependant 
on legacy atomic weapon testing) 13C growth trend analysis in 

corals (Swart et al., 2010).
Radionuclides can be either natural or artificial and have 

been used to trace many processes in the marine sciences (see 
following examples). Indeed, radionuclides are characterized by 
their rate of radioactive decay, or loss that can be used as 
a clock to trace the rate of a variety of processes, making 
them powerful time pieces. Atmospheric nuclear weapons testing 
during 1945 to 1980 (peaking in 1963) and the development of 
civil use of nuclear energy has led to the release of many artificial 
radionuclides to the marine environment such as 3H, 90Sr, 137Cs, 
129I and 238> 239> 240Pu (Benitez-Nelson et al., 2018a). Almost 
at the same time, due to improvement in analytical chemistry 
and instrumentation, there was an increasing use of elements 
belonging to the classic three U-Th series radioactive decay 
chains to investigate marine processes (Benitez-Nelson et al., 
2018a). The GEOSECS (Geochemical Ocean Sections) program 
was one of the pioneering efforts to make use of radionuclides to 
study basin-scale processes (Broecker and Peng, 1982).

Natural and artificial fallout radionuclides have been used 
since the early 1970s for dating recent sediment and determining 
sedimentation rates (Robbins and Edgington, 1975; Appleby, 
2008). In the 1960s and 1970s, numerous studies began to 
characterize the sorption of radionuclides to marine sediment 
and the bioaccumulation of radionuclides in aquatic biota; 
these in turn led to compilations of sediment partition 
coefficients (Kds) and bioconcentration factors (BCFs) of long- 
lived radionuclides in marine sediments and organisms (IAEA, 
2004). These Kds and BCFs have been used in modeling efforts 
to evaluate the cycling and potential impacts of radionuclides in 
marine ecosystems (European Commission, 1990; ICRP, 2008).

1http://oceandecade.org
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In addition, numerous studies explored the application of 
natural and artificial radionuclides to evaluate processes, such 
as: geochronology of sediment (e.g., Swarzenski et al., 2006; 
Appleby, 2008); contaminant uptake, retention and trophic 
transfer through organisms, including model predictions relative 
to results from independent field observations (e.g., Fisher et al., 
1988, 2000; Roditi et al., 2000; Baines et al., 2002; Luoma 
and Rainbow, 2005; Baumann and Fisher, 2011); sediment 
plume dynamics (Swarzenski et al., 1995); carbon flux (Buesseler 
et al., 2006); water mass ventilation (Matsumoto and Key, 
2004), GEOTRACES/GEOSECS/JGOFS programs (Broecker and 
Peng, 1982; Bowles and Livingston, 1997; Moffett and German, 
2018); runoff; and groundwater discharges (Charette, 2001; 
Moore, 2006; Swarzenski, 2007; IAEA, 2010). Furthermore, 
by coupling radiotracers (e.g., 222Rn and 226Ra) with stable 
isotopes of water (e.g., S18O), one can discriminate source 
terms of submarine groundwater discharge and distinguish fresh 
groundwater discharge from saline, recirculated groundwater. 
This information is vital for both groundwater resource managers 
that are tasked in developing potable water budgets as well as 
marine resource managers that are interested in the delivery of 
SGD-borne nutrients and contaminants to coastal ecosystems 
(Rocha et al., 2016).

DEVELOPMENT OF EXISTING 
TECHNIQUES USING 
RADIOECOLOGICAL TRACERS
The use of radioecological tracers helps in improving our 
understanding of contaminant transfer in marine organisms 
under various environmental conditions and also to better assess 
biogeochemical cycling of both organic and inorganic particles 
and dissolved species in a global change context. This section 
provides some specific examples of where radioecological tracers 
have been developed or can be developed for certain marine 
management scenarios.

Contaminant Biodynamics for Fisheries 
Management
As noted by Fowler et al. (2004), our understanding of the 
processes involved in the transfer of contaminants through 
coastal marine food chains can be greatly improved using nuclear 
techniques. Specifically, the ability to radioanalyze live organisms 
and the increased sensitivity of radiotracer detection allows for: 
(1) biological variation of individual organisms to be captured 
in experiments relative to conventional ecotoxicology studies 
not using radiotracers; (2) measuring contaminant biokinetics 
over the long term in a limited number of individuals; and (3) 
distinguishing dietary from aqueous sources of contaminants 
for marine that cannot be easily investigated using standard 
analytical techniques (Wang and Fisher, 1999). Furthermore, 
nuclear techniques allow experiments to be conducted using 
contaminant concentrations that are either well below or 
approximately close to those present in the natural waters. The 
uptake of contaminants by aquatic animals predominantly occurs

via uptake of soluble elements through respiration (e.g., via 
gills) or, to a greater extent for most contaminants, uptake 
of solid-phase contaminants associated with diet via ingestion 
(Fowler and Fisher, 2005). Once internalized, it is important to 
understand how the organism processes the contaminant, either 
through detoxification/sequestration or release through excretory 
products back to the environment. If neither of these processes 
occur effectively, adverse effects/toxicity may ensue. Data on 
contaminant loss rates from an organism are a crucial part of 
biodynamic modeling (i.e., balance between uptake and loss), that 
can be quantified using radiotracers. Much of what is known 
about depuration rates has been evaluated through the use of 
radiotracers, but loss rates are usually assessed from individual 
whole animals rather than specific tissues or organs (with a 
few exceptions, including Cresswell et al., 2017a), so definitive 
predictions for loss rates for specific contaminants from different 
animals remain elusive. A more comprehensive assessment to 
explain loss rates of contaminants, using radiotracers, would 
enhance modeling efforts to describe the main uptake pathway of 
contaminants (e.g., Metian et al., 2016) or their transfer in aquatic 
food chains, and potentially improve predictions of contaminant 
concentrations in seafood.

In addition, assessment of depuration rates in commercially 
relevant seafood species could reduce the risk of consumer 
exposure to contamination by maintaining organisms a certain 
period of time in clean open-circuit water systems after 
the harvesting phase. Indeed, biokinetic parameters, such as 
biological half-life, inform the time needed to reduce the quantity 
of contaminant in seafood by half, compared to its initial levels.

Effects of Abiotic and Biotic Factors on 
Metal Speciation and Bioavailability
It has long been recognized that the chemical and physical 
speciation of metal contaminants can influence their 
bioavailability to aquatic organisms, including plants (e.g., 
phytoplankton) and animals. This has been extensively studied 
for metals dissolved in freshwater and seawater (Luoma and 
Rainbow, 2008; de Paiva Magalhâes et al., 2015). However, 
quantification of the bioavailability of metal contaminants 
associated with sediments has remained a challenge, particularly 
in terms of the influence of metal speciation within sediments 
on bioavailability for benthic animals. While numerous studies 
have evaluated the bioaccumulation of metals from sediments 
(Luoma, 1989; Bryan and Langston, 1992; Wang et al., 1999), few 
have quantitatively assessed how metal speciation in sediments 
affects bioavailability to benthic fauna (Baumann and Fisher, 
2011). Since redox conditions in sediments can change with 
eutrophication, particularly in coastal sediments, the speciation 
of metals, particularly those bound to iron and manganese oxides, 
may change seasonally, and hence affect their bioavailability for 
bottom-dwelling organisms.

The bioavailability of 137Cs from contaminated sediments 
off Fukushima, Japan following the accident at the Fukushima- 
Daiichi nuclear power plant, has resulted in higher levels of 
this contaminant in benthic fish than in pelagic fish in Japanese 
coastal waters (Buesseler et al., 2017; Wang et al., 2018). The
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spéciation of sediment-bound Cs in those régions has not been 
fully explored, but evidence suggests that Cs can build up in 
benthic food chains through assimilation of Cs in deposit- 
feeding worms that assimilate it from contaminated sediments 
and transfer it to fish or macroinvertebrates (Wang et al., 
2016). In addition, physical factors have changed in the world’s 
oceans (temperature, seawater pH) and these may also affect 
the bioaccumulation of metals and radionuclides. The extent 
to which such physical factors may influence contaminant 
bioavailability remains to be determined. While it is difficult 
to replicate field conditions in controlled laboratory sorption 
experiments, radiotracers offer a rapid method for understanding 
the factors governing contaminant partitioning between the 
sediment, solution and suspended particulate phases that can aid 
in the interpretation of field data (Payne et al., 2004).

Role of Microbes/Plankton in 
Contaminant Uptake
The role of microbes in marine ecosystems and biogeochemical 
cycles are often assessed using radiotracers. The classic C- 
14 assimilation method for measuring phytoplankton primary 
productivity (Nielsen, 1952) is commonly used in oceanography 
due to its sensitivity, allowing for high resolution measurements 
of relatively small volumes of seawater. Microbial biomass 
production is also similarly measured using compounds labeled 
with 14C or 3H that are incorporated into DNA or proteins, 
two biosynthesis pathways that scale with growth. The two 
most commonly used methods are thymidine and leucine 
incorporation (Fuhrman and Azam, 1980; Kirchman et al., 
1985), which trace DNA and protein synthesis, respectively. 
Additional radiotracers, such as 33P (Perry, 1976), 35S (Jorgensen 
and Fenchel, 1974), and 55> 59Fe (Hutchins et al., 1993) have 
been used to measure microbial uptake and turnover of macro- 
and micro-nutrients, as well as alternative respiratory pathways 
like sulfate reduction in both seawater and marine sediments. 
In addition to rate measurements, the individual organisms 
involved in the uptake and cycling processes can be identified, 
visualized, and enumerated by combining autoradiography with 
fluorescent in situ hybridization (FISH) using targeted probes 
(Ouverney and Fuhrman, 1999).

In addition to assessing ‘natural’ microbial processes in the 
marine environment, the uptake of contaminants by microbes 
can also be explored using radiotracers (Fowler and Fisher, 2005). 
Due to their large surface area to volume ratios, phytoplankton 
efficiently accumulate metals and radionuclides in seawater 
through passive surface adsorption and absorption across cell 
membranes. Zooplankton similarly adsorb contaminants from 
seawater but can also accumulate them through ingestion of food. 
These micro-organisms then serve as vectors for the transfer 
of metals and radionuclides up into the marine food chain 
or deeper into the water column through particle transport. 
Laboratory experiments often label phyto- and zooplankton 
with radiotracers to serve as dietary vectors for contaminants 
of interest to higher order marine organisms (Willis and 
Sunda, 1984). In the field, size-fractionated measurements of 
contaminants on particulate matter via plankton nets and/or

filtration can indicate the partitioning of these pollutants into 
the microbial component(s) of marine foodwebs and ecosystems 
(Buesseler et al., 2012). However, generally fewer radionuclide 
data exist for phytoplankton at the base of the food chain, 
compared to zooplankton and larger organisms.

Specific Contaminants of Concern: 
Hg/Methyl-Hg,210 Po
There are a number of contaminants that are capable of 
building up in marine food chains. This is particularly true 
for methylmercury (MeHg) which displays clear evidence of 
biomagnification (Morel et al., 1998; Reinfelder et al., 1998; 
Mathews and Fisher, 2008). Unlike inorganic Hg, MeHg is 
highly assimilated by animals from their diet and is lost 
from animals at very low rates. Consequently, MeHg tends 
to increase significantly from one trophic level to another 
(i.e., biomagnification), and reaches very high concentrations 
in tissues of old, large, slow-growing predators (e.g., swordfish, 
tuna, sharks, whales). Given its toxic effects in seafood consumers 
(mostly neurological effects), there is considerable public health 
interest in following the bioaccumulation and trophic transfer of 
MeHg in aquatic food chains. Application of the beta/gamma- 
emitting radioisotope 203Hg (both inorganic and organic species) 
has been undertaken to study the biodynamics in marine food 
chains (Lee and Fisher, 2016,2017) and may continue to elucidate 
how MeHg cycles in aquatic ecosystems.

Another important radionuclide that can accumulate in 
marine biota animals is the naturally occurring 210Po. This 
radionuclide is the last of the radioactive daughter products of 
238U, which is ubiquitous in the world’s oceans. 210Po is an alpha- 
emitting radionuclide (5.3 MeV) that primarily associates with 
proteins in animals (Heyraud and Cherry, 1979; Cherry and 
Heyraud, 1981, 1982). It is greatly enriched in phytoplankton at 
the base of marine food chains (Fisher et al., 1983; Stewart and 
Fisher, 2003) and can be efficiently transferred to zooplankton, 
and subsequently, larger animals along short food chains (Stewart 
et al., 2008). The resultant radiological dose to marine fish 
generally exceeds that of anthropogenic radionuclides (e.g., 
137Cs) (Aarkrog et al., 1997), even in most fish exposed to 137Cs 
in waters off Fukushima (Fisher et al., 2013). Given the potential 
importance of 210Po dose to marine biota as a benchmark 
against which doses from anthropogenic radionuclides need to 
be assessed, it is important to better understand how 210Po 
speciates in water and how it binds to specific proteins in marine 
organisms. While important inroads have been made through 
the pioneering work of Cherry and Heyraud (1981,1982), clearly 
more research is warranted on the marine geochemical cycling 
and biochemistry of this radionuclide.

U/Th Series Isotope Tracers to Examine 
the Marine Carbon Cycle
238U-234Th and 210Po-210Pb isotope pairs have been used 
extensively to estimate the seasonal to annual particulate organic 
carbon (POC) export and remineralization in the oceans. 234Th 
(t1/2 = 24.1 d) is produced from the alpha decay of 238U in 
the ocean. 238U is a highly soluble and conservative element
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in seawater, whereas 234Th is highly particle reactive. Similarly, 
210Po (ti/2 = 138 d) is produced from the alpha decay of 
its grandparent 210Pb (t1/2 = 22.3 y) via 210Bi (t1/2 = 5.01 
d). Both 210Po-210Pb are variably particle reactive and 210Po 
is highly reactive to biogenic particles (Stewart et al., 2008; 
Jones et al., 2015; Bam et al., 2020). The daughter and parent 
radioisotopes reach secular equilibrium (i.e., comparable activity 
concentrations; Bq/g or Bq/mL) when parents are much longer- 
lived relative to the daughter in a closed system and there 
have been multiple daughter half-lives experienced (Benitez- 
Nelson et al., 2018b). However, 234Th and 210Po are preferentially 
adsorbed onto sinking particles which ‘disrupts’ the parent- 
daughter secular equilibrium and can result in preferential 
isotopic ratios, which provides an estimate of the particle flux. 
Also, the scavenging of 210Po-210Pb is driven by the différence 
in the affinities of the nuclides for active biological uptake 
versus passive adsorption (Nozaki et al., 1998). The flux of the 
radioisotope is calculated simply as follows:

F = X_o (Ap — Ad) dz

where F is the flux (dpm m—2 d—1) of daughter radioisotopes, 
z is the depth of water column (m), Xd is decay constant of 
daughter (d—1), Ap and Ad are activities (dpmL-1) of parent and 
daughter radioisotopes in the water column respectively. 234Th 
provides a flux rate integrated over a few weeks (Buesseler et al., 
1998, 2001), which coincides with the residence time of biological 
particles in the upper ocean. Thus, 234Th based flux is useful 
to estimate and/or rule out POC-flux due to short-term local 
blooms, upwelling or temporary disruption. 210Po provides a flux 
rate integrated over several months. The export fluxes of these 
daughter radionuclides can be converted to the POC export flux 
as follows:

Fpoc = Fr
POC

R sinking particles

z

where FPOC is flux of POC (mg C m—2 d—1), Fr is flux of 
radioisotope (234Th or 210Po; dpm m—2 d—1), POC is particulate 
organic carbon concentration (mg CL-1) and R is the activity 
(dpm L—1) of radioisotope (234Th or 210Po; dpm L—1). For 
example, Maiti et al. (2016) has estimated the carbon flux 
using both 210Po and 234Th. Here, we present the profiles of 
234Th:238U and 210Po:210Pb (Figures 1A,B) adapted from Maiti 
et al. (2016). Net disequilibria of 234Th:238U and 210Po:210Pb 
integrated relative to depth can be used to estimate the flux of 
234Th and 210Po, which is then used to calculate the carbon flux, 
as shown in Figure 1C.

Multiple studies have shown that the 234Th-based POC 
fluxes are similar to 210Po-based fluxes, falling within a factor 
of 0.8 to 1.8 (Gulf of Mexico; Figure 1C; Maiti et al., 
2016), 0.5 (Equatorial Pacific; Murray et al., 2005), 0.9 to 3.4 
(Mediterranean Sea; Stewart et al., 2007), 0.74 to 2.3 (South 
China Sea; Wei et al., 2011). These différences in the 234Th and 
210Po based fluxes might due the fact that one must assume:
(1) steady state conditions and minimal physical processes;
(2) negligible advective and diffusive fluxes; and (3) most 
importantly, daughter radionuclide deficit is caused due to

the preferential scavenging of daughter radionuclide relative to 
parent radionuclide (Maiti et al., 2016; Tang and Stewart, 2019). 
The adsorption and scavenging of radionuclides are influenced 
by the concentration and composition of the particles (Roberts 
et al., 2009; Tang et al., 2017).

The concentration and composition of the particles in the 
ocean is changing due to higher sediment input from the coastal 
erosion, high riverine input, changes in terrestrial organic matter 
input and exponentially increasing amounts of micro- and nano­
plastic particles (Rachold et al., 2004; Chen et al., 2012; Jambeck 
et al., 2015; Basu and Mackey, 2018; Zheng et al., 2018). Further, 
the ocean chemistry is rapidly changing due to climate change, 
expansion of oxygen minimum zones and high sediment loads 
in estuarine and coastal areas. It is estimated that 4-12 million 
tons of plastic was transferred to the ocean annually in 2010 and 
it is expected to increase by an order of magnitude by 2025 at the 
current rate (Jambeck et al., 2015). These changes in particle type, 
origin, shape and size might influence the way radioisotopes can 
be used to study the particle fluxes, as the affinity of adsorption 
and sorption of these radionuclides is different for different 
particle types and sizes.

Atmospheric CO2 is converted into POC by phytoplankton 
in the ocean (Figure 2). A portion of the POC can be exported 
to the deeper ocean by sinking particles, while some amount 
of POC can also be converted to dissolved organic carbon 
(DOC). Transparent exopolymer particles (TEP) are carbon-rich, 
extracellular particles formed by the accumulation of DOC and 
can aggregate and sink along with POC (Arrigo, 2007). Increased 
CO2 in the atmosphere can increase the POC in the surface 
water and impact ocean acidification. Ocean acidification could 
lead to increase in the abundance of TEP (Arrigo, 2007; Louis 
et al., 2017). TEP enhances the particle aggregation and sinking 
of aggregated particles influenced by the POC export (Mari et al., 
2012; Louis et al., 2017). The change in primary productivity, 
and consequently increases in phytoplankton and algal blooms 
events, are becoming more frequent in global oceans (Hallegraeff, 
2010; Wells et al., 2015; Schulz et al., 2017). The increased sinking 
of phytoplankton after the bloom events cause high POC export 
(Kessouri et al., 2017; Roca-Marti et al., 2017).

It is important to understand how plastic gyres, plastics 
leaching DOC, and biofilms using plastics as substrates will 
impact the particle dynamics, phytoplankton and zooplankton 
communities and carbon export in the global ocean. Plastic 
pellets act as a transport medium for different chemicals and trace 
metals, such as zinc, copper, cadmium, and lead, via sorption 
and desorption processes (Mato et al., 2001; Munier and Bendell, 
2018), and for the radionuclides, 137Cs and 90Sr (Johansen et al., 
2019b). In future, studies should focus on the kinetics of sorption 
and desorption of organic matter and radionuclides to plastics 
to better quantify the carbon export. Further, Romera-Castillo 
et al. (2018) have suggested that DOC leaching from plastics 
in the oceans may have unaccounted effects to the marine 
organic carbon cycle.

Future studies should focus on the how the changing physical, 
chemical, and biological conditions in the ocean environment 
change the aggregation, sinking, and export rates of the POC, as 
well as other sinking particles. The coupled use of radioisotope
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FIGURE 1 | Profiles of 234Th:238U and 210Po:210Pb in the Gulf of Mexico: (A) water-column activity profile of 234Th (open circles) and 238U (filled circles); (B) 
water-column activity profile of 210Po (open circles) and 210Pb (filled circles); (C) 234Th and 210Po based POC fluxes at different depths in the northern Gulf of Mexico 
(modified from Maiti et al., 2016; sampling station SDWH-13).

tracers and stable isotopes of carbon and nitrogen could be 
bénéficiai to better estimate POC export, differentiate the source 
of POC and DOC (plastic-derived, terrestrial and marine) and 
understand the remineralization of organic carbon in the ocean.

Role of Metals in HABs Biotoxin 
Production
The initiation of harmful algal blooms (HABs) and their 
production of biotoxins remains an open question, although 
such blooms almost certainly require specific environmental

FIGURE 2 | Idealized schematic of the marine carbon cycle, as adapted from 
Arrigo (2007). CO2 is converted into particulate organic carbon (POC) by 
phytoplankton. A component of the POC is exported to the deeper ocean by 
sinking particles, while some amount of POC is converted to dissolved 
organic carbon (DOC). Transparent exopolymer particles (TEP) aggregate and 
sink with POC.

conditions (i.e., temperature, light, nutrients). In addition to the 
influence of trace metals on phytoplankton through nutrient 
limitation, as well as toxicity, their bioavailability may also be 
implicated in stimulating toxin-producing HABs (Sunda, 2006). 
Most well-studied may be the occurrence of Pseudonitzschia 
and the neurotoxin, domoic acid, following iron fertilization 
experiments or with the addition of copper (Maldonado et al., 
2002; Wells et al., 2005; Silver et al., 2010; Trick et al., 
2010). Other studies have linked trace elements, such as Li, 
Se, and Ni, to HAB species (Kudela et al., 2010). Algal- 
bacterial interactions may also be involved in bloom dynamics, 
with siderophore-producing bacteria potentially supplying iron 
to HAB species (Yarimizu et al., 2018). Given the potential 
links between various trace metals and HAB toxin production, 
the use of sensitive radiotracers, such as 59Fe, would enable 
experiments with environmentally relevant concentrations of 
elements potentially implicated in HAB initiation, biotoxin 
production, and physiology. Radiotracer techniques would allow 
for precise detection of trace elements and potentially identify 
their location within cells or in the surrounding phycosphere.

EXISTING AND EMERGING ISSUES 
THAT WILL BENEFIT FROM CURRENT 
AND NEW RADIOTRACER TECHNIQUES

Development of New Applications of 
Existing Radiotracers to Address Marine 
Processes
In light of these many and varied applications of radiotracers 
toward understanding marine ecosystem processes, there 
are additional areas where existing techniques could be 
further developed to address under-explored outstanding 
research questions. Ongoing development in the use of natural 
abundance radiocarbon (14C) distributions throughout the
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marine environment (both inorganic and organic in seawater, 
sédiments, and biota) continues to enhance our understanding 
of critical aspects of the marine carbon cycle and ocean 
circulation and ventilation as a whole (Broecker and Peng, 
1982; Matsumoto, 2007; McNichol and Aluwihare, 2007). For 
example, 14C measurements on DOC fractions and even specific 
compounds and biomarkers (Close, 2019), are increasingly 
possible due to analytical innovations leading to decreased 
sample size requirements. Furthermore, these measurements can 
be used to probe both age and lability of various components 
of the DOC pool. Although the systematic increased resolution 
of dissolved inorganic carbon 14C measurements, initiated as 
part of the World Ocean Circulation Experiment (WOCE), has 
led to unprecedented insight into the carbon reservoir of the 
interior ocean and its role in regulating climate (McNichol et al., 
2000), increased demand for other types of 14C measurements 
can drive technical method innovation, resulting in lower 
costs, smaller required sample sizes, and reduced analysis time. 
As ocean conditions are changing along with changes in the 
global climate, existing radiotracers can be applied to new 
systems within marine environments. For example, radiotracers 
commonly used to track processes in anoxic sediments can be 
adapted for use in water column oxygen minimum zones and 
expanding low oxygen regions of the global ocean. Furthermore, 
combining radiotracers with other analytical techniques, such 
as liquid chromatography-mass spectrometry (LC-MS), can link 
biomarker identification to specific metabolic processes that 
have biogeochemical implications in marine systems, such as the 
assimilation of carbon or lipid biosynthesis in marine organisms 
(Evans et al., 2018, 2019).

Multiple Stressors; Multiple 
Contaminants, and Environmental 
Stressors
Marine organisms and ecosystems are exposed to a wide range 
of environmental changes due to human activities. Some of 
the changes are global, whereas others are regional or local. 
These wide-ranging changes are often referred to as drivers or 
stressors (Boyd et al., 2018). The multiple drivers framework 
represents a complex matrix of changing ocean properties that 
will vary from locale to locale, and may also change with 
season. A wide range of perturbation experiments can be used 
to better understand how multiple drivers influence marine life 
(Boyd et al., 2018). Radiotracers could be used to assess the 
effect of environmental stressors on the bioaccumulation of 
an element, including bioconcentration or trophic transfer. In 
recent years, focus was placed to understand the effect of ocean 
acidification on metalbioaccumulation in marine organisms such 
as cadmium (Cao et al., 2018). These studies highlight the main 
advantage of using gamma-emitter radiotracers including: (1) the 
ability to radioanalyze the same individual live organisms over 
time, thereby reducing biological variability between samples; 
and (2) the possibility to conduct experiments at contaminant 
concentrations that are below or comparable to those present 
in the environment. Working with stable metals, analytical 
protocols commonly require higher, more environmentally

unrealistic experimental concentrations of metals and also 
require more time for conducting analyses.

Nuclear techniques can also highlight some physiological 
responses and be considered as “proxies” for physiological change 
in aquatic species. Radiotracers, such as65Zn, have been used 
in the past, but nuclear techniques, such as nuclear magnetic 
resonance spectroscopy (NMR), allow the determination of 
metabolic profiles of tissues, organs or individuals (Viant et al., 
2003) under multiple sets of conditions (such as ocean warming, 
acidification and hypoxia, e.g., Schmidt et al., 2017; Tripp- 
Valdez et al., 2017; Gotze et al., 2020) and with different 
environmental stressors (e.g., heavy metals, Lannig et al., 2010; 
Cappello et al., 2016).

Impact of Physiological Processes on 
Contaminant Uptake and Loss
It has been well documented that physiological process can 
impact contaminant bioaccumulation processes (Luoma and 
Rainbow, 2008) and the use of radiotracers can greatly enhance 
the understanding of such processes. It has been well documented 
that molting (shedding of exoskeleton) in decapod crustaceans 
can affect the accumulation kinetics of metals using radiotracer. 
For example, Cresswell et al. (2015) found that cadmium and 
zinc uptake in freshwater decapods (Macrobrachium australiense) 
returned to an intermolt rate of uptake 2-3 days post-molt, which 
may be due to the exoskeleton no longer being as permeable by 
that stage, or due to a decrease in calcium pump rates as the 
exoskeleton hardens. However, White and Rainbow (1984,1986) 
observed that the rate of cadmium and zinc uptake in post-molt 
marine decapods (Palaemon elegans) continued to be enhanced 
and had not returned to pre-molt rates by the time each study 
ended, with the time from molt to the end of the studies occurring 
between 36 h and 8 days. O’Mara et al. (2019) detected an increase 
in the uptake of manganese and zinc in marine school prawns 
(Metapenaeus macleayi) that had molted, compared to those that 
did not molt during aqueous exposure.

Radiotracers have also been used to study how significant 
physiological changes, such as metamorphosis in amphibians, 
can affect contaminant bioaccumulation. Lanctôt et al. (2017) 
used radiotracers of selenium (75Se) to study the role of tissue 

degeneration and remodeling during anuran metamorphosis 
as a mechanism for examining tissue-specific contaminant 
burdens. The study with the Australian striped marsh 
frog, Limnodynastes peronii, demonstrated that selenium 
biodistribution (i.e., organ distribution) varies significantly 
throughout metamorphosis (Figure 3).

Integration of Stress/Energy Biomarkers 
With Radiotracer Contaminant Studies
As mentioned before, an assessment of the effect of 
environmental stressors on organisms can be conducted by 
testing their responses using nuclear techniques. For example, 
in metabolomics (the scientific study of chemical processes 
involving metabolites), NMR provides a useful technique for 
profiling metabolites and has been used for assessing the impact 
of environment stressors on marine organism over almost
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FIGURE 3 | Retention (%) of selenium (Se) in whole tadpoles (following 
exposure for 7 days) sampled at different developmental stages throughout 
27 days of depuration in clean water. Line shows the best-fit one-phase 
exponential decay (R2 = 0.83). Digital autoradiographic false color phosphor 
images show Se distribution in ventral sections of tadpoles at developmental 
stage 33, 42, and 46 (Gosner, 1960), sampled after 3, 19, and 27 of 
depuration in clean water, respectively. Reprinted (adapted) with permission 
from Lanctôt et al. (2017). Copyright (2017) American Chemical Society.

20 years (Viant et al., 2003; Lannig et al., 2010; Lankadurai et al., 
2013; Tikunov et al., 2014; Cappello et al., 2016). Metabolomics 
consists of a large-scale study of small molecules, commonly 
known as metabolites, within cells, biofluids, tissues and/or 
organisms. Untargeted metabolic profiling, based on NMR 
spectroscopy, is a powerful approach because of its holistic 
nature and because metabolites and their concentrations 
directly reflect the underlying biochemical activity and state of 
cells and tissues.

Another type of magnetic resonance spectroscopy has 
been also used toward this aim. In vivo magnetic resonance 
spectroscopy (MRS) is a specialized non-destructive technique 
associated with magnetic resonance imaging (MRI). This 
technique is a non-invasive, ionizing-radiation-free analytical 
technique that has been used to study metabolic changes in 
human patients in the last century (Lauterbur et al., 1980; 
Bell and Bhakoo, 1998). However, developments have been 
made in marine ecology and comparative physiology, more 
particularly, in the assessment of physiological (energetic) status 
of marine organisms, such as mollusks or fish, under changing 
environmental conditions (Bock et al., 2002, 2019). Mainly, 
two in vivo techniques have been used: proton magnetic 
resonance spectroscopy (1H-MRS) and 31P magnetic Resonance 
Spectroscopy (31P-MRS). 1H-MRS is able to quantify the 
abundance of neurochemicals, such as neurotransmitters and 
metabolites like amino acids, but also anaerobic end products, 
such as lactate, and is also used for fat and lipid analysis 
(Bock et al., 2017; Wermter et al., 2018). 31P-MRS measures 
phosphorus-containing metabolites that play an essential role in 
physiology. The most important are the high-energy phosphates, 
ATP and phosphagen (creatine phosphate or phospho-l-arginine) 
and their end product, inorganic phosphate, to address the energy

status. Furthermore, the 31P-NMR signal of inorganic phosphate 
can be used to follow acid-base regulation of cells and tissues 
in the same spectrum (Bock et al., 2019). Recently, in vivo 
13C-NMR spectroscopy was introduced to study metabolic 
pathways in marine organisms under environmental stress 
(Tikunov et al., 2014).

NMR has also had substantial utility in phosphorous 
speciation studies, and has resulted in increased understanding 
of the modern phosphorous cycle in both terrestrial soils 
and aquatic sediment. For example, 31P-NMR has been used 
successfully in studying the speciation of phosphorous in 
Chesapeake Bay to better understand nutrient contamination 
and dynamics (Li et al., 2015) and 1H-31P NMR correlation 
spectroscopy has been used to characterize the organic 
phosphorous fractions in soil which has resulted in an increased 
understanding of phosphorous biogeochemistry (Vestergren 
et al., 2012). All of these NMR spectroscopy techniques are quite 
unique and could be used for the future development of nuclear 
techniques toward the assessment of the physiological impacts of 
environment stressors.

Other nuclear-derived techniques, such as the polymerase 
chain reaction (PCR), reverse transcription PCR and enzyme- 
linked immunosorbent assay, are important tools to rapidly and 
efficiently identify and characterize environmental stress caused 
to marine organisms (Boutet et al., 2002; Peck et al., 2011; 
Huo et al., 2018).

Development of Radio-Assays for HAB 
Biotoxin Detection; Adapting Nuclear 
Receptor Binding Techniques for a 
Range of Marine Biotoxins
The frequency and scales of today’s HAB constitute a growing 
worldwide problem, negatively affecting aquatic ecosystems, 
public health and local economies. HAB events have been shown 
to cause oxygen depletion, phycotoxin production, mucilage, 
reactive oxygen species, and polyunsaturated fatty acids. HAB 
can also trigger systematic damage to tissue and cells of 
marine organisms and can even cause catastrophic mortalities 
in commercially important fish species, as well as marine 
mammals and sea turtles (Anderson, 2017). Worldwide, the 
occurrence of HAB appears to have increased in frequency, 
geographic extent and intensity, which may be due to heightened 
nutrient discharges, but also climate change impacts, such as 
warming and water column stratification (Heisler et al., 2008), 
as well as the introduction of exotic species (van den Bergh 
et al., 2002). Most of the HAB species are dinoflagellates, 
accounting for as much as 100 taxa in the marine environment 
(Mouestrup et al., 2009).

Paralytic shellfish toxins (PSTs) and ciguatoxins can be 
effectively and quickly analyzed in marine biota using the 
receptor binding assay (RBA) technique (IAEA, 2013). Briefly, 
the RBA method quantifies the toxin potency by determining, 
through a scintillation counter, the concentration of tritiated 
toxin standards, which compete with the toxin from sample 
extracts for binding to voltage-gated sodium channels in a rat 
brain membrane preparation (Van Dolah et al., 2012).
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The establishment of effective HAB early warning Systems, 
the adoption of robust molecular techniques to improve rapid 
identification methods of HAB-forming species, and necessary 
expansion into freshwater ecosystems should all be developed 
and strengthened to ameliorate potential deleterious impacts of 
new HAB events (Cuellar-Martinez et al., 2018).

Maternai Transfer of Contaminants, 
Including Intergenerational Transfer
Among the different exposure pathways studied separately in 
the past using radiotracers, there was water, food, and sediment 
(Casado-Martinez et al., 2009; Metian et al., 2010; Wang, 2011; 
Cresswell et al., 2014), but episodically, a fourth pathway has 
been investigated: the maternal transfer of contamination (viz. 
transfer of contaminants from the mother to the eggs or the 
juveniles; e.g., Lacoue-Labarthe et al., 2008; Jeffree et al., 2015). 
It has been shown that in some marine organisms, maternal 
transfer is metal-dependent and while eggs can concentrate some 
elements, juveniles might be safe due to protective mechanisms 
(Lacoue-Labarthe et al., 2008). Gamma-emitting radiotracers are 
the ideal tools to assess such transfer. In the same vein, it is 
also possible to look at more than one generation transfer (i.e., 
transgenerational), but this requires some specific species with a 
short life-cycle (such as Daphnia spp.; see Lam and Wang, 2006).

Radiolabeled organic compounds are also part of the 
radiotracer toolkits to examine the bioaccumulation of organic 
compounds in aquatic organisms. Although they are mainly 
labeled with 14C, some tritium-labeled compounds are also used. 
A large range of compounds exist, from polychlorinated 
biphenyls (PCBs) to benzo(a)pyrene (BaP) and include 
surfactants (e.g., linear alkylbenzene sulfonates; Metian et al., 
2019b), pesticides and polycyclic aromatic hydrocarbons (PAHs) 
(Danis et al., 2005; Wang and Wang, 2006; Berrojalbiz et al., 
2009; Renaud et al., 2014). Radiolabeled organic contaminants 
are usually beta-emitters, and unlike gamma-emitters, radio- 
counting individuals over time is impossible due to the analytical 
methods usually used to detect organic radiotracers (scintillation 
counting). This means that the description of kinetics requires 
destruction of the samples and a higher number of organisms. 
Nevertheless, the main advantage is the high degree of sensitivity 
of radio-detection methods compared to standard analytical 
techniques (Fowler et al., 2004), which allow investigating the 
bioaccumulation of organic contaminants which occur at very 
low environmental concentrations, such as individual PCB 
congeners or organic metabolites.

Instrument Improvements for the 
Analysis of Environmental Samples
The general low level of radionuclides in environmental samples 
and/or the small sample sizes available have required the use of 
efficient techniques. As outlined by Povinec (2017), the transition 
from counting of radioactive decays to counting atoms using 
mass spectrometry methods (Accelerator Mass Spectrometry- 
AMS, Inductively Coupled Plasma-Mass Spectrometry-ICP-MS, 
Resonance Ionization Mass Spectrometry-RIMS, Secondary 
Ion Mass Spectrometry-SIMS, Thermal Ionization Mass

Spectrometry-TIMS) is a major paradigm shift in radioanalytical 
technology. Several of these latter methods have been adapted 
over the last decades to cover a wide span of environmental 
samples and radionuclides. Such analyses include: the
quantification ofkey radionuclides, such as 129I at very low levels 
at the Savannah River site in the United States, where speciation 
studies of iodine were conducted using AMS (Garcia-Leon, 
2018); the analysis of 240Pu/239Pu/241Pu isotope ratios in waters, 
sediments, terrestrial soils and marine and terrestrial biota using 
AMS to understand the fate of Pu and other radionuclides 
from former nuclear weapons testing in the Montebello Islands, 
Australia (Johansen et al., 2019a); the development of ICP-MS 
and coupling with linear quadrupole, time of flight (TOF), 
and Fourier transform ion cyclotron resonance (FTICR) to 
analyze environmental samples for radionuclides in a relatively 
cost-effective way (Roos, 2008), especially for 135Cs/137Cs ratios 
via ICP-MS with the development of interference separation 
methods (Russell et al., 2015); and the determination of 99Tc in 
environmental samples through the development of chemical 
separation, combined with traditional radioanalytical techniques 
and mass spectrometric measurement techniques, to undertake 
safety assessments and decommissioning of nuclear facilities, as 
well to study water mass movement, exchange and circulation in 
oceanography (Shi et al., 2012).

These advances in analytical instrumentation to detect 
ultra-trace concentrations of radionuclides, down to 0.1 fg 
levels (Lopez-Lora and Chamizo, 2019), is providing a deeper 
understanding of the fate of contaminants and water mass 
movement in marine systems.

CHALLENGES AND OPPORTUNITIES
While the use of radioecological tracers has been practiced for 
nearly 60 years, today there is a real risk that these techniques 
will be lost, as fewer and fewer scientists are active in this field. 
This is partly due to the high regulatory and safety requirements 
for the shipment, storage, use (including personnel training) 
and disposal of radioactive materials, and partly to the lack of 
training in radiochemical and radiobiological methods in recent 
decades. A new generation of scientists with radioecological 
skills is needed to evaluate nuclear accidents (such as at 
Fukushima), advise on siting and potential impacts of new 
nuclear installations, and advise on decommissioning of aging 
nuclear power plants (Fisher et al., 2015). Further, it is important 
for the environmental science community to continue to support 
and train new scientists in the field of radioecological tracers to 
develop new techniques to apply to emerging coastal and marine 
ecosystem issues. By combining conventional environmental 
biological and chemical techniques with radioecological tracing 
techniques, a greater understanding of the coastal and marine 
ecosystem condition can be achieved. The development of 
radioecological tracer techniques should focus on addressing 
specific environmental issues, such as changes in animal 
physiology in response to changing climatic conditions and 
anthropogenic stressors, especially in combination with emerging 
‘omic’ techniques (e.g., to detect genes, mRNA, proteins and

Frontiers in Marine Science | www.frontiersin.org 9 June 2020 | Volume 7 | Article 406

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science%23articles


Cresswell et al. Marine Radioisotope Tracing: Opportunities and Challenges

metabolites in biological samples). This will greatly increase the 
ability of environmental managers to conduct evidence-based 
management of coastal and marine ecosystems.

One problem in working with radioisotopes is the difficulty 
in obtaining permits to conduct experiments in field situations. 
While some studies have taken advantage of using radioisotopes 
to explore how metals behave in natural settings (Dahlgaard, 
1986; Fisher et al., 1996), increasingly, such studies have 
become difficult due to legal and administrative constraints. 
The few experiments that have compared lab and field 
behaviors of radionuclide processing by marine biota have 
indicated small différences, so laboratory simulations may be 
generally applicable to field situations. Moreover, modeling 
of metal bioaccumulation in aquatic animals that use key 
laboratory-generated criteria (uptake rate constants, assimilation 
efficiencies, efflux rate constants) has consistently shown that 
predictions closely match independent field measurements of 
metal bioaccumulation in diverse invertebrates and fish (Fisher 
et al., 1996, 2000; Wang et al., 1996; Roditi et al., 2000; 
Baines et al., 2002; Luoma and Rainbow, 2008; Mathews and 
Fisher, 2009; Baumann and Fisher, 2011; Dutton and Fisher, 
2014). Thus, it appears that laboratory generated data can 
be applicable to real-world situations for many metals and 
metalloids. However, experimental work with large animals 
typically preclude laboratory experimentation and it is therefore 
often difficult to make comparisons between modeled tissue 
concentrations for these animals based on lab measurements and 
field measurements.

The use of radioecological tracers can increase the complexity 
of the experimental design (i.e., study contaminant mixtures 
during multiple environmental stressors such as pH and
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