3rd model intercomparison projects of atmospheric dispersion model for ¹³⁷Cs emitted from Fukushima Daiichi Nuclear Power Plant, and application of MIPs' results for usage in an emergency EGU21-14377, https://doi.org/10.5194/egusphere-egu21-14377 Yamazawa, H., <u>Sato, Y.</u>, Sekiyama, T., Fang, S., Kajino, M., Quérel, A., Quélo, D., Kondo, H., Terada, H., Kadowaki, M., Takigawa, M., Morino, Y., Uchida, J., Goto, D., Nakamura, M., and Kiriyama, Y #### Acknowledgement: Project of Environmental Restoration and Conservation Agency, Japan (JPMEERF2018100) # What we have done in this study? - 1. 3rd Model Intercomparison Project (MIP) of ATDM for ¹³⁷Cs emitted from FDNPP (Sato et al. 2020) - 2. Discussion about how to use ATDM's results in emergency situation #### My presentation in EGU 2018 ## 2nd Atmospheric Model Intercomparison Project for Fukushima Daiichi Nuclear Power Plant Accident on March 2011 ~ 2nd FDNPP-MIP Poster number : EGU2018-2882 Yousuke Sato, Nagoya University Cumulative deposition amount of Cs-137 during March 2011 #### My presentation in EGU 2018 # Purpose and Participants in 2nd MIP (Sato et al. 2018) #### <u>Participants</u> #### <u>Purpose</u> - Estimate uncertainties originated from <u>physical components</u> of the model - Obtain <u>multi-model ensemble</u> <u>mean</u> for atmospheric concentrations of Cs-137 emitted from FDNPP #### Unique point of this MIP - Identical meteorological data (3 km, 10 min) - Identical emission (Katata et al. 2015) - Same grid resolution (3km) | Model name | Institute | Reference | | |-------------------------|-----------------|---|--| | AIST-MM | AIST | Kondo (2001) | | | Pello | FOI | Schoenberg et al.
(2014) | | | HIRAT | Fukushima Univ. | Hirao et al. (2013) | | | ldX | IRSN | Mathieu et al. (2012) | | | GEARN | JAEA | Katata et al. (2015) | | | WRF-Chem | JAMSTEC | Grell et al. (2005) | | | NHM-Chem | MRI | Kajino et al. (2013) | | | WRF-CMAQ | NIES | Morino et al. (2013) | | | SCALE | Nagoya Univ. | Nishizawa et al.
(2015) | | | Polyphemus/
WRF-Chem | Tsinghua Univ. | Brandt et al. (2002)/
Hu et al. (2014) | | | NICAM-Chem | U-Tokyo | Uchida et al. (2017) | | ### Purpose and Participants in 3rd MIP (Sato et al. 2020) #### <u>Participants</u> #### <u>Purpose</u> - Estimate uncertainties originated from <u>physical components</u> of the model - Obtain <u>multi-model ensemble</u> <u>mean</u> for atmospheric concentrations of Cs-137 emitted from FDNPP #### Unique point of this MIP Identical meteorological data (1 km, 1 hour) Identical emission (Katata et al. 2015) Same grid resolution (1 km) | Model name | Institute Reference | | |------------|---------------------|-----------------------------| | AIST-MM | AIST | Kondo (2001) | | Pello | FOI | Schoenberg et al.
(2014) | | IdX | IRSN | Mathieu et al. (2012) | | GEARN | JAEA | Katata et al. (2015) | | WRF-Chem | JAMSTEC | Grell et al. (2005) | | NHM-Chem | MRI | Kajino et al. (2013) | | WRF-CMAQ | NIES | Morino et al. (2013) | | SCALE | Nagoya Univ. | Nishizawa et al. (2015) | | WRF-Chem | Tsinghua Univ. | Hu et al. (2014) | | NICAM-Chem | U-Tokyo | Uchida et al. (2017) | # Difference between 2nd and 3rd MIP #### List of configuration of MIPs | | 3rd MIP | 2nd MIP | | |---------------------------|--|--|--| | Domain size | Left figure (b) Righgt figure | | | | Initial/Lateral condition | NHM-LETKF (<i>dx</i> =1km) (Sekiyama and Kajino 2020) | NHM-LETKF (<i>dx</i> =3km) (Sekiyama et al. 2015) | | | Emission | Katata et al. (2015) | | | | Calculation Period | 2011, Mar. 11 ~ Mar. 31 | 2011, Mar. 11 ~ Mar. 23 | | | Horizontal grid spacing | 1 km | 3 km | | | | Data | |---|---| | Atmospheric
Concentration of ¹³⁷ Cs | SPM [hourly]
(Oura et al. 2015, Tsuruta et al. 2018) | | Deposition amount of ¹³⁷ Cs | Aircraft measurement over land (MEXT 2011) | | Meteorological field | AMeDAS operated by JMA | ○ : SPM sites of Oura et al. (2015)□ : SPM sites of Tsuruta et al. (2018) # Evaluation for Deposition amount #### Score for evaluation $$RANK = CC^{2} + \left(1 - \left|\frac{FB}{2}\right|\right) + \frac{FMS}{100} + \left(1 - \frac{KSP}{100}\right)$$ (Draxler et al. 2015) $$\begin{split} \mathsf{CC} &= \frac{\Sigma \big(D_{\mathsf{model}} - \overline{D_{\mathsf{model}}} \big) \big(D_{\mathsf{obs}} - \overline{D_{\mathsf{obs}}} \big)}{\sqrt{\Sigma \big(D_{\mathsf{obs}} - \overline{D_{\mathsf{obs}}} \big)^2 \Sigma \big(D_{\mathsf{model}} - \overline{D_{\mathsf{model}}} \big)^2}} \,, \\ & \mathsf{FB} = 2 \times \frac{\overline{D_{\mathsf{model}}} - \overline{D_{\mathsf{obs}}}}{\overline{D_{\mathsf{model}}} + \overline{D_{\mathsf{obs}}}} \,, \\ & \mathsf{FMS} = 100 \times \frac{A_{\mathsf{obs}} \cap A_{\mathsf{model}}}{A_{\mathsf{obs}} \cup A_{\mathsf{model}}} \,, \\ & \mathsf{KSP} = \mathsf{Max} \, | \, P_{\mathsf{obs}} \big(D_{\mathsf{ksp}} \big) - P_{\mathsf{model}} \big(D_{\mathsf{ksp}} \big) \, | \, , \end{split}$$ # Deposition (Multimodel ensemble) #### Improvement in deposition distribution from 2nd MIP to 3rd MIP - Reproduce narrow distribution of northwest of FDNPP - Reduce overestimation of south of FDNPP #### Poor performance of the model in both MIPs - Underestimation of Nakadori-area - Overestimation over Ibaraki, Saitama, south of Tochigi. # Deposition amount by each model and by aircraft measurement Large variability even if the identical met. data and source term were used (as in 2nd MIP) # RANK for total deposition amount | Madal | RANK | | | |------------|------------------------|------------------------|--| | Model | 2nd (Sato et al. 2018) | 3rd (Sato et al. 2020) | | | AIST-MM | 2.78 | 1.88 | | | ldX | 2.75 | 2.88 | | | GEARN | 2.86 | 2.65 | | | WRF-Chem-J | 2.98 | 2.63 | | | NHM-Chem | 1.90 | 1.64 | | | WRF-CMAQ | 2.38 | 1.92 | | | SCALE | 0.73 | 0.92 | | | WRF-Chem-T | 2.93 | 2.95 | | | NICAM | 2.57 | 2.50 | | | Ensemble | 3.21 | 2.72 | | The performance in 3rd MIP was worth than 2nd MIP Multimodel ensemble showed better score than whole models # Evaluation of models for each plume #### Score for evaluation $$\mathsf{RANK2} = \frac{\mathsf{FA2}}{100} + \frac{\mathsf{CAPTURE}}{100} + F \times \left(1 - \frac{\mathsf{OVERSESTIMATE}}{100}\right), \quad F = \left\{ \begin{array}{l} 0 & (\mathsf{OVERESTIMATE} = 0) \\ 1 & (\mathsf{OVERESTIMATE} \neq 0) \end{array} \right.$$ (Sato et al. 2018) #### Plume arrival time and Score for atmospheric concentration | Red : Observation | | |-----------------------|--| | Blue: Mean (ensemble) | | | Black: Median | | | Grey: Range | | | Model name | 3rd RANK2
Sato et al. (2020) | 2nd RANK2
Sato et al. (2018) | |------------|---------------------------------|---------------------------------| | AIST-MM | 1.88 | 2.78 | | ldX | 2.88 | 2.75 | | GEARN | 2.65 | 2.86 | | WRF-Chem-J | 2.93 | 2.98 | | NHM-Chem | 1.64 | 1.90 | | WRF-CMAQ | 1.92 | 2.38 | | SCALE | 0.92 | 0.73 | | WRF-Chem-T | 2.95 | 2.93 | | NICAM-Chem | 2.50 | 2.57 | | Ensemble | 2.72 | 3.21 | - The multimodel ensemble reproduced plume arrival time with 2~3 hours delay - The performance in 3rd MIP was worse than 2nd MIP - Bad performance of some models was cancelled by good performance of others →Multimodel ensemble showed better score than each model in both 2nd and 3rd MIP. #### Overview of 9 plumes (Tsuruta et al. 2014) Plume measured near FDNPP (P1, P5, and P6) were not discussed in 2nd MIP due to the coarse grid horizontal resolution in 2nd MIP (Sato et al. 2018) RANK for each plume (ensemble) | Plume | RANK2 | |-----------------|-------| | <mark>P1</mark> | 1.42 | | P2 | 1.61 | | P3 | 1.07 | | P4 | 1.24 | | P5 | 1.10 | | P6 | 1.76 | | P7 | 0.78 | | P8 | 1.57 | | _ | | 0.14 Wind field was not reasonably reproduced for these plumes Meteorological field is most critical for reproducing observed ¹³⁷Cs # Plume measured near FDNPP (Plume 1) (Plume 6 was similar characteristics) - 1. Model with good performance reasonably simulated local front around the coastal area → Meteorological field is most critical for reproducing observed ¹³⁷Cs - 2. Good performance of some models cancelled poor performance of others # Deposition amount by each model and by aircraft measurement (3rd MIP) # Plume 1 (Plume 6 was similar characteristics) - 1. Model with good performance reasonably simulated local front around the coastal area → Meteorological field is most critical for reproducing observed ¹³⁷Cs - 2. Good performance of some models cancelled poor performance of others - 3. Model with good performance for air concentration does not always show good performance for deposition amount # Advantage of using fine grid resolution (Plume 8) # Summary of part 1 - 1. Performance of the models was evaluated for the plume measured near FDNPP (P1, P5, and P6) - 2. In the vicinity of FDNPP, meteorological field and atmospheric dispersion calculations with a fine (1 km or less) grid resolution are needed to evaluate and investigate the atmospheric behavior of atmospheric ¹³⁷Cs. - 3. Good performance of some models can improve the performance of the multimodel ensemble, highlighting the advantage of using a multimodel ensemble. - Model with good performance for atmospheric concentration of ¹³⁷Cs does not always show the good performance in deposition amount of ¹³⁷Cs. - 5. Fine grid spacing does not always result in the good performance, but fine grid spacing is required for simulating events measured in vicinity of FDNPP. # What we have done in this study? - 1. 3rd Model Intercomparison Project (MIP) of ATDM for ¹³⁷Cs emitted from FDNPP (Sato et al. 2020) - 2. Discussion about how to use ATDM's results in emergency situation How to use ATDM's results in emergency situation? - The advantages of prediction by ATDM - Predictable in advance - Possible to grasp spatiotemporal distribution - Possible to operate at a remote center - Disadvantages of prediction by ATDM - Uncertainty in terrain reproducibility, meteorological data, source information - Uncertainty in model and input data ✓ Consideration of usage so that uncertainty does not increase the risk of exposure # Discussion about the usage of the ATDM's results in emergency situation - ■Target area for the discussion - ✓ To examine the performance of model ensemble plume prediction for the area within 30 km. - Data for examination ✓ Results of 9 models participated in the 3rd MIP # How to judge plume arrival and passage ✓ Prediction method (model calculation) Judgment from time series of ¹³⁷Cs Concentration at the surface level 137Cs Concentration ✓ Verification method (measured values) Judgment from time series of air dose rate #### Judgment by measured value - ✓ Target points4 MP points within 30km from FD1NPP - ✓ Evaluation period 3/12 14:00~ 3/24 8:00 (JST) ### Ensemble mean - ◆ Ensemble mean···The average value of the concentration of each grid - ◆ Ensemble members are 9 models submitted to the 3rd MIP. Concentration of ¹³⁷Cs by each model and its ensemble mean (2011 3/15 01:00 JST) ✓ Ensemble mean encompass overall features of each model ### Plume arrival prediction with a single model #### Comparison of arrival prediction and measurement at Hutatsunuma - The model may predict absence of plume for the cases where plume actually arrived. - There is a time lag in the plume arrival prediction. ✓ Arrival prediction with a single model is not sufficient. ### Plume arrival prediction with multiple models ■ Evaluation of plume arrival prediction of model ensemble Comparison of plume arrival prediction and measurement at Hutatsunama Evaluation of plume arrival at all 4 points (time fraction) | | | Model. | | |------|-------|--------|-------| | | | Plume | No | | Obs. | Plume | 0.152 | 0.033 | | | No | 0.280 | 0.534 | ✓ Plume arrival can be fairly accurately predicted by the ensemble mean OEffective arrival prediction + Effective non-arrival prediction 69% × Risky non-arrival prediction 3.3% → Necessary to be reduced ### Consideration for model uncertainty #### ■Uncertainty of model - ✓ Model validation results (Sato et al.,2020, Nakamura, 2021) - Time lag of 2 to 3 hours in the plume arrival - The axis of plume may deviate by about 1 compass point (22.5°) #### ■ Use of safety time margin ✓ Setting safety time margin before and after the periods of plume arrival prediction Regarded as period of plume existence ## Examination of appropriate safety margin ■ Evaluation results of all 4 points ✓ Setting a longer safety margin… Evaluation of plume arrival at all 4 points with safety margin of 3 h (time fraction) | | | Model. | | |------|-------|--------|-------| | | | Plume | No | | Obs. | Plume | 0.180 | 0.005 | | | No | 0.452 | 0.363 | - →Risky non-arrival prediction decreased - → False arrival prediction increased - ✓ Beyond 3 h safety margin · · · · - →No decrease in risky non-arrival prediction There is no benefit of setting it longer than 3 hours. ✓ With 3 h of safety margin $3.3\% \rightarrow 0.5\%$ Risky non-arrival prediction Effective non-arrival prediction 53%→36% # Summary of part 2 We verified the emergency usage of the atmospheric dispersion model using the data from FD1NPP accident. We clarified the following. #### Conclusion - ✓It is Insufficient to predict plume arrival with a single model, even one of the best models. - √ Highly accurate arrival prediction is possible by using the ensemble mean. - ✓ By setting the safety time margin, safer prediction became possible. #### ■ Future tasks ✓ Examination including MP points that were not selected this time to confirm the universality of the present results