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Abstract. In this two-part article, we propose elastic models of disordered alloys to

study the statistical properties of the random displacement and stress fields emerging

from the random distributions of atoms of different sizes. In Part I, we presented real-

and Fourier-space approaches enabling to obtain the amplitude of the fluctuations

through the mean square displacements and stresses. In the present Part II, we extend

the Fourier approach to address spatial correlations. We show that, even if the alloy

is fully disordered and elastically isotropic, correlations are highly anisotropic. Our

continuum predictions are validated by comparisons with atomistic models of random

alloys. We also discuss the consequence of displacement correlations on finite size effects

in atomistic calculations and on diffuse X-ray and neutron scattering experiments and

the possible implications of stress correlations on dislocation behavior.

Random alloys are solid solutions of two or more components where atoms of

different nature are located randomly on the crystalline lattice. The plasticity of

random alloys has been of significant interest for several decades [1, 2, 3] but has

recently attracted a renewed attention with the development of high entropy alloys

(HEA) [4, 5, 6]. The size difference between the alloy components induces displacements

of the atoms from their lattice sites, as well as internal stresses. These atomic

displacements, also referred to as ”lattice distortion” in the literature [5, 6] have been

the focus of multiple studies because they were found to correlate well with solid solution

strengthening and can be assessed by both experimental (using X-ray [5, 7, 8, 9, 10] and
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neutron diffraction [11, 12]) and numerical methods [13, 14, 15, 16]. By way of contrast,

internal stresses have been much less studied probably partly because they are more

difficult to measure in experiments. However, internal shear stresses are of central

importance since they induce Peach-Koehler forces that impede dislocation motion

and thus control the yield stress and the corresponding solid solution strengthening.

Therefore, it appears highly desirable to assess both displacement and stress fields

in random alloys in order to better understand the relations between the atomic size

differences, atomic displacements and the yield stress of the alloys.

In Part I [17] of this two-part paper, we presented two different elastic models of

random alloys where atoms of different sizes are modeled as elastic inclusions embedded

in a continuous elastic medium. The real-space model described in Part I combines

Nöhring and Curtin’s statistical treatment [18] with an elastic model: the displacement

(and stress) on an atomic site is obtained as the sum of the contributions of all

surrounding atoms that are treated as Eshelby inclusions characterized by dilatational

eigenstrains. This approach yields expressions for the mean square displacement

and stress as a function of infinite sums over all lattice sites that can be computed

numerically. We also proposed a Fourier-based approach that relies on the micro-

elasticity framework [19, 20]. To facilitate calculations in Fourier space, the atomic

eigenstrains are spread over a small distance a with a Gaussian distribution around

the atomic sites. This approach yields analytical expressions of the mean square

displacement and stress that are obtained after averaging everywhere in space. These

quantities do not depend on the crystalline structure but are functions of the free

parameter a. Both real- and Fourier-based approaches yield similar expressions for

the mean square displacement and stress, both proportional to the variance of the

eigenstrains in the alloy and differing only by a geometric prefactor. While Part I

focuses on the mean-square displacement and stress, the present Part II is dedicated to

the spatial correlations of these fields.

The spatial correlations between atomic displacements are of significant importance

both for numerical and experimental studies. First, a better understanding of the

spatial correlations would help assess the influence of finite system size and boundary

conditions on simulation results. Also, atomic displacements are known to affect the

intensity obtained in X-ray and neutron scattering experiments. While fluctuations of

displacements influence the intensity and broadening of the Bragg peaks [5, 7, 8, 9, 10],

correlations induce diffuse scattering and in particular Huang scattering near the Bragg

peaks [21, 22, 23]. Also, Glas [24] demonstrated numerically the presence of long-range

displacement correlations in an atomistic model of semiconductor and showed how the

correlations modify the contrast obtained in transmission electronic microscopy (TEM).

The spatial correlations between shear stresses are central to characterize the stress

environment impeding dislocation glide in random alloys. Without correlations, basic

scaling arguments [25, 26] can be used to show that, in a line tension model, the yield
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stress grows with the variance of the shear stress field with a 2/3 exponent:

τy0 ∼
〈τ 2〉2/3
Γ1/3

, (1)

where Γ is the dislocation line tension. This scaling is affected by stress correlations

[25, 27, 28] that necessarily exist in disordered three-dimensional isotropic solids

and exhibit a 1/d3 power-law decay at long range, as demonstrated by Lemâıtre

[29, 30, 31]. Assessing the stress correlations appears therefore crucial to better

understand dislocation behavior in random alloys. However, we note that, so far, the

effect of stress correlations has not been investigated in energy-based [2, 32, 33, 34] or

stress-based [26, 35] dislocation models.

The real space approach described in Part I [17] can be used to express spatial

correlations. However, the resulting expressions are functions of intertwined infinite

sums that are difficult to interpret and analyse. In this Part II, we prefer to extend

the Fourier approach detailed in Part I to the study of correlations. In particular,

with this model, we are able to derive compact expressions of the displacement and

stress correlations in the general case of anisotropic elasticity. In the specific case of an

elastically isotropic medium, the equations become tractable analytically. In particular,

we find strongly anisotropic correlations for the displacement field, which decay as 1/d3

in the longitudinal direction (for instance, correlations along the x axis of displacements

in the x direction) and as 1/d in the transverse direction (for example, correlations along

the y or z axis of displacements in the x direction). For the shear stress correlations, we

recover the 1/d3 decay demonstrated by Lemâıtre but with an unexpected anisotropy in

the sign of the correlations. Predictions of the model are validated by direct comparison

with molecular statics calculations in model Lennad-Jones and Al0.5Mg0.5 alloys.

1. Microelasticity model

The microelasticity model of a random alloy is described in details in section 1 of Part

I [17]. We only recall here the main ingredients and the reader is referred to Part I for

details. We consider a substitutional alloy of Nelem elements. Each atom is modeled

as an elastic inclusion located at its site in the crystalline lattice and embedded in

a homogeneous elastic medium of elastic constants Cijkl. The eigenstrain associated

to each species is diagonal and expressed as ε
00
α = εαdiag(1, 1, 1). The inclusions are

assumed to be placed on a crystalline lattice in a system of volume V = LxLyLz that

contains N atoms/inclusions. The atomic volume is vat = V/N .

Every element is associated with a site occupancy random variable given by a

Bernoulli distribution independent of the lattice site. The probability of site n to host

an atom of type α is:

Pα(n) =

{

0 with probability 1− cα
1 with probability cα

, (2)
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where cα is the atomic concentration of element α in the random alloy. We insist on

the fact that with this definition of Pα(n), we do not consider any ordering that may

appear in real alloys [36, 37].

The eigenstrain εα associated to each species is defined with respect to a reference

frame. In line with Part I and other theoretical studies on HEA [33, 38], we choose the

reference frame as the lattice of the average alloy, defined such that the eigenstrains

have a zero mean:
Nelem
∑

α=1

cαεα = 0. (3)

The last ingredient of the model is a Gaussian spreading of the eigenstrains around

each lattice site. The spreading function is:

f(r) =
vat

(2π)3/2a3
exp

(

− r
2

2a2

)

, (4)

where the width of the gaussian function, a, is the spreading parameter. Noting

{Rn}n=1,N the atomic/inclusion positions on the lattice, the inclusion field of element

α, θα(r), is:

θα(r) =

N
∑

n=1

Pα(n)f(r −Rn). (5)

Based on this inclusion field, the microelasticity theory [17, 19, 20] yields closed-

form expressions of the displacement and stress fields:

ui(r) =

Nelem
∑

α=1

εα
∑

K 6=0

Λi(K)θ̃α(K)eiK.r (6)

σij(r) =

Nelem
∑

α=1

εα
∑

K 6=0

(Ξij(K)− Cijklδkl) θ̃α(K)eiK.r (7)

where θ̃α(K) is the Fourier transform of θα(r), K = 2π(nx/Lx, ny/Ly, nz/Lz) are

reciprocal space vectors (with (nx, ny, nz) ∈ Z
3). Λi(K) = −iGij(K)KlCjlmm and

Ξij(K) = CijklGkp(K)KqKlCpqmm are interaction kernels for the displacements and

stresses, functions of the Green’s function for elasticity Gij(K). We use these expressions

in the following sections to derive spatial correlations.

2. Displacement field correlations

2.1. General expression

We first discuss the spatial correlations of the displacement field expressed as a 3 × 3

tensorial field, U(d). The component

Uij(d) = 〈ui(r)uj(r + d)〉, (8)
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is the correlation between the displacements in directions i and j of material points

separated by a vector d. Brackets 〈 . 〉 denote an average over space and realizations of

the random inclusion field. Note that, as in Part I, the spatial average is performed over

the continuum space and not just at the atomic positions. After averaging, we obtain:

Uij(d) =
∑

K 6=0

Λi(K)Λj(K)

[

Nelem
∑

α=1

Nelem
∑

β=1

εαεβ〈θ̃α(K)θ̃β(K)〉
]

exp (iK.d) . (9)

Information relative to the occupancy of the lattice sites is contained in the term between

square brackets that can be expressed as a function of the alloy composition as shown

in Appendix A of Part I:

Nelem
∑

α=1

Nelem
∑

β=1

εαεβ〈θ̃α(K)θ̃β(K)〉 = vat∆ε2

V
exp(−a2K2), (10)

where we have introduced the variance of the eigenstrains:

∆ε2 =

Nelem
∑

α

cαε
2
α. (11)

Combining Eqs. (9) and (10), we find

Uij(d) =
vat∆ε2

V

∑

K 6=0

Λi(K)Λj(K) exp
(

iK.d− a2K2
)

. (12)

Finally, considering the limit of an infinite volume with Lx, Ly, Lz → +∞, the discrete

sum can be replaced by an integral, yielding:

Uij(d) =
vat∆ε2

(2π)3

∫

dK Λi(K)Λj(K) exp
(

iK.d− a2K2
)

. (13)

In an anisotropic elastic medium, this integral can be solved numerically to yield

displacement correlations for a given d. In the case of isotropic elasticity, the elastic

kernel reduces to Λi(K) = −i1+ν
1−ν

Ki

K2 [20], such that:

Uij(d) =
vat∆ε2

(2π)3

(

1 + ν

1− ν

)2 ∫

dK
KiKj

K4
cos(K.d) exp

(

−a2K2
)

, (14)

where exp(iK.d) was replaced by cos(K.d) because of the symmetry of the integrand.

Due to the isotropy of the medium, the correlation tensor can be expressed in terms of

only two correlation functions, between either longitudinal or transverse displacements.

To show this, we start by considering the displacement correlations along a given axis.
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Figure 1. Graphical illustration of transverse and longitudinal displacement

correlations.

2.2. Correlations along an axis

Let us first assume that d is along an axis of the material frame noted (ex, ey, ez). Since

the medium is isotropic, we can choose d along the z axis, such that:

Uij(dez) =
vat∆ε2

(2π)3

(

1 + ν

1− ν

)2 ∫

dK
KiKj

K4
cos(Kz.d) exp

(

−a2K2
)

. (15)

If i 6= j, either i or j is different from z. The integrand is then odd with

respect to the corresponding K-component and Uij(dez) = 0. The correlation tensor

is thus diagonal along the z axis of the material frame. Because of the isotropy of the

medium, this remains true for any axis: displacements along orthogonal directions are

not correlated along either direction, nor along the third perpendicular direction.

The diagonal terms of U contain auto-correlation functions. As illustrated in Fig. 1,

we need to distinguish the correlations between longitudinal displacements, for instance

Uxx(dex), e.g. the correlation along the x axis of displacements in the x direction

(illustrated in red in Fig. 1), and the correlations between transverse displacements, for

instance Uxx(dey). We start with the correlations between longitudinal displacements

denoted UL(d), which are the same along any axis of the medium because of its isotropy:

UL(d) = Uxx(dex) = Uyy(dey) = Uzz(dez). It is shown in Appendix A.2 that in this

case, the integral in Eq. (15) can be carried out analytically, yielding:

UL(d) = 4〈u2〉
(a

d

)3
[√

π

2
erf

(

d

2a

)

− d

2a
exp

(

− d2

4a2

)]

, (16)

where 〈u2〉 is the variance of the displacement field. In Part I, we showed:

〈u2〉 = vat∆ε2

4π3/2a

(

1 + ν

1− ν

)2

. (17)
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Figure 2. (a) Normalized transverse and longitudinal displacement correlations UT

and UL. (b) Normalized displacement correlations Uxx in the (x, y) plane. White

lines represent contour lines at 0.1 and 0.02 to highlight the anisotropy of the spatial

correlations.

Eq. (16) is shown as a dashed red line in Fig. 2.a. We note that the Gaussian

spreading of the inclusions prevents the divergence of the auto-correlation function at

the origin and as expected, UL(0) = 〈u2〉/3 (because 〈u2〉/3 = 〈u2
z〉 = 〈u2

y〉 = 〈u2
x〉 due

to the isotropy of the system). The far-field behavior of Eq. (16) is obtained by taking

the limit d ≫ a where erf(d/2a) → 1, such that

UL(d) =
d≫a

2
√
π〈u2〉

(a

d

)3

, (18)

showing that the correlation between longitudinal displacements decreases as 1/d3 at

long range.

The second case is the correlation between transverse displacements, for instance

Uxx along the y axis as shown in blue on Fig 1. By symmetry, correlations are the same

for all Uii(djej) with i 6= j and this remain true for the transverse displacements to any

axis of the medium. We note this transverse correlation function UT (d). Following the

same steps as in Appendix A.2, we obtain:

UT (d) = 〈u2〉a
d

[√
π

2

(

1− 2a2

d2

)

erf

(

d

2a

)

+
a

d
exp

(

− d2

4a2

)]

. (19)

Taking the limit d ≫ a we find:

UT (d) =
d≫a

√
π

2
〈u2〉

(a

d

)

, (20)

showing a 1/d decay. Eq. (19) is drawn as a full blue line in Fig. 2.a and clearly shows the

different scaling behaviors of the longitudinal and transverse correlations. Interestingly,

the transverse correlations decrease much more slowly than the longitudinal correlations.
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We insist that, because of the isotropy of the medium, UL(d) represents the

correlations between longitudinal displacements along any axis of the medium, while

UT (d) is the correlation between any transverse displacement along any axis of the

medium.

2.3. Correlations in a plane

We can now consider the correlations between displacements in a plane, for instance the

auto-correlation of ux or uy or cross-correlations between ux and uy in the (x, y) plane.

Using a planar rotation and the fact that cross-correlations are zero along any frame

axis, we find:

Uxx(dxex + dyey) = UL(d) cos
2(θ) + UT (d) sin

2(θ) (21)

Uxy(dxex + dyey) = (UL(d)− UT (d)) sin(θ) cos(θ) (22)

where d =
√

d2x + d2y and θ = arctan(dy/dx). Fig. 2.b displays Eq. (21) as a color map

with contour lines, again showing the strikingly different long-range behaviors in the

longitudinal and transverse directions.

We note, although this will not be detailed here, that the same reasoning can be

generalized to three dimensions to yield the displacement correlations between any two

material points in space.

3. Shear stress field correlations

The spatial correlations of the stress field is represented by a fourth-order tensor whose

components are defined as:

Σij,mn(d) = 〈σij(r)σmn(r + d)〉. (23)

Considering Eq. (7) and following the same steps as in the previous section, we obtain

in the limit of an infinite medium:

Σij,mn(d) =
vat∆ε2

(2π)3

∫

dK (Ξij(K)− Cijklδkl) (Ξmn(K)− Cmnpqδpq) cos(K ·d) exp
(

−a2K2
)

.

(24)

In an isotropic elastic medium, the interaction kernel reduces to Ξij(K) =

2µ
(

1+ν
1−ν

)

KiKj/K
2. As in Part I, we will focus on the shear components that are relevant

because they form the structural stress noise impeding dislocation motion. Considering

the isotropic case, Cijklδkl = 0, the correlation function between shear stresses (i 6= j

and m 6= n) reduces to:

Σij,mn(d) =
vat∆ε2

(2π)3
4µ2

(

1 + ν

1− ν

)2 ∫

dK
KiKjKmKn

K4
cos(K ·d) exp

(

−a2K2
)

(25)

In the following, we will consider correlations along an axis and then in a plane.
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Figure 3. Graphical illustration of transverse and longitudinal shear stress

correlations in the (x, y) plane.

3.1. Correlations along an axis

If d is along an axis, for instance the z axis, then if (i, j) 6= (m,n), the integrand of

Eq. (25) is necessarily odd with respect to two K-components and Σij,mn(dez) = 0.

We thus focus on the auto-correlation terms, Σij,ij(dez). As for the displacements, we

need to distinguish between transverse and longitudinal correlations. As illustrated in

Fig. 3, transverse correlations are for instance the auto-correlation of σxz along the y

axis, which by symmetry is the same for all σij stresses along k axes with i 6= j 6= k.

We will note this correlation function ΣT (d). Longitudinal correlations are for instance

the auto-correlation of σxz along the x axis, which by symmetry is the same for all σik

stresses along k axes with i 6= k. We note the latter ΣL(d). In Appendix A.3, we show

that:

ΣT (d) = 15〈τ 2〉
(a

d

)3
[√

π

(

1− 6a2

d2

)

erf

(

d

2a

)

+
6a

d
exp

(

− d2

4a2

)]

, (26)

with 〈τ 2〉, the variance of the shear stresses that was derived in Part I:

〈τ 2〉 = vat∆ε2µ2

30π3/2a3

(

1 + ν

1− ν

)2

. (27)

As expected, Talyor expansions of the terms between brackets show that ΣT (0) = 〈τ 2〉.
On the other hand, in the limit d ≫ a, we have:

ΣT (d) =
d≫a

15
√
π〈τ 2〉

(a

d

)3

. (28)

Similarly, we find for the longitudinal correlations:

ΣL(d) = −30〈τ 2〉
(a

d

)3
[√

π

(

1− 12a2

d2

)

erf

(

d

2a

)

+
a

d

(

12 +
d2

a2

)

exp

(

− d2

4a2

)]

,

(29)
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Figure 4. (a) Normalized transverse and longitudinal shear stress correlations, ΣT

and ΣL (as examples, ΣT (d) = Σxz,xz(dey) and ΣL(d) = Σxz,xz(dex)). (b) Stress

correlations Σxz,xz in the (x, y) plane plane in log scale.

which in the limit d ≫ a becomes:

ΣL(d) =
d≫a

−30
√
π〈τ 2〉

(a

d

)3

. (30)

Both Eqs. (28) and (30) display the same 1/d3 long-range behavior derived by

Lemâıtre in a more general setting [31]. Interestingly, we evidence a striking difference

between ΣT and ΣL illustrated in Fig. 4.a. While ΣT (d) is positive for all d, ΣL(d)

is positive at short distance but becomes negative at longer distance. The cross-over

between positive and negative correlations depends only on the spreading parameter

a and is found numerically to be d0 ≃ 2.4a. Moreover, ΣL displays a minimum at

dmin ≃ 4a for which the correlation is negative. This negative correlation translates into

an intrinsic length scale λ ≃ 8a in the noisy stress environment.

3.2. Correlations in a plane

As for the displacements, we can express the stress correlations in a plane as a function

of only ΣL, ΣT using polar coordinates. We will discuss here only the case of the auto-

correlation of σxz in the (x, y) plane. We chose this particular correlation because of

its relevance for the plastic behavior of an alloy. Indeed the σxz stress is the stress

component which impedes the motion in the (x, y) plane of a dislocation with a Burgers

vectors along the x axis, i.e. both a screw dislocation along the x axis and an edge

dislocation along the y axis. Using a rotation in the plane and the fact that cross-

correlations are zero along the frame axes, we find a similar expression as for the

displacements:

Σxz,xz(dxex + dyey) = ΣL(d) cos
2(θ) + ΣT (d) sin

2(θ). (31)



Microelasticity model of random alloys. Part II: displacement and stress correlations11

Fig. 4.b displays the stress correlation of Eq. (31) in the (x, y) plane using a log-

scale color map in order to reveal the positive and negative stress correlation regions.

Other correlation terms in the plane and in the 3D space can be obtained using similar

calculations.

In brief, we have shown in this section that the Fourier-based microelasticity model

can be used to derive closed-form expressions for the displacement and shear stress

correlations in the general case. In the specific case of isotropic elasticity, we derived

analytical expressions for the spatial correlations of the displacement and stress field

emerging in a random alloy. We will now test these expressions by comparison with

atomistic calculations.

4. Molecular statics calculations

The expressions derived in sections 2 and 3 rely on assumptions concerning a continuum

approximation, the isotropy of the elastic medium and the representation of atoms of

different nature as dilatational eigenstrains. When dealing with real systems, these

assumptions might appear questionable since short-range effects, chemical effects, or

anisotropic eigenstrains and elasticity might dominate. Therefore, it is important to

test the predictions of the elastic model by comparison with atomistic systems. To

this end, we performed molecular statics calculations in a model Lennard-Jones system

and an Al0.5Mg0.5 alloy, that, as shown in Part I [17], compare well with predictions of

our elastic model for the variance of the displacement and stress fields. All atomistic

calculations were performed with Lammps software [39].

The elastic parameters of both systems have been computed and are listed in Tab. 1.

The Bacon-Scattergood average [40, 41] is used to compute isotropic parameters from

cubic elastic constants.

The correlations functions obtained in sections 2 and 3 depend on the Gaussian

spreading parameter a. In Part I [17], we have shown that this quantity can be

determined such that the variance of displacements and stresses obtained with the

Fourier approach match the prediction of the real-space approach that do not rely on

any fitting parameter (see Eq. (19) and (24) of Part I). This approach yields two

different parameters au and aτ (see Tab. 1) obtained respectively from the variance of

the displacement and stress field.

ālat(Å) vat(Å
3) au(Å) aτ (Å) A µ (GPa) ν ∆ε2

LJ A0.5B0.5 3.982 15.79 1.12 0.903 2.65 171.1 0.345 3.66 · 10−6

EAM Al0.5Mg0.5 4.282 19.6 1.199 0.971 0.95 20.7 0.331 3.41 · 10−3

Table 1. Average properties of the Lennard-Jones A0.5B0.5 and Al0.5Mg0.5 random

alloys: ālat is the lattice parameter of the average alloy, vat the corresponding atomic

volume, au and aτ are the Gaussian spreading parameters for the displacements and

stresses, A = 2C44/(C11 − C12) the Zener anisotropy cofficient, µ and ν the isotropic

elastic constants and ∆ǫ2 the variance of the eigenstrains.
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4.1. Lennard-Jones model A0.5B0.5 alloy

We first consider a FCC binary alloy A0.5B0.5 modeled with the shifted Lennard-Jones

(LJ) interatomic potential described in Part I [17]. This model system holds the

advantage of introducing a small and well-controlled size effect through the amplitude

of the shifted potential while reducing non-linear effects to a minimum. However,

the elastic anisotropy of this system is quite large (the Zener anisotropic coefficient

is A = 2.65 as reported in Tab. 1).

Displacement correlations. To investigate correlations in this system, we constructed

random A0.5B0.5 FCC lattices of size (160ālat)
3 and relaxed the atomic positions with

3D periodic boundary conditions. To reach sufficient statistics, we used ten independent

simulations and averaged the correlations over realizations and over crystallographically

equivalent directions. Fig. 5.a shows the transverse correlation, UT (d), along the 〈100〉
direction of the FCC lattice (for instance Uxx(dey) with x = [100] and y = [010]).

The atomistic results match very well the analytic prediction of Eq. (19). As shown

in the inset, the atomistic calculations display the 1/d behavior predicted by Eq. (20)

over more than one decade. The small difference seen at large distances is attributed

to a finite size effect demonstrated in Fig. 6, which compares correlations computed in

systems of different sizes.

Fig. 5.b shows the longitudinal correlation, UL(d), along the 〈100〉 direction (for

instance Uxx(dex) with x = [100]), compared with the prediction of the elastic model.

While the elastic model predicts positive correlations decreasing as 1/d3, the correlations

obtained from the model LJ system drop abruptly to a small and negative value and

remains slightly negative at all distances. This difference is attributed to the anisotropic

elasticity of the LJ system (Zener coefficient A = 2.65), which is the main approximation

of the elastic model compared to this when simple atomic system. We should also keep

in mind that Figs. 5.a and b are predictions without fitting parameters since the only

free parameter of the model, a, was chosen based on the real-space approach. The

overall agreement is therefore satisfactory and shows the adequacy of the elastic model.

Fig. 5.c shows the correlations in the (x, y) plane of displacements ux, with x = [100]

and y = [010]. Despite the discrepancy of the correlations along the x axis discussed

earlier, this map agrees very well with the analytical prediction shown in Figs. 2.b. We

recover in particular the slowly decreasing correlations along the transverse y axis and

rapidly decreasing correlations along the longitudinal x axis.

Such anisotropy between transverse and longitudinal correlations was reported by

Glas [24] in an atomistic model of semiconductor. We note however that in his study,

longitudinal and transverse correlations share similarities with the results reported here.

The difference between the numerical results from Glas and the ones reported here may

be attributed to the specific features of the interatomic potential employed to model

covalent bonds in Ref. [24] or also to strong finite size effects associated with small

simulations cell employed in his study.
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Figure 5. Transverse (a) and longitudinal (b) displacement correlations obtained

from atomistic calculations in a Lennard-Jones A0.5B0.5 system (circles) and from the

elastic model (full lines). The inset in panel (a) shows the same plot with a log-log

scale. (c) Spatial correlations Uxx in the (x, y) plane.
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Figure 6. Finite size effect: transverse displacement correlations in systems of

different sizes. L denotes the linear size of the cubic simulation cell.
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Figure 7. (a) Transverse and (b) longitudinal shear stress correlations obtained from

atomistic calculations in a Lennard-Jones A0.5B0.5 system (circles) and from the elastic

model (full lines). The insets display the same data with a log-log scale (absolute value

is taken in case of negative quantities). (c) Spatial correlations Σxz,xz in the (x, y)

plane.

Shear stress correlations. To evaluate the correlations between shear stresses, we

computed the atomic virial stresses in the relaxed configurations. The results, averaged

over ten independent simulations and between equivalent directions are summarized in

Fig. 7. As for the displacements, the free parameter aτ (see Tab. 1) was chosen such

that the variance of the stress matches the results of the real space method (see Part I

[17]).

We see in Figs. 7.a and b that the atomistic calculations matches qualitatively

the predictions of the elastic model with positive transverse correlations and negative

longitudinal correlations. In addition, the log-log plots in the insets show that the

atomistic correlations follow the expected 1/d3 power-law decay predicted by the elastic

model (see Eq. (28) and Eq. (30)).

We note that the elastic model does not reproduce exactly the variance of the stress
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(i.e. the correlations in d = 0) and the magnitude of the negative correlation obtained

at d = alat in Fig. 7.b. These discrepancies are attributed to the anisotropic elasticity

of the model LJ system and the inaccuracy of the virial stress to estimate stresses at

the atomic level [42, 43, 44].

Fig. 7.c displays the stress correlation map of Σxz,xz in the (x, y) plane with a

log scale, dividing the plane into positive (red) and negative (blue) correlation regions.

Again, these correlations match well the prediction obtained from the elastic model

shown in Fig. 4.c.

4.2. Al0.5Mg0.5 alloy

We consider now a binary Al0.5Mg0.5 random alloy modeled with the EAM potential of

Liu et al. [45]. This binary system holds the advantage of involving species of different

radii but of similar chemistry, with a weak elastic anisotropy (see Tab. 1). In addition,

the eigenstrain tensor associated with both species can be identified with dilatational

inclusions, matching well the assumptions of the model.

Displacement correlations. Fig. 8 shows that the transverse correlation, UT (d), follows

the 1/d behavior as predicted by Eq. (20) over more than one decade. As for the LJ

system, the discrepancy obtained at large distances is due to a finite size effect. Fig. 8.b

shows the longitudinal correlation, UL(d), compared with the prediction of the elastic

model. We find that, in agreement with the model, the longitudinal correlation in

Fig. 8.b decreases much faster than the transverse correlation in Fig. 8.a. The decrease is

however slightly slower than the 1/d3 behavior expected from the model. This difference

may be due to the weak anisotropy of the atomistic alloy or to chemical effects. Fig. 8.c

displays the correlations in the (x, y) plane of displacements in x direction, with x = [100]

and y = [010], showing again a very good agreement with the predicted map of Fig. 2.b

Shear stress correlations. The stress correlations are evaluated from the atomic virial

stresses obtained in the relaxed configurations. The results are summarized in Fig. 9.

The atomistic results reported in Figs. 9.a show a good agreement between the atomistic

results and the prediction of the elastic model. The log-log plots in the insets show a

remarkable agreement over more than one decade between the atomistic results and

the expected 1/d3 power-law decay predicted by the elastic model (see Eq. (28) and

Eq. (30)). Fig. 9.c displays the stress correlation map of Σxz,xz in the (x, y) plane with

a log scale and matches very well the prediction obtained from the elastic model shown

in Fig. 4.c.

Overall, both the LJ and Al0.5Mg0.5 random binary alloys reproduce all the features

of the displacement and stress correlations predicted analytically by our elastic model.

Some features such as the positive longitudinal displacement correlations and the long-

range 1/d3 stress correlations are better captured with the Al-Mg alloy, which is probably

a consequence of the weak elastic anisotropy of this system compared to the LJ alloy.
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Figure 8. Transverse (a) and longitudinal (b) displacement correlations obtained

from atomistic calculations in Al0.5Mg0.5 (circles) and from the elastic model (full

lines). The inset in panel (a) shows the same plot with a log-log scale. (c) Spatial

correlations Uxx in the (x, y) plane.

The agreement obtained in this section also reveals that the effect of the crystalline

lattice (neglected in the Fourier-based elastic model because of the spatial average)

remains limited. This can be understood by noting that the displacement and stress

correlation functions vary smoothly and involve wave-lengths larger than the interatomic

distance.

5. Discussion

Using a microelasticity model in Fourier space, we have obtained analytic expressions of

the correlation functions of displacements and stresses in a random alloy. We find

that, even if the alloy is fully disordered and elastically isotropic, correlations are

highly anisotropic, with different scaling behaviors for the transverse and longitudinal

displacement correlations, and the same scaling but different signs for the transverse
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Figure 9. (a) Transverse and (b) longitudinal shear stress correlations obtained from

atomistic calculations in Al0.5Mg0.5 (circles) and from the elastic model (full lines).

The insets display the same data with a log-log scale (absolute value is taken in case

of negative quantities). (c) Spatial correlations Σxz,xz in the (x, y) plane.

and longitudinal shear stress correlations. We used a continuous approach where the

displacements and stresses are averaged everywhere in the continuum space and not just

at the atomic positions. A consequence is that the correlation functions obtained here

do not depend on the crystalline lattice. The real space approach introduced in Part I

can be extended to express discrete correlation functions between atomic displacements

and stresses, which depend on the crystal lattice. In this case, the expressions involve

an infinite sum over the crystalline lattice that can not be solved analytically. However,

we checked numerically that the resulting correlation functions exhibit the same spatial

dependence as the continuous correlations discussed here. This shows the suitability of

the present continuous approximation, as also attested by the comparison with atomistic

calculations performed in section 4.

Correlations in displacements and stresses are interesting in their own rights. We

discuss them in turn below.
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5.1. Finite size effects

As demonstrated theoretically in section 2 and numerically for specific systems in section

4, the transverse displacement correlations decrease as 1/d. An implication of this

long-range behavior concerns the influence of the system size on atomistic simulation

results. In particular, the use of a finite system size with periodic boundary conditions

necessarily truncates these long-range correlations as shown in Fig. 6, which in turn

affects quantities such as the mean-square displacement.
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Figure 10. Error on the mean-square displacement 〈u2〉 due to finite size effects in

the Lennard-Jones A0.5B0.5 (squares) and the Al0.5Mg0.5 alloy (circles)

as a function of system size. The converged values, 〈u2〉∞, were obtained by

extrapolation following the 1/N1/3 convergence highlighted by the continuous lines.

The dashed line shows a 1/
√
N trend expected in the case of uncorrelated

displacements (central-limit theorem).

To evidence these finite size effects, Fig. 10 displays the error on the measured

mean-square displacement with respect to the number of atoms in the simulation cell.

If the atomic displacements were uncorrelated, one would expect the statistics to follow

the central-limit theorem and to converge as ≃ 1/
√
N (shown with a dashed black curve

in Fig. 10). Both LJ and Al0.5Mg0.5 systems investigated in this article follow a slower

convergence. The error decreases as 1/L ∼ 1/N1/3 (continuous lines in Fig. 10) where

L is the linear size of the system, a direct consequence of the transverse displacement

correlations that also decrease as 1/d. Therefore, the mean square displacements follow

a geometric convergence, as observed in other problems involving elastic interactions

[46].

We note that the mean square displacements discussed in Part I of this paper [17]

were measured in large systems containing at least 1.6 · 107 atoms such that the finite

size error remains of the order of 1%. The slow 1/N1/3 convergence implies however

that the use of small simulation cells containing a few hundred atoms, as commonly

employed in ab-initio calculations [13, 14, 15, 16], does not yield values of the mean-
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square displacement representative of infinite systems, even if the results are averaged

over different random configurations of the same alloy. The error depends on the system

but could be of the order of 20% for 2048 atom systems and as high as 40% for a

256 atom systems. This observation might partly explain the discrepancies obtained

in the litterature between ab-initio calculations, continuous modeling and experiments

[13, 14, 15, 16].

By way of contrast, because stress correlations decrease with 1/d3, the mean square

stresses do not exhibit strong finite size effects.

5.2. Displacement correlations and diffuse scattering

Displacement correlations have been mainly discussed in the literature with regards

to diffuse scattering effects in X-ray and neutron diffraction experiments, and diffuse

contrast in TEM. In his pioneering work, Huang [21] used a real-space continuum

approach and modeled impurities as spherical Eshelby inclusions. He expressed the

effect of a single isolated impurity on the scattering intensity and, remaining in the

dilute solid solution limit, approximated the total scattered intensity as the sum of

individual contributions. Later, Barabash et al. [22] showed by comparison with

atomistic calculations that this continuum approach predicts accurately the intensity

scattered by isolated impurities because of the dominant contribution of long wavelength

displacements to Huang’s diffuse scattering.

Thorpe et al. [23] extended the study of Huang scattering to concentrated alloys

by including the effect of displacement correlations. They did not use a continuum

approach but modeled a discrete random binary alloy with two types of spring-bonds

between lattice sites. This model allows to define a Green’s function [23] and thus bares

strong similarities with the discrete real-space approach described in Part I.

Interestingly, the microelasticity model developed here can be used to extend

Huang’s continuum approach to concentrated alloys. Fully developing this line of

work is out of the scope of the present article but an interesting prospect would be to

compare predictions of such theory with results obtained in X-ray and neutron scattering

experiments performed on complex HEA in order to analyse diffraction spectra in light

of the displacement correlations discussed in this paper.

As noted in the literature [24, 47, 48], atomic displacements are affected by

ordering of the chemical species in the alloy. For instance, it is obvious that no

long-range displacement correlation can emerge from a perfectly ordered binary alloy

(with a L12 or B2 structure). In the intermediate case, one can investigate the role

of composition fluctuations on the diffracted spectra by considering that the random

occupancy variables Pα(n) are not independent of the lattice site, thus including short-

or long-range orders [47, 48, 49]. Such line of work would be of interest for the study of

HEA where chemical ordering remains an open question on many systems [36, 37, 50].
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5.3. Stress correlations and dislocations

The spatial correlations of the shear stresses are central to assess the stress field acting on

dislocations in random alloys. Indeed, as mentioned above, a dislocation with a Burgers

vector along the x axis and gliding in the (x, y) plane is affected by Peach Koehler forces

proportional to the σxz component of the stress tensor. A screw dislocation lying along

the x axis will thus be sensitive to longitudinal stress correlations ΣL(d) = Σxz,xz(dex),

while an edge dislocation lying along the y axis will feel transverse stress correlations

ΣT (d) = Σxz,xz(dey). Given the differences in longitudinal and transverse correlations

illustrated in Fig. 4, we expect that stresses in random alloy act differently on edge and

screw dislocations.

A natural next step of this work is to combine the correlated stress environment

discussed here with either a simple line tension model or a more advanced dislocation

model accounting for long-range elasticity [35, 51, 52]. It will allow to assess the

influence of stress correlations on the dislocation roughness (i.e. the shape of the

dislocation line) and to clarify recent results obtained with atomistic calculations [53]

and continuous modeling [35]. More importantly, it will allow to investigate the solid

solution strengthening in concentrated alloys by estimating the critical stress to unpin a

dislocation from the underlying correlated stress. In particular, this multi-scale approach

will allow to relax some assumptions of average models [2, 32, 33] that rely on a unique

dislocation length-scale to predict the critical resolved shear stress of the alloy.

Some efforts have been pursued in this direction by investigating dislocation

roughening in a random stress environment [35] or the strengthening associated to

stacking fault inhomogeneities [54]. However, the stress environment considered in these

studies was simplified and did not incorporate stress correlations evidenced in this study.

In addition, one could consider combining this type of continuous model with

saddle-point search methods [55, 56] to access thermally-activated processes and describe

the strain-rate and temperature dependence of the plasticity in random alloys, that is

very important to predict the temperature-dependent yield stress of the alloy.

6. Conclusion

In this two-part article, we have developed a continuum microelasticity model to

investigate the statistical properties (variance and correlations) of the displacement

and stress fields emerging in random alloys. In particular, we modeled a fully random

alloy by considering occupancy probabilities independent of the lattice sites and only

dependent on the species concentrations. Investigating the influence of short-range order

or composition fluctuations on the displacement and stress correlations would therefore

be a natural extension of this work.

We discussed above how displacement and stress correlations can be used to revisit

theories of diffuse scattering and yield stress in random alloys. In the context of

plasticity, the present random stress environment can be generated and implemented in
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a dislocation dynamics framework [57, 58] to study for instance the competition between

solid-solution and precipitation hardening in complex alloys. Beyond dislocations, any

stress-induced microstructural process, such as the migration of twin interfaces [59] and

other grain boundaries, could also be modeled in random alloys, accounting for the

strong anisotropy of the correlations evidenced in the present study.
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Appendix A. Analytic computation of integrals

Appendix A.1. Some useful integrals

We note:

I0 =

∫ ∞

0

dx cos(bx) exp(−ax2) =
1

2

√

π

a
exp

(

− b2

4a

)

(A.1)

and by differentiation:

I2 =

∫ ∞

0

dx x2 cos(bx) exp(−ax2) (A.2)

= − ∂

∂a

∫ ∞

0

dx cos(bx) exp(−ax2)

=

√
π

4a3/2

(

1− b2

2a

)

exp

(

− b2

4a

)

.

We also define the following integrals:

un(x) =

∫ x

0

dt tn exp(−t2), (A.3)

which can be computed by recurrence noting that un(x) =
n−1
2
un−2(x)− xn−1

2
exp(−x2).

We obtain:
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u0(d/2a) =

∫ d/2a

0

dt exp(−t2) =

√
π

2
erf(d/2a) (A.4)

u2(d/2a) =

∫ d/2a

0

dt t2 exp(−t2) =
1

4

(√
πerf(d/2a)− d

a
e−d2/4a2

)

(A.5)

u4(d/2a) =

∫ d/2a

0

dt t4 exp(−t2) =
3

8

(√
πerf(d/2a)− d

a

(

1 +
d2

6a2

)

e−d2/4a2
)

(A.6)

u6(d/2a) =

∫ d/2a

0

dt t6 exp(−t2) =
15

16

(√
πerf(d/2a)− d

a

(

1 +
d2

6a2
+

d4

60a4

)

e−d2/4a2
)

(A.7)

where erf(x) = 2√
π

∫ x

0
dt exp(−t2) is the error function.

Appendix A.2. Computation of UL(d)

Using spherical coordinates, such that k = |K| and φ and θ are the polar and azimuthal

angles, we have:

Kx = k cos(θ) sin(φ)

Ky = k sin(θ) sin(φ) (A.8)

Kz = k cos(φ)

and noting A = vat∆ε2

(2π)3

(

1+ν
1−ν

)2
, we have from Eq. (15):

Uzz(dez) = A

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

K2
z

K2
cos(Kzd) exp(−a2K2)dKxdKydKz

= A

∫ 2π

0

dθ

∫ π

0

dφ sin(φ)

∫ ∞

0

dk cos2(φ) cos(kd cos(φ)) exp(−a2k2)

= 4πA

∫ π/2

0

dφ sin(φ) cos2(φ)

∫ ∞

0

dk cos(kd cos(φ)) exp(−a2k2). (A.9)

Using the expression of I0 in Eq. (A.1), we have

Uzz(dez) =
2π3/2A

a

∫ π/2

0

dφ sin(φ) cos2(φ) exp

(

−d2 cos2(φ)

4a2

)

. (A.10)

Introducing the variable u = d cos(φ)/2a yields:

Uzz(dez) =
2π3/2A

a

(

2a

d

)3 ∫ d/2a

0

du u2 exp(−u2). (A.11)

Using Eq. (A.5), we obtain

UL(d) = Uzz(dez) =
8Aπ3/2

a

(a

d

)3
[√

π

2
erf

(

d

2a

)

− d

2a
exp

(

− d2

4a2

)]

(A.12)
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Finally, using the expression of the mean-square displacement 〈u2〉 given in Ref. [17],

we find

UL(d) = 4〈u2〉
(a

d

)3
[√

π

2
erf

(

d

2a

)

− d

2a
exp

(

− d2

4a2

)]

, (A.13)

Appendix A.3. Computation of ΣT (d)

The stress correlations are derived similarly to the displacement correlations using polar

coordinates. We only detail one example here. Starting from Eq. (25), we have

Σxy,xy(dez) = 4µ2A

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

K2
xK

2
y

K4
cos(Kzd)e

−a2K2

dKxdKydKz

= 4µ2A

∫ 2π

0

dθ

∫ π

0

dφ sin(φ)

∫ ∞

0

dkk2 cos2(θ) sin2(θ) sin4(φ) cos(kd cos(φ))e−a2k2

= 2µ2Aπ

∫ π/2

0

dφ sin5(φ)

∫ ∞

0

dk k2 cos(kd cos(φ))e−a2k2. (A.14)

Using the expression of I2 in Eq. (A.2), we have

Σxy,xy(dez) =
µ2Aπ3/2

2a3

∫ π/2

0

dφ sin5(φ)

(

1− d2 cos2(φ)

2a2

)

e−
d2 cos2(φ)

4a2 . (A.15)

Introducing the variable u = d cos(φ)/2a,

Σxy,xy(dez) = µ2A
π3/2

a3

(a

d

)

∫ d/2a

0

du

(

1− 4a2

d2
u2

)2
(

1− 2u2
)

e−u2

. (A.16)

Using Eqs. (A.4-A.7), we obtain

ΣT (d) = Σxy,xy(dez) =
4µ2Aπ3/2

a3

(a

d

)3
[√

π

(

1− 6a2

d2

)

erf

(

d

2a

)

+
6a

d
e−d2/4a2

]

.

(A.17)

Finally, using the expression of the mean-square stress 〈τ 2〉 given in Ref. [17], we have

ΣT (d) = 15〈τ 2〉
(a

d

)3
[√

π

(

1− 6a2

d2

)

erf

(

d

2a

)

+
6a

d
exp

(

− d2

4a2

)]

. (A.18)
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